1 /* $NetBSD: intel_rps.c,v 1.5 2021/12/19 12:32:15 riastradh Exp $ */ 2 3 /* 4 * SPDX-License-Identifier: MIT 5 * 6 * Copyright 2019 Intel Corporation 7 */ 8 9 #include <sys/cdefs.h> 10 __KERNEL_RCSID(0, "$NetBSD: intel_rps.c,v 1.5 2021/12/19 12:32:15 riastradh Exp $"); 11 12 #include "i915_drv.h" 13 #include "intel_gt.h" 14 #include "intel_gt_irq.h" 15 #include "intel_gt_pm_irq.h" 16 #include "intel_rps.h" 17 #include "intel_sideband.h" 18 /* #include "../../../platform/x86/intel_ips.h" */ 19 20 #include <linux/nbsd-namespace.h> 21 22 /* 23 * Lock protecting IPS related data structures 24 */ 25 #ifdef __NetBSD__ 26 spinlock_t mchdev_lock; 27 #else 28 static DEFINE_SPINLOCK(mchdev_lock); 29 #endif 30 31 static struct intel_gt *rps_to_gt(struct intel_rps *rps) 32 { 33 return container_of(rps, struct intel_gt, rps); 34 } 35 36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps) 37 { 38 return rps_to_gt(rps)->i915; 39 } 40 41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps) 42 { 43 return rps_to_gt(rps)->uncore; 44 } 45 46 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask) 47 { 48 return mask & ~rps->pm_intrmsk_mbz; 49 } 50 51 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) 52 { 53 intel_uncore_write_fw(uncore, reg, val); 54 } 55 56 static u32 rps_pm_mask(struct intel_rps *rps, u8 val) 57 { 58 u32 mask = 0; 59 60 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */ 61 if (val > rps->min_freq_softlimit) 62 mask |= (GEN6_PM_RP_UP_EI_EXPIRED | 63 GEN6_PM_RP_DOWN_THRESHOLD | 64 GEN6_PM_RP_DOWN_TIMEOUT); 65 66 if (val < rps->max_freq_softlimit) 67 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; 68 69 mask &= rps->pm_events; 70 71 return rps_pm_sanitize_mask(rps, ~mask); 72 } 73 74 static void rps_reset_ei(struct intel_rps *rps) 75 { 76 memset(&rps->ei, 0, sizeof(rps->ei)); 77 } 78 79 static void rps_enable_interrupts(struct intel_rps *rps) 80 { 81 struct intel_gt *gt = rps_to_gt(rps); 82 83 rps_reset_ei(rps); 84 85 if (IS_VALLEYVIEW(gt->i915)) 86 /* WaGsvRC0ResidencyMethod:vlv */ 87 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED; 88 else 89 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD | 90 GEN6_PM_RP_DOWN_THRESHOLD | 91 GEN6_PM_RP_DOWN_TIMEOUT); 92 93 spin_lock_irq(>->irq_lock); 94 gen6_gt_pm_enable_irq(gt, rps->pm_events); 95 spin_unlock_irq(>->irq_lock); 96 97 set(gt->uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, rps->cur_freq)); 98 } 99 100 static void gen6_rps_reset_interrupts(struct intel_rps *rps) 101 { 102 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS); 103 } 104 105 static void gen11_rps_reset_interrupts(struct intel_rps *rps) 106 { 107 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM)) 108 ; 109 } 110 111 static void rps_reset_interrupts(struct intel_rps *rps) 112 { 113 struct intel_gt *gt = rps_to_gt(rps); 114 115 spin_lock_irq(>->irq_lock); 116 if (INTEL_GEN(gt->i915) >= 11) 117 gen11_rps_reset_interrupts(rps); 118 else 119 gen6_rps_reset_interrupts(rps); 120 121 rps->pm_iir = 0; 122 spin_unlock_irq(>->irq_lock); 123 } 124 125 static void rps_disable_interrupts(struct intel_rps *rps) 126 { 127 struct intel_gt *gt = rps_to_gt(rps); 128 129 rps->pm_events = 0; 130 131 set(gt->uncore, GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u)); 132 133 spin_lock_irq(>->irq_lock); 134 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS); 135 spin_unlock_irq(>->irq_lock); 136 137 intel_synchronize_irq(gt->i915); 138 139 /* 140 * Now that we will not be generating any more work, flush any 141 * outstanding tasks. As we are called on the RPS idle path, 142 * we will reset the GPU to minimum frequencies, so the current 143 * state of the worker can be discarded. 144 */ 145 cancel_work_sync(&rps->work); 146 147 rps_reset_interrupts(rps); 148 } 149 150 static const struct cparams { 151 u16 i; 152 u16 t; 153 u16 m; 154 u16 c; 155 } cparams[] = { 156 { 1, 1333, 301, 28664 }, 157 { 1, 1066, 294, 24460 }, 158 { 1, 800, 294, 25192 }, 159 { 0, 1333, 276, 27605 }, 160 { 0, 1066, 276, 27605 }, 161 { 0, 800, 231, 23784 }, 162 }; 163 164 static void gen5_rps_init(struct intel_rps *rps) 165 { 166 struct drm_i915_private *i915 = rps_to_i915(rps); 167 struct intel_uncore *uncore = rps_to_uncore(rps); 168 u8 fmax, fmin, fstart; 169 u32 rgvmodectl; 170 int c_m, i; 171 172 if (i915->fsb_freq <= 3200) 173 c_m = 0; 174 else if (i915->fsb_freq <= 4800) 175 c_m = 1; 176 else 177 c_m = 2; 178 179 for (i = 0; i < ARRAY_SIZE(cparams); i++) { 180 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) { 181 rps->ips.m = cparams[i].m; 182 rps->ips.c = cparams[i].c; 183 break; 184 } 185 } 186 187 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); 188 189 /* Set up min, max, and cur for interrupt handling */ 190 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; 191 fmin = (rgvmodectl & MEMMODE_FMIN_MASK); 192 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> 193 MEMMODE_FSTART_SHIFT; 194 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", 195 fmax, fmin, fstart); 196 197 rps->min_freq = fmax; 198 rps->max_freq = fmin; 199 200 rps->idle_freq = rps->min_freq; 201 rps->cur_freq = rps->idle_freq; 202 } 203 204 static unsigned long 205 __ips_chipset_val(struct intel_ips *ips) 206 { 207 struct intel_uncore *uncore = 208 rps_to_uncore(container_of(ips, struct intel_rps, ips)); 209 unsigned long now = jiffies_to_msecs(jiffies), dt; 210 unsigned long result; 211 u64 total, delta; 212 213 lockdep_assert_held(&mchdev_lock); 214 215 /* 216 * Prevent division-by-zero if we are asking too fast. 217 * Also, we don't get interesting results if we are polling 218 * faster than once in 10ms, so just return the saved value 219 * in such cases. 220 */ 221 dt = now - ips->last_time1; 222 if (dt <= 10) 223 return ips->chipset_power; 224 225 /* FIXME: handle per-counter overflow */ 226 total = intel_uncore_read(uncore, DMIEC); 227 total += intel_uncore_read(uncore, DDREC); 228 total += intel_uncore_read(uncore, CSIEC); 229 230 delta = total - ips->last_count1; 231 232 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10); 233 234 ips->last_count1 = total; 235 ips->last_time1 = now; 236 237 ips->chipset_power = result; 238 239 return result; 240 } 241 242 static unsigned long ips_mch_val(struct intel_uncore *uncore) 243 { 244 unsigned int m, x, b; 245 u32 tsfs; 246 247 tsfs = intel_uncore_read(uncore, TSFS); 248 x = intel_uncore_read8(uncore, TR1); 249 250 b = tsfs & TSFS_INTR_MASK; 251 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT; 252 253 return m * x / 127 - b; 254 } 255 256 static int _pxvid_to_vd(u8 pxvid) 257 { 258 if (pxvid == 0) 259 return 0; 260 261 if (pxvid >= 8 && pxvid < 31) 262 pxvid = 31; 263 264 return (pxvid + 2) * 125; 265 } 266 267 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid) 268 { 269 const int vd = _pxvid_to_vd(pxvid); 270 271 if (INTEL_INFO(i915)->is_mobile) 272 return max(vd - 1125, 0); 273 274 return vd; 275 } 276 277 static void __gen5_ips_update(struct intel_ips *ips) 278 { 279 struct intel_uncore *uncore = 280 rps_to_uncore(container_of(ips, struct intel_rps, ips)); 281 u64 now, delta, dt; 282 u32 count; 283 284 lockdep_assert_held(&mchdev_lock); 285 286 now = ktime_get_raw_ns(); 287 dt = now - ips->last_time2; 288 do_div(dt, NSEC_PER_MSEC); 289 290 /* Don't divide by 0 */ 291 if (dt <= 10) 292 return; 293 294 count = intel_uncore_read(uncore, GFXEC); 295 delta = count - ips->last_count2; 296 297 ips->last_count2 = count; 298 ips->last_time2 = now; 299 300 /* More magic constants... */ 301 ips->gfx_power = div_u64(delta * 1181, dt * 10); 302 } 303 304 static void gen5_rps_update(struct intel_rps *rps) 305 { 306 spin_lock_irq(&mchdev_lock); 307 __gen5_ips_update(&rps->ips); 308 spin_unlock_irq(&mchdev_lock); 309 } 310 311 static bool gen5_rps_set(struct intel_rps *rps, u8 val) 312 { 313 struct intel_uncore *uncore = rps_to_uncore(rps); 314 u16 rgvswctl; 315 316 lockdep_assert_held(&mchdev_lock); 317 318 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); 319 if (rgvswctl & MEMCTL_CMD_STS) { 320 DRM_DEBUG("gpu busy, RCS change rejected\n"); 321 return false; /* still busy with another command */ 322 } 323 324 /* Invert the frequency bin into an ips delay */ 325 val = rps->max_freq - val; 326 val = rps->min_freq + val; 327 328 rgvswctl = 329 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | 330 (val << MEMCTL_FREQ_SHIFT) | 331 MEMCTL_SFCAVM; 332 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); 333 intel_uncore_posting_read16(uncore, MEMSWCTL); 334 335 rgvswctl |= MEMCTL_CMD_STS; 336 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); 337 338 return true; 339 } 340 341 static unsigned long intel_pxfreq(u32 vidfreq) 342 { 343 int div = (vidfreq & 0x3f0000) >> 16; 344 int post = (vidfreq & 0x3000) >> 12; 345 int pre = (vidfreq & 0x7); 346 347 if (!pre) 348 return 0; 349 350 return div * 133333 / (pre << post); 351 } 352 353 static unsigned int init_emon(struct intel_uncore *uncore) 354 { 355 u8 pxw[16]; 356 int i; 357 358 /* Disable to program */ 359 intel_uncore_write(uncore, ECR, 0); 360 intel_uncore_posting_read(uncore, ECR); 361 362 /* Program energy weights for various events */ 363 intel_uncore_write(uncore, SDEW, 0x15040d00); 364 intel_uncore_write(uncore, CSIEW0, 0x007f0000); 365 intel_uncore_write(uncore, CSIEW1, 0x1e220004); 366 intel_uncore_write(uncore, CSIEW2, 0x04000004); 367 368 for (i = 0; i < 5; i++) 369 intel_uncore_write(uncore, PEW(i), 0); 370 for (i = 0; i < 3; i++) 371 intel_uncore_write(uncore, DEW(i), 0); 372 373 /* Program P-state weights to account for frequency power adjustment */ 374 for (i = 0; i < 16; i++) { 375 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i)); 376 unsigned int freq = intel_pxfreq(pxvidfreq); 377 unsigned int vid = 378 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; 379 unsigned int val; 380 381 val = vid * vid * freq / 1000 * 255; 382 val /= 127 * 127 * 900; 383 384 pxw[i] = val; 385 } 386 /* Render standby states get 0 weight */ 387 pxw[14] = 0; 388 pxw[15] = 0; 389 390 for (i = 0; i < 4; i++) { 391 intel_uncore_write(uncore, PXW(i), 392 pxw[i * 4 + 0] << 24 | 393 pxw[i * 4 + 1] << 16 | 394 pxw[i * 4 + 2] << 8 | 395 pxw[i * 4 + 3] << 0); 396 } 397 398 /* Adjust magic regs to magic values (more experimental results) */ 399 intel_uncore_write(uncore, OGW0, 0); 400 intel_uncore_write(uncore, OGW1, 0); 401 intel_uncore_write(uncore, EG0, 0x00007f00); 402 intel_uncore_write(uncore, EG1, 0x0000000e); 403 intel_uncore_write(uncore, EG2, 0x000e0000); 404 intel_uncore_write(uncore, EG3, 0x68000300); 405 intel_uncore_write(uncore, EG4, 0x42000000); 406 intel_uncore_write(uncore, EG5, 0x00140031); 407 intel_uncore_write(uncore, EG6, 0); 408 intel_uncore_write(uncore, EG7, 0); 409 410 for (i = 0; i < 8; i++) 411 intel_uncore_write(uncore, PXWL(i), 0); 412 413 /* Enable PMON + select events */ 414 intel_uncore_write(uncore, ECR, 0x80000019); 415 416 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK; 417 } 418 419 static bool gen5_rps_enable(struct intel_rps *rps) 420 { 421 struct intel_uncore *uncore = rps_to_uncore(rps); 422 u8 fstart, vstart; 423 u32 rgvmodectl; 424 425 spin_lock_irq(&mchdev_lock); 426 427 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); 428 429 /* Enable temp reporting */ 430 intel_uncore_write16(uncore, PMMISC, 431 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN); 432 intel_uncore_write16(uncore, TSC1, 433 intel_uncore_read16(uncore, TSC1) | TSE); 434 435 /* 100ms RC evaluation intervals */ 436 intel_uncore_write(uncore, RCUPEI, 100000); 437 intel_uncore_write(uncore, RCDNEI, 100000); 438 439 /* Set max/min thresholds to 90ms and 80ms respectively */ 440 intel_uncore_write(uncore, RCBMAXAVG, 90000); 441 intel_uncore_write(uncore, RCBMINAVG, 80000); 442 443 intel_uncore_write(uncore, MEMIHYST, 1); 444 445 /* Set up min, max, and cur for interrupt handling */ 446 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> 447 MEMMODE_FSTART_SHIFT; 448 449 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) & 450 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; 451 452 intel_uncore_write(uncore, 453 MEMINTREN, 454 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); 455 456 intel_uncore_write(uncore, VIDSTART, vstart); 457 intel_uncore_posting_read(uncore, VIDSTART); 458 459 rgvmodectl |= MEMMODE_SWMODE_EN; 460 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl); 461 462 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) & 463 MEMCTL_CMD_STS) == 0, 10)) 464 DRM_ERROR("stuck trying to change perf mode\n"); 465 mdelay(1); 466 467 gen5_rps_set(rps, rps->cur_freq); 468 469 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC); 470 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC); 471 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC); 472 rps->ips.last_time1 = jiffies_to_msecs(jiffies); 473 474 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC); 475 rps->ips.last_time2 = ktime_get_raw_ns(); 476 477 spin_unlock_irq(&mchdev_lock); 478 479 rps->ips.corr = init_emon(uncore); 480 481 return true; 482 } 483 484 static void gen5_rps_disable(struct intel_rps *rps) 485 { 486 struct intel_uncore *uncore = rps_to_uncore(rps); 487 u16 rgvswctl; 488 489 spin_lock_irq(&mchdev_lock); 490 491 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); 492 493 /* Ack interrupts, disable EFC interrupt */ 494 intel_uncore_write(uncore, MEMINTREN, 495 intel_uncore_read(uncore, MEMINTREN) & 496 ~MEMINT_EVAL_CHG_EN); 497 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); 498 intel_uncore_write(uncore, DEIER, 499 intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT); 500 intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT); 501 intel_uncore_write(uncore, DEIMR, 502 intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT); 503 504 /* Go back to the starting frequency */ 505 gen5_rps_set(rps, rps->idle_freq); 506 mdelay(1); 507 rgvswctl |= MEMCTL_CMD_STS; 508 intel_uncore_write(uncore, MEMSWCTL, rgvswctl); 509 mdelay(1); 510 511 spin_unlock_irq(&mchdev_lock); 512 } 513 514 static u32 rps_limits(struct intel_rps *rps, u8 val) 515 { 516 u32 limits; 517 518 /* 519 * Only set the down limit when we've reached the lowest level to avoid 520 * getting more interrupts, otherwise leave this clear. This prevents a 521 * race in the hw when coming out of rc6: There's a tiny window where 522 * the hw runs at the minimal clock before selecting the desired 523 * frequency, if the down threshold expires in that window we will not 524 * receive a down interrupt. 525 */ 526 if (INTEL_GEN(rps_to_i915(rps)) >= 9) { 527 limits = rps->max_freq_softlimit << 23; 528 if (val <= rps->min_freq_softlimit) 529 limits |= rps->min_freq_softlimit << 14; 530 } else { 531 limits = rps->max_freq_softlimit << 24; 532 if (val <= rps->min_freq_softlimit) 533 limits |= rps->min_freq_softlimit << 16; 534 } 535 536 return limits; 537 } 538 539 static void rps_set_power(struct intel_rps *rps, int new_power) 540 { 541 struct intel_uncore *uncore = rps_to_uncore(rps); 542 struct drm_i915_private *i915 = rps_to_i915(rps); 543 u32 threshold_up = 0, threshold_down = 0; /* in % */ 544 u32 ei_up = 0, ei_down = 0; 545 546 lockdep_assert_held(&rps->power.mutex); 547 548 if (new_power == rps->power.mode) 549 return; 550 551 /* Note the units here are not exactly 1us, but 1280ns. */ 552 switch (new_power) { 553 case LOW_POWER: 554 /* Upclock if more than 95% busy over 16ms */ 555 ei_up = 16000; 556 threshold_up = 95; 557 558 /* Downclock if less than 85% busy over 32ms */ 559 ei_down = 32000; 560 threshold_down = 85; 561 break; 562 563 case BETWEEN: 564 /* Upclock if more than 90% busy over 13ms */ 565 ei_up = 13000; 566 threshold_up = 90; 567 568 /* Downclock if less than 75% busy over 32ms */ 569 ei_down = 32000; 570 threshold_down = 75; 571 break; 572 573 case HIGH_POWER: 574 /* Upclock if more than 85% busy over 10ms */ 575 ei_up = 10000; 576 threshold_up = 85; 577 578 /* Downclock if less than 60% busy over 32ms */ 579 ei_down = 32000; 580 threshold_down = 60; 581 break; 582 } 583 584 /* When byt can survive without system hang with dynamic 585 * sw freq adjustments, this restriction can be lifted. 586 */ 587 if (IS_VALLEYVIEW(i915)) 588 goto skip_hw_write; 589 590 set(uncore, GEN6_RP_UP_EI, GT_INTERVAL_FROM_US(i915, ei_up)); 591 set(uncore, GEN6_RP_UP_THRESHOLD, 592 GT_INTERVAL_FROM_US(i915, ei_up * threshold_up / 100)); 593 594 set(uncore, GEN6_RP_DOWN_EI, GT_INTERVAL_FROM_US(i915, ei_down)); 595 set(uncore, GEN6_RP_DOWN_THRESHOLD, 596 GT_INTERVAL_FROM_US(i915, ei_down * threshold_down / 100)); 597 598 set(uncore, GEN6_RP_CONTROL, 599 (INTEL_GEN(i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) | 600 GEN6_RP_MEDIA_HW_NORMAL_MODE | 601 GEN6_RP_MEDIA_IS_GFX | 602 GEN6_RP_ENABLE | 603 GEN6_RP_UP_BUSY_AVG | 604 GEN6_RP_DOWN_IDLE_AVG); 605 606 skip_hw_write: 607 rps->power.mode = new_power; 608 rps->power.up_threshold = threshold_up; 609 rps->power.down_threshold = threshold_down; 610 } 611 612 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val) 613 { 614 int new_power; 615 616 new_power = rps->power.mode; 617 switch (rps->power.mode) { 618 case LOW_POWER: 619 if (val > rps->efficient_freq + 1 && 620 val > rps->cur_freq) 621 new_power = BETWEEN; 622 break; 623 624 case BETWEEN: 625 if (val <= rps->efficient_freq && 626 val < rps->cur_freq) 627 new_power = LOW_POWER; 628 else if (val >= rps->rp0_freq && 629 val > rps->cur_freq) 630 new_power = HIGH_POWER; 631 break; 632 633 case HIGH_POWER: 634 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && 635 val < rps->cur_freq) 636 new_power = BETWEEN; 637 break; 638 } 639 /* Max/min bins are special */ 640 if (val <= rps->min_freq_softlimit) 641 new_power = LOW_POWER; 642 if (val >= rps->max_freq_softlimit) 643 new_power = HIGH_POWER; 644 645 mutex_lock(&rps->power.mutex); 646 if (rps->power.interactive) 647 new_power = HIGH_POWER; 648 rps_set_power(rps, new_power); 649 mutex_unlock(&rps->power.mutex); 650 } 651 652 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive) 653 { 654 mutex_lock(&rps->power.mutex); 655 if (interactive) { 656 if (!rps->power.interactive++ && rps->active) 657 rps_set_power(rps, HIGH_POWER); 658 } else { 659 GEM_BUG_ON(!rps->power.interactive); 660 rps->power.interactive--; 661 } 662 mutex_unlock(&rps->power.mutex); 663 } 664 665 static int gen6_rps_set(struct intel_rps *rps, u8 val) 666 { 667 struct intel_uncore *uncore = rps_to_uncore(rps); 668 struct drm_i915_private *i915 = rps_to_i915(rps); 669 u32 swreq; 670 671 if (INTEL_GEN(i915) >= 9) 672 swreq = GEN9_FREQUENCY(val); 673 else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 674 swreq = HSW_FREQUENCY(val); 675 else 676 swreq = (GEN6_FREQUENCY(val) | 677 GEN6_OFFSET(0) | 678 GEN6_AGGRESSIVE_TURBO); 679 set(uncore, GEN6_RPNSWREQ, swreq); 680 681 return 0; 682 } 683 684 static int vlv_rps_set(struct intel_rps *rps, u8 val) 685 { 686 struct drm_i915_private *i915 = rps_to_i915(rps); 687 int err; 688 689 vlv_punit_get(i915); 690 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val); 691 vlv_punit_put(i915); 692 693 return err; 694 } 695 696 static int rps_set(struct intel_rps *rps, u8 val, bool update) 697 { 698 struct drm_i915_private *i915 = rps_to_i915(rps); 699 int err; 700 701 if (INTEL_GEN(i915) < 6) 702 return 0; 703 704 if (val == rps->last_freq) 705 return 0; 706 707 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 708 err = vlv_rps_set(rps, val); 709 else 710 err = gen6_rps_set(rps, val); 711 if (err) 712 return err; 713 714 if (update) 715 gen6_rps_set_thresholds(rps, val); 716 rps->last_freq = val; 717 718 return 0; 719 } 720 721 void intel_rps_unpark(struct intel_rps *rps) 722 { 723 u8 freq; 724 725 if (!rps->enabled) 726 return; 727 728 /* 729 * Use the user's desired frequency as a guide, but for better 730 * performance, jump directly to RPe as our starting frequency. 731 */ 732 mutex_lock(&rps->lock); 733 rps->active = true; 734 freq = max(rps->cur_freq, rps->efficient_freq), 735 freq = clamp(freq, rps->min_freq_softlimit, rps->max_freq_softlimit); 736 intel_rps_set(rps, freq); 737 rps->last_adj = 0; 738 mutex_unlock(&rps->lock); 739 740 if (INTEL_GEN(rps_to_i915(rps)) >= 6) 741 rps_enable_interrupts(rps); 742 743 if (IS_GEN(rps_to_i915(rps), 5)) 744 gen5_rps_update(rps); 745 } 746 747 void intel_rps_park(struct intel_rps *rps) 748 { 749 struct drm_i915_private *i915 = rps_to_i915(rps); 750 751 if (!rps->enabled) 752 return; 753 754 if (INTEL_GEN(i915) >= 6) 755 rps_disable_interrupts(rps); 756 757 rps->active = false; 758 if (rps->last_freq <= rps->idle_freq) 759 return; 760 761 /* 762 * The punit delays the write of the frequency and voltage until it 763 * determines the GPU is awake. During normal usage we don't want to 764 * waste power changing the frequency if the GPU is sleeping (rc6). 765 * However, the GPU and driver is now idle and we do not want to delay 766 * switching to minimum voltage (reducing power whilst idle) as we do 767 * not expect to be woken in the near future and so must flush the 768 * change by waking the device. 769 * 770 * We choose to take the media powerwell (either would do to trick the 771 * punit into committing the voltage change) as that takes a lot less 772 * power than the render powerwell. 773 */ 774 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA); 775 rps_set(rps, rps->idle_freq, false); 776 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA); 777 } 778 779 void intel_rps_boost(struct i915_request *rq) 780 { 781 struct intel_rps *rps = &rq->engine->gt->rps; 782 unsigned long flags; 783 784 if (i915_request_signaled(rq) || !rps->active) 785 return; 786 787 /* Serializes with i915_request_retire() */ 788 spin_lock_irqsave(&rq->lock, flags); 789 if (!i915_request_has_waitboost(rq) && 790 !dma_fence_is_signaled_locked(&rq->fence)) { 791 set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); 792 793 if (!atomic_fetch_inc(&rps->num_waiters) && 794 READ_ONCE(rps->cur_freq) < rps->boost_freq) 795 schedule_work(&rps->work); 796 797 atomic_inc(&rps->boosts); 798 } 799 spin_unlock_irqrestore(&rq->lock, flags); 800 } 801 802 int intel_rps_set(struct intel_rps *rps, u8 val) 803 { 804 int err; 805 806 lockdep_assert_held(&rps->lock); 807 GEM_BUG_ON(val > rps->max_freq); 808 GEM_BUG_ON(val < rps->min_freq); 809 810 if (rps->active) { 811 err = rps_set(rps, val, true); 812 if (err) 813 return err; 814 815 /* 816 * Make sure we continue to get interrupts 817 * until we hit the minimum or maximum frequencies. 818 */ 819 if (INTEL_GEN(rps_to_i915(rps)) >= 6) { 820 struct intel_uncore *uncore = rps_to_uncore(rps); 821 822 set(uncore, 823 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val)); 824 825 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val)); 826 } 827 } 828 829 rps->cur_freq = val; 830 return 0; 831 } 832 833 static void gen6_rps_init(struct intel_rps *rps) 834 { 835 struct drm_i915_private *i915 = rps_to_i915(rps); 836 struct intel_uncore *uncore = rps_to_uncore(rps); 837 838 /* All of these values are in units of 50MHz */ 839 840 /* static values from HW: RP0 > RP1 > RPn (min_freq) */ 841 if (IS_GEN9_LP(i915)) { 842 u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP); 843 844 rps->rp0_freq = (rp_state_cap >> 16) & 0xff; 845 rps->rp1_freq = (rp_state_cap >> 8) & 0xff; 846 rps->min_freq = (rp_state_cap >> 0) & 0xff; 847 } else { 848 u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP); 849 850 rps->rp0_freq = (rp_state_cap >> 0) & 0xff; 851 rps->rp1_freq = (rp_state_cap >> 8) & 0xff; 852 rps->min_freq = (rp_state_cap >> 16) & 0xff; 853 } 854 855 /* hw_max = RP0 until we check for overclocking */ 856 rps->max_freq = rps->rp0_freq; 857 858 rps->efficient_freq = rps->rp1_freq; 859 if (IS_HASWELL(i915) || IS_BROADWELL(i915) || 860 IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { 861 u32 ddcc_status = 0; 862 863 if (sandybridge_pcode_read(i915, 864 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, 865 &ddcc_status, NULL) == 0) 866 rps->efficient_freq = 867 clamp_t(u8, 868 (ddcc_status >> 8) & 0xff, 869 rps->min_freq, 870 rps->max_freq); 871 } 872 873 if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { 874 /* Store the frequency values in 16.66 MHZ units, which is 875 * the natural hardware unit for SKL 876 */ 877 rps->rp0_freq *= GEN9_FREQ_SCALER; 878 rps->rp1_freq *= GEN9_FREQ_SCALER; 879 rps->min_freq *= GEN9_FREQ_SCALER; 880 rps->max_freq *= GEN9_FREQ_SCALER; 881 rps->efficient_freq *= GEN9_FREQ_SCALER; 882 } 883 } 884 885 static bool rps_reset(struct intel_rps *rps) 886 { 887 /* force a reset */ 888 rps->power.mode = -1; 889 rps->last_freq = -1; 890 891 if (rps_set(rps, rps->min_freq, true)) { 892 DRM_ERROR("Failed to reset RPS to initial values\n"); 893 return false; 894 } 895 896 rps->cur_freq = rps->min_freq; 897 return true; 898 } 899 900 /* See the Gen9_GT_PM_Programming_Guide doc for the below */ 901 static bool gen9_rps_enable(struct intel_rps *rps) 902 { 903 struct drm_i915_private *i915 = rps_to_i915(rps); 904 struct intel_uncore *uncore = rps_to_uncore(rps); 905 906 /* Program defaults and thresholds for RPS */ 907 if (IS_GEN(i915, 9)) 908 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, 909 GEN9_FREQUENCY(rps->rp1_freq)); 910 911 /* 1 second timeout */ 912 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 913 GT_INTERVAL_FROM_US(i915, 1000000)); 914 915 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa); 916 917 return rps_reset(rps); 918 } 919 920 static bool gen8_rps_enable(struct intel_rps *rps) 921 { 922 struct intel_uncore *uncore = rps_to_uncore(rps); 923 924 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, 925 HSW_FREQUENCY(rps->rp1_freq)); 926 927 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */ 928 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 929 100000000 / 128); /* 1 second timeout */ 930 931 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); 932 933 return rps_reset(rps); 934 } 935 936 static bool gen6_rps_enable(struct intel_rps *rps) 937 { 938 struct intel_uncore *uncore = rps_to_uncore(rps); 939 940 /* Power down if completely idle for over 50ms */ 941 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000); 942 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); 943 944 return rps_reset(rps); 945 } 946 947 static int chv_rps_max_freq(struct intel_rps *rps) 948 { 949 struct drm_i915_private *i915 = rps_to_i915(rps); 950 u32 val; 951 952 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); 953 954 switch (RUNTIME_INFO(i915)->sseu.eu_total) { 955 case 8: 956 /* (2 * 4) config */ 957 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT; 958 break; 959 case 12: 960 /* (2 * 6) config */ 961 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT; 962 break; 963 case 16: 964 /* (2 * 8) config */ 965 default: 966 /* Setting (2 * 8) Min RP0 for any other combination */ 967 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT; 968 break; 969 } 970 971 return val & FB_GFX_FREQ_FUSE_MASK; 972 } 973 974 static int chv_rps_rpe_freq(struct intel_rps *rps) 975 { 976 struct drm_i915_private *i915 = rps_to_i915(rps); 977 u32 val; 978 979 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG); 980 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT; 981 982 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; 983 } 984 985 static int chv_rps_guar_freq(struct intel_rps *rps) 986 { 987 struct drm_i915_private *i915 = rps_to_i915(rps); 988 u32 val; 989 990 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); 991 992 return val & FB_GFX_FREQ_FUSE_MASK; 993 } 994 995 static u32 chv_rps_min_freq(struct intel_rps *rps) 996 { 997 struct drm_i915_private *i915 = rps_to_i915(rps); 998 u32 val; 999 1000 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE); 1001 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT; 1002 1003 return val & FB_GFX_FREQ_FUSE_MASK; 1004 } 1005 1006 static bool chv_rps_enable(struct intel_rps *rps) 1007 { 1008 struct intel_uncore *uncore = rps_to_uncore(rps); 1009 struct drm_i915_private *i915 = rps_to_i915(rps); 1010 u32 val; 1011 1012 /* 1: Program defaults and thresholds for RPS*/ 1013 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); 1014 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); 1015 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); 1016 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); 1017 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); 1018 1019 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); 1020 1021 /* 2: Enable RPS */ 1022 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, 1023 GEN6_RP_MEDIA_HW_NORMAL_MODE | 1024 GEN6_RP_MEDIA_IS_GFX | 1025 GEN6_RP_ENABLE | 1026 GEN6_RP_UP_BUSY_AVG | 1027 GEN6_RP_DOWN_IDLE_AVG); 1028 1029 /* Setting Fixed Bias */ 1030 vlv_punit_get(i915); 1031 1032 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; 1033 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); 1034 1035 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); 1036 1037 vlv_punit_put(i915); 1038 1039 /* RPS code assumes GPLL is used */ 1040 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); 1041 1042 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); 1043 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); 1044 1045 return rps_reset(rps); 1046 } 1047 1048 static int vlv_rps_guar_freq(struct intel_rps *rps) 1049 { 1050 struct drm_i915_private *i915 = rps_to_i915(rps); 1051 u32 val, rp1; 1052 1053 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); 1054 1055 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK; 1056 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; 1057 1058 return rp1; 1059 } 1060 1061 static int vlv_rps_max_freq(struct intel_rps *rps) 1062 { 1063 struct drm_i915_private *i915 = rps_to_i915(rps); 1064 u32 val, rp0; 1065 1066 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); 1067 1068 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; 1069 /* Clamp to max */ 1070 rp0 = min_t(u32, rp0, 0xea); 1071 1072 return rp0; 1073 } 1074 1075 static int vlv_rps_rpe_freq(struct intel_rps *rps) 1076 { 1077 struct drm_i915_private *i915 = rps_to_i915(rps); 1078 u32 val, rpe; 1079 1080 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO); 1081 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; 1082 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI); 1083 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; 1084 1085 return rpe; 1086 } 1087 1088 static int vlv_rps_min_freq(struct intel_rps *rps) 1089 { 1090 struct drm_i915_private *i915 = rps_to_i915(rps); 1091 u32 val; 1092 1093 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff; 1094 /* 1095 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value 1096 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on 1097 * a BYT-M B0 the above register contains 0xbf. Moreover when setting 1098 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 1099 * to make sure it matches what Punit accepts. 1100 */ 1101 return max_t(u32, val, 0xc0); 1102 } 1103 1104 static bool vlv_rps_enable(struct intel_rps *rps) 1105 { 1106 struct intel_uncore *uncore = rps_to_uncore(rps); 1107 struct drm_i915_private *i915 = rps_to_i915(rps); 1108 u32 val; 1109 1110 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); 1111 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); 1112 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); 1113 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); 1114 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); 1115 1116 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); 1117 1118 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, 1119 GEN6_RP_MEDIA_TURBO | 1120 GEN6_RP_MEDIA_HW_NORMAL_MODE | 1121 GEN6_RP_MEDIA_IS_GFX | 1122 GEN6_RP_ENABLE | 1123 GEN6_RP_UP_BUSY_AVG | 1124 GEN6_RP_DOWN_IDLE_CONT); 1125 1126 vlv_punit_get(i915); 1127 1128 /* Setting Fixed Bias */ 1129 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; 1130 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); 1131 1132 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); 1133 1134 vlv_punit_put(i915); 1135 1136 /* RPS code assumes GPLL is used */ 1137 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); 1138 1139 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); 1140 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); 1141 1142 return rps_reset(rps); 1143 } 1144 1145 static unsigned long __ips_gfx_val(struct intel_ips *ips) 1146 { 1147 struct intel_rps *rps = container_of(ips, typeof(*rps), ips); 1148 struct intel_uncore *uncore = rps_to_uncore(rps); 1149 unsigned long t, corr, state1, corr2, state2; 1150 u32 pxvid, ext_v; 1151 1152 lockdep_assert_held(&mchdev_lock); 1153 1154 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq)); 1155 pxvid = (pxvid >> 24) & 0x7f; 1156 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid); 1157 1158 state1 = ext_v; 1159 1160 /* Revel in the empirically derived constants */ 1161 1162 /* Correction factor in 1/100000 units */ 1163 t = ips_mch_val(uncore); 1164 if (t > 80) 1165 corr = t * 2349 + 135940; 1166 else if (t >= 50) 1167 corr = t * 964 + 29317; 1168 else /* < 50 */ 1169 corr = t * 301 + 1004; 1170 1171 corr = corr * 150142 * state1 / 10000 - 78642; 1172 corr /= 100000; 1173 corr2 = corr * ips->corr; 1174 1175 state2 = corr2 * state1 / 10000; 1176 state2 /= 100; /* convert to mW */ 1177 1178 __gen5_ips_update(ips); 1179 1180 return ips->gfx_power + state2; 1181 } 1182 1183 void intel_rps_enable(struct intel_rps *rps) 1184 { 1185 struct drm_i915_private *i915 = rps_to_i915(rps); 1186 struct intel_uncore *uncore = rps_to_uncore(rps); 1187 1188 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1189 if (IS_CHERRYVIEW(i915)) 1190 rps->enabled = chv_rps_enable(rps); 1191 else if (IS_VALLEYVIEW(i915)) 1192 rps->enabled = vlv_rps_enable(rps); 1193 else if (INTEL_GEN(i915) >= 9) 1194 rps->enabled = gen9_rps_enable(rps); 1195 else if (INTEL_GEN(i915) >= 8) 1196 rps->enabled = gen8_rps_enable(rps); 1197 else if (INTEL_GEN(i915) >= 6) 1198 rps->enabled = gen6_rps_enable(rps); 1199 else if (IS_IRONLAKE_M(i915)) 1200 rps->enabled = gen5_rps_enable(rps); 1201 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 1202 if (!rps->enabled) 1203 return; 1204 1205 WARN_ON(rps->max_freq < rps->min_freq); 1206 WARN_ON(rps->idle_freq > rps->max_freq); 1207 1208 WARN_ON(rps->efficient_freq < rps->min_freq); 1209 WARN_ON(rps->efficient_freq > rps->max_freq); 1210 } 1211 1212 static void gen6_rps_disable(struct intel_rps *rps) 1213 { 1214 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0); 1215 } 1216 1217 void intel_rps_disable(struct intel_rps *rps) 1218 { 1219 struct drm_i915_private *i915 = rps_to_i915(rps); 1220 1221 rps->enabled = false; 1222 1223 if (INTEL_GEN(i915) >= 6) 1224 gen6_rps_disable(rps); 1225 else if (IS_IRONLAKE_M(i915)) 1226 gen5_rps_disable(rps); 1227 } 1228 1229 static int byt_gpu_freq(struct intel_rps *rps, int val) 1230 { 1231 /* 1232 * N = val - 0xb7 1233 * Slow = Fast = GPLL ref * N 1234 */ 1235 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); 1236 } 1237 1238 static int byt_freq_opcode(struct intel_rps *rps, int val) 1239 { 1240 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; 1241 } 1242 1243 static int chv_gpu_freq(struct intel_rps *rps, int val) 1244 { 1245 /* 1246 * N = val / 2 1247 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 1248 */ 1249 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); 1250 } 1251 1252 static int chv_freq_opcode(struct intel_rps *rps, int val) 1253 { 1254 /* CHV needs even values */ 1255 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; 1256 } 1257 1258 int intel_gpu_freq(struct intel_rps *rps, int val) 1259 { 1260 struct drm_i915_private *i915 = rps_to_i915(rps); 1261 1262 if (INTEL_GEN(i915) >= 9) 1263 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, 1264 GEN9_FREQ_SCALER); 1265 else if (IS_CHERRYVIEW(i915)) 1266 return chv_gpu_freq(rps, val); 1267 else if (IS_VALLEYVIEW(i915)) 1268 return byt_gpu_freq(rps, val); 1269 else 1270 return val * GT_FREQUENCY_MULTIPLIER; 1271 } 1272 1273 int intel_freq_opcode(struct intel_rps *rps, int val) 1274 { 1275 struct drm_i915_private *i915 = rps_to_i915(rps); 1276 1277 if (INTEL_GEN(i915) >= 9) 1278 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, 1279 GT_FREQUENCY_MULTIPLIER); 1280 else if (IS_CHERRYVIEW(i915)) 1281 return chv_freq_opcode(rps, val); 1282 else if (IS_VALLEYVIEW(i915)) 1283 return byt_freq_opcode(rps, val); 1284 else 1285 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); 1286 } 1287 1288 static void vlv_init_gpll_ref_freq(struct intel_rps *rps) 1289 { 1290 struct drm_i915_private *i915 = rps_to_i915(rps); 1291 1292 rps->gpll_ref_freq = 1293 vlv_get_cck_clock(i915, "GPLL ref", 1294 CCK_GPLL_CLOCK_CONTROL, 1295 i915->czclk_freq); 1296 1297 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", rps->gpll_ref_freq); 1298 } 1299 1300 static void vlv_rps_init(struct intel_rps *rps) 1301 { 1302 struct drm_i915_private *i915 = rps_to_i915(rps); 1303 u32 val; 1304 1305 vlv_iosf_sb_get(i915, 1306 BIT(VLV_IOSF_SB_PUNIT) | 1307 BIT(VLV_IOSF_SB_NC) | 1308 BIT(VLV_IOSF_SB_CCK)); 1309 1310 vlv_init_gpll_ref_freq(rps); 1311 1312 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); 1313 switch ((val >> 6) & 3) { 1314 case 0: 1315 case 1: 1316 i915->mem_freq = 800; 1317 break; 1318 case 2: 1319 i915->mem_freq = 1066; 1320 break; 1321 case 3: 1322 i915->mem_freq = 1333; 1323 break; 1324 } 1325 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq); 1326 1327 rps->max_freq = vlv_rps_max_freq(rps); 1328 rps->rp0_freq = rps->max_freq; 1329 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", 1330 intel_gpu_freq(rps, rps->max_freq), 1331 rps->max_freq); 1332 1333 rps->efficient_freq = vlv_rps_rpe_freq(rps); 1334 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", 1335 intel_gpu_freq(rps, rps->efficient_freq), 1336 rps->efficient_freq); 1337 1338 rps->rp1_freq = vlv_rps_guar_freq(rps); 1339 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n", 1340 intel_gpu_freq(rps, rps->rp1_freq), 1341 rps->rp1_freq); 1342 1343 rps->min_freq = vlv_rps_min_freq(rps); 1344 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", 1345 intel_gpu_freq(rps, rps->min_freq), 1346 rps->min_freq); 1347 1348 vlv_iosf_sb_put(i915, 1349 BIT(VLV_IOSF_SB_PUNIT) | 1350 BIT(VLV_IOSF_SB_NC) | 1351 BIT(VLV_IOSF_SB_CCK)); 1352 } 1353 1354 static void chv_rps_init(struct intel_rps *rps) 1355 { 1356 struct drm_i915_private *i915 = rps_to_i915(rps); 1357 u32 val; 1358 1359 vlv_iosf_sb_get(i915, 1360 BIT(VLV_IOSF_SB_PUNIT) | 1361 BIT(VLV_IOSF_SB_NC) | 1362 BIT(VLV_IOSF_SB_CCK)); 1363 1364 vlv_init_gpll_ref_freq(rps); 1365 1366 val = vlv_cck_read(i915, CCK_FUSE_REG); 1367 1368 switch ((val >> 2) & 0x7) { 1369 case 3: 1370 i915->mem_freq = 2000; 1371 break; 1372 default: 1373 i915->mem_freq = 1600; 1374 break; 1375 } 1376 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq); 1377 1378 rps->max_freq = chv_rps_max_freq(rps); 1379 rps->rp0_freq = rps->max_freq; 1380 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", 1381 intel_gpu_freq(rps, rps->max_freq), 1382 rps->max_freq); 1383 1384 rps->efficient_freq = chv_rps_rpe_freq(rps); 1385 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", 1386 intel_gpu_freq(rps, rps->efficient_freq), 1387 rps->efficient_freq); 1388 1389 rps->rp1_freq = chv_rps_guar_freq(rps); 1390 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n", 1391 intel_gpu_freq(rps, rps->rp1_freq), 1392 rps->rp1_freq); 1393 1394 rps->min_freq = chv_rps_min_freq(rps); 1395 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", 1396 intel_gpu_freq(rps, rps->min_freq), 1397 rps->min_freq); 1398 1399 vlv_iosf_sb_put(i915, 1400 BIT(VLV_IOSF_SB_PUNIT) | 1401 BIT(VLV_IOSF_SB_NC) | 1402 BIT(VLV_IOSF_SB_CCK)); 1403 1404 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq | 1405 rps->min_freq) & 1, 1406 "Odd GPU freq values\n"); 1407 } 1408 1409 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei) 1410 { 1411 ei->ktime = ktime_get_raw(); 1412 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT); 1413 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT); 1414 } 1415 1416 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir) 1417 { 1418 struct intel_uncore *uncore = rps_to_uncore(rps); 1419 const struct intel_rps_ei *prev = &rps->ei; 1420 struct intel_rps_ei now; 1421 u32 events = 0; 1422 1423 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) 1424 return 0; 1425 1426 vlv_c0_read(uncore, &now); 1427 1428 if (prev->ktime) { 1429 u64 time, c0; 1430 u32 render, media; 1431 1432 time = ktime_us_delta(now.ktime, prev->ktime); 1433 1434 time *= rps_to_i915(rps)->czclk_freq; 1435 1436 /* Workload can be split between render + media, 1437 * e.g. SwapBuffers being blitted in X after being rendered in 1438 * mesa. To account for this we need to combine both engines 1439 * into our activity counter. 1440 */ 1441 render = now.render_c0 - prev->render_c0; 1442 media = now.media_c0 - prev->media_c0; 1443 c0 = max(render, media); 1444 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ 1445 1446 if (c0 > time * rps->power.up_threshold) 1447 events = GEN6_PM_RP_UP_THRESHOLD; 1448 else if (c0 < time * rps->power.down_threshold) 1449 events = GEN6_PM_RP_DOWN_THRESHOLD; 1450 } 1451 1452 rps->ei = now; 1453 return events; 1454 } 1455 1456 static void rps_work(struct work_struct *work) 1457 { 1458 struct intel_rps *rps = container_of(work, typeof(*rps), work); 1459 struct intel_gt *gt = rps_to_gt(rps); 1460 bool client_boost = false; 1461 int new_freq, adj, min, max; 1462 u32 pm_iir = 0; 1463 1464 spin_lock_irq(>->irq_lock); 1465 pm_iir = fetch_and_zero(&rps->pm_iir); 1466 client_boost = atomic_read(&rps->num_waiters); 1467 spin_unlock_irq(>->irq_lock); 1468 1469 /* Make sure we didn't queue anything we're not going to process. */ 1470 if ((pm_iir & rps->pm_events) == 0 && !client_boost) 1471 goto out; 1472 1473 mutex_lock(&rps->lock); 1474 1475 pm_iir |= vlv_wa_c0_ei(rps, pm_iir); 1476 1477 adj = rps->last_adj; 1478 new_freq = rps->cur_freq; 1479 min = rps->min_freq_softlimit; 1480 max = rps->max_freq_softlimit; 1481 if (client_boost) 1482 max = rps->max_freq; 1483 if (client_boost && new_freq < rps->boost_freq) { 1484 new_freq = rps->boost_freq; 1485 adj = 0; 1486 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { 1487 if (adj > 0) 1488 adj *= 2; 1489 else /* CHV needs even encode values */ 1490 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1; 1491 1492 if (new_freq >= rps->max_freq_softlimit) 1493 adj = 0; 1494 } else if (client_boost) { 1495 adj = 0; 1496 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { 1497 if (rps->cur_freq > rps->efficient_freq) 1498 new_freq = rps->efficient_freq; 1499 else if (rps->cur_freq > rps->min_freq_softlimit) 1500 new_freq = rps->min_freq_softlimit; 1501 adj = 0; 1502 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { 1503 if (adj < 0) 1504 adj *= 2; 1505 else /* CHV needs even encode values */ 1506 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1; 1507 1508 if (new_freq <= rps->min_freq_softlimit) 1509 adj = 0; 1510 } else { /* unknown event */ 1511 adj = 0; 1512 } 1513 1514 rps->last_adj = adj; 1515 1516 /* 1517 * Limit deboosting and boosting to keep ourselves at the extremes 1518 * when in the respective power modes (i.e. slowly decrease frequencies 1519 * while in the HIGH_POWER zone and slowly increase frequencies while 1520 * in the LOW_POWER zone). On idle, we will hit the timeout and drop 1521 * to the next level quickly, and conversely if busy we expect to 1522 * hit a waitboost and rapidly switch into max power. 1523 */ 1524 if ((adj < 0 && rps->power.mode == HIGH_POWER) || 1525 (adj > 0 && rps->power.mode == LOW_POWER)) 1526 rps->last_adj = 0; 1527 1528 /* sysfs frequency interfaces may have snuck in while servicing the 1529 * interrupt 1530 */ 1531 new_freq += adj; 1532 new_freq = clamp_t(int, new_freq, min, max); 1533 1534 if (intel_rps_set(rps, new_freq)) { 1535 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); 1536 rps->last_adj = 0; 1537 } 1538 1539 mutex_unlock(&rps->lock); 1540 1541 out: 1542 spin_lock_irq(>->irq_lock); 1543 gen6_gt_pm_unmask_irq(gt, rps->pm_events); 1544 spin_unlock_irq(>->irq_lock); 1545 } 1546 1547 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) 1548 { 1549 struct intel_gt *gt = rps_to_gt(rps); 1550 const u32 events = rps->pm_events & pm_iir; 1551 1552 lockdep_assert_held(>->irq_lock); 1553 1554 if (unlikely(!events)) 1555 return; 1556 1557 gen6_gt_pm_mask_irq(gt, events); 1558 1559 rps->pm_iir |= events; 1560 schedule_work(&rps->work); 1561 } 1562 1563 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) 1564 { 1565 struct intel_gt *gt = rps_to_gt(rps); 1566 1567 if (pm_iir & rps->pm_events) { 1568 spin_lock(>->irq_lock); 1569 gen6_gt_pm_mask_irq(gt, pm_iir & rps->pm_events); 1570 rps->pm_iir |= pm_iir & rps->pm_events; 1571 schedule_work(&rps->work); 1572 spin_unlock(>->irq_lock); 1573 } 1574 1575 if (INTEL_GEN(gt->i915) >= 8) 1576 return; 1577 1578 if (pm_iir & PM_VEBOX_USER_INTERRUPT) 1579 intel_engine_signal_breadcrumbs(gt->engine[VECS0]); 1580 1581 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) 1582 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); 1583 } 1584 1585 void gen5_rps_irq_handler(struct intel_rps *rps) 1586 { 1587 struct intel_uncore *uncore = rps_to_uncore(rps); 1588 u32 busy_up, busy_down, max_avg, min_avg; 1589 u8 new_freq; 1590 1591 spin_lock(&mchdev_lock); 1592 1593 intel_uncore_write16(uncore, 1594 MEMINTRSTS, 1595 intel_uncore_read(uncore, MEMINTRSTS)); 1596 1597 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); 1598 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); 1599 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); 1600 max_avg = intel_uncore_read(uncore, RCBMAXAVG); 1601 min_avg = intel_uncore_read(uncore, RCBMINAVG); 1602 1603 /* Handle RCS change request from hw */ 1604 new_freq = rps->cur_freq; 1605 if (busy_up > max_avg) 1606 new_freq++; 1607 else if (busy_down < min_avg) 1608 new_freq--; 1609 new_freq = clamp(new_freq, 1610 rps->min_freq_softlimit, 1611 rps->max_freq_softlimit); 1612 1613 if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq)) 1614 rps->cur_freq = new_freq; 1615 1616 spin_unlock(&mchdev_lock); 1617 } 1618 1619 void intel_rps_init_early(struct intel_rps *rps) 1620 { 1621 mutex_init(&rps->lock); 1622 mutex_init(&rps->power.mutex); 1623 1624 INIT_WORK(&rps->work, rps_work); 1625 1626 atomic_set(&rps->num_waiters, 0); 1627 } 1628 1629 void intel_rps_init(struct intel_rps *rps) 1630 { 1631 struct drm_i915_private *i915 = rps_to_i915(rps); 1632 1633 if (IS_CHERRYVIEW(i915)) 1634 chv_rps_init(rps); 1635 else if (IS_VALLEYVIEW(i915)) 1636 vlv_rps_init(rps); 1637 else if (INTEL_GEN(i915) >= 6) 1638 gen6_rps_init(rps); 1639 else if (IS_IRONLAKE_M(i915)) 1640 gen5_rps_init(rps); 1641 1642 /* Derive initial user preferences/limits from the hardware limits */ 1643 rps->max_freq_softlimit = rps->max_freq; 1644 rps->min_freq_softlimit = rps->min_freq; 1645 1646 /* After setting max-softlimit, find the overclock max freq */ 1647 if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) { 1648 u32 params = 0; 1649 1650 sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS, 1651 ¶ms, NULL); 1652 if (params & BIT(31)) { /* OC supported */ 1653 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n", 1654 (rps->max_freq & 0xff) * 50, 1655 (params & 0xff) * 50); 1656 rps->max_freq = params & 0xff; 1657 } 1658 } 1659 1660 /* Finally allow us to boost to max by default */ 1661 rps->boost_freq = rps->max_freq; 1662 rps->idle_freq = rps->min_freq; 1663 rps->cur_freq = rps->idle_freq; 1664 1665 rps->pm_intrmsk_mbz = 0; 1666 1667 /* 1668 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer 1669 * if GEN6_PM_UP_EI_EXPIRED is masked. 1670 * 1671 * TODO: verify if this can be reproduced on VLV,CHV. 1672 */ 1673 if (INTEL_GEN(i915) <= 7) 1674 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; 1675 1676 if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11) 1677 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 1678 } 1679 1680 void intel_rps_fini(struct intel_rps *rps) 1681 { 1682 1683 mutex_destroy(&rps->power.mutex); 1684 mutex_destroy(&rps->lock); 1685 } 1686 1687 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat) 1688 { 1689 struct drm_i915_private *i915 = rps_to_i915(rps); 1690 u32 cagf; 1691 1692 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 1693 cagf = (rpstat >> 8) & 0xff; 1694 else if (INTEL_GEN(i915) >= 9) 1695 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; 1696 else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 1697 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; 1698 else 1699 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; 1700 1701 return cagf; 1702 } 1703 1704 static u32 read_cagf(struct intel_rps *rps) 1705 { 1706 struct drm_i915_private *i915 = rps_to_i915(rps); 1707 u32 freq; 1708 1709 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { 1710 vlv_punit_get(i915); 1711 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); 1712 vlv_punit_put(i915); 1713 } else { 1714 freq = intel_uncore_read(rps_to_gt(rps)->uncore, GEN6_RPSTAT1); 1715 } 1716 1717 return intel_rps_get_cagf(rps, freq); 1718 } 1719 1720 u32 intel_rps_read_actual_frequency(struct intel_rps *rps) 1721 { 1722 struct intel_runtime_pm *rpm = rps_to_gt(rps)->uncore->rpm; 1723 intel_wakeref_t wakeref; 1724 u32 freq = 0; 1725 1726 with_intel_runtime_pm_if_in_use(rpm, wakeref) 1727 freq = intel_gpu_freq(rps, read_cagf(rps)); 1728 1729 return freq; 1730 } 1731 1732 /* External interface for intel_ips.ko */ 1733 1734 static struct drm_i915_private __rcu *ips_mchdev; 1735 1736 /** 1737 * Tells the intel_ips driver that the i915 driver is now loaded, if 1738 * IPS got loaded first. 1739 * 1740 * This awkward dance is so that neither module has to depend on the 1741 * other in order for IPS to do the appropriate communication of 1742 * GPU turbo limits to i915. 1743 */ 1744 static void 1745 ips_ping_for_i915_load(void) 1746 { 1747 #ifndef __NetBSD__ /* XXX IPS GPU turbo limits what? */ 1748 void (*link)(void); 1749 1750 link = symbol_get(ips_link_to_i915_driver); 1751 if (link) { 1752 link(); 1753 symbol_put(ips_link_to_i915_driver); 1754 } 1755 #endif 1756 } 1757 1758 void intel_rps_driver_register(struct intel_rps *rps) 1759 { 1760 struct intel_gt *gt = rps_to_gt(rps); 1761 1762 /* 1763 * We only register the i915 ips part with intel-ips once everything is 1764 * set up, to avoid intel-ips sneaking in and reading bogus values. 1765 */ 1766 if (IS_GEN(gt->i915, 5)) { 1767 GEM_BUG_ON(ips_mchdev); 1768 rcu_assign_pointer(ips_mchdev, gt->i915); 1769 ips_ping_for_i915_load(); 1770 } 1771 } 1772 1773 void intel_rps_driver_unregister(struct intel_rps *rps) 1774 { 1775 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps)) 1776 rcu_assign_pointer(ips_mchdev, NULL); 1777 } 1778 1779 static struct drm_i915_private *mchdev_get(void) 1780 { 1781 struct drm_i915_private *i915; 1782 1783 rcu_read_lock(); 1784 i915 = rcu_dereference(ips_mchdev); 1785 if (!kref_get_unless_zero(&i915->drm.ref)) 1786 i915 = NULL; 1787 rcu_read_unlock(); 1788 1789 return i915; 1790 } 1791 1792 /** 1793 * i915_read_mch_val - return value for IPS use 1794 * 1795 * Calculate and return a value for the IPS driver to use when deciding whether 1796 * we have thermal and power headroom to increase CPU or GPU power budget. 1797 */ 1798 unsigned long i915_read_mch_val(void) 1799 { 1800 struct drm_i915_private *i915; 1801 unsigned long chipset_val = 0; 1802 unsigned long graphics_val = 0; 1803 intel_wakeref_t wakeref; 1804 1805 i915 = mchdev_get(); 1806 if (!i915) 1807 return 0; 1808 1809 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 1810 struct intel_ips *ips = &i915->gt.rps.ips; 1811 1812 spin_lock_irq(&mchdev_lock); 1813 chipset_val = __ips_chipset_val(ips); 1814 graphics_val = __ips_gfx_val(ips); 1815 spin_unlock_irq(&mchdev_lock); 1816 } 1817 1818 drm_dev_put(&i915->drm); 1819 return chipset_val + graphics_val; 1820 } 1821 EXPORT_SYMBOL_GPL(i915_read_mch_val); 1822 1823 /** 1824 * i915_gpu_raise - raise GPU frequency limit 1825 * 1826 * Raise the limit; IPS indicates we have thermal headroom. 1827 */ 1828 bool i915_gpu_raise(void) 1829 { 1830 struct drm_i915_private *i915; 1831 struct intel_rps *rps; 1832 1833 i915 = mchdev_get(); 1834 if (!i915) 1835 return false; 1836 1837 rps = &i915->gt.rps; 1838 1839 spin_lock_irq(&mchdev_lock); 1840 if (rps->max_freq_softlimit < rps->max_freq) 1841 rps->max_freq_softlimit++; 1842 spin_unlock_irq(&mchdev_lock); 1843 1844 drm_dev_put(&i915->drm); 1845 return true; 1846 } 1847 EXPORT_SYMBOL_GPL(i915_gpu_raise); 1848 1849 /** 1850 * i915_gpu_lower - lower GPU frequency limit 1851 * 1852 * IPS indicates we're close to a thermal limit, so throttle back the GPU 1853 * frequency maximum. 1854 */ 1855 bool i915_gpu_lower(void) 1856 { 1857 struct drm_i915_private *i915; 1858 struct intel_rps *rps; 1859 1860 i915 = mchdev_get(); 1861 if (!i915) 1862 return false; 1863 1864 rps = &i915->gt.rps; 1865 1866 spin_lock_irq(&mchdev_lock); 1867 if (rps->max_freq_softlimit > rps->min_freq) 1868 rps->max_freq_softlimit--; 1869 spin_unlock_irq(&mchdev_lock); 1870 1871 drm_dev_put(&i915->drm); 1872 return true; 1873 } 1874 EXPORT_SYMBOL_GPL(i915_gpu_lower); 1875 1876 /** 1877 * i915_gpu_busy - indicate GPU business to IPS 1878 * 1879 * Tell the IPS driver whether or not the GPU is busy. 1880 */ 1881 bool i915_gpu_busy(void) 1882 { 1883 struct drm_i915_private *i915; 1884 bool ret; 1885 1886 i915 = mchdev_get(); 1887 if (!i915) 1888 return false; 1889 1890 ret = i915->gt.awake; 1891 1892 drm_dev_put(&i915->drm); 1893 return ret; 1894 } 1895 EXPORT_SYMBOL_GPL(i915_gpu_busy); 1896 1897 /** 1898 * i915_gpu_turbo_disable - disable graphics turbo 1899 * 1900 * Disable graphics turbo by resetting the max frequency and setting the 1901 * current frequency to the default. 1902 */ 1903 bool i915_gpu_turbo_disable(void) 1904 { 1905 struct drm_i915_private *i915; 1906 struct intel_rps *rps; 1907 bool ret; 1908 1909 i915 = mchdev_get(); 1910 if (!i915) 1911 return false; 1912 1913 rps = &i915->gt.rps; 1914 1915 spin_lock_irq(&mchdev_lock); 1916 rps->max_freq_softlimit = rps->min_freq; 1917 ret = gen5_rps_set(&i915->gt.rps, rps->min_freq); 1918 spin_unlock_irq(&mchdev_lock); 1919 1920 drm_dev_put(&i915->drm); 1921 return ret; 1922 } 1923 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); 1924