Home | History | Annotate | Line # | Download | only in include
      1 /*	$NetBSD: cpu_extended_state.h,v 1.19 2025/04/24 01:50:39 riastradh Exp $	*/
      2 
      3 #ifndef _X86_CPU_EXTENDED_STATE_H_
      4 #define _X86_CPU_EXTENDED_STATE_H_
      5 
      6 #ifdef __lint__
      7 /* Lint has different packing rules and doesn't understand __aligned() */
      8 #define __CTASSERT_NOLINT(x) __CTASSERT(1)
      9 #else
     10 #define __CTASSERT_NOLINT(x) __CTASSERT(x)
     11 #endif
     12 
     13 /*
     14  * This file contains definitions of structures that match the memory layouts
     15  * used on x86 processors to save floating point registers and other extended
     16  * cpu states.
     17  *
     18  * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and the later
     19  * AVX instructions.
     20  *
     21  * The definitions are such that any future 'extended state' should be handled,
     22  * provided the kernel doesn't need to know the actual contents.
     23  *
     24  * The actual structures the cpu accesses must be aligned to 16 bytes for FXSAVE
     25  * and 64 for XSAVE. The types aren't aligned because copies do not need extra
     26  * alignment.
     27  *
     28  * The slightly different layout saved by the i387 fsave is also defined.
     29  * This is only normally written by pre Pentium II type cpus that don't
     30  * support the fxsave instruction.
     31  *
     32  * Associated save instructions:
     33  * FNSAVE:   Saves x87 state in 108 bytes (original i387 layout). Then
     34  *           reinitializes the fpu.
     35  * FSAVE:    Encodes to FWAIT followed by FNSAVE.
     36  * FXSAVE:   Saves the x87 state and XMM (aka SSE) registers to the first
     37  *           448 (max) bytes of a 512 byte area. This layout does not match
     38  *           that written by FNSAVE.
     39  * XSAVE:    Uses the same layout for the x87 and XMM registers, followed by
     40  *           a 64byte header and separate save areas for additional extended
     41  *           cpu states. The x87 state is always saved, the others
     42  *           conditionally.
     43  * XSAVEOPT: Same as XSAVE but only writes the registers blocks that have
     44  *           been modified.
     45  */
     46 
     47 /*
     48  * Layout for code/data pointers relating to FP exceptions. Marked 'packed'
     49  * because they aren't always 64bit aligned. Since the x86 cpu supports
     50  * misaligned accesses it isn't worth avoiding the 'packed' attribute.
     51  */
     52 union fp_addr {
     53 	uint64_t fa_64;	/* Linear address for 64bit systems */
     54 	struct {
     55 		uint32_t fa_off;	/* linear address for 32 bit */
     56 		uint16_t fa_seg;	/* code/data (etc) segment */
     57 		uint16_t fa_opcode;	/* last opcode (sometimes) */
     58 	} fa_32;
     59 } __packed __aligned(4);
     60 
     61 /* The x87 registers are 80 bits */
     62 struct fpacc87 {
     63 	uint64_t f87_mantissa;	/* mantissa */
     64 	uint16_t f87_exp_sign;	/* exponent and sign */
     65 } __packed __aligned(2);
     66 
     67 /* The x87 registers padded out to 16 bytes for fxsave */
     68 struct fpaccfx {
     69 	struct fpacc87 r __aligned(16);
     70 };
     71 
     72 /* The SSE/SSE2 registers are 128 bits */
     73 struct xmmreg {
     74 	uint8_t xmm_bytes[16];
     75 };
     76 
     77 /* The AVX registers are 256 bits, but the low bits are the xmmregs */
     78 struct ymmreg {
     79 	uint8_t ymm_bytes[16];
     80 };
     81 
     82 /* The AVX-512 registers are 512 bits but the low bits are in xmmregs
     83  * and ymmregs */
     84 struct zmmreg {
     85 	uint8_t zmm_bytes[32];
     86 };
     87 
     88 /* 512-bit ZMM register. */
     89 struct hi16_zmmreg {
     90 	uint8_t zmm_bytes[64];
     91 };
     92 
     93 /*
     94  * Floating point unit registers (FSAVE instruction).
     95  *
     96  * The s87_ac[] and fx_87_ac[] are relative to the stack top. The 'tag word'
     97  * contains 2 bits per register and refers to absolute register numbers.
     98  *
     99  * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
    100  * is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
    101  * The fxsave 'Abridged tag word' in inverted.
    102  */
    103 struct save87 {
    104 	uint16_t s87_cw __aligned(4);	/* control word */
    105 	uint16_t s87_sw __aligned(4);	/* status word  */
    106 	uint16_t s87_tw __aligned(4);	/* tag word */
    107 	union fp_addr s87_ip;		/* floating point instruction pointer */
    108 #define s87_opcode s87_ip.fa_32.fa_opcode	/* opcode last executed (11bits) */
    109 	union fp_addr s87_dp;		/* floating operand offset */
    110 	struct fpacc87 s87_ac[8];	/* accumulator contents */
    111 };
    112 __CTASSERT_NOLINT(sizeof(struct save87) == 108);
    113 
    114 /*
    115  * FPU/MMX/SSE/SSE2 context (FXSAVE instruction).
    116  */
    117 struct fxsave {
    118 	uint16_t fx_cw;		/* FPU Control Word */
    119 	uint16_t fx_sw;		/* FPU Status Word */
    120 	uint8_t fx_tw;		/* FPU Tag Word (abridged) */
    121 	uint8_t fx_zero;	/* zero */
    122 	uint16_t fx_opcode;	/* FPU Opcode */
    123 	union fp_addr fx_ip;	/* FPU Instruction Pointer */
    124 	union fp_addr fx_dp;	/* FPU Data pointer */
    125 	uint32_t fx_mxcsr;	/* MXCSR Register State */
    126 	uint32_t fx_mxcsr_mask;
    127 	struct fpaccfx fx_87_ac[8];	/* 8 x87 registers */
    128 	struct xmmreg fx_xmm[16];	/* XMM regs (8 in 32bit modes) */
    129 	uint8_t fx_rsvd[96];
    130 } __aligned(16);
    131 __CTASSERT_NOLINT(sizeof(struct fxsave) == 512);
    132 
    133 /*
    134  * For XSAVE, a 64byte header follows the fxsave data.
    135  */
    136 struct xsave_header {
    137 	uint8_t xsh_fxsave[512];	/* struct fxsave */
    138 	uint64_t xsh_xstate_bv;		/* bitmap of saved sub structures */
    139 	uint64_t xsh_xcomp_bv;		/* bitmap of compact sub structures */
    140 	uint8_t xsh_rsrvd[8];		/* must be zero */
    141 	uint8_t xsh_reserved[40];	/* best if zero */
    142 };
    143 __CTASSERT(sizeof(struct xsave_header) == 512 + 64);
    144 
    145 /*
    146  * The ymm save area actually follows the xsave_header.
    147  */
    148 struct xsave_ymm {
    149 	struct ymmreg xs_ymm[16];	/* High bits of YMM registers */
    150 };
    151 __CTASSERT(sizeof(struct xsave_ymm) == 256);
    152 
    153 /*
    154  * AVX-512: opmask state.
    155  */
    156 struct xsave_opmask {
    157 	uint64_t xs_k[8];			/* k0..k7 registers. */
    158 };
    159 __CTASSERT(sizeof(struct xsave_opmask) == 64);
    160 
    161 /*
    162  * AVX-512: ZMM_Hi256 state.
    163  */
    164 struct xsave_zmm_hi256 {
    165 	struct zmmreg xs_zmm[16];	/* High bits of zmm0..zmm15 registers. */
    166 };
    167 __CTASSERT(sizeof(struct xsave_zmm_hi256) == 512);
    168 
    169 /*
    170  * AVX-512: Hi16_ZMM state.
    171  */
    172 struct xsave_hi16_zmm {
    173 	struct hi16_zmmreg xs_hi16_zmm[16];	/* zmm16..zmm31 registers. */
    174 };
    175 __CTASSERT(sizeof(struct xsave_hi16_zmm) == 1024);
    176 
    177 /*
    178  * Structure used to hold all interesting data from XSAVE, in predictable form.
    179  * Note that this structure can have new members added to the end.
    180  */
    181 struct xstate {
    182 	/*
    183 	 * The two following fields are bitmaps of XSAVE components.  They can be
    184 	 * matched against XCR0_* constants from <machine/specialreg.h>).
    185 	 */
    186 	/*
    187 	 * XSAVE/XRSTOR RFBM parameter.
    188 	 *
    189 	 * PT_GETXSTATE: 1 indicates that the respective XSAVE component is
    190 	 * supported and has been enabled for saving.  0 indicates that it is not
    191 	 * supported by the platform or kernel.
    192 	 *
    193 	 * PT_SETXSTATE: 1 indicates that the respective XSAVE component should
    194 	 * be updated to the value of respective field (or reset if xs_xsave_bv
    195 	 * bit is 0).  0 indicates that it should be left intact.  It is an error
    196 	 * to enable bits that are not supported by the platform or kernel.
    197 	 */
    198 	uint64_t xs_rfbm;
    199 	/*
    200 	 * XSAVE/XRSTOR xstate header.
    201 	 *
    202 	 * PT_GETXSTATE: 1 indicates that the respective XSAVE component has been
    203 	 * saved.  0 indicates that it had been in its CPU-defined initial value
    204 	 * at the time of saving (i.e. was not used by the program).
    205 	 *
    206 	 * PT_SETXSTATE: 1 indicates that the respective XSAVE component (if present
    207 	 * in xs_rfbm) should be set to the values in respective field.  0 indicates
    208 	 * that it should be reset to CPU-defined initial value.
    209 	 */
    210 	uint64_t xs_xstate_bv;
    211 
    212 	/* legacy FXSAVE area (used for x87 & SSE state) */
    213 	struct fxsave xs_fxsave;
    214 	/* AVX state: high bits of ymm0..ymm15 registers */
    215 	struct xsave_ymm xs_ymm_hi128;
    216 	/* AVX-512: opmask */
    217 	struct xsave_opmask xs_opmask;
    218 	/* AVX-512: high bits of zmm0..zmm15 registers */
    219 	struct xsave_zmm_hi256 xs_zmm_hi256;
    220 	/* AVX-512: whole zmm16..zmm31 registers */
    221 	struct xsave_hi16_zmm xs_hi16_zmm;
    222 };
    223 
    224 /*
    225  * The following union is placed at the end of the pcb.
    226  * It is defined this way to separate the definitions and to
    227  * minimise the number of union/struct selectors.
    228  * NB: Some userspace stuff (eg firefox) uses it to parse ucontext.
    229  * NB: This is not actually the largest possible save space;
    230  *     x86_fpu_save_size may be larger.
    231  */
    232 union savefpu {
    233 	struct save87 sv_87;
    234 	struct fxsave sv_xmm;
    235 #ifdef _KERNEL
    236 	struct xsave_header sv_xsave_hdr;
    237 #endif
    238 };
    239 
    240 /*
    241  * 80387 control and status word bits
    242  *
    243  * The only reference I can find to bits 0x40 and 0x80 in the control word
    244  * is for the Weitek 1167/3167.
    245  * I (dsl) can't find why the default word has 0x40 set.
    246  *
    247  * A stack error is signalled as an INVOP that also sets STACK_FAULT
    248  * (other INVOP do not clear STACK_FAULT).
    249  */
    250 /* Interrupt masks (set masks interrupt) and status bits */
    251 #define EN_SW_INVOP		0x0001  /* Invalid operation */
    252 #define EN_SW_DENORM		0x0002  /* Denormalized operand */
    253 #define EN_SW_ZERODIV		0x0004  /* Divide by zero */
    254 #define EN_SW_OVERFLOW		0x0008  /* Overflow */
    255 #define EN_SW_UNDERFLOW		0x0010  /* Underflow */
    256 #define EN_SW_PRECLOSS		0x0020  /* Loss of precision */
    257 /* Status word bits (reserved in control word) */
    258 #define EN_SW_STACK_FAULT	0x0040	/* Stack under/overflow */
    259 #define EN_SW_ERROR_SUMMARY	0x0080	/* Unmasked error has occurred */
    260 /* Control bits (badly named) */
    261 #define EN_SW_CTL_PREC		0x0300	/* Precision control */
    262 #define EN_SW_PREC_24		0x0000	/* Single precision */
    263 #define EN_SW_PREC_53		0x0200	/* Double precision */
    264 #define EN_SW_PREC_64		0x0300	/* Extended precision */
    265 #define EN_SW_CTL_ROUND		0x0c00	/* Rounding control */
    266 #define EN_SW_ROUND_EVEN	0x0000	/* Round to nearest even */
    267 #define EN_SW_ROUND_DOWN	0x0400	/* Round towards minus infinity */
    268 #define EN_SW_ROUND_UP		0x0800	/* Round towards plus infinity */
    269 #define EN_SW_ROUND_ZERO	0x0c00	/* Round towards zero (truncates) */
    270 #define EN_SW_CTL_INF		0x1000	/* Infinity control, not used  */
    271 
    272 /*
    273  * The standard 0x87 control word from finit is 0x37F, giving:
    274  *	round to nearest
    275  *	64-bit precision
    276  *	all exceptions masked.
    277  *
    278  * NetBSD used to select:
    279  *	round to nearest
    280  *	53-bit precision
    281  *	all exceptions masked.
    282  * Stating: 64-bit precision often gives bad results with high level
    283  * languages because it makes the results of calculations depend on whether
    284  * intermediate values are stored in memory or in FPU registers.
    285  * Also some 'pathological divisions' give an error in the LSB because
    286  * the value is first rounded up when the 64bit mantissa is generated,
    287  * and then again when it is truncated to 53 bits.
    288  *
    289  * However the C language explicitly allows the extra precision.
    290  */
    291 #define	__INITIAL_NPXCW__	0x037f
    292 /* Modern NetBSD uses the default control word.. */
    293 #define	__NetBSD_NPXCW__	__INITIAL_NPXCW__
    294 /* NetBSD before 6.99.26 forced IEEE double precision. */
    295 #define	__NetBSD_COMPAT_NPXCW__	0x127f
    296 /* FreeBSD leaves some exceptions unmasked as well. */
    297 #define	__FreeBSD_NPXCW__	0x1272
    298 /* Linux just uses the default control word. */
    299 #define	__Linux_NPXCW__		__INITIAL_NPXCW__
    300 
    301 /*
    302  * The default MXCSR value at reset is 0x1f80, IA-32 Instruction
    303  * Set Reference, pg. 3-369.
    304  *
    305  * The low 6 bits of the mxcsr are the fp status bits (same order as x87).
    306  * Bit 6 is 'denormals are zero' (speeds up calculations).
    307  * Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
    308  * Bits 13 and 14 are rounding control.
    309  * Bit 15 is 'flush to zero' - affects underflow.
    310  * Bits 16-31 must be zero.
    311  *
    312  * The safe MXCSR is fit for constant-time use, e.g. in crypto.  Some
    313  * CPU instructions take input- dependent time if an exception status
    314  * bit is not set; __SAFE_MXCSR__ has the exception status bits all set
    315  * already to mitigate this.  See:
    316  * https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
    317  */
    318 #define	__INITIAL_MXCSR__	0x1f80
    319 #define	__INITIAL_MXCSR_MASK__	0xffbf
    320 #define	__SAFE_MXCSR__		0x1fbf
    321 
    322 #endif /* _X86_CPU_EXTENDED_STATE_H_ */
    323