Home | History | Annotate | Line # | Download | only in isa
      1 /*	$NetBSD: sbdsp.c,v 1.142 2021/07/24 21:31:37 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  *
     64  */
     65 
     66 /*
     67  * SoundBlaster Pro code provided by John Kohl, based on lots of
     68  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     69  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     70  * <sachs (at) meibm15.cen.uiuc.edu>.
     71  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     72  * with information from SB "Hardware Programming Guide" and the
     73  * Linux drivers.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.142 2021/07/24 21:31:37 andvar Exp $");
     78 
     79 #include "midi.h"
     80 #include "mpu.h"
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/kernel.h>
     85 #include <sys/errno.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/syslog.h>
     88 #include <sys/device.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/cpu.h>
     93 #include <sys/intr.h>
     94 #include <sys/bus.h>
     95 
     96 #include <sys/audioio.h>
     97 #include <dev/audio/audio_if.h>
     98 #include <dev/audio/linear.h>
     99 #include <dev/midi_if.h>
    100 
    101 #include <dev/isa/isavar.h>
    102 #include <dev/isa/isadmavar.h>
    103 
    104 #include <dev/isa/sbreg.h>
    105 #include <dev/isa/sbdspvar.h>
    106 
    107 
    108 #ifdef AUDIO_DEBUG
    109 #define DPRINTF(x)	if (sbdspdebug) printf x
    110 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    111 int	sbdspdebug = 0;
    112 #else
    113 #define DPRINTF(x)
    114 #define DPRINTFN(n,x)
    115 #endif
    116 
    117 #ifndef SBDSP_NPOLL
    118 #define SBDSP_NPOLL 3000
    119 #endif
    120 
    121 struct {
    122 	int wdsp;
    123 	int rdsp;
    124 	int wmidi;
    125 } sberr;
    126 
    127 /*
    128  * Time constant routines follow.  See SBK, section 12.
    129  * Although they don't come out and say it (in the docs),
    130  * the card clearly uses a 1MHz countdown timer, as the
    131  * low-speed formula (p. 12-4) is:
    132  *	tc = 256 - 10^6 / sr
    133  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    134  * and a 256MHz clock is used:
    135  *	tc = 65536 - 256 * 10^ 6 / sr
    136  * Since we can only use the upper byte of the HS TC, the two formulae
    137  * are equivalent.  (Why didn't they say so?)  E.g.,
    138  *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    139  *
    140  * The crossover point (from low- to high-speed modes) is different
    141  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    142  *
    143  *				SBPRO			SB20
    144  *				-----			--------
    145  * input ls min			4	kHz		4	kHz
    146  * input ls max			23	kHz		13	kHz
    147  * input hs max			44.1	kHz		15	kHz
    148  * output ls min		4	kHz		4	kHz
    149  * output ls max		23	kHz		23	kHz
    150  * output hs max		44.1	kHz		44.1	kHz
    151  */
    152 /* XXX Should we round the tc?
    153 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    154 */
    155 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    156 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    157 
    158 struct sbmode {
    159 	short	model;
    160 	u_char	channels;
    161 	u_char	precision;
    162 	u_short	lowrate, highrate;
    163 	u_char	cmd;
    164 	u_char	halt, cont;
    165 	u_char	cmdchan;
    166 };
    167 static struct sbmode sbpmodes[] = {
    168  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    169  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    170  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    171  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    172  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    173  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    174  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    175  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    176  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    177  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    178  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    179  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    180  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    181  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    182  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    183  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    184 #define PLAY16 15 /* must be the index of the next entry in the table */
    185  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    186  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    187  { .model = -1 }
    188 };
    189 static struct sbmode sbrmodes[] = {
    190  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    191  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    192  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    193  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    194  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    195  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    196  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    197  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    198  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    199  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    200  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    201  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    202  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    203  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    204  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    205  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    206  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    207  { .model = -1 }
    208 };
    209 
    210 /*
    211  * We actually can specify any value within the frequency range defined
    212  * above.  But according to definition of SB_RATE_TO_TC macro, only some
    213  * of them are dividable (it's preferable, not mandatory).  There are 9
    214  * values in the range that satisfy this condition but it's too much.
    215  */
    216 static const int sbdsp_rates[] = {
    217 	4000,
    218 	/* 5000, */
    219 	/* 6250, */
    220 	/* 10000, */
    221 	12500,
    222 	/* 15625, */
    223 	20000,
    224 	/* 25000, */
    225 	31250,
    226 };
    227 
    228 void	sbversion(struct sbdsp_softc *);
    229 void	sbdsp_jazz16_probe(struct sbdsp_softc *);
    230 void	sbdsp_sbmode2format(struct audio_format *, const struct sbmode *, int);
    231 int	sbdsp_set_format16(struct sbdsp_softc *, int,
    232 	    const audio_params_t *, const audio_params_t *,
    233 	    audio_filter_reg_t *, audio_filter_reg_t *);
    234 int	sbdsp_set_format8(struct sbdsp_softc *, int,
    235 	    const audio_params_t *, const audio_params_t *,
    236 	    audio_filter_reg_t *, audio_filter_reg_t *);
    237 void	sbdsp_init_format(struct sbdsp_softc *);
    238 void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
    239 void	sbdsp_pause(struct sbdsp_softc *);
    240 int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
    241 int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
    242 int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
    243 void	sbdsp_set_ifilter(void *, int);
    244 int	sbdsp_get_ifilter(void *);
    245 
    246 int	sbdsp_block_output(void *);
    247 int	sbdsp_block_input(void *);
    248 static	int sbdsp_adjust(int, int);
    249 
    250 int	sbdsp_midi_intr(void *);
    251 
    252 static bool	sbdsp_resume(device_t, const pmf_qual_t *);
    253 
    254 #ifdef AUDIO_DEBUG
    255 void	sb_printsc(struct sbdsp_softc *);
    256 
    257 void
    258 sb_printsc(struct sbdsp_softc *sc)
    259 {
    260 	int i;
    261 
    262 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
    263 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    264 	    sc->sc_drq8, sc->sc_drq16,
    265 	    sc->sc_iobase, sc->sc_irq);
    266 	printf("irate %d itc %x orate %d otc %x\n",
    267 	    sc->sc_i.rate, sc->sc_i.tc,
    268 	    sc->sc_o.rate, sc->sc_o.tc);
    269 	printf("spkron %u nintr %lu\n",
    270 	    sc->spkr_state, sc->sc_interrupts);
    271 	printf("intr8 %p intr16 %p\n",
    272 	    sc->sc_intr8, sc->sc_intr16);
    273 	printf("gain:");
    274 	for (i = 0; i < SB_NDEVS; i++)
    275 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    276 	printf("\n");
    277 }
    278 #endif /* AUDIO_DEBUG */
    279 
    280 /*
    281  * Probe / attach routines.
    282  */
    283 
    284 /*
    285  * Probe for the soundblaster hardware.
    286  */
    287 int
    288 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
    289 {
    290 
    291 	if (sbdsp_reset(sc) < 0) {
    292 		DPRINTF(("sbdsp: couldn't reset card\n"));
    293 		return 0;
    294 	}
    295 	/* if flags set, go and probe the jazz16 stuff */
    296 	if (match->cf_flags & 1)
    297 		sbdsp_jazz16_probe(sc);
    298 	else
    299 		sbversion(sc);
    300 	if (sc->sc_model == SB_UNK) {
    301 		/* Unknown SB model found. */
    302 		DPRINTF(("sbdsp: unknown SB model found\n"));
    303 		return 0;
    304 	}
    305 	return 1;
    306 }
    307 
    308 /*
    309  * Try add-on stuff for Jazz16.
    310  */
    311 void
    312 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
    313 {
    314 	static u_char jazz16_irq_conf[16] = {
    315 	    -1, -1, 0x02, 0x03,
    316 	    -1, 0x01, -1, 0x04,
    317 	    -1, 0x02, 0x05, -1,
    318 	    -1, -1, -1, 0x06};
    319 	static u_char jazz16_drq_conf[8] = {
    320 	    -1, 0x01, -1, 0x02,
    321 	    -1, 0x03, -1, 0x04};
    322 
    323 	bus_space_tag_t iot;
    324 	bus_space_handle_t ioh;
    325 
    326 	iot = sc->sc_iot;
    327 	sbversion(sc);
    328 
    329 	DPRINTF(("jazz16 probe\n"));
    330 
    331 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    332 		DPRINTF(("bus map failed\n"));
    333 		return;
    334 	}
    335 
    336 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    337 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    338 		DPRINTF(("drq/irq check failed\n"));
    339 		goto done;		/* give up, we can't do it. */
    340 	}
    341 
    342 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    343 	delay(10000);			/* delay 10 ms */
    344 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    345 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    346 
    347 	if (sbdsp_reset(sc) < 0) {
    348 		DPRINTF(("sbdsp_reset check failed\n"));
    349 		goto done;		/* XXX? what else could we do? */
    350 	}
    351 
    352 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    353 		DPRINTF(("read16 setup failed\n"));
    354 		goto done;
    355 	}
    356 
    357 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    358 		DPRINTF(("read16 failed\n"));
    359 		goto done;
    360 	}
    361 
    362 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    363 	sc->sc_drq16 = sc->sc_drq8;
    364 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    365 	    (sc->sc_drq16 >= 0 &&
    366 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    367 		jazz16_drq_conf[sc->sc_drq8])) ||
    368 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    369 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    370 	} else {
    371 		DPRINTF(("jazz16 detected!\n"));
    372 		sc->sc_model = SB_JAZZ;
    373 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    374 	}
    375 
    376 done:
    377 	bus_space_unmap(iot, ioh, 1);
    378 }
    379 
    380 /*
    381  * Attach hardware to driver, attach hardware driver to audio
    382  * pseudo-device driver .
    383  */
    384 void
    385 sbdsp_attach(struct sbdsp_softc *sc)
    386 {
    387 	int i, error;
    388 	u_int v;
    389 
    390 	mutex_enter(&sc->sc_lock);
    391 	mutex_spin_enter(&sc->sc_intr_lock);
    392 
    393 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    394 
    395 	if (sc->sc_mixer_model != SBM_NONE) {
    396 		/* Reset the mixer.*/
    397 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    398 		/* And set our own default values */
    399 		for (i = 0; i < SB_NDEVS; i++) {
    400 			switch(i) {
    401 			case SB_MIC_VOL:
    402 			case SB_LINE_IN_VOL:
    403 				v = 0;
    404 				break;
    405 			case SB_BASS:
    406 			case SB_TREBLE:
    407 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    408 				break;
    409 			case SB_CD_IN_MUTE:
    410 			case SB_MIC_IN_MUTE:
    411 			case SB_LINE_IN_MUTE:
    412 			case SB_MIDI_IN_MUTE:
    413 			case SB_CD_SWAP:
    414 			case SB_MIC_SWAP:
    415 			case SB_LINE_SWAP:
    416 			case SB_MIDI_SWAP:
    417 			case SB_CD_OUT_MUTE:
    418 			case SB_MIC_OUT_MUTE:
    419 			case SB_LINE_OUT_MUTE:
    420 				v = 0;
    421 				break;
    422 			default:
    423 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    424 				break;
    425 			}
    426 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    427 			sbdsp_set_mixer_gain(sc, i);
    428 		}
    429 		sc->in_filter = 0;	/* no filters turned on, please */
    430 	}
    431 
    432 	mutex_spin_exit(&sc->sc_intr_lock);
    433 	mutex_exit(&sc->sc_lock);
    434 
    435 	aprint_naive("\n");
    436 	aprint_normal(": dsp v%d.%02d%s\n",
    437 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    438 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    439 
    440 	if (sc->sc_drq8 != -1) {
    441 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    442 		    sc->sc_drq8);
    443 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    444 		    sc->sc_drq8_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
    445 		if (error) {
    446 			aprint_error_dev(sc->sc_dev,
    447 			    "can't create map for drq %d\n", sc->sc_drq8);
    448 			return;
    449 		}
    450 	}
    451 
    452 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    453 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    454 		    sc->sc_drq16);
    455 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    456 		    sc->sc_drq16_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
    457 		if (error) {
    458 			aprint_error_dev(sc->sc_dev,
    459 			    "can't create map for drq %d\n", sc->sc_drq16);
    460 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    461 			return;
    462 		}
    463 	}
    464 
    465 	/* Construct sc_formats from model */
    466 	sbdsp_init_format(sc);
    467 	if (sc->sc_nformats == 0) {
    468 		aprint_error_dev(sc->sc_dev,
    469 		    "No available formats; model mismatch?\n");
    470 		return;
    471 	}
    472 
    473 	if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
    474 		aprint_error_dev(sc->sc_dev,
    475 		    "couldn't establish power handler\n");
    476 }
    477 
    478 static bool
    479 sbdsp_resume(device_t dv, const pmf_qual_t *qual)
    480 {
    481 	struct sbdsp_softc *sc = device_private(dv);
    482 
    483 	/* Reset the mixer. */
    484 	mutex_enter(&sc->sc_lock);
    485 	mutex_spin_enter(&sc->sc_intr_lock);
    486 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    487 	mutex_spin_exit(&sc->sc_intr_lock);
    488 	mutex_exit(&sc->sc_lock);
    489 
    490 	return true;
    491 }
    492 
    493 void
    494 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
    495 {
    496 	bus_space_tag_t iot;
    497 	bus_space_handle_t ioh;
    498 
    499 	iot = sc->sc_iot;
    500 	ioh = sc->sc_ioh;
    501 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    502 	delay(20);
    503 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    504 	delay(30);
    505 }
    506 
    507 int
    508 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
    509 {
    510 	bus_space_tag_t iot;
    511 	bus_space_handle_t ioh;
    512 	int val;
    513 
    514 	iot = sc->sc_iot;
    515 	ioh = sc->sc_ioh;
    516 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    517 	delay(20);
    518 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    519 	delay(30);
    520 	return val;
    521 }
    522 
    523 void
    524 sbdsp_sbmode2format(struct audio_format *f, const struct sbmode *m, int mode)
    525 {
    526 	memset(f, 0, sizeof(*f));
    527 	f->mode = mode;
    528 	if (m->precision == 8) {
    529 		/* ulinear8 is always native endian */
    530 		f->encoding = AUDIO_ENCODING_ULINEAR_NE;
    531 		f->validbits = 8;
    532 		f->precision = 8;
    533 	} else {
    534 		f->encoding = AUDIO_ENCODING_SLINEAR_LE;
    535 		f->validbits = 16;
    536 		f->precision = 16;
    537 	}
    538 	f->channels = m->channels;
    539 	f->channel_mask = (m->channels == 1) ? AUFMT_MONAURAL : AUFMT_STEREO;
    540 	f->frequency_type = 0;
    541 	f->frequency[0] = m->lowrate;
    542 	f->frequency[1] = m->highrate;
    543 }
    544 
    545 /*
    546  * Create sc_formats[] array from sbpmodes[], sbrmodes[].
    547  */
    548 void
    549 sbdsp_init_format(struct sbdsp_softc *sc)
    550 {
    551 	struct audio_format dp[4];
    552 	struct audio_format dr[4];
    553 	struct audio_format *dbase;
    554 	struct audio_format *d;
    555 	struct audio_format tmp;
    556 	struct sbmode *sbmodes;
    557 	struct sbmode *m;
    558 	int mode;
    559 	int minrate;
    560 	int maxrate;
    561 	int idx;
    562 	int model;
    563 	int i;
    564 	int j;
    565 	int n;
    566 
    567 	/* Later models work like SB16. */
    568 	model = uimin(sc->sc_model, SB_16);
    569 
    570 	memset(&dp, 0, sizeof(dp));
    571 	memset(&dr, 0, sizeof(dr));
    572 
    573 	/*
    574 	 * Step1. Extract elements corresponding to this model.
    575 	 */
    576 	for (i = 0; i < 2; i++) {
    577 		if (i == 0) {
    578 			mode = AUMODE_PLAY;
    579 			sbmodes = sbpmodes;
    580 			dbase = dp;
    581 		} else {
    582 			mode = AUMODE_RECORD;
    583 			sbmodes = sbrmodes;
    584 			dbase = dr;
    585 		}
    586 		for (m = sbmodes; m->model != -1; m++) {
    587 			if (m->model != model)
    588 				continue;
    589 
    590 			sbdsp_sbmode2format(&tmp, m, mode);
    591 			/*
    592 			 * [0] 8bit mono
    593 			 * [1] 8bit st
    594 			 * [2] 16bit mono
    595 			 * [3] 16bit st
    596 			 */
    597 			idx = (m->precision / 16) * 2 + (m->channels - 1);
    598 			d = &dbase[idx];
    599 			if (d->mode == 0) {
    600 				/* The first element of this room */
    601 				*d = tmp;
    602 				continue;
    603 			}
    604 
    605 			/* Otherwise merge frequency */
    606 			/*
    607 			 * Currently the frequency of multiple elements in
    608 			 * the same model are all contiguous.
    609 			 */
    610 			if (tmp.frequency[0] == d->frequency[1]) {
    611 				d->frequency[1] = tmp.frequency[1];
    612 			} else if (tmp.frequency[1] == d->frequency[0]) {
    613 				d->frequency[0] = tmp.frequency[0];
    614 			} else {
    615 				panic("frequency range must be contiguous. "
    616 				    "model=%d\n", model);
    617 			}
    618 			DPRINTF(("%s: 1 [%d] mode=%d freq={ %d, %d }\n",
    619 			    __func__, idx, d->mode,
    620 			    d->frequency[0], d->frequency[1]));
    621 		}
    622 	}
    623 
    624 	/*
    625 	 * Step2. Merge dr into dp.
    626 	 */
    627 	for (i = 0; i < __arraycount(dp); i++) {
    628 		if (dp[i].mode == 0 && dr[i].mode == 0)
    629 			continue;
    630 		/* Currently all entries in sb[pr]modes are PLAY|REC */
    631 		if (dp[i].mode == 0 || dr[i].mode == 0)
    632 			panic("invalid sb[pr]mode table?. model=%d\n", model);
    633 		dp[i].mode |= dr[i].mode;
    634 
    635 		/*
    636 		 * Usually, the recording range is the same or smaller than
    637 		 * the playback range.  So extract the common range.
    638 		 */
    639 		if (dp[i].frequency[0] < dr[i].frequency[0])
    640 			dp[i].frequency[0] = dr[i].frequency[0];
    641 		if (dp[i].frequency[1] > dr[i].frequency[1])
    642 			dp[i].frequency[1] = dr[i].frequency[1];
    643 
    644 		DPRINTF(("%s: 2 [%d] mode=%d freq={ %d, %d }\n",
    645 		    __func__, i, dp[i].mode,
    646 		    dp[i].frequency[0], dp[i].frequency[1]));
    647 	}
    648 
    649 	/*
    650 	 * Step3. Prior to SB16, use fixed frequencies rather than raw
    651 	 * frequency range.
    652 	 */
    653 	if (!ISSB16CLASS(sc)) {
    654 		for (i = 0; i < __arraycount(dp); i++) {
    655 			if (dp[i].mode == 0)
    656 				continue;
    657 			minrate = dp[i].frequency[0];
    658 			maxrate = dp[i].frequency[1];
    659 			n = 0;
    660 			for (j = 0; j < __arraycount(sbdsp_rates); j++) {
    661 				if (minrate <= sbdsp_rates[j] &&
    662 				    sbdsp_rates[j] <= maxrate) {
    663 					dp[i].frequency[n++] = sbdsp_rates[j];
    664 				}
    665 			}
    666 			dp[i].frequency_type = n;
    667 			if (n == 0) {
    668 				/* this should not happened */
    669 				dp[i].frequency[0] = minrate;
    670 				dp[i].frequency[1] = maxrate;
    671 			}
    672 
    673 			DPRINTF(("%s: 3 [%d] mode=%d freq={ ",
    674 			    __func__, i, dp[i].mode));
    675 			for (j = 0; j < dp[i].frequency_type; j++) {
    676 				DPRINTF(("%s%d", (j == 0) ? "" : ", ",
    677 				    dp[i].frequency[j]));
    678 			}
    679 			DPRINTF((" }\n"));
    680 		}
    681 	}
    682 
    683 	/*
    684 	 * Step4. Copy merged dp to sc_formats.
    685 	 */
    686 	n = 0;
    687 	for (i = 0; i < __arraycount(dp); i++) {
    688 		if (dp[i].mode)
    689 			sc->sc_formats[n++] = dp[i];
    690 	}
    691 	sc->sc_nformats = n;
    692 }
    693 
    694 /*
    695  * Various routines to interface to higher level audio driver
    696  */
    697 
    698 int
    699 sbdsp_query_format(void *addr, audio_format_query_t *afp)
    700 {
    701 	struct sbdsp_softc *sc;
    702 
    703 	sc = addr;
    704 	return audio_query_format(sc->sc_formats, sc->sc_nformats, afp);
    705 }
    706 
    707 static struct sbmode *
    708 sbdsp_find_mode(struct sbmode *sbmodes, int model, const audio_params_t *p)
    709 {
    710 	struct sbmode *m;
    711 
    712 	for (m = sbmodes; m->model != -1; m++) {
    713 		if (model == m->model &&
    714 		    p->channels == m->channels &&
    715 		    p->precision == m->precision &&
    716 		    p->sample_rate >= m->lowrate &&
    717 		    p->sample_rate <= m->highrate)
    718 			return m;
    719 	}
    720 	return NULL;
    721 }
    722 
    723 int
    724 sbdsp_set_format(void *addr, int setmode,
    725 	const audio_params_t *play, const audio_params_t *rec,
    726 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
    727 {
    728 	struct sbdsp_softc *sc;
    729 	int error;
    730 
    731 	sc = addr;
    732 
    733 	if (sc->sc_open == SB_OPEN_MIDI)
    734 		return EBUSY;
    735 
    736 	if (ISSB16CLASS(sc)) {
    737 		/* Later models work like SB16. */
    738 		error = sbdsp_set_format16(sc, setmode, play, rec, pfil, rfil);
    739 	} else {
    740 		error = sbdsp_set_format8(sc, setmode, play, rec, pfil, rfil);
    741 	}
    742 	if (error)
    743 		return error;
    744 
    745 	DPRINTF(("%s ichan=%d, ochan=%d\n", __func__,
    746 	    sc->sc_i.dmachan, sc->sc_o.dmachan));
    747 	return 0;
    748 }
    749 
    750 /* set_format for SB_16 or later */
    751 int
    752 sbdsp_set_format16(struct sbdsp_softc *sc, int setmode,
    753 	const audio_params_t *play, const audio_params_t *rec,
    754 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
    755 {
    756 	struct sbmode *sbmodes;
    757 	struct sbmode *m;
    758 	struct sbdsp_state *io;
    759 	const audio_params_t *p;
    760 	u_int bmode;
    761 	int mode;
    762 
    763 	/* Set first record info, then play info */
    764 	for (mode = AUMODE_RECORD; mode != -1;
    765 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    766 		if ((setmode & mode) == 0)
    767 			continue;
    768 
    769 		p = NULL; /* XXX shut up gcc */
    770 		if (mode == AUMODE_PLAY) {
    771 			p = play;
    772 			sbmodes = sbpmodes;
    773 			io = &sc->sc_o;
    774 		} else {
    775 			p = rec;
    776 			sbmodes = sbrmodes;
    777 			io = &sc->sc_i;
    778 		}
    779 		/* Locate proper commands */
    780 		m = sbdsp_find_mode(sbmodes, SB_16, p);
    781 		if (m == NULL)
    782 			return EINVAL;
    783 
    784 		bmode = SB_BMODE_UNSIGNED;
    785 		if (p->precision == 16) {
    786 			/* 16bit is slinear16_le */
    787 			bmode = SB_BMODE_SIGNED;
    788 		} else {
    789 			/* 8bit is ulinear8_ne */
    790 			if (mode == AUMODE_PLAY)
    791 				pfil->codec = audio_internal_to_linear8;
    792 			else
    793 				rfil->codec = audio_linear8_to_internal;
    794 		}
    795 		if (p->channels == 2)
    796 			bmode |= SB_BMODE_STEREO;
    797 
    798 		io->rate = p->sample_rate;
    799 		io->tc = 1;
    800 		io->modep = m;
    801 		io->bmode = bmode;
    802 		io->dmachan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    803 
    804 		DPRINTF(("%s: model=%d, mode=%d, "
    805 		    "rate=%u, prec=%d, chan=%d, enc=%d -> "
    806 		    "cmd=%02x, bmode=%02x, cmdchan=%02x\n",
    807 		    __func__, sc->sc_model, mode,
    808 		    p->sample_rate, p->precision, p->channels, p->encoding,
    809 		    m->cmd, bmode, m->cmdchan));
    810 	}
    811 	return 0;
    812 }
    813 
    814 /* set_format for prior to SB_16 */
    815 int
    816 sbdsp_set_format8(struct sbdsp_softc *sc, int setmode,
    817 	const audio_params_t *play, const audio_params_t *rec,
    818 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
    819 {
    820 	struct sbmode *mp;
    821 	struct sbmode *mr;
    822 	u_int tc;
    823 	int chan;
    824 
    825 	/* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
    826 
    827 	/* Locate proper commands */
    828 	mp = sbdsp_find_mode(sbpmodes, sc->sc_model, play);
    829 	if (mp == NULL)
    830 		return EINVAL;
    831 	mr = sbdsp_find_mode(sbrmodes, sc->sc_model, rec);
    832 	if (mr == NULL)
    833 		return EINVAL;
    834 
    835 	tc = SB_RATE_TO_TC(play->sample_rate * play->channels);
    836 	chan = mp->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    837 
    838 	sc->sc_o.rate = play->sample_rate;
    839 	sc->sc_o.tc = tc;
    840 	sc->sc_o.modep = mp;
    841 	sc->sc_o.bmode = -1;
    842 	sc->sc_o.dmachan = chan;
    843 
    844 	sc->sc_i.rate = rec->sample_rate;
    845 	sc->sc_i.tc = tc;
    846 	sc->sc_i.modep = mr;
    847 	sc->sc_i.bmode = -1;
    848 	sc->sc_i.dmachan = chan;
    849 
    850 	if (mp->precision == 8) {
    851 		pfil->codec = audio_internal_to_linear8;
    852 		rfil->codec = audio_linear8_to_internal;
    853 	}
    854 
    855 	DPRINTF(("%s: model=%d, "
    856 	    "rate=%u, prec=%d, chan=%d, enc=%d -> "
    857 	    "tc=%02x, cmd=%02x, cmdchan=%02x\n",
    858 	    __func__, sc->sc_model,
    859 	    play->sample_rate, play->precision, play->channels, play->encoding,
    860 	    tc, mp->cmd, mp->cmdchan));
    861 
    862 	return 0;
    863 }
    864 
    865 void
    866 sbdsp_set_ifilter(void *addr, int which)
    867 {
    868 	struct sbdsp_softc *sc;
    869 	int mixval;
    870 
    871 	sc = addr;
    872 
    873 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    874 	switch (which) {
    875 	case 0:
    876 		mixval |= SBP_FILTER_OFF;
    877 		break;
    878 	case SB_TREBLE:
    879 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    880 		break;
    881 	case SB_BASS:
    882 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    883 		break;
    884 	default:
    885 		return;
    886 	}
    887 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    888 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    889 }
    890 
    891 int
    892 sbdsp_get_ifilter(void *addr)
    893 {
    894 	struct sbdsp_softc *sc;
    895 
    896 	sc = addr;
    897 	sc->in_filter =
    898 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    899 	switch (sc->in_filter) {
    900 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    901 		return SB_TREBLE;
    902 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    903 		return SB_BASS;
    904 	default:
    905 		return 0;
    906 	}
    907 }
    908 
    909 int
    910 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
    911 {
    912 	int bitsl, bitsr;
    913 	int sbport;
    914 
    915 	KASSERT(mutex_owned(&sc->sc_lock));
    916 	KASSERT(mutex_owned(&sc->sc_intr_lock));
    917 
    918 	if (sc->sc_open == SB_OPEN_MIDI)
    919 		return EBUSY;
    920 
    921 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    922 		 sc->sc_mixer_model, mask));
    923 
    924 	switch(sc->sc_mixer_model) {
    925 	case SBM_NONE:
    926 		return EINVAL;
    927 	case SBM_CT1335:
    928 		if (mask != (1 << SB_MIC_VOL))
    929 			return EINVAL;
    930 		break;
    931 	case SBM_CT1345:
    932 		switch (mask) {
    933 		case 1 << SB_MIC_VOL:
    934 			sbport = SBP_FROM_MIC;
    935 			break;
    936 		case 1 << SB_LINE_IN_VOL:
    937 			sbport = SBP_FROM_LINE;
    938 			break;
    939 		case 1 << SB_CD_VOL:
    940 			sbport = SBP_FROM_CD;
    941 			break;
    942 		default:
    943 			return EINVAL;
    944 		}
    945 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    946 		break;
    947 	case SBM_CT1XX5:
    948 	case SBM_CT1745:
    949 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    950 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    951 			return EINVAL;
    952 		bitsr = 0;
    953 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    954 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    955 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    956 		bitsl = SB_SRC_R_TO_L(bitsr);
    957 		if (mask & (1<<SB_MIC_VOL)) {
    958 			bitsl |= SBP_MIC_SRC;
    959 			bitsr |= SBP_MIC_SRC;
    960 		}
    961 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    962 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    963 		break;
    964 	}
    965 	sc->in_mask = mask;
    966 
    967 	return 0;
    968 }
    969 
    970 int
    971 sbdsp_speaker_ctl(void *addr, int newstate)
    972 {
    973 	struct sbdsp_softc *sc;
    974 
    975 	sc = addr;
    976 	if (sc->sc_open == SB_OPEN_MIDI)
    977 		return EBUSY;
    978 
    979 	if ((newstate == SPKR_ON) &&
    980 	    (sc->spkr_state == SPKR_OFF)) {
    981 		sbdsp_spkron(sc);
    982 		sc->spkr_state = SPKR_ON;
    983 	}
    984 	if ((newstate == SPKR_OFF) &&
    985 	    (sc->spkr_state == SPKR_ON)) {
    986 		sbdsp_spkroff(sc);
    987 		sc->spkr_state = SPKR_OFF;
    988 	}
    989 	return 0;
    990 }
    991 
    992 int
    993 sbdsp_round_blocksize(void *addr, int blk, int mode,
    994     const audio_params_t *param)
    995 {
    996 	return blk & -4;	/* round to biggest sample size */
    997 }
    998 
    999 int
   1000 sbdsp_open(void *addr, int flags)
   1001 {
   1002 	struct sbdsp_softc *sc;
   1003 	int error, state;
   1004 
   1005 	sc = addr;
   1006 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
   1007 
   1008 	if (sc->sc_open != SB_CLOSED)
   1009 		return EBUSY;
   1010 	sc->sc_open = SB_OPEN_AUDIO;
   1011 	state = 0;
   1012 
   1013 	if (sc->sc_drq8 != -1) {
   1014 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
   1015 		if (error != 0)
   1016 			goto bad;
   1017 		state |= 1;
   1018 	}
   1019 
   1020 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
   1021 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
   1022 		if (error != 0)
   1023 			goto bad;
   1024 		state |= 2;
   1025 	}
   1026 
   1027 
   1028 	if (sbdsp_reset(sc) != 0) {
   1029 		error = EIO;
   1030 		goto bad;
   1031 	}
   1032 
   1033 	if (ISSBPRO(sc) &&
   1034 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
   1035 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
   1036 		/* we'll readjust when it's time for DMA. */
   1037 	}
   1038 
   1039 	/*
   1040 	 * Leave most things as they were; users must change things if
   1041 	 * the previous process didn't leave it they way they wanted.
   1042 	 * Looked at another way, it's easy to set up a configuration
   1043 	 * in one program and leave it for another to inherit.
   1044 	 */
   1045 	DPRINTF(("sbdsp_open: opened\n"));
   1046 
   1047 	return 0;
   1048 
   1049 bad:
   1050 	if (state & 1)
   1051 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
   1052 	if (state & 2)
   1053 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
   1054 
   1055 	sc->sc_open = SB_CLOSED;
   1056 	return error;
   1057 }
   1058 
   1059 void
   1060 sbdsp_close(void *addr)
   1061 {
   1062 	struct sbdsp_softc *sc;
   1063 
   1064 	sc = addr;
   1065 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
   1066 
   1067 	sbdsp_spkroff(sc);
   1068 	sc->spkr_state = SPKR_OFF;
   1069 
   1070 	sc->sc_intr8 = 0;
   1071 	sc->sc_intr16 = 0;
   1072 
   1073 	if (sc->sc_drq8 != -1)
   1074 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
   1075 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
   1076 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
   1077 
   1078 	sc->sc_open = SB_CLOSED;
   1079 	DPRINTF(("sbdsp_close: closed\n"));
   1080 }
   1081 
   1082 /*
   1083  * Lower-level routines
   1084  */
   1085 
   1086 /*
   1087  * Reset the card.
   1088  * Return non-zero if the card isn't detected.
   1089  */
   1090 int
   1091 sbdsp_reset(struct sbdsp_softc *sc)
   1092 {
   1093 	bus_space_tag_t iot;
   1094 	bus_space_handle_t ioh;
   1095 
   1096 	iot = sc->sc_iot;
   1097 	ioh = sc->sc_ioh;
   1098 	sc->sc_intr8 = 0;
   1099 	sc->sc_intr16 = 0;
   1100 	sc->sc_intrm = 0;
   1101 
   1102 	/*
   1103 	 * See SBK, section 11.3.
   1104 	 * We pulse a reset signal into the card.
   1105 	 * Gee, what a brilliant hardware design.
   1106 	 */
   1107 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1108 	delay(10);
   1109 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1110 	delay(30);
   1111 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1112 		return -1;
   1113 
   1114 	return 0;
   1115 }
   1116 
   1117 /*
   1118  * Write a byte to the dsp.
   1119  * We are at the mercy of the card as we use a
   1120  * polling loop and wait until it can take the byte.
   1121  */
   1122 int
   1123 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
   1124 {
   1125 	bus_space_tag_t iot;
   1126 	bus_space_handle_t ioh;
   1127 	int i;
   1128 	u_char x;
   1129 
   1130 	iot = sc->sc_iot;
   1131 	ioh = sc->sc_ioh;
   1132 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1133 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1134 		delay(10);
   1135 		if ((x & SB_DSP_BUSY) == 0) {
   1136 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1137 			delay(10);
   1138 			return 0;
   1139 		}
   1140 	}
   1141 	++sberr.wdsp;
   1142 	return -1;
   1143 }
   1144 
   1145 /*
   1146  * Read a byte from the DSP, using polling.
   1147  */
   1148 int
   1149 sbdsp_rdsp(struct sbdsp_softc *sc)
   1150 {
   1151 	bus_space_tag_t iot;
   1152 	bus_space_handle_t ioh;
   1153 	int i;
   1154 	u_char x;
   1155 
   1156 	iot = sc->sc_iot;
   1157 	ioh = sc->sc_ioh;
   1158 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1159 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1160 		delay(10);
   1161 		if (x & SB_DSP_READY) {
   1162 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1163 			delay(10);
   1164 			return x;
   1165 		}
   1166 	}
   1167 	++sberr.rdsp;
   1168 	return -1;
   1169 }
   1170 
   1171 void
   1172 sbdsp_pause(struct sbdsp_softc *sc)
   1173 {
   1174 
   1175 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1176 	mutex_spin_exit(&sc->sc_intr_lock);
   1177 	(void)kpause("sbpause", false, hz/8, &sc->sc_lock);
   1178 	mutex_spin_enter(&sc->sc_intr_lock);
   1179 }
   1180 
   1181 /*
   1182  * Turn on the speaker.  The SBK documentation says this operation
   1183  * can take up to 1/10 of a second.  Higher level layers should
   1184  * probably let the task sleep for this amount of time after
   1185  * calling here.  Otherwise, things might not work (because
   1186  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1187  *
   1188  * These engineers had their heads up their ass when
   1189  * they designed this card.
   1190  */
   1191 void
   1192 sbdsp_spkron(struct sbdsp_softc *sc)
   1193 {
   1194 
   1195 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1196 	sbdsp_pause(sc);
   1197 }
   1198 
   1199 /*
   1200  * Turn off the speaker; see comment above.
   1201  */
   1202 void
   1203 sbdsp_spkroff(struct sbdsp_softc *sc)
   1204 {
   1205 
   1206 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1207 	sbdsp_pause(sc);
   1208 }
   1209 
   1210 /*
   1211  * Read the version number out of the card.
   1212  * Store version information in the softc.
   1213  */
   1214 void
   1215 sbversion(struct sbdsp_softc *sc)
   1216 {
   1217 	int v;
   1218 
   1219 	sc->sc_model = SB_UNK;
   1220 	sc->sc_version = 0;
   1221 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1222 		return;
   1223 	v = sbdsp_rdsp(sc) << 8;
   1224 	v |= sbdsp_rdsp(sc);
   1225 	if (v < 0)
   1226 		return;
   1227 	sc->sc_version = v;
   1228 	switch(SBVER_MAJOR(v)) {
   1229 	case 1:
   1230 		sc->sc_mixer_model = SBM_NONE;
   1231 		sc->sc_model = SB_1;
   1232 		break;
   1233 	case 2:
   1234 		/* Some SB2 have a mixer, some don't. */
   1235 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1236 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1237 		/* Check if we can read back the mixer values. */
   1238 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1239 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1240 			sc->sc_mixer_model = SBM_CT1335;
   1241 		else
   1242 			sc->sc_mixer_model = SBM_NONE;
   1243 		if (SBVER_MINOR(v) == 0)
   1244 			sc->sc_model = SB_20;
   1245 		else
   1246 			sc->sc_model = SB_2x;
   1247 		break;
   1248 	case 3:
   1249 		sc->sc_mixer_model = SBM_CT1345;
   1250 		sc->sc_model = SB_PRO;
   1251 		break;
   1252 	case 4:
   1253 #if 0
   1254 /* XXX This does not work */
   1255 		/* Most SB16 have a tone controls, but some don't. */
   1256 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1257 		/* Check if we can read back the mixer value. */
   1258 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1259 			sc->sc_mixer_model = SBM_CT1745;
   1260 		else
   1261 			sc->sc_mixer_model = SBM_CT1XX5;
   1262 #else
   1263 		sc->sc_mixer_model = SBM_CT1745;
   1264 #endif
   1265 #if 0
   1266 /* XXX figure out a good way of determining the model */
   1267 		/* XXX what about SB_32 */
   1268 		if (SBVER_MINOR(v) == 16)
   1269 			sc->sc_model = SB_64;
   1270 		else
   1271 #endif
   1272 			sc->sc_model = SB_16;
   1273 		break;
   1274 	}
   1275 }
   1276 
   1277 int
   1278 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
   1279 {
   1280 
   1281 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1282 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1283 	    sbdsp_wdsp(sc, tc) < 0)
   1284 		return EIO;
   1285 	return 0;
   1286 }
   1287 
   1288 int
   1289 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
   1290 {
   1291 
   1292 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd,
   1293 	    rate));
   1294 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1295 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1296 	    sbdsp_wdsp(sc, rate) < 0)
   1297 		return EIO;
   1298 	return 0;
   1299 }
   1300 
   1301 int
   1302 sbdsp_trigger_input(
   1303 	void *addr,
   1304 	void *start, void *end,
   1305 	int blksize,
   1306 	void (*intr)(void *),
   1307 	void *arg,
   1308 	const audio_params_t *param)
   1309 {
   1310 	struct sbdsp_softc *sc;
   1311 	int stereo;
   1312 	int width;
   1313 	int filter;
   1314 
   1315 	sc = addr;
   1316 	stereo = param->channels == 2;
   1317 	width = param->precision;
   1318 #ifdef DIAGNOSTIC
   1319 	if (stereo && (blksize & 1)) {
   1320 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1321 		return EIO;
   1322 	}
   1323 	if (sc->sc_i.run != SB_NOTRUNNING)
   1324 		printf("sbdsp_trigger_input: already running\n");
   1325 #endif
   1326 
   1327 	sc->sc_intrr = intr;
   1328 	sc->sc_argr = arg;
   1329 
   1330 	if (width == 8) {
   1331 #ifdef DIAGNOSTIC
   1332 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1333 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1334 			    width, sc->sc_i.dmachan);
   1335 			return EIO;
   1336 		}
   1337 #endif
   1338 		sc->sc_intr8 = sbdsp_block_input;
   1339 	} else {
   1340 #ifdef DIAGNOSTIC
   1341 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1342 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1343 			    width, sc->sc_i.dmachan);
   1344 			return EIO;
   1345 		}
   1346 #endif
   1347 		sc->sc_intr16 = sbdsp_block_input;
   1348 	}
   1349 
   1350 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1351 		blksize >>= 1;
   1352 	--blksize;
   1353 	sc->sc_i.blksize = blksize;
   1354 
   1355 	if (ISSBPRO(sc)) {
   1356 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1357 			return EIO;
   1358 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1359 		sbdsp_mix_write(sc, SBP_INFILTER,
   1360 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1361 		    filter);
   1362 	}
   1363 
   1364 	if (ISSB16CLASS(sc)) {
   1365 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1366 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1367 				 sc->sc_i.rate));
   1368 			return EIO;
   1369 		}
   1370 	} else {
   1371 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1372 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1373 				 sc->sc_i.rate));
   1374 			return EIO;
   1375 		}
   1376 	}
   1377 
   1378 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
   1379 	    start, end, sc->sc_i.dmachan));
   1380 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1381 	    (char *)end - (char *)start, NULL,
   1382 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1383 
   1384 	return sbdsp_block_input(addr);
   1385 }
   1386 
   1387 int
   1388 sbdsp_block_input(void *addr)
   1389 {
   1390 	struct sbdsp_softc *sc;
   1391 	int cc;
   1392 
   1393 	sc = addr;
   1394 	cc = sc->sc_i.blksize;
   1395 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1396 
   1397 	if (sc->sc_i.run != SB_NOTRUNNING)
   1398 		sc->sc_intrr(sc->sc_argr);
   1399 
   1400 	if (sc->sc_model == SB_1) {
   1401 		/* Non-looping mode, start DMA */
   1402 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1403 		    sbdsp_wdsp(sc, cc) < 0 ||
   1404 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1405 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1406 			return EIO;
   1407 		}
   1408 		sc->sc_i.run = SB_RUNNING;
   1409 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1410 		/* Initialize looping PCM */
   1411 		if (ISSB16CLASS(sc)) {
   1412 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1413 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1414 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1415 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1416 			    sbdsp_wdsp(sc, cc) < 0 ||
   1417 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1418 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1419 				return EIO;
   1420 			}
   1421 		} else {
   1422 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1423 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1424 			    sbdsp_wdsp(sc, cc) < 0 ||
   1425 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1426 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1427 				return EIO;
   1428 			}
   1429 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1430 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1431 				return EIO;
   1432 			}
   1433 		}
   1434 		sc->sc_i.run = SB_LOOPING;
   1435 	}
   1436 
   1437 	return 0;
   1438 }
   1439 
   1440 int
   1441 sbdsp_trigger_output(
   1442 	void *addr,
   1443 	void *start, void *end,
   1444 	int blksize,
   1445 	void (*intr)(void *),
   1446 	void *arg,
   1447 	const audio_params_t *param)
   1448 {
   1449 	struct sbdsp_softc *sc;
   1450 	int stereo;
   1451 	int width;
   1452 	int cmd;
   1453 
   1454 	sc = addr;
   1455 	stereo = param->channels == 2;
   1456 	width = param->precision;
   1457 #ifdef DIAGNOSTIC
   1458 	if (stereo && (blksize & 1)) {
   1459 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1460 		return EIO;
   1461 	}
   1462 	if (sc->sc_o.run != SB_NOTRUNNING)
   1463 		printf("sbdsp_trigger_output: already running\n");
   1464 #endif
   1465 
   1466 	sc->sc_intrp = intr;
   1467 	sc->sc_argp = arg;
   1468 
   1469 	if (width == 8) {
   1470 #ifdef DIAGNOSTIC
   1471 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1472 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1473 			    width, sc->sc_o.dmachan);
   1474 			return EIO;
   1475 		}
   1476 #endif
   1477 		sc->sc_intr8 = sbdsp_block_output;
   1478 	} else {
   1479 #ifdef DIAGNOSTIC
   1480 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1481 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1482 			    width, sc->sc_o.dmachan);
   1483 			return EIO;
   1484 		}
   1485 #endif
   1486 		sc->sc_intr16 = sbdsp_block_output;
   1487 	}
   1488 
   1489 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1490 		blksize >>= 1;
   1491 	--blksize;
   1492 	sc->sc_o.blksize = blksize;
   1493 
   1494 	if (ISSBPRO(sc)) {
   1495 		/* make sure we re-set stereo mixer bit when we start output. */
   1496 		sbdsp_mix_write(sc, SBP_STEREO,
   1497 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1498 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1499 		cmd = sc->sc_o.modep->cmdchan;
   1500 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1501 			return EIO;
   1502 	}
   1503 
   1504 	if (ISSB16CLASS(sc)) {
   1505 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1506 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1507 				 sc->sc_o.rate));
   1508 			return EIO;
   1509 		}
   1510 	} else {
   1511 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1512 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1513 				 sc->sc_o.rate));
   1514 			return EIO;
   1515 		}
   1516 	}
   1517 
   1518 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
   1519 	    start, end, sc->sc_o.dmachan));
   1520 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1521 	    (char *)end - (char *)start, NULL,
   1522 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1523 
   1524 	return sbdsp_block_output(addr);
   1525 }
   1526 
   1527 int
   1528 sbdsp_block_output(void *addr)
   1529 {
   1530 	struct sbdsp_softc *sc;
   1531 	int cc;
   1532 
   1533 	sc = addr;
   1534 	cc = sc->sc_o.blksize;
   1535 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1536 
   1537 	if (sc->sc_o.run != SB_NOTRUNNING)
   1538 		sc->sc_intrp(sc->sc_argp);
   1539 
   1540 	if (sc->sc_model == SB_1) {
   1541 		/* Non-looping mode, initialized. Start DMA and PCM */
   1542 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1543 		    sbdsp_wdsp(sc, cc) < 0 ||
   1544 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1545 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1546 			return EIO;
   1547 		}
   1548 		sc->sc_o.run = SB_RUNNING;
   1549 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1550 		/* Initialize looping PCM */
   1551 		if (ISSB16CLASS(sc)) {
   1552 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1553 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1554 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1555 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1556 			    sbdsp_wdsp(sc, cc) < 0 ||
   1557 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1558 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1559 				return EIO;
   1560 			}
   1561 		} else {
   1562 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1563 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1564 			    sbdsp_wdsp(sc, cc) < 0 ||
   1565 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1566 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1567 				return EIO;
   1568 			}
   1569 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1570 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1571 				return EIO;
   1572 			}
   1573 		}
   1574 		sc->sc_o.run = SB_LOOPING;
   1575 	}
   1576 
   1577 	return 0;
   1578 }
   1579 
   1580 int
   1581 sbdsp_halt_output(void *addr)
   1582 {
   1583 	struct sbdsp_softc *sc;
   1584 
   1585 	sc = addr;
   1586 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1587 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1588 			printf("sbdsp_halt_output: failed to halt\n");
   1589 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1590 		sc->sc_o.run = SB_NOTRUNNING;
   1591 	}
   1592 	return 0;
   1593 }
   1594 
   1595 int
   1596 sbdsp_halt_input(void *addr)
   1597 {
   1598 	struct sbdsp_softc *sc;
   1599 
   1600 	sc = addr;
   1601 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1602 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1603 			printf("sbdsp_halt_input: failed to halt\n");
   1604 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1605 		sc->sc_i.run = SB_NOTRUNNING;
   1606 	}
   1607 	return 0;
   1608 }
   1609 
   1610 /*
   1611  * Only the DSP unit on the sound blaster generates interrupts.
   1612  * There are three cases of interrupt: reception of a midi byte
   1613  * (when mode is enabled), completion of DMA transmission, or
   1614  * completion of a DMA reception.
   1615  *
   1616  * If there is interrupt sharing or a spurious interrupt occurs
   1617  * there is no way to distinguish this on an SB2.  So if you have
   1618  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1619  */
   1620 int
   1621 sbdsp_intr(void *arg)
   1622 {
   1623 	struct sbdsp_softc *sc = arg;
   1624 #if NMPU > 0
   1625 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
   1626 #endif
   1627 	u_char irq;
   1628 
   1629 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1630 		   sc->sc_intr8, sc->sc_intr16));
   1631 
   1632 	mutex_spin_enter(&sc->sc_intr_lock);
   1633 	if (ISSB16CLASS(sc)) {
   1634 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1635 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401))
   1636 		    == 0) {
   1637 			mutex_spin_exit(&sc->sc_intr_lock);
   1638 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1639 			return 0;
   1640 		}
   1641 	} else {
   1642 		/* XXXX CHECK FOR INTERRUPT */
   1643 		irq = SBP_IRQ_DMA8;
   1644 	}
   1645 
   1646 	sc->sc_interrupts++;
   1647 	delay(10);		/* XXX why? */
   1648 
   1649 	/* clear interrupt */
   1650 	if (irq & SBP_IRQ_DMA8) {
   1651 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1652 		if (sc->sc_intr8)
   1653 			sc->sc_intr8(arg);
   1654 	}
   1655 	if (irq & SBP_IRQ_DMA16) {
   1656 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1657 		if (sc->sc_intr16)
   1658 			sc->sc_intr16(arg);
   1659 	}
   1660 #if NMPU > 0
   1661 	if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
   1662 		mpu_intr(sc_mpu);
   1663 	}
   1664 #endif
   1665 
   1666 	mutex_spin_exit(&sc->sc_intr_lock);
   1667 	return 1;
   1668 }
   1669 
   1670 /* Like val & mask, but make sure the result is correctly rounded. */
   1671 #define MAXVAL 256
   1672 static int
   1673 sbdsp_adjust(int val, int mask)
   1674 {
   1675 
   1676 	val += (MAXVAL - mask) >> 1;
   1677 	if (val >= MAXVAL)
   1678 		val = MAXVAL-1;
   1679 	return val & mask;
   1680 }
   1681 
   1682 void
   1683 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
   1684 {
   1685 	int src, gain;
   1686 
   1687 	KASSERT(mutex_owned(&sc->sc_lock));
   1688 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1689 
   1690 	switch(sc->sc_mixer_model) {
   1691 	case SBM_NONE:
   1692 		return;
   1693 	case SBM_CT1335:
   1694 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1695 		switch(port) {
   1696 		case SB_MASTER_VOL:
   1697 			src = SBP_1335_MASTER_VOL;
   1698 			break;
   1699 		case SB_MIDI_VOL:
   1700 			src = SBP_1335_MIDI_VOL;
   1701 			break;
   1702 		case SB_CD_VOL:
   1703 			src = SBP_1335_CD_VOL;
   1704 			break;
   1705 		case SB_VOICE_VOL:
   1706 			src = SBP_1335_VOICE_VOL;
   1707 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1708 			break;
   1709 		default:
   1710 			return;
   1711 		}
   1712 		sbdsp_mix_write(sc, src, gain);
   1713 		break;
   1714 	case SBM_CT1345:
   1715 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1716 				      sc->gain[port][SB_RIGHT]);
   1717 		switch (port) {
   1718 		case SB_MIC_VOL:
   1719 			src = SBP_MIC_VOL;
   1720 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1721 			break;
   1722 		case SB_MASTER_VOL:
   1723 			src = SBP_MASTER_VOL;
   1724 			break;
   1725 		case SB_LINE_IN_VOL:
   1726 			src = SBP_LINE_VOL;
   1727 			break;
   1728 		case SB_VOICE_VOL:
   1729 			src = SBP_VOICE_VOL;
   1730 			break;
   1731 		case SB_MIDI_VOL:
   1732 			src = SBP_MIDI_VOL;
   1733 			break;
   1734 		case SB_CD_VOL:
   1735 			src = SBP_CD_VOL;
   1736 			break;
   1737 		default:
   1738 			return;
   1739 		}
   1740 		sbdsp_mix_write(sc, src, gain);
   1741 		break;
   1742 	case SBM_CT1XX5:
   1743 	case SBM_CT1745:
   1744 		switch (port) {
   1745 		case SB_MIC_VOL:
   1746 			src = SB16P_MIC_L;
   1747 			break;
   1748 		case SB_MASTER_VOL:
   1749 			src = SB16P_MASTER_L;
   1750 			break;
   1751 		case SB_LINE_IN_VOL:
   1752 			src = SB16P_LINE_L;
   1753 			break;
   1754 		case SB_VOICE_VOL:
   1755 			src = SB16P_VOICE_L;
   1756 			break;
   1757 		case SB_MIDI_VOL:
   1758 			src = SB16P_MIDI_L;
   1759 			break;
   1760 		case SB_CD_VOL:
   1761 			src = SB16P_CD_L;
   1762 			break;
   1763 		case SB_INPUT_GAIN:
   1764 			src = SB16P_INPUT_GAIN_L;
   1765 			break;
   1766 		case SB_OUTPUT_GAIN:
   1767 			src = SB16P_OUTPUT_GAIN_L;
   1768 			break;
   1769 		case SB_TREBLE:
   1770 			src = SB16P_TREBLE_L;
   1771 			break;
   1772 		case SB_BASS:
   1773 			src = SB16P_BASS_L;
   1774 			break;
   1775 		case SB_PCSPEAKER:
   1776 			sbdsp_mix_write(sc, SB16P_PCSPEAKER,
   1777 			    sc->gain[port][SB_LEFT]);
   1778 			return;
   1779 		default:
   1780 			return;
   1781 		}
   1782 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1783 		sbdsp_mix_write(sc, SB16P_L_TO_R(src),
   1784 		    sc->gain[port][SB_RIGHT]);
   1785 		break;
   1786 	}
   1787 }
   1788 
   1789 int
   1790 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1791 {
   1792 	struct sbdsp_softc *sc;
   1793 	int lgain, rgain;
   1794 	int mask, bits;
   1795 	int lmask, rmask, lbits, rbits;
   1796 	int mute, swap;
   1797 	int error;
   1798 
   1799 	sc = addr;
   1800 
   1801 	KASSERT(mutex_owned(&sc->sc_lock));
   1802 
   1803 	if (sc->sc_open == SB_OPEN_MIDI)
   1804 		return EBUSY;
   1805 
   1806 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1807 	    cp->un.value.num_channels));
   1808 
   1809 	if (sc->sc_mixer_model == SBM_NONE)
   1810 		return EINVAL;
   1811 
   1812 	mutex_spin_enter(&sc->sc_intr_lock);
   1813 	error = 0;
   1814 
   1815 	switch (cp->dev) {
   1816 	case SB_TREBLE:
   1817 	case SB_BASS:
   1818 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1819 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1820 			if (cp->type != AUDIO_MIXER_ENUM) {
   1821 				mutex_spin_exit(&sc->sc_intr_lock);
   1822 				return EINVAL;
   1823 			}
   1824 			switch (cp->dev) {
   1825 			case SB_TREBLE:
   1826 				sbdsp_set_ifilter(addr,
   1827 				    cp->un.ord ? SB_TREBLE : 0);
   1828 				mutex_spin_exit(&sc->sc_intr_lock);
   1829 				return 0;
   1830 			case SB_BASS:
   1831 				sbdsp_set_ifilter(addr,
   1832 				    cp->un.ord ? SB_BASS : 0);
   1833 				mutex_spin_exit(&sc->sc_intr_lock);
   1834 				return 0;
   1835 			}
   1836 		}
   1837 		/* FALLTHROUGH */
   1838 	case SB_PCSPEAKER:
   1839 	case SB_INPUT_GAIN:
   1840 	case SB_OUTPUT_GAIN:
   1841 		if (!ISSBM1745(sc)) {
   1842 			error = EINVAL;
   1843 			break;
   1844 		}
   1845 		/* FALLTHROUGH */
   1846 	case SB_MIC_VOL:
   1847 	case SB_LINE_IN_VOL:
   1848 		if (sc->sc_mixer_model == SBM_CT1335) {
   1849 			error = EINVAL;
   1850 			break;
   1851 		}
   1852 		/* FALLTHROUGH */
   1853 	case SB_VOICE_VOL:
   1854 	case SB_MIDI_VOL:
   1855 	case SB_CD_VOL:
   1856 	case SB_MASTER_VOL:
   1857 		if (cp->type != AUDIO_MIXER_VALUE) {
   1858 			error = EINVAL;
   1859 			break;
   1860 		}
   1861 
   1862 		/*
   1863 		 * All the mixer ports are stereo except for the microphone.
   1864 		 * If we get a single-channel gain value passed in, then we
   1865 		 * duplicate it to both left and right channels.
   1866 		 */
   1867 
   1868 		switch (cp->dev) {
   1869 		case SB_MIC_VOL:
   1870 			if (cp->un.value.num_channels != 1) {
   1871 				error = EINVAL;
   1872 				break;
   1873 			}
   1874 
   1875 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1876 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1877 			break;
   1878 		case SB_PCSPEAKER:
   1879 			if (cp->un.value.num_channels != 1) {
   1880 				error = EINVAL;
   1881 				break;
   1882 			}
   1883 			/* FALLTHROUGH */
   1884 		case SB_INPUT_GAIN:
   1885 		case SB_OUTPUT_GAIN:
   1886 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1887 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1888 			break;
   1889 		default:
   1890 			switch (cp->un.value.num_channels) {
   1891 			case 1:
   1892 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1893 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1894 				break;
   1895 			case 2:
   1896 				if (sc->sc_mixer_model == SBM_CT1335) {
   1897 					error = EINVAL;
   1898 					break;
   1899 				}
   1900 				lgain = SB_ADJUST_GAIN(sc,
   1901 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1902 				rgain = SB_ADJUST_GAIN(sc,
   1903 				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1904 				break;
   1905 			default:
   1906 				error = EINVAL;
   1907 				break;
   1908 			}
   1909 			break;
   1910 		}
   1911 		if (error == 0) {
   1912 			sc->gain[cp->dev][SB_LEFT]  = lgain;
   1913 			sc->gain[cp->dev][SB_RIGHT] = rgain;
   1914 			sbdsp_set_mixer_gain(sc, cp->dev);
   1915 		}
   1916 		break;
   1917 
   1918 	case SB_RECORD_SOURCE:
   1919 		if (ISSBM1745(sc)) {
   1920 			if (cp->type != AUDIO_MIXER_SET)
   1921 				error = EINVAL;
   1922 			else
   1923 				error = sbdsp_set_in_ports(sc, cp->un.mask);
   1924 		} else {
   1925 			if (cp->type != AUDIO_MIXER_ENUM)
   1926 				error = EINVAL;
   1927 			else {
   1928 				sc->in_port = cp->un.ord;
   1929 				error = sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1930 			}
   1931 		}
   1932 		break;
   1933 
   1934 	case SB_AGC:
   1935 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1936 			error = EINVAL;
   1937 		else
   1938 			sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1939 		break;
   1940 
   1941 	case SB_CD_OUT_MUTE:
   1942 		mask = SB16P_SW_CD;
   1943 		goto omute;
   1944 	case SB_MIC_OUT_MUTE:
   1945 		mask = SB16P_SW_MIC;
   1946 		goto omute;
   1947 	case SB_LINE_OUT_MUTE:
   1948 		mask = SB16P_SW_LINE;
   1949 	omute:
   1950 		if (cp->type != AUDIO_MIXER_ENUM) {
   1951 			error = EINVAL;
   1952 			break;
   1953 		}
   1954 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1955 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1956 		if (cp->un.ord)
   1957 			bits = bits & ~mask;
   1958 		else
   1959 			bits = bits | mask;
   1960 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1961 		break;
   1962 
   1963 	case SB_MIC_IN_MUTE:
   1964 	case SB_MIC_SWAP:
   1965 		lmask = rmask = SB16P_SW_MIC;
   1966 		goto imute;
   1967 	case SB_CD_IN_MUTE:
   1968 	case SB_CD_SWAP:
   1969 		lmask = SB16P_SW_CD_L;
   1970 		rmask = SB16P_SW_CD_R;
   1971 		goto imute;
   1972 	case SB_LINE_IN_MUTE:
   1973 	case SB_LINE_SWAP:
   1974 		lmask = SB16P_SW_LINE_L;
   1975 		rmask = SB16P_SW_LINE_R;
   1976 		goto imute;
   1977 	case SB_MIDI_IN_MUTE:
   1978 	case SB_MIDI_SWAP:
   1979 		lmask = SB16P_SW_MIDI_L;
   1980 		rmask = SB16P_SW_MIDI_R;
   1981 	imute:
   1982 		if (cp->type != AUDIO_MIXER_ENUM) {
   1983 			error = EINVAL;
   1984 			break;
   1985 		}
   1986 		mask = lmask | rmask;
   1987 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1988 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1989 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1990 		if (SB_IS_IN_MUTE(cp->dev)) {
   1991 			mute = cp->dev;
   1992 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1993 		} else {
   1994 			swap = cp->dev;
   1995 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1996 		}
   1997 		if (sc->gain[swap][SB_LR]) {
   1998 			mask = lmask;
   1999 			lmask = rmask;
   2000 			rmask = mask;
   2001 		}
   2002 		if (!sc->gain[mute][SB_LR]) {
   2003 			lbits = lbits | lmask;
   2004 			rbits = rbits | rmask;
   2005 		}
   2006 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   2007 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   2008 		break;
   2009 
   2010 	default:
   2011 		error = EINVAL;
   2012 		break;
   2013 	}
   2014 
   2015 	mutex_spin_exit(&sc->sc_intr_lock);
   2016 	return error;
   2017 }
   2018 
   2019 int
   2020 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   2021 {
   2022 	struct sbdsp_softc *sc;
   2023 
   2024 	sc = addr;
   2025 
   2026 	KASSERT(mutex_owned(&sc->sc_lock));
   2027 
   2028 	if (sc->sc_open == SB_OPEN_MIDI)
   2029 		return EBUSY;
   2030 
   2031 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   2032 
   2033 	if (sc->sc_mixer_model == SBM_NONE)
   2034 		return EINVAL;
   2035 
   2036 	mutex_spin_enter(&sc->sc_intr_lock);
   2037 
   2038 	switch (cp->dev) {
   2039 	case SB_TREBLE:
   2040 	case SB_BASS:
   2041 		if (sc->sc_mixer_model == SBM_CT1345 ||
   2042 		    sc->sc_mixer_model == SBM_CT1XX5) {
   2043 			switch (cp->dev) {
   2044 			case SB_TREBLE:
   2045 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   2046 				mutex_spin_exit(&sc->sc_intr_lock);
   2047 				return 0;
   2048 			case SB_BASS:
   2049 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   2050 				mutex_spin_exit(&sc->sc_intr_lock);
   2051 				return 0;
   2052 			}
   2053 		}
   2054 		/* FALLTHROUGH */
   2055 	case SB_PCSPEAKER:
   2056 	case SB_INPUT_GAIN:
   2057 	case SB_OUTPUT_GAIN:
   2058 		if (!ISSBM1745(sc)) {
   2059 			mutex_spin_exit(&sc->sc_intr_lock);
   2060 			return EINVAL;
   2061 		}
   2062 		/* FALLTHROUGH */
   2063 	case SB_MIC_VOL:
   2064 	case SB_LINE_IN_VOL:
   2065 		if (sc->sc_mixer_model == SBM_CT1335) {
   2066 			mutex_spin_exit(&sc->sc_intr_lock);
   2067 			return EINVAL;
   2068 		}
   2069 		/* FALLTHROUGH */
   2070 	case SB_VOICE_VOL:
   2071 	case SB_MIDI_VOL:
   2072 	case SB_CD_VOL:
   2073 	case SB_MASTER_VOL:
   2074 		switch (cp->dev) {
   2075 		case SB_MIC_VOL:
   2076 		case SB_PCSPEAKER:
   2077 			if (cp->un.value.num_channels != 1) {
   2078 				mutex_spin_exit(&sc->sc_intr_lock);
   2079 				return EINVAL;
   2080 			}
   2081 			/* FALLTHROUGH */
   2082 		default:
   2083 			switch (cp->un.value.num_channels) {
   2084 			case 1:
   2085 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   2086 				    sc->gain[cp->dev][SB_LEFT];
   2087 				break;
   2088 			case 2:
   2089 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   2090 				    sc->gain[cp->dev][SB_LEFT];
   2091 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   2092 				    sc->gain[cp->dev][SB_RIGHT];
   2093 				break;
   2094 			default:
   2095 				mutex_spin_exit(&sc->sc_intr_lock);
   2096 				return EINVAL;
   2097 			}
   2098 			break;
   2099 		}
   2100 		break;
   2101 
   2102 	case SB_RECORD_SOURCE:
   2103 		if (ISSBM1745(sc))
   2104 			cp->un.mask = sc->in_mask;
   2105 		else
   2106 			cp->un.ord = sc->in_port;
   2107 		break;
   2108 
   2109 	case SB_AGC:
   2110 		if (!ISSBM1745(sc)) {
   2111 			mutex_spin_exit(&sc->sc_intr_lock);
   2112 			return EINVAL;
   2113 		}
   2114 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   2115 		break;
   2116 
   2117 	case SB_CD_IN_MUTE:
   2118 	case SB_MIC_IN_MUTE:
   2119 	case SB_LINE_IN_MUTE:
   2120 	case SB_MIDI_IN_MUTE:
   2121 	case SB_CD_SWAP:
   2122 	case SB_MIC_SWAP:
   2123 	case SB_LINE_SWAP:
   2124 	case SB_MIDI_SWAP:
   2125 	case SB_CD_OUT_MUTE:
   2126 	case SB_MIC_OUT_MUTE:
   2127 	case SB_LINE_OUT_MUTE:
   2128 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   2129 		break;
   2130 
   2131 	default:
   2132 		mutex_spin_exit(&sc->sc_intr_lock);
   2133 		return EINVAL;
   2134 	}
   2135 
   2136 	mutex_spin_exit(&sc->sc_intr_lock);
   2137 
   2138 	return 0;
   2139 }
   2140 
   2141 int
   2142 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
   2143 {
   2144 	struct sbdsp_softc *sc = addr;
   2145 	int chan, class, is1745;
   2146 
   2147 	sc = addr;
   2148 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   2149 		 sc->sc_mixer_model, dip->index));
   2150 
   2151 	KASSERT(mutex_owned(&sc->sc_lock));
   2152 
   2153 	if (sc->sc_mixer_model == SBM_NONE)
   2154 		return ENXIO;
   2155 
   2156 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   2157 	is1745 = ISSBM1745(sc);
   2158 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   2159 
   2160 	switch (dip->index) {
   2161 	case SB_MASTER_VOL:
   2162 		dip->type = AUDIO_MIXER_VALUE;
   2163 		dip->mixer_class = SB_OUTPUT_CLASS;
   2164 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2165 		strcpy(dip->label.name, AudioNmaster);
   2166 		dip->un.v.num_channels = chan;
   2167 		strcpy(dip->un.v.units.name, AudioNvolume);
   2168 		return 0;
   2169 	case SB_MIDI_VOL:
   2170 		dip->type = AUDIO_MIXER_VALUE;
   2171 		dip->mixer_class = class;
   2172 		dip->prev = AUDIO_MIXER_LAST;
   2173 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2174 		strcpy(dip->label.name, AudioNfmsynth);
   2175 		dip->un.v.num_channels = chan;
   2176 		strcpy(dip->un.v.units.name, AudioNvolume);
   2177 		return 0;
   2178 	case SB_CD_VOL:
   2179 		dip->type = AUDIO_MIXER_VALUE;
   2180 		dip->mixer_class = class;
   2181 		dip->prev = AUDIO_MIXER_LAST;
   2182 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2183 		strcpy(dip->label.name, AudioNcd);
   2184 		dip->un.v.num_channels = chan;
   2185 		strcpy(dip->un.v.units.name, AudioNvolume);
   2186 		return 0;
   2187 	case SB_VOICE_VOL:
   2188 		dip->type = AUDIO_MIXER_VALUE;
   2189 		dip->mixer_class = class;
   2190 		dip->prev = AUDIO_MIXER_LAST;
   2191 		dip->next = AUDIO_MIXER_LAST;
   2192 		strcpy(dip->label.name, AudioNdac);
   2193 		dip->un.v.num_channels = chan;
   2194 		strcpy(dip->un.v.units.name, AudioNvolume);
   2195 		return 0;
   2196 	case SB_OUTPUT_CLASS:
   2197 		dip->type = AUDIO_MIXER_CLASS;
   2198 		dip->mixer_class = SB_OUTPUT_CLASS;
   2199 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2200 		strcpy(dip->label.name, AudioCoutputs);
   2201 		return 0;
   2202 	}
   2203 
   2204 	if (sc->sc_mixer_model == SBM_CT1335)
   2205 		return ENXIO;
   2206 
   2207 	switch (dip->index) {
   2208 	case SB_MIC_VOL:
   2209 		dip->type = AUDIO_MIXER_VALUE;
   2210 		dip->mixer_class = class;
   2211 		dip->prev = AUDIO_MIXER_LAST;
   2212 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2213 		strcpy(dip->label.name, AudioNmicrophone);
   2214 		dip->un.v.num_channels = 1;
   2215 		strcpy(dip->un.v.units.name, AudioNvolume);
   2216 		return 0;
   2217 
   2218 	case SB_LINE_IN_VOL:
   2219 		dip->type = AUDIO_MIXER_VALUE;
   2220 		dip->mixer_class = class;
   2221 		dip->prev = AUDIO_MIXER_LAST;
   2222 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2223 		strcpy(dip->label.name, AudioNline);
   2224 		dip->un.v.num_channels = 2;
   2225 		strcpy(dip->un.v.units.name, AudioNvolume);
   2226 		return 0;
   2227 
   2228 	case SB_RECORD_SOURCE:
   2229 		dip->mixer_class = SB_RECORD_CLASS;
   2230 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2231 		strcpy(dip->label.name, AudioNsource);
   2232 		if (ISSBM1745(sc)) {
   2233 			dip->type = AUDIO_MIXER_SET;
   2234 			dip->un.s.num_mem = 4;
   2235 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2236 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2237 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2238 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2239 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2240 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2241 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2242 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2243 		} else {
   2244 			dip->type = AUDIO_MIXER_ENUM;
   2245 			dip->un.e.num_mem = 3;
   2246 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2247 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2248 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2249 			dip->un.e.member[1].ord = SB_CD_VOL;
   2250 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2251 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2252 		}
   2253 		return 0;
   2254 
   2255 	case SB_BASS:
   2256 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2257 		strcpy(dip->label.name, AudioNbass);
   2258 		if (sc->sc_mixer_model == SBM_CT1745) {
   2259 			dip->type = AUDIO_MIXER_VALUE;
   2260 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2261 			dip->un.v.num_channels = 2;
   2262 			strcpy(dip->un.v.units.name, AudioNbass);
   2263 		} else {
   2264 			dip->type = AUDIO_MIXER_ENUM;
   2265 			dip->mixer_class = SB_INPUT_CLASS;
   2266 			dip->un.e.num_mem = 2;
   2267 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2268 			dip->un.e.member[0].ord = 0;
   2269 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2270 			dip->un.e.member[1].ord = 1;
   2271 		}
   2272 		return 0;
   2273 
   2274 	case SB_TREBLE:
   2275 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2276 		strcpy(dip->label.name, AudioNtreble);
   2277 		if (sc->sc_mixer_model == SBM_CT1745) {
   2278 			dip->type = AUDIO_MIXER_VALUE;
   2279 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2280 			dip->un.v.num_channels = 2;
   2281 			strcpy(dip->un.v.units.name, AudioNtreble);
   2282 		} else {
   2283 			dip->type = AUDIO_MIXER_ENUM;
   2284 			dip->mixer_class = SB_INPUT_CLASS;
   2285 			dip->un.e.num_mem = 2;
   2286 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2287 			dip->un.e.member[0].ord = 0;
   2288 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2289 			dip->un.e.member[1].ord = 1;
   2290 		}
   2291 		return 0;
   2292 
   2293 	case SB_RECORD_CLASS:			/* record source class */
   2294 		dip->type = AUDIO_MIXER_CLASS;
   2295 		dip->mixer_class = SB_RECORD_CLASS;
   2296 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2297 		strcpy(dip->label.name, AudioCrecord);
   2298 		return 0;
   2299 
   2300 	case SB_INPUT_CLASS:
   2301 		dip->type = AUDIO_MIXER_CLASS;
   2302 		dip->mixer_class = SB_INPUT_CLASS;
   2303 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2304 		strcpy(dip->label.name, AudioCinputs);
   2305 		return 0;
   2306 
   2307 	}
   2308 
   2309 	if (sc->sc_mixer_model == SBM_CT1345)
   2310 		return ENXIO;
   2311 
   2312 	switch(dip->index) {
   2313 	case SB_PCSPEAKER:
   2314 		dip->type = AUDIO_MIXER_VALUE;
   2315 		dip->mixer_class = SB_INPUT_CLASS;
   2316 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2317 		strcpy(dip->label.name, "pc_speaker");
   2318 		dip->un.v.num_channels = 1;
   2319 		strcpy(dip->un.v.units.name, AudioNvolume);
   2320 		return 0;
   2321 
   2322 	case SB_INPUT_GAIN:
   2323 		dip->type = AUDIO_MIXER_VALUE;
   2324 		dip->mixer_class = SB_INPUT_CLASS;
   2325 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2326 		strcpy(dip->label.name, AudioNinput);
   2327 		dip->un.v.num_channels = 2;
   2328 		strcpy(dip->un.v.units.name, AudioNvolume);
   2329 		return 0;
   2330 
   2331 	case SB_OUTPUT_GAIN:
   2332 		dip->type = AUDIO_MIXER_VALUE;
   2333 		dip->mixer_class = SB_OUTPUT_CLASS;
   2334 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2335 		strcpy(dip->label.name, AudioNoutput);
   2336 		dip->un.v.num_channels = 2;
   2337 		strcpy(dip->un.v.units.name, AudioNvolume);
   2338 		return 0;
   2339 
   2340 	case SB_AGC:
   2341 		dip->type = AUDIO_MIXER_ENUM;
   2342 		dip->mixer_class = SB_INPUT_CLASS;
   2343 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2344 		strcpy(dip->label.name, "agc");
   2345 		dip->un.e.num_mem = 2;
   2346 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2347 		dip->un.e.member[0].ord = 0;
   2348 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2349 		dip->un.e.member[1].ord = 1;
   2350 		return 0;
   2351 
   2352 	case SB_EQUALIZATION_CLASS:
   2353 		dip->type = AUDIO_MIXER_CLASS;
   2354 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2355 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2356 		strcpy(dip->label.name, AudioCequalization);
   2357 		return 0;
   2358 
   2359 	case SB_CD_IN_MUTE:
   2360 		dip->prev = SB_CD_VOL;
   2361 		dip->next = SB_CD_SWAP;
   2362 		dip->mixer_class = SB_INPUT_CLASS;
   2363 		goto mute;
   2364 
   2365 	case SB_MIC_IN_MUTE:
   2366 		dip->prev = SB_MIC_VOL;
   2367 		dip->next = SB_MIC_SWAP;
   2368 		dip->mixer_class = SB_INPUT_CLASS;
   2369 		goto mute;
   2370 
   2371 	case SB_LINE_IN_MUTE:
   2372 		dip->prev = SB_LINE_IN_VOL;
   2373 		dip->next = SB_LINE_SWAP;
   2374 		dip->mixer_class = SB_INPUT_CLASS;
   2375 		goto mute;
   2376 
   2377 	case SB_MIDI_IN_MUTE:
   2378 		dip->prev = SB_MIDI_VOL;
   2379 		dip->next = SB_MIDI_SWAP;
   2380 		dip->mixer_class = SB_INPUT_CLASS;
   2381 		goto mute;
   2382 
   2383 	case SB_CD_SWAP:
   2384 		dip->prev = SB_CD_IN_MUTE;
   2385 		dip->next = SB_CD_OUT_MUTE;
   2386 		goto swap;
   2387 
   2388 	case SB_MIC_SWAP:
   2389 		dip->prev = SB_MIC_IN_MUTE;
   2390 		dip->next = SB_MIC_OUT_MUTE;
   2391 		goto swap;
   2392 
   2393 	case SB_LINE_SWAP:
   2394 		dip->prev = SB_LINE_IN_MUTE;
   2395 		dip->next = SB_LINE_OUT_MUTE;
   2396 		goto swap;
   2397 
   2398 	case SB_MIDI_SWAP:
   2399 		dip->prev = SB_MIDI_IN_MUTE;
   2400 		dip->next = AUDIO_MIXER_LAST;
   2401 	swap:
   2402 		dip->mixer_class = SB_INPUT_CLASS;
   2403 		strcpy(dip->label.name, AudioNswap);
   2404 		goto mute1;
   2405 
   2406 	case SB_CD_OUT_MUTE:
   2407 		dip->prev = SB_CD_SWAP;
   2408 		dip->next = AUDIO_MIXER_LAST;
   2409 		dip->mixer_class = SB_OUTPUT_CLASS;
   2410 		goto mute;
   2411 
   2412 	case SB_MIC_OUT_MUTE:
   2413 		dip->prev = SB_MIC_SWAP;
   2414 		dip->next = AUDIO_MIXER_LAST;
   2415 		dip->mixer_class = SB_OUTPUT_CLASS;
   2416 		goto mute;
   2417 
   2418 	case SB_LINE_OUT_MUTE:
   2419 		dip->prev = SB_LINE_SWAP;
   2420 		dip->next = AUDIO_MIXER_LAST;
   2421 		dip->mixer_class = SB_OUTPUT_CLASS;
   2422 	mute:
   2423 		strcpy(dip->label.name, AudioNmute);
   2424 	mute1:
   2425 		dip->type = AUDIO_MIXER_ENUM;
   2426 		dip->un.e.num_mem = 2;
   2427 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2428 		dip->un.e.member[0].ord = 0;
   2429 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2430 		dip->un.e.member[1].ord = 1;
   2431 		return 0;
   2432 
   2433 	}
   2434 
   2435 	return ENXIO;
   2436 }
   2437 
   2438 void *
   2439 sb_malloc(void *addr, int direction, size_t size)
   2440 {
   2441 	struct sbdsp_softc *sc;
   2442 	int drq;
   2443 
   2444 	sc = addr;
   2445 	if (sc->sc_drq8 != -1)
   2446 		drq = sc->sc_drq8;
   2447 	else
   2448 		drq = sc->sc_drq16;
   2449 	return isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK);
   2450 }
   2451 
   2452 void
   2453 sb_free(void *addr, void *ptr, size_t size)
   2454 {
   2455 
   2456 	isa_free(ptr, M_DEVBUF);
   2457 }
   2458 
   2459 size_t
   2460 sb_round_buffersize(void *addr, int direction, size_t size)
   2461 {
   2462 	struct sbdsp_softc *sc;
   2463 	bus_size_t maxsize;
   2464 
   2465 	sc = addr;
   2466 	if (sc->sc_drq8 != -1)
   2467 		maxsize = sc->sc_drq8_maxsize;
   2468 	else
   2469 		maxsize = sc->sc_drq16_maxsize;
   2470 
   2471 	if (size > maxsize)
   2472 		size = maxsize;
   2473 	return size;
   2474 }
   2475 
   2476 int
   2477 sbdsp_get_props(void *addr)
   2478 {
   2479 	struct sbdsp_softc *sc;
   2480 	int prop;
   2481 
   2482 	sc = addr;
   2483 	prop = AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE;
   2484 
   2485 	/* Prior to the SB16, it has only one clock */
   2486 	if (ISSB16CLASS(sc))
   2487 		prop |= AUDIO_PROP_INDEPENDENT;
   2488 
   2489 	return prop;
   2490 }
   2491 
   2492 void
   2493 sbdsp_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
   2494 {
   2495 	struct sbdsp_softc *sc;
   2496 
   2497 	sc = addr;
   2498 	*intr = &sc->sc_intr_lock;
   2499 	*proc = &sc->sc_lock;
   2500 }
   2501 
   2502 #if NMPU > 0
   2503 /*
   2504  * MIDI related routines.
   2505  */
   2506 
   2507 int
   2508 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
   2509     void (*ointr)(void *), void *arg)
   2510 {
   2511 	struct sbdsp_softc *sc;
   2512 
   2513 	sc = addr;
   2514 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2515 
   2516 	if (sc->sc_open != SB_CLOSED)
   2517 		return EBUSY;
   2518 	if (sbdsp_reset(sc) != 0)
   2519 		return EIO;
   2520 
   2521 	sc->sc_open = SB_OPEN_MIDI;
   2522 
   2523 	if (sc->sc_model >= SB_20)
   2524 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2525 			return EIO;
   2526 
   2527 	sc->sc_intr8 = sbdsp_midi_intr;
   2528 	sc->sc_intrm = iintr;
   2529 	sc->sc_argm = arg;
   2530 
   2531 	return 0;
   2532 }
   2533 
   2534 void
   2535 sbdsp_midi_close(void *addr)
   2536 {
   2537 	struct sbdsp_softc *sc;
   2538 
   2539 	sc = addr;
   2540 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2541 
   2542 	if (sc->sc_model >= SB_20)
   2543 		sbdsp_reset(sc); /* exit UART mode */
   2544 
   2545 	sc->sc_intrm = 0;
   2546 	sc->sc_open = SB_CLOSED;
   2547 }
   2548 
   2549 int
   2550 sbdsp_midi_output(void *addr, int d)
   2551 {
   2552 	struct sbdsp_softc *sc;
   2553 
   2554 	sc = addr;
   2555 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2556 		return EIO;
   2557 	if (sbdsp_wdsp(sc, d))
   2558 		return EIO;
   2559 	return 0;
   2560 }
   2561 
   2562 void
   2563 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
   2564 {
   2565 	struct sbdsp_softc *sc;
   2566 
   2567 	sc = addr;
   2568 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2569 	mi->props = MIDI_PROP_CAN_INPUT;
   2570 }
   2571 
   2572 int
   2573 sbdsp_midi_intr(void *addr)
   2574 {
   2575 	struct sbdsp_softc *sc;
   2576 
   2577 	sc = addr;
   2578 
   2579 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   2580 
   2581 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2582 	return (0);
   2583 }
   2584 #endif
   2585