Home | History | Annotate | Line # | Download | only in amdgpu
      1 /*	$NetBSD: amdgpu_sdma_v4_0.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2016 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_sdma_v4_0.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
     28 
     29 #include <linux/delay.h>
     30 #include <linux/firmware.h>
     31 #include <linux/module.h>
     32 #include <linux/pci.h>
     33 
     34 #include "amdgpu.h"
     35 #include "amdgpu_ucode.h"
     36 #include "amdgpu_trace.h"
     37 
     38 #include "sdma0/sdma0_4_2_offset.h"
     39 #include "sdma0/sdma0_4_2_sh_mask.h"
     40 #include "sdma1/sdma1_4_2_offset.h"
     41 #include "sdma1/sdma1_4_2_sh_mask.h"
     42 #include "sdma2/sdma2_4_2_2_offset.h"
     43 #include "sdma2/sdma2_4_2_2_sh_mask.h"
     44 #include "sdma3/sdma3_4_2_2_offset.h"
     45 #include "sdma3/sdma3_4_2_2_sh_mask.h"
     46 #include "sdma4/sdma4_4_2_2_offset.h"
     47 #include "sdma4/sdma4_4_2_2_sh_mask.h"
     48 #include "sdma5/sdma5_4_2_2_offset.h"
     49 #include "sdma5/sdma5_4_2_2_sh_mask.h"
     50 #include "sdma6/sdma6_4_2_2_offset.h"
     51 #include "sdma6/sdma6_4_2_2_sh_mask.h"
     52 #include "sdma7/sdma7_4_2_2_offset.h"
     53 #include "sdma7/sdma7_4_2_2_sh_mask.h"
     54 #include "hdp/hdp_4_0_offset.h"
     55 #include "sdma0/sdma0_4_1_default.h"
     56 
     57 #include "soc15_common.h"
     58 #include "soc15.h"
     59 #include "vega10_sdma_pkt_open.h"
     60 
     61 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
     62 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
     63 
     64 #include "amdgpu_ras.h"
     65 
     66 #include <linux/nbsd-namespace.h>
     67 
     68 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
     69 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
     70 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
     71 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
     72 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
     73 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
     74 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
     75 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
     76 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
     77 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
     78 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
     79 
     80 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
     81 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
     82 
     83 #define WREG32_SDMA(instance, offset, value) \
     84 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
     85 #define RREG32_SDMA(instance, offset) \
     86 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
     87 
     88 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
     89 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
     90 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
     91 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
     92 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
     93 
     94 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
     95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
     96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
     97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
     98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
     99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
    100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    101 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
    102 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
    103 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    104 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
    105 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
    108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
    109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
    110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
    112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    113 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
    114 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
    115 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    116 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
    117 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
    118 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
    120 };
    121 
    122 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
    123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
    124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
    125 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
    126 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
    127 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
    128 };
    129 
    130 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
    131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
    132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
    133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
    134 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
    135 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
    136 };
    137 
    138 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
    139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
    140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
    141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
    142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
    144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
    145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
    147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
    150 };
    151 
    152 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
    153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
    154 };
    155 
    156 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
    157 {
    158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
    160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
    167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
    169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    182 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    183 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    184 };
    185 
    186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
    187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
    189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
    196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
    198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
    211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    212 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    213 };
    214 
    215 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
    216 {
    217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
    218 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
    219 };
    220 
    221 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
    222 {
    223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
    224 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
    225 };
    226 
    227 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
    228 {
    229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    235 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    238 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    239 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    241 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    242 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    243 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    244 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    245 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    246 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    247 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    248 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    249 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
    250 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    251 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
    252 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
    253 };
    254 
    255 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
    256 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
    257 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
    258 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
    259 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
    260 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    261 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
    262 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
    264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
    265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
    266 };
    267 
    268 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
    269 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    270 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
    271 	0, 0,
    272 	},
    273 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    274 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
    275 	0, 0,
    276 	},
    277 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    278 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
    279 	0, 0,
    280 	},
    281 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    282 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
    283 	0, 0,
    284 	},
    285 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    286 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
    287 	0, 0,
    288 	},
    289 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    290 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
    291 	0, 0,
    292 	},
    293 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    294 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
    295 	0, 0,
    296 	},
    297 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    298 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
    299 	0, 0,
    300 	},
    301 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    302 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
    303 	0, 0,
    304 	},
    305 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    306 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
    307 	0, 0,
    308 	},
    309 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    310 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
    311 	0, 0,
    312 	},
    313 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    314 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
    315 	0, 0,
    316 	},
    317 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    318 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
    319 	0, 0,
    320 	},
    321 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    322 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
    323 	0, 0,
    324 	},
    325 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    326 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
    327 	0, 0,
    328 	},
    329 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    330 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
    331 	0, 0,
    332 	},
    333 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    334 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
    335 	0, 0,
    336 	},
    337 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    338 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
    339 	0, 0,
    340 	},
    341 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    342 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
    343 	0, 0,
    344 	},
    345 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    346 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
    347 	0, 0,
    348 	},
    349 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    350 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
    351 	0, 0,
    352 	},
    353 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    354 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
    355 	0, 0,
    356 	},
    357 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    358 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
    359 	0, 0,
    360 	},
    361 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
    362 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
    363 	0, 0,
    364 	},
    365 };
    366 
    367 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
    368 		u32 instance, u32 offset)
    369 {
    370 	switch (instance) {
    371 	case 0:
    372 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
    373 	case 1:
    374 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
    375 	case 2:
    376 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
    377 	case 3:
    378 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
    379 	case 4:
    380 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
    381 	case 5:
    382 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
    383 	case 6:
    384 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
    385 	case 7:
    386 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
    387 	default:
    388 		break;
    389 	}
    390 	return 0;
    391 }
    392 
    393 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
    394 {
    395 	switch (seq_num) {
    396 	case 0:
    397 		return SOC15_IH_CLIENTID_SDMA0;
    398 	case 1:
    399 		return SOC15_IH_CLIENTID_SDMA1;
    400 	case 2:
    401 		return SOC15_IH_CLIENTID_SDMA2;
    402 	case 3:
    403 		return SOC15_IH_CLIENTID_SDMA3;
    404 	case 4:
    405 		return SOC15_IH_CLIENTID_SDMA4;
    406 	case 5:
    407 		return SOC15_IH_CLIENTID_SDMA5;
    408 	case 6:
    409 		return SOC15_IH_CLIENTID_SDMA6;
    410 	case 7:
    411 		return SOC15_IH_CLIENTID_SDMA7;
    412 	default:
    413 		break;
    414 	}
    415 	return -EINVAL;
    416 }
    417 
    418 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
    419 {
    420 	switch (client_id) {
    421 	case SOC15_IH_CLIENTID_SDMA0:
    422 		return 0;
    423 	case SOC15_IH_CLIENTID_SDMA1:
    424 		return 1;
    425 	case SOC15_IH_CLIENTID_SDMA2:
    426 		return 2;
    427 	case SOC15_IH_CLIENTID_SDMA3:
    428 		return 3;
    429 	case SOC15_IH_CLIENTID_SDMA4:
    430 		return 4;
    431 	case SOC15_IH_CLIENTID_SDMA5:
    432 		return 5;
    433 	case SOC15_IH_CLIENTID_SDMA6:
    434 		return 6;
    435 	case SOC15_IH_CLIENTID_SDMA7:
    436 		return 7;
    437 	default:
    438 		break;
    439 	}
    440 	return -EINVAL;
    441 }
    442 
    443 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
    444 {
    445 	switch (adev->asic_type) {
    446 	case CHIP_VEGA10:
    447 		soc15_program_register_sequence(adev,
    448 						golden_settings_sdma_4,
    449 						ARRAY_SIZE(golden_settings_sdma_4));
    450 		soc15_program_register_sequence(adev,
    451 						golden_settings_sdma_vg10,
    452 						ARRAY_SIZE(golden_settings_sdma_vg10));
    453 		break;
    454 	case CHIP_VEGA12:
    455 		soc15_program_register_sequence(adev,
    456 						golden_settings_sdma_4,
    457 						ARRAY_SIZE(golden_settings_sdma_4));
    458 		soc15_program_register_sequence(adev,
    459 						golden_settings_sdma_vg12,
    460 						ARRAY_SIZE(golden_settings_sdma_vg12));
    461 		break;
    462 	case CHIP_VEGA20:
    463 		soc15_program_register_sequence(adev,
    464 						golden_settings_sdma0_4_2_init,
    465 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
    466 		soc15_program_register_sequence(adev,
    467 						golden_settings_sdma0_4_2,
    468 						ARRAY_SIZE(golden_settings_sdma0_4_2));
    469 		soc15_program_register_sequence(adev,
    470 						golden_settings_sdma1_4_2,
    471 						ARRAY_SIZE(golden_settings_sdma1_4_2));
    472 		break;
    473 	case CHIP_ARCTURUS:
    474 		soc15_program_register_sequence(adev,
    475 						golden_settings_sdma_arct,
    476 						ARRAY_SIZE(golden_settings_sdma_arct));
    477 		break;
    478 	case CHIP_RAVEN:
    479 		soc15_program_register_sequence(adev,
    480 						golden_settings_sdma_4_1,
    481 						ARRAY_SIZE(golden_settings_sdma_4_1));
    482 		if (adev->rev_id >= 8)
    483 			soc15_program_register_sequence(adev,
    484 							golden_settings_sdma_rv2,
    485 							ARRAY_SIZE(golden_settings_sdma_rv2));
    486 		else
    487 			soc15_program_register_sequence(adev,
    488 							golden_settings_sdma_rv1,
    489 							ARRAY_SIZE(golden_settings_sdma_rv1));
    490 		break;
    491 	case CHIP_RENOIR:
    492 		soc15_program_register_sequence(adev,
    493 						golden_settings_sdma_4_3,
    494 						ARRAY_SIZE(golden_settings_sdma_4_3));
    495 		break;
    496 	default:
    497 		break;
    498 	}
    499 }
    500 
    501 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
    502 {
    503 	int err = 0;
    504 	const struct sdma_firmware_header_v1_0 *hdr;
    505 
    506 	err = amdgpu_ucode_validate(sdma_inst->fw);
    507 	if (err)
    508 		return err;
    509 
    510 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
    511 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
    512 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
    513 
    514 	if (sdma_inst->feature_version >= 20)
    515 		sdma_inst->burst_nop = true;
    516 
    517 	return 0;
    518 }
    519 
    520 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
    521 {
    522 	int i;
    523 
    524 	for (i = 0; i < adev->sdma.num_instances; i++) {
    525 		if (adev->sdma.instance[i].fw != NULL)
    526 			release_firmware(adev->sdma.instance[i].fw);
    527 
    528 		/* arcturus shares the same FW memory across
    529 		   all SDMA isntances */
    530 		if (adev->asic_type == CHIP_ARCTURUS)
    531 			break;
    532 	}
    533 
    534 	memset((void*)adev->sdma.instance, 0,
    535 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
    536 }
    537 
    538 /**
    539  * sdma_v4_0_init_microcode - load ucode images from disk
    540  *
    541  * @adev: amdgpu_device pointer
    542  *
    543  * Use the firmware interface to load the ucode images into
    544  * the driver (not loaded into hw).
    545  * Returns 0 on success, error on failure.
    546  */
    547 
    548 // emulation only, won't work on real chip
    549 // vega10 real chip need to use PSP to load firmware
    550 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
    551 {
    552 	const char *chip_name;
    553 	char fw_name[30];
    554 	int err = 0, i;
    555 	struct amdgpu_firmware_info *info = NULL;
    556 	const struct common_firmware_header *header = NULL;
    557 
    558 	DRM_DEBUG("\n");
    559 
    560 	switch (adev->asic_type) {
    561 	case CHIP_VEGA10:
    562 		chip_name = "vega10";
    563 		break;
    564 	case CHIP_VEGA12:
    565 		chip_name = "vega12";
    566 		break;
    567 	case CHIP_VEGA20:
    568 		chip_name = "vega20";
    569 		break;
    570 	case CHIP_RAVEN:
    571 		if (adev->rev_id >= 8)
    572 			chip_name = "raven2";
    573 		else if (adev->pdev->device == 0x15d8)
    574 			chip_name = "picasso";
    575 		else
    576 			chip_name = "raven";
    577 		break;
    578 	case CHIP_ARCTURUS:
    579 		chip_name = "arcturus";
    580 		break;
    581 	case CHIP_RENOIR:
    582 		chip_name = "renoir";
    583 		break;
    584 	default:
    585 		BUG();
    586 	}
    587 
    588 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
    589 
    590 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
    591 	if (err)
    592 		goto out;
    593 
    594 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
    595 	if (err)
    596 		goto out;
    597 
    598 	for (i = 1; i < adev->sdma.num_instances; i++) {
    599 		if (adev->asic_type == CHIP_ARCTURUS) {
    600 			/* Acturus will leverage the same FW memory
    601 			   for every SDMA instance */
    602 			memcpy((void*)&adev->sdma.instance[i],
    603 			       (void*)&adev->sdma.instance[0],
    604 			       sizeof(struct amdgpu_sdma_instance));
    605 		}
    606 		else {
    607 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
    608 
    609 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
    610 			if (err)
    611 				goto out;
    612 
    613 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
    614 			if (err)
    615 				goto out;
    616 		}
    617 	}
    618 
    619 	DRM_DEBUG("psp_load == '%s'\n",
    620 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
    621 
    622 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
    623 		for (i = 0; i < adev->sdma.num_instances; i++) {
    624 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
    625 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
    626 			info->fw = adev->sdma.instance[i].fw;
    627 			header = (const struct common_firmware_header *)info->fw->data;
    628 			adev->firmware.fw_size +=
    629 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
    630 		}
    631 	}
    632 
    633 out:
    634 	if (err) {
    635 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
    636 		sdma_v4_0_destroy_inst_ctx(adev);
    637 	}
    638 	return err;
    639 }
    640 
    641 /**
    642  * sdma_v4_0_ring_get_rptr - get the current read pointer
    643  *
    644  * @ring: amdgpu ring pointer
    645  *
    646  * Get the current rptr from the hardware (VEGA10+).
    647  */
    648 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
    649 {
    650 	volatile u64 *rptr;
    651 
    652 	/* XXX check if swapping is necessary on BE */
    653 	rptr = ((volatile u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
    654 
    655 	DRM_DEBUG("rptr before shift == 0x%016"PRIx64"\n", *rptr);
    656 	return ((*rptr) >> 2);
    657 }
    658 
    659 /**
    660  * sdma_v4_0_ring_get_wptr - get the current write pointer
    661  *
    662  * @ring: amdgpu ring pointer
    663  *
    664  * Get the current wptr from the hardware (VEGA10+).
    665  */
    666 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
    667 {
    668 	struct amdgpu_device *adev = ring->adev;
    669 	u64 wptr;
    670 
    671 	if (ring->use_doorbell) {
    672 		/* XXX check if swapping is necessary on BE */
    673 		wptr = READ_ONCE(*((volatile u64 *)&adev->wb.wb[ring->wptr_offs]));
    674 		DRM_DEBUG("wptr/doorbell before shift == 0x%016"PRIx64"\n", wptr);
    675 	} else {
    676 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
    677 		wptr = wptr << 32;
    678 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
    679 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016"PRIx64"\n",
    680 				ring->me, wptr);
    681 	}
    682 
    683 	return wptr >> 2;
    684 }
    685 
    686 /**
    687  * sdma_v4_0_ring_set_wptr - commit the write pointer
    688  *
    689  * @ring: amdgpu ring pointer
    690  *
    691  * Write the wptr back to the hardware (VEGA10+).
    692  */
    693 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
    694 {
    695 	struct amdgpu_device *adev = ring->adev;
    696 
    697 	DRM_DEBUG("Setting write pointer\n");
    698 	if (ring->use_doorbell) {
    699 		volatile u64 *wb = (volatile u64 *)&adev->wb.wb[ring->wptr_offs];
    700 
    701 		DRM_DEBUG("Using doorbell -- "
    702 				"wptr_offs == 0x%08x "
    703 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
    704 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
    705 				ring->wptr_offs,
    706 				lower_32_bits(ring->wptr << 2),
    707 				upper_32_bits(ring->wptr << 2));
    708 		/* XXX check if swapping is necessary on BE */
    709 		WRITE_ONCE(*wb, (ring->wptr << 2));
    710 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016"PRIx64")\n",
    711 				ring->doorbell_index, ring->wptr << 2);
    712 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
    713 	} else {
    714 		DRM_DEBUG("Not using doorbell -- "
    715 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
    716 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
    717 				ring->me,
    718 				lower_32_bits(ring->wptr << 2),
    719 				ring->me,
    720 				upper_32_bits(ring->wptr << 2));
    721 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
    722 			    lower_32_bits(ring->wptr << 2));
    723 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
    724 			    upper_32_bits(ring->wptr << 2));
    725 	}
    726 }
    727 
    728 /**
    729  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
    730  *
    731  * @ring: amdgpu ring pointer
    732  *
    733  * Get the current wptr from the hardware (VEGA10+).
    734  */
    735 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
    736 {
    737 	struct amdgpu_device *adev = ring->adev;
    738 	u64 wptr;
    739 
    740 	if (ring->use_doorbell) {
    741 		/* XXX check if swapping is necessary on BE */
    742 		wptr = READ_ONCE(*((volatile u64 *)&adev->wb.wb[ring->wptr_offs]));
    743 	} else {
    744 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
    745 		wptr = wptr << 32;
    746 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
    747 	}
    748 
    749 	return wptr >> 2;
    750 }
    751 
    752 /**
    753  * sdma_v4_0_ring_set_wptr - commit the write pointer
    754  *
    755  * @ring: amdgpu ring pointer
    756  *
    757  * Write the wptr back to the hardware (VEGA10+).
    758  */
    759 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
    760 {
    761 	struct amdgpu_device *adev = ring->adev;
    762 
    763 	if (ring->use_doorbell) {
    764 		volatile u64 *wb = (volatile u64 *)&adev->wb.wb[ring->wptr_offs];
    765 
    766 		/* XXX check if swapping is necessary on BE */
    767 		WRITE_ONCE(*wb, (ring->wptr << 2));
    768 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
    769 	} else {
    770 		uint64_t wptr = ring->wptr << 2;
    771 
    772 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
    773 			    lower_32_bits(wptr));
    774 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
    775 			    upper_32_bits(wptr));
    776 	}
    777 }
    778 
    779 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
    780 {
    781 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
    782 	int i;
    783 
    784 	for (i = 0; i < count; i++)
    785 		if (sdma && sdma->burst_nop && (i == 0))
    786 			amdgpu_ring_write(ring, ring->funcs->nop |
    787 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
    788 		else
    789 			amdgpu_ring_write(ring, ring->funcs->nop);
    790 }
    791 
    792 /**
    793  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
    794  *
    795  * @ring: amdgpu ring pointer
    796  * @ib: IB object to schedule
    797  *
    798  * Schedule an IB in the DMA ring (VEGA10).
    799  */
    800 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
    801 				   struct amdgpu_job *job,
    802 				   struct amdgpu_ib *ib,
    803 				   uint32_t flags)
    804 {
    805 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
    806 
    807 	/* IB packet must end on a 8 DW boundary */
    808 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
    809 
    810 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
    811 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
    812 	/* base must be 32 byte aligned */
    813 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
    814 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
    815 	amdgpu_ring_write(ring, ib->length_dw);
    816 	amdgpu_ring_write(ring, 0);
    817 	amdgpu_ring_write(ring, 0);
    818 
    819 }
    820 
    821 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
    822 				   int mem_space, int hdp,
    823 				   uint32_t addr0, uint32_t addr1,
    824 				   uint32_t ref, uint32_t mask,
    825 				   uint32_t inv)
    826 {
    827 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
    828 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
    829 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
    830 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
    831 	if (mem_space) {
    832 		/* memory */
    833 		amdgpu_ring_write(ring, addr0);
    834 		amdgpu_ring_write(ring, addr1);
    835 	} else {
    836 		/* registers */
    837 		amdgpu_ring_write(ring, addr0 << 2);
    838 		amdgpu_ring_write(ring, addr1 << 2);
    839 	}
    840 	amdgpu_ring_write(ring, ref); /* reference */
    841 	amdgpu_ring_write(ring, mask); /* mask */
    842 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
    843 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
    844 }
    845 
    846 /**
    847  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
    848  *
    849  * @ring: amdgpu ring pointer
    850  *
    851  * Emit an hdp flush packet on the requested DMA ring.
    852  */
    853 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
    854 {
    855 	struct amdgpu_device *adev = ring->adev;
    856 	u32 ref_and_mask = 0;
    857 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
    858 
    859 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
    860 
    861 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
    862 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
    863 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
    864 			       ref_and_mask, ref_and_mask, 10);
    865 }
    866 
    867 /**
    868  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
    869  *
    870  * @ring: amdgpu ring pointer
    871  * @fence: amdgpu fence object
    872  *
    873  * Add a DMA fence packet to the ring to write
    874  * the fence seq number and DMA trap packet to generate
    875  * an interrupt if needed (VEGA10).
    876  */
    877 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
    878 				      unsigned flags)
    879 {
    880 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
    881 	/* write the fence */
    882 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
    883 	/* zero in first two bits */
    884 	BUG_ON(addr & 0x3);
    885 	amdgpu_ring_write(ring, lower_32_bits(addr));
    886 	amdgpu_ring_write(ring, upper_32_bits(addr));
    887 	amdgpu_ring_write(ring, lower_32_bits(seq));
    888 
    889 	/* optionally write high bits as well */
    890 	if (write64bit) {
    891 		addr += 4;
    892 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
    893 		/* zero in first two bits */
    894 		BUG_ON(addr & 0x3);
    895 		amdgpu_ring_write(ring, lower_32_bits(addr));
    896 		amdgpu_ring_write(ring, upper_32_bits(addr));
    897 		amdgpu_ring_write(ring, upper_32_bits(seq));
    898 	}
    899 
    900 	/* generate an interrupt */
    901 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
    902 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
    903 }
    904 
    905 
    906 /**
    907  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
    908  *
    909  * @adev: amdgpu_device pointer
    910  *
    911  * Stop the gfx async dma ring buffers (VEGA10).
    912  */
    913 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
    914 {
    915 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
    916 	u32 rb_cntl, ib_cntl;
    917 	int i, unset = 0;
    918 
    919 	for (i = 0; i < adev->sdma.num_instances; i++) {
    920 		sdma[i] = &adev->sdma.instance[i].ring;
    921 
    922 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
    923 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
    924 			unset = 1;
    925 		}
    926 
    927 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
    928 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
    929 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
    930 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
    931 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
    932 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
    933 
    934 		sdma[i]->sched.ready = false;
    935 	}
    936 }
    937 
    938 /**
    939  * sdma_v4_0_rlc_stop - stop the compute async dma engines
    940  *
    941  * @adev: amdgpu_device pointer
    942  *
    943  * Stop the compute async dma queues (VEGA10).
    944  */
    945 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
    946 {
    947 	/* XXX todo */
    948 }
    949 
    950 /**
    951  * sdma_v4_0_page_stop - stop the page async dma engines
    952  *
    953  * @adev: amdgpu_device pointer
    954  *
    955  * Stop the page async dma ring buffers (VEGA10).
    956  */
    957 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
    958 {
    959 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
    960 	u32 rb_cntl, ib_cntl;
    961 	int i;
    962 	bool unset = false;
    963 
    964 	for (i = 0; i < adev->sdma.num_instances; i++) {
    965 		sdma[i] = &adev->sdma.instance[i].page;
    966 
    967 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
    968 			(unset == false)) {
    969 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
    970 			unset = true;
    971 		}
    972 
    973 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
    974 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
    975 					RB_ENABLE, 0);
    976 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
    977 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
    978 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
    979 					IB_ENABLE, 0);
    980 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
    981 
    982 		sdma[i]->sched.ready = false;
    983 	}
    984 }
    985 
    986 /**
    987  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
    988  *
    989  * @adev: amdgpu_device pointer
    990  * @enable: enable/disable the DMA MEs context switch.
    991  *
    992  * Halt or unhalt the async dma engines context switch (VEGA10).
    993  */
    994 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
    995 {
    996 	u32 f32_cntl, phase_quantum = 0;
    997 	int i;
    998 
    999 	if (amdgpu_sdma_phase_quantum) {
   1000 		unsigned value = amdgpu_sdma_phase_quantum;
   1001 		unsigned unit = 0;
   1002 
   1003 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
   1004 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
   1005 			value = (value + 1) >> 1;
   1006 			unit++;
   1007 		}
   1008 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
   1009 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
   1010 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
   1011 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
   1012 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
   1013 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
   1014 			WARN_ONCE(1,
   1015 			"clamping sdma_phase_quantum to %uK clock cycles\n",
   1016 				  value << unit);
   1017 		}
   1018 		phase_quantum =
   1019 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
   1020 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
   1021 	}
   1022 
   1023 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1024 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
   1025 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
   1026 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
   1027 		if (enable && amdgpu_sdma_phase_quantum) {
   1028 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
   1029 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
   1030 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
   1031 		}
   1032 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
   1033 	}
   1034 
   1035 }
   1036 
   1037 /**
   1038  * sdma_v4_0_enable - stop the async dma engines
   1039  *
   1040  * @adev: amdgpu_device pointer
   1041  * @enable: enable/disable the DMA MEs.
   1042  *
   1043  * Halt or unhalt the async dma engines (VEGA10).
   1044  */
   1045 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
   1046 {
   1047 	u32 f32_cntl;
   1048 	int i;
   1049 
   1050 	if (enable == false) {
   1051 		sdma_v4_0_gfx_stop(adev);
   1052 		sdma_v4_0_rlc_stop(adev);
   1053 		if (adev->sdma.has_page_queue)
   1054 			sdma_v4_0_page_stop(adev);
   1055 	}
   1056 
   1057 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1058 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
   1059 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
   1060 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
   1061 	}
   1062 }
   1063 
   1064 /**
   1065  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
   1066  */
   1067 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
   1068 {
   1069 	/* Set ring buffer size in dwords */
   1070 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
   1071 
   1072 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
   1073 #ifdef __BIG_ENDIAN
   1074 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
   1075 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
   1076 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
   1077 #endif
   1078 	return rb_cntl;
   1079 }
   1080 
   1081 /**
   1082  * sdma_v4_0_gfx_resume - setup and start the async dma engines
   1083  *
   1084  * @adev: amdgpu_device pointer
   1085  * @i: instance to resume
   1086  *
   1087  * Set up the gfx DMA ring buffers and enable them (VEGA10).
   1088  * Returns 0 for success, error for failure.
   1089  */
   1090 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
   1091 {
   1092 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
   1093 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
   1094 	u32 wb_offset;
   1095 	u32 doorbell;
   1096 	u32 doorbell_offset;
   1097 	u64 wptr_gpu_addr;
   1098 
   1099 	wb_offset = (ring->rptr_offs * 4);
   1100 
   1101 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
   1102 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
   1103 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
   1104 
   1105 	/* Initialize the ring buffer's read and write pointers */
   1106 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
   1107 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
   1108 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
   1109 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
   1110 
   1111 	/* set the wb address whether it's enabled or not */
   1112 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
   1113 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
   1114 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
   1115 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
   1116 
   1117 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
   1118 				RPTR_WRITEBACK_ENABLE, 1);
   1119 
   1120 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
   1121 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
   1122 
   1123 	ring->wptr = 0;
   1124 
   1125 	/* before programing wptr to a less value, need set minor_ptr_update first */
   1126 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
   1127 
   1128 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
   1129 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
   1130 
   1131 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
   1132 				 ring->use_doorbell);
   1133 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
   1134 					SDMA0_GFX_DOORBELL_OFFSET,
   1135 					OFFSET, ring->doorbell_index);
   1136 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
   1137 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
   1138 
   1139 	sdma_v4_0_ring_set_wptr(ring);
   1140 
   1141 	/* set minor_ptr_update to 0 after wptr programed */
   1142 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
   1143 
   1144 	/* setup the wptr shadow polling */
   1145 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
   1146 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
   1147 		    lower_32_bits(wptr_gpu_addr));
   1148 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
   1149 		    upper_32_bits(wptr_gpu_addr));
   1150 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
   1151 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
   1152 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
   1153 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
   1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
   1155 
   1156 	/* enable DMA RB */
   1157 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
   1158 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
   1159 
   1160 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
   1161 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
   1162 #ifdef __BIG_ENDIAN
   1163 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
   1164 #endif
   1165 	/* enable DMA IBs */
   1166 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
   1167 
   1168 	ring->sched.ready = true;
   1169 }
   1170 
   1171 /**
   1172  * sdma_v4_0_page_resume - setup and start the async dma engines
   1173  *
   1174  * @adev: amdgpu_device pointer
   1175  * @i: instance to resume
   1176  *
   1177  * Set up the page DMA ring buffers and enable them (VEGA10).
   1178  * Returns 0 for success, error for failure.
   1179  */
   1180 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
   1181 {
   1182 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
   1183 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
   1184 	u32 wb_offset;
   1185 	u32 doorbell;
   1186 	u32 doorbell_offset;
   1187 	u64 wptr_gpu_addr;
   1188 
   1189 	wb_offset = (ring->rptr_offs * 4);
   1190 
   1191 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
   1192 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
   1193 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
   1194 
   1195 	/* Initialize the ring buffer's read and write pointers */
   1196 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
   1197 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
   1198 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
   1199 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
   1200 
   1201 	/* set the wb address whether it's enabled or not */
   1202 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
   1203 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
   1204 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
   1205 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
   1206 
   1207 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
   1208 				RPTR_WRITEBACK_ENABLE, 1);
   1209 
   1210 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
   1211 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
   1212 
   1213 	ring->wptr = 0;
   1214 
   1215 	/* before programing wptr to a less value, need set minor_ptr_update first */
   1216 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
   1217 
   1218 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
   1219 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
   1220 
   1221 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
   1222 				 ring->use_doorbell);
   1223 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
   1224 					SDMA0_PAGE_DOORBELL_OFFSET,
   1225 					OFFSET, ring->doorbell_index);
   1226 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
   1227 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
   1228 
   1229 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
   1230 	sdma_v4_0_page_ring_set_wptr(ring);
   1231 
   1232 	/* set minor_ptr_update to 0 after wptr programed */
   1233 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
   1234 
   1235 	/* setup the wptr shadow polling */
   1236 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
   1237 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
   1238 		    lower_32_bits(wptr_gpu_addr));
   1239 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
   1240 		    upper_32_bits(wptr_gpu_addr));
   1241 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
   1242 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
   1243 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
   1244 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
   1245 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
   1246 
   1247 	/* enable DMA RB */
   1248 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
   1249 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
   1250 
   1251 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
   1252 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
   1253 #ifdef __BIG_ENDIAN
   1254 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
   1255 #endif
   1256 	/* enable DMA IBs */
   1257 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
   1258 
   1259 	ring->sched.ready = true;
   1260 }
   1261 
   1262 static void
   1263 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
   1264 {
   1265 	uint32_t def, data;
   1266 
   1267 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
   1268 		/* enable idle interrupt */
   1269 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
   1270 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
   1271 
   1272 		if (data != def)
   1273 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
   1274 	} else {
   1275 		/* disable idle interrupt */
   1276 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
   1277 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
   1278 		if (data != def)
   1279 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
   1280 	}
   1281 }
   1282 
   1283 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
   1284 {
   1285 	uint32_t def, data;
   1286 
   1287 	/* Enable HW based PG. */
   1288 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
   1289 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
   1290 	if (data != def)
   1291 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
   1292 
   1293 	/* enable interrupt */
   1294 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
   1295 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
   1296 	if (data != def)
   1297 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
   1298 
   1299 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
   1300 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
   1301 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
   1302 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
   1303 	/* Configure switch time for hysteresis purpose. Use default right now */
   1304 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
   1305 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
   1306 	if(data != def)
   1307 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
   1308 }
   1309 
   1310 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
   1311 {
   1312 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
   1313 		return;
   1314 
   1315 	switch (adev->asic_type) {
   1316 	case CHIP_RAVEN:
   1317 	case CHIP_RENOIR:
   1318 		sdma_v4_1_init_power_gating(adev);
   1319 		sdma_v4_1_update_power_gating(adev, true);
   1320 		break;
   1321 	default:
   1322 		break;
   1323 	}
   1324 }
   1325 
   1326 /**
   1327  * sdma_v4_0_rlc_resume - setup and start the async dma engines
   1328  *
   1329  * @adev: amdgpu_device pointer
   1330  *
   1331  * Set up the compute DMA queues and enable them (VEGA10).
   1332  * Returns 0 for success, error for failure.
   1333  */
   1334 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
   1335 {
   1336 	sdma_v4_0_init_pg(adev);
   1337 
   1338 	return 0;
   1339 }
   1340 
   1341 /**
   1342  * sdma_v4_0_load_microcode - load the sDMA ME ucode
   1343  *
   1344  * @adev: amdgpu_device pointer
   1345  *
   1346  * Loads the sDMA0/1 ucode.
   1347  * Returns 0 for success, -EINVAL if the ucode is not available.
   1348  */
   1349 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
   1350 {
   1351 	const struct sdma_firmware_header_v1_0 *hdr;
   1352 	const __le32 *fw_data;
   1353 	u32 fw_size;
   1354 	int i, j;
   1355 
   1356 	/* halt the MEs */
   1357 	sdma_v4_0_enable(adev, false);
   1358 
   1359 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1360 		if (!adev->sdma.instance[i].fw)
   1361 			return -EINVAL;
   1362 
   1363 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
   1364 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
   1365 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
   1366 
   1367 		fw_data = (const __le32 *)
   1368 			(adev->sdma.instance[i].fw->data +
   1369 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
   1370 
   1371 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
   1372 
   1373 		for (j = 0; j < fw_size; j++)
   1374 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
   1375 				    le32_to_cpup(fw_data++));
   1376 
   1377 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
   1378 			    adev->sdma.instance[i].fw_version);
   1379 	}
   1380 
   1381 	return 0;
   1382 }
   1383 
   1384 /**
   1385  * sdma_v4_0_start - setup and start the async dma engines
   1386  *
   1387  * @adev: amdgpu_device pointer
   1388  *
   1389  * Set up the DMA engines and enable them (VEGA10).
   1390  * Returns 0 for success, error for failure.
   1391  */
   1392 static int sdma_v4_0_start(struct amdgpu_device *adev)
   1393 {
   1394 	struct amdgpu_ring *ring;
   1395 	int i, r = 0;
   1396 
   1397 	if (amdgpu_sriov_vf(adev)) {
   1398 		sdma_v4_0_ctx_switch_enable(adev, false);
   1399 		sdma_v4_0_enable(adev, false);
   1400 	} else {
   1401 
   1402 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
   1403 			r = sdma_v4_0_load_microcode(adev);
   1404 			if (r)
   1405 				return r;
   1406 		}
   1407 
   1408 		/* unhalt the MEs */
   1409 		sdma_v4_0_enable(adev, true);
   1410 		/* enable sdma ring preemption */
   1411 		sdma_v4_0_ctx_switch_enable(adev, true);
   1412 	}
   1413 
   1414 	/* start the gfx rings and rlc compute queues */
   1415 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1416 		uint32_t temp;
   1417 
   1418 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
   1419 		sdma_v4_0_gfx_resume(adev, i);
   1420 		if (adev->sdma.has_page_queue)
   1421 			sdma_v4_0_page_resume(adev, i);
   1422 
   1423 		/* set utc l1 enable flag always to 1 */
   1424 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
   1425 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
   1426 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
   1427 
   1428 		if (!amdgpu_sriov_vf(adev)) {
   1429 			/* unhalt engine */
   1430 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
   1431 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
   1432 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
   1433 		}
   1434 	}
   1435 
   1436 	if (amdgpu_sriov_vf(adev)) {
   1437 		sdma_v4_0_ctx_switch_enable(adev, true);
   1438 		sdma_v4_0_enable(adev, true);
   1439 	} else {
   1440 		r = sdma_v4_0_rlc_resume(adev);
   1441 		if (r)
   1442 			return r;
   1443 	}
   1444 
   1445 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1446 		ring = &adev->sdma.instance[i].ring;
   1447 
   1448 		r = amdgpu_ring_test_helper(ring);
   1449 		if (r)
   1450 			return r;
   1451 
   1452 		if (adev->sdma.has_page_queue) {
   1453 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
   1454 
   1455 			r = amdgpu_ring_test_helper(page);
   1456 			if (r)
   1457 				return r;
   1458 
   1459 			if (adev->mman.buffer_funcs_ring == page)
   1460 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
   1461 		}
   1462 
   1463 		if (adev->mman.buffer_funcs_ring == ring)
   1464 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
   1465 	}
   1466 
   1467 	return r;
   1468 }
   1469 
   1470 /**
   1471  * sdma_v4_0_ring_test_ring - simple async dma engine test
   1472  *
   1473  * @ring: amdgpu_ring structure holding ring information
   1474  *
   1475  * Test the DMA engine by writing using it to write an
   1476  * value to memory. (VEGA10).
   1477  * Returns 0 for success, error for failure.
   1478  */
   1479 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
   1480 {
   1481 	struct amdgpu_device *adev = ring->adev;
   1482 	unsigned i;
   1483 	unsigned index;
   1484 	int r;
   1485 	u32 tmp;
   1486 	u64 gpu_addr;
   1487 
   1488 	r = amdgpu_device_wb_get(adev, &index);
   1489 	if (r)
   1490 		return r;
   1491 
   1492 	gpu_addr = adev->wb.gpu_addr + (index * 4);
   1493 	tmp = 0xCAFEDEAD;
   1494 	adev->wb.wb[index] = cpu_to_le32(tmp);
   1495 
   1496 	r = amdgpu_ring_alloc(ring, 5);
   1497 	if (r)
   1498 		goto error_free_wb;
   1499 
   1500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
   1501 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
   1502 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
   1503 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
   1504 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
   1505 	amdgpu_ring_write(ring, 0xDEADBEEF);
   1506 	amdgpu_ring_commit(ring);
   1507 
   1508 	for (i = 0; i < adev->usec_timeout; i++) {
   1509 		tmp = le32_to_cpu(adev->wb.wb[index]);
   1510 		if (tmp == 0xDEADBEEF)
   1511 			break;
   1512 		udelay(1);
   1513 	}
   1514 
   1515 	if (i >= adev->usec_timeout)
   1516 		r = -ETIMEDOUT;
   1517 
   1518 error_free_wb:
   1519 	amdgpu_device_wb_free(adev, index);
   1520 	return r;
   1521 }
   1522 
   1523 /**
   1524  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
   1525  *
   1526  * @ring: amdgpu_ring structure holding ring information
   1527  *
   1528  * Test a simple IB in the DMA ring (VEGA10).
   1529  * Returns 0 on success, error on failure.
   1530  */
   1531 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
   1532 {
   1533 	struct amdgpu_device *adev = ring->adev;
   1534 	struct amdgpu_ib ib;
   1535 	struct dma_fence *f = NULL;
   1536 	unsigned index;
   1537 	long r;
   1538 	u32 tmp = 0;
   1539 	u64 gpu_addr;
   1540 
   1541 	r = amdgpu_device_wb_get(adev, &index);
   1542 	if (r)
   1543 		return r;
   1544 
   1545 	gpu_addr = adev->wb.gpu_addr + (index * 4);
   1546 	tmp = 0xCAFEDEAD;
   1547 	adev->wb.wb[index] = cpu_to_le32(tmp);
   1548 	memset(&ib, 0, sizeof(ib));
   1549 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
   1550 	if (r)
   1551 		goto err0;
   1552 
   1553 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
   1554 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
   1555 	ib.ptr[1] = lower_32_bits(gpu_addr);
   1556 	ib.ptr[2] = upper_32_bits(gpu_addr);
   1557 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
   1558 	ib.ptr[4] = 0xDEADBEEF;
   1559 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
   1560 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
   1561 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
   1562 	ib.length_dw = 8;
   1563 
   1564 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
   1565 	if (r)
   1566 		goto err1;
   1567 
   1568 	r = dma_fence_wait_timeout(f, false, timeout);
   1569 	if (r == 0) {
   1570 		r = -ETIMEDOUT;
   1571 		goto err1;
   1572 	} else if (r < 0) {
   1573 		goto err1;
   1574 	}
   1575 	tmp = le32_to_cpu(adev->wb.wb[index]);
   1576 	if (tmp == 0xDEADBEEF)
   1577 		r = 0;
   1578 	else
   1579 		r = -EINVAL;
   1580 
   1581 err1:
   1582 	amdgpu_ib_free(adev, &ib, NULL);
   1583 	dma_fence_put(f);
   1584 err0:
   1585 	amdgpu_device_wb_free(adev, index);
   1586 	return r;
   1587 }
   1588 
   1589 
   1590 /**
   1591  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
   1592  *
   1593  * @ib: indirect buffer to fill with commands
   1594  * @pe: addr of the page entry
   1595  * @src: src addr to copy from
   1596  * @count: number of page entries to update
   1597  *
   1598  * Update PTEs by copying them from the GART using sDMA (VEGA10).
   1599  */
   1600 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
   1601 				  uint64_t pe, uint64_t src,
   1602 				  unsigned count)
   1603 {
   1604 	unsigned bytes = count * 8;
   1605 
   1606 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
   1607 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
   1608 	ib->ptr[ib->length_dw++] = bytes - 1;
   1609 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
   1610 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
   1611 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
   1612 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
   1613 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
   1614 
   1615 }
   1616 
   1617 /**
   1618  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
   1619  *
   1620  * @ib: indirect buffer to fill with commands
   1621  * @pe: addr of the page entry
   1622  * @addr: dst addr to write into pe
   1623  * @count: number of page entries to update
   1624  * @incr: increase next addr by incr bytes
   1625  * @flags: access flags
   1626  *
   1627  * Update PTEs by writing them manually using sDMA (VEGA10).
   1628  */
   1629 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
   1630 				   uint64_t value, unsigned count,
   1631 				   uint32_t incr)
   1632 {
   1633 	unsigned ndw = count * 2;
   1634 
   1635 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
   1636 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
   1637 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
   1638 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
   1639 	ib->ptr[ib->length_dw++] = ndw - 1;
   1640 	for (; ndw > 0; ndw -= 2) {
   1641 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
   1642 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
   1643 		value += incr;
   1644 	}
   1645 }
   1646 
   1647 /**
   1648  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
   1649  *
   1650  * @ib: indirect buffer to fill with commands
   1651  * @pe: addr of the page entry
   1652  * @addr: dst addr to write into pe
   1653  * @count: number of page entries to update
   1654  * @incr: increase next addr by incr bytes
   1655  * @flags: access flags
   1656  *
   1657  * Update the page tables using sDMA (VEGA10).
   1658  */
   1659 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
   1660 				     uint64_t pe,
   1661 				     uint64_t addr, unsigned count,
   1662 				     uint32_t incr, uint64_t flags)
   1663 {
   1664 	/* for physically contiguous pages (vram) */
   1665 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
   1666 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
   1667 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
   1668 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
   1669 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
   1670 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
   1671 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
   1672 	ib->ptr[ib->length_dw++] = incr; /* increment size */
   1673 	ib->ptr[ib->length_dw++] = 0;
   1674 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
   1675 }
   1676 
   1677 /**
   1678  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
   1679  *
   1680  * @ib: indirect buffer to fill with padding
   1681  *
   1682  */
   1683 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
   1684 {
   1685 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
   1686 	u32 pad_count;
   1687 	int i;
   1688 
   1689 	pad_count = (-ib->length_dw) & 7;
   1690 	for (i = 0; i < pad_count; i++)
   1691 		if (sdma && sdma->burst_nop && (i == 0))
   1692 			ib->ptr[ib->length_dw++] =
   1693 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
   1694 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
   1695 		else
   1696 			ib->ptr[ib->length_dw++] =
   1697 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
   1698 }
   1699 
   1700 
   1701 /**
   1702  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
   1703  *
   1704  * @ring: amdgpu_ring pointer
   1705  *
   1706  * Make sure all previous operations are completed (CIK).
   1707  */
   1708 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
   1709 {
   1710 	uint32_t seq = ring->fence_drv.sync_seq;
   1711 	uint64_t addr = ring->fence_drv.gpu_addr;
   1712 
   1713 	/* wait for idle */
   1714 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
   1715 			       addr & 0xfffffffc,
   1716 			       upper_32_bits(addr) & 0xffffffff,
   1717 			       seq, 0xffffffff, 4);
   1718 }
   1719 
   1720 
   1721 /**
   1722  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
   1723  *
   1724  * @ring: amdgpu_ring pointer
   1725  * @vm: amdgpu_vm pointer
   1726  *
   1727  * Update the page table base and flush the VM TLB
   1728  * using sDMA (VEGA10).
   1729  */
   1730 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
   1731 					 unsigned vmid, uint64_t pd_addr)
   1732 {
   1733 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
   1734 }
   1735 
   1736 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
   1737 				     uint32_t reg, uint32_t val)
   1738 {
   1739 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
   1740 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
   1741 	amdgpu_ring_write(ring, reg);
   1742 	amdgpu_ring_write(ring, val);
   1743 }
   1744 
   1745 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
   1746 					 uint32_t val, uint32_t mask)
   1747 {
   1748 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
   1749 }
   1750 
   1751 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
   1752 {
   1753 	uint fw_version = adev->sdma.instance[0].fw_version;
   1754 
   1755 	switch (adev->asic_type) {
   1756 	case CHIP_VEGA10:
   1757 		return fw_version >= 430;
   1758 	case CHIP_VEGA12:
   1759 		/*return fw_version >= 31;*/
   1760 		return false;
   1761 	case CHIP_VEGA20:
   1762 		return fw_version >= 123;
   1763 	default:
   1764 		return false;
   1765 	}
   1766 }
   1767 
   1768 static int sdma_v4_0_early_init(void *handle)
   1769 {
   1770 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1771 	int r;
   1772 
   1773 	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
   1774 		adev->sdma.num_instances = 1;
   1775 	else if (adev->asic_type == CHIP_ARCTURUS)
   1776 		adev->sdma.num_instances = 8;
   1777 	else
   1778 		adev->sdma.num_instances = 2;
   1779 
   1780 	r = sdma_v4_0_init_microcode(adev);
   1781 	if (r) {
   1782 		DRM_ERROR("Failed to load sdma firmware!\n");
   1783 		return r;
   1784 	}
   1785 
   1786 	/* TODO: Page queue breaks driver reload under SRIOV */
   1787 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
   1788 		adev->sdma.has_page_queue = false;
   1789 	else if (sdma_v4_0_fw_support_paging_queue(adev))
   1790 		adev->sdma.has_page_queue = true;
   1791 
   1792 	sdma_v4_0_set_ring_funcs(adev);
   1793 	sdma_v4_0_set_buffer_funcs(adev);
   1794 	sdma_v4_0_set_vm_pte_funcs(adev);
   1795 	sdma_v4_0_set_irq_funcs(adev);
   1796 	sdma_v4_0_set_ras_funcs(adev);
   1797 
   1798 	return 0;
   1799 }
   1800 
   1801 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
   1802 		void *err_data,
   1803 		struct amdgpu_iv_entry *entry);
   1804 
   1805 static int sdma_v4_0_late_init(void *handle)
   1806 {
   1807 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1808 	struct ras_ih_if ih_info = {
   1809 		.cb = sdma_v4_0_process_ras_data_cb,
   1810 	};
   1811 	int i;
   1812 
   1813 	/* read back edc counter registers to clear the counters */
   1814 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
   1815 		for (i = 0; i < adev->sdma.num_instances; i++)
   1816 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
   1817 	}
   1818 
   1819 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
   1820 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
   1821 	else
   1822 		return 0;
   1823 }
   1824 
   1825 static int sdma_v4_0_sw_init(void *handle)
   1826 {
   1827 	struct amdgpu_ring *ring;
   1828 	int r, i;
   1829 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1830 
   1831 	/* SDMA trap event */
   1832 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1833 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
   1834 				      SDMA0_4_0__SRCID__SDMA_TRAP,
   1835 				      &adev->sdma.trap_irq);
   1836 		if (r)
   1837 			return r;
   1838 	}
   1839 
   1840 	/* SDMA SRAM ECC event */
   1841 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1842 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
   1843 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
   1844 				      &adev->sdma.ecc_irq);
   1845 		if (r)
   1846 			return r;
   1847 	}
   1848 
   1849 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1850 		ring = &adev->sdma.instance[i].ring;
   1851 		ring->ring_obj = NULL;
   1852 		ring->use_doorbell = true;
   1853 
   1854 		DRM_INFO("use_doorbell being set to: [%s]\n",
   1855 				ring->use_doorbell?"true":"false");
   1856 
   1857 		/* doorbell size is 2 dwords, get DWORD offset */
   1858 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
   1859 
   1860 		snprintf(ring->name, sizeof(ring->name), "sdma%d", i);
   1861 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
   1862 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
   1863 		if (r)
   1864 			return r;
   1865 
   1866 		if (adev->sdma.has_page_queue) {
   1867 			ring = &adev->sdma.instance[i].page;
   1868 			ring->ring_obj = NULL;
   1869 			ring->use_doorbell = true;
   1870 
   1871 			/* paging queue use same doorbell index/routing as gfx queue
   1872 			 * with 0x400 (4096 dwords) offset on second doorbell page
   1873 			 */
   1874 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
   1875 			ring->doorbell_index += 0x400;
   1876 
   1877 			snprintf(ring->name, sizeof(ring->name), "page%d", i);
   1878 			r = amdgpu_ring_init(adev, ring, 1024,
   1879 					     &adev->sdma.trap_irq,
   1880 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
   1881 			if (r)
   1882 				return r;
   1883 		}
   1884 	}
   1885 
   1886 	return r;
   1887 }
   1888 
   1889 static int sdma_v4_0_sw_fini(void *handle)
   1890 {
   1891 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1892 	int i;
   1893 
   1894 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
   1895 		adev->sdma.funcs->ras_fini(adev);
   1896 
   1897 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1898 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
   1899 		if (adev->sdma.has_page_queue)
   1900 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
   1901 	}
   1902 
   1903 	sdma_v4_0_destroy_inst_ctx(adev);
   1904 
   1905 	return 0;
   1906 }
   1907 
   1908 static int sdma_v4_0_hw_init(void *handle)
   1909 {
   1910 	int r;
   1911 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1912 
   1913 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
   1914 			adev->powerplay.pp_funcs->set_powergating_by_smu) ||
   1915 			(adev->asic_type == CHIP_RENOIR && !adev->in_gpu_reset))
   1916 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
   1917 
   1918 	if (!amdgpu_sriov_vf(adev))
   1919 		sdma_v4_0_init_golden_registers(adev);
   1920 
   1921 	r = sdma_v4_0_start(adev);
   1922 
   1923 	return r;
   1924 }
   1925 
   1926 static int sdma_v4_0_hw_fini(void *handle)
   1927 {
   1928 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1929 	int i;
   1930 
   1931 	if (amdgpu_sriov_vf(adev))
   1932 		return 0;
   1933 
   1934 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1935 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
   1936 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
   1937 	}
   1938 
   1939 	sdma_v4_0_ctx_switch_enable(adev, false);
   1940 	sdma_v4_0_enable(adev, false);
   1941 
   1942 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
   1943 			&& adev->powerplay.pp_funcs->set_powergating_by_smu) ||
   1944 			adev->asic_type == CHIP_RENOIR)
   1945 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 static int sdma_v4_0_suspend(void *handle)
   1951 {
   1952 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1953 
   1954 	return sdma_v4_0_hw_fini(adev);
   1955 }
   1956 
   1957 static int sdma_v4_0_resume(void *handle)
   1958 {
   1959 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1960 
   1961 	return sdma_v4_0_hw_init(adev);
   1962 }
   1963 
   1964 static bool sdma_v4_0_is_idle(void *handle)
   1965 {
   1966 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1967 	u32 i;
   1968 
   1969 	for (i = 0; i < adev->sdma.num_instances; i++) {
   1970 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
   1971 
   1972 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
   1973 			return false;
   1974 	}
   1975 
   1976 	return true;
   1977 }
   1978 
   1979 static int sdma_v4_0_wait_for_idle(void *handle)
   1980 {
   1981 	unsigned i, j;
   1982 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
   1983 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   1984 
   1985 	for (i = 0; i < adev->usec_timeout; i++) {
   1986 		for (j = 0; j < adev->sdma.num_instances; j++) {
   1987 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
   1988 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
   1989 				break;
   1990 		}
   1991 		if (j == adev->sdma.num_instances)
   1992 			return 0;
   1993 		udelay(1);
   1994 	}
   1995 	return -ETIMEDOUT;
   1996 }
   1997 
   1998 static int sdma_v4_0_soft_reset(void *handle)
   1999 {
   2000 	/* todo */
   2001 
   2002 	return 0;
   2003 }
   2004 
   2005 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
   2006 					struct amdgpu_irq_src *source,
   2007 					unsigned type,
   2008 					enum amdgpu_interrupt_state state)
   2009 {
   2010 	u32 sdma_cntl;
   2011 
   2012 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
   2013 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
   2014 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
   2015 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
   2016 
   2017 	return 0;
   2018 }
   2019 
   2020 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
   2021 				      struct amdgpu_irq_src *source,
   2022 				      struct amdgpu_iv_entry *entry)
   2023 {
   2024 	uint32_t instance;
   2025 
   2026 	DRM_DEBUG("IH: SDMA trap\n");
   2027 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
   2028 	switch (entry->ring_id) {
   2029 	case 0:
   2030 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
   2031 		break;
   2032 	case 1:
   2033 		if (adev->asic_type == CHIP_VEGA20)
   2034 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
   2035 		break;
   2036 	case 2:
   2037 		/* XXX compute */
   2038 		break;
   2039 	case 3:
   2040 		if (adev->asic_type != CHIP_VEGA20)
   2041 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
   2042 		break;
   2043 	}
   2044 	return 0;
   2045 }
   2046 
   2047 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
   2048 		void *err_data,
   2049 		struct amdgpu_iv_entry *entry)
   2050 {
   2051 	int instance;
   2052 
   2053 	/* When Full RAS is enabled, the per-IP interrupt sources should
   2054 	 * be disabled and the driver should only look for the aggregated
   2055 	 * interrupt via sync flood
   2056 	 */
   2057 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
   2058 		goto out;
   2059 
   2060 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
   2061 	if (instance < 0)
   2062 		goto out;
   2063 
   2064 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
   2065 
   2066 out:
   2067 	return AMDGPU_RAS_SUCCESS;
   2068 }
   2069 
   2070 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
   2071 					      struct amdgpu_irq_src *source,
   2072 					      struct amdgpu_iv_entry *entry)
   2073 {
   2074 	int instance;
   2075 
   2076 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
   2077 
   2078 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
   2079 	if (instance < 0)
   2080 		return 0;
   2081 
   2082 	switch (entry->ring_id) {
   2083 	case 0:
   2084 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
   2085 		break;
   2086 	}
   2087 	return 0;
   2088 }
   2089 
   2090 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
   2091 					struct amdgpu_irq_src *source,
   2092 					unsigned type,
   2093 					enum amdgpu_interrupt_state state)
   2094 {
   2095 	u32 sdma_edc_config;
   2096 
   2097 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
   2098 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
   2099 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
   2100 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
   2101 
   2102 	return 0;
   2103 }
   2104 
   2105 static void sdma_v4_0_update_medium_grain_clock_gating(
   2106 		struct amdgpu_device *adev,
   2107 		bool enable)
   2108 {
   2109 	uint32_t data, def;
   2110 	int i;
   2111 
   2112 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
   2113 		for (i = 0; i < adev->sdma.num_instances; i++) {
   2114 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
   2115 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
   2116 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
   2117 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
   2118 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
   2119 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
   2120 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
   2121 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
   2122 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
   2123 			if (def != data)
   2124 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
   2125 		}
   2126 	} else {
   2127 		for (i = 0; i < adev->sdma.num_instances; i++) {
   2128 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
   2129 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
   2130 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
   2131 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
   2132 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
   2133 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
   2134 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
   2135 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
   2136 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
   2137 			if (def != data)
   2138 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
   2139 		}
   2140 	}
   2141 }
   2142 
   2143 
   2144 static void sdma_v4_0_update_medium_grain_light_sleep(
   2145 		struct amdgpu_device *adev,
   2146 		bool enable)
   2147 {
   2148 	uint32_t data, def;
   2149 	int i;
   2150 
   2151 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
   2152 		for (i = 0; i < adev->sdma.num_instances; i++) {
   2153 			/* 1-not override: enable sdma mem light sleep */
   2154 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
   2155 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
   2156 			if (def != data)
   2157 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
   2158 		}
   2159 	} else {
   2160 		for (i = 0; i < adev->sdma.num_instances; i++) {
   2161 		/* 0-override:disable sdma mem light sleep */
   2162 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
   2163 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
   2164 			if (def != data)
   2165 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
   2166 		}
   2167 	}
   2168 }
   2169 
   2170 static int sdma_v4_0_set_clockgating_state(void *handle,
   2171 					  enum amd_clockgating_state state)
   2172 {
   2173 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   2174 
   2175 	if (amdgpu_sriov_vf(adev))
   2176 		return 0;
   2177 
   2178 	switch (adev->asic_type) {
   2179 	case CHIP_VEGA10:
   2180 	case CHIP_VEGA12:
   2181 	case CHIP_VEGA20:
   2182 	case CHIP_RAVEN:
   2183 	case CHIP_ARCTURUS:
   2184 	case CHIP_RENOIR:
   2185 		sdma_v4_0_update_medium_grain_clock_gating(adev,
   2186 				state == AMD_CG_STATE_GATE);
   2187 		sdma_v4_0_update_medium_grain_light_sleep(adev,
   2188 				state == AMD_CG_STATE_GATE);
   2189 		break;
   2190 	default:
   2191 		break;
   2192 	}
   2193 	return 0;
   2194 }
   2195 
   2196 static int sdma_v4_0_set_powergating_state(void *handle,
   2197 					  enum amd_powergating_state state)
   2198 {
   2199 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   2200 
   2201 	switch (adev->asic_type) {
   2202 	case CHIP_RAVEN:
   2203 		sdma_v4_1_update_power_gating(adev,
   2204 				state == AMD_PG_STATE_GATE ? true : false);
   2205 		break;
   2206 	default:
   2207 		break;
   2208 	}
   2209 
   2210 	return 0;
   2211 }
   2212 
   2213 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
   2214 {
   2215 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
   2216 	int data;
   2217 
   2218 	if (amdgpu_sriov_vf(adev))
   2219 		*flags = 0;
   2220 
   2221 	/* AMD_CG_SUPPORT_SDMA_MGCG */
   2222 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
   2223 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
   2224 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
   2225 
   2226 	/* AMD_CG_SUPPORT_SDMA_LS */
   2227 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
   2228 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
   2229 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
   2230 }
   2231 
   2232 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
   2233 	.name = "sdma_v4_0",
   2234 	.early_init = sdma_v4_0_early_init,
   2235 	.late_init = sdma_v4_0_late_init,
   2236 	.sw_init = sdma_v4_0_sw_init,
   2237 	.sw_fini = sdma_v4_0_sw_fini,
   2238 	.hw_init = sdma_v4_0_hw_init,
   2239 	.hw_fini = sdma_v4_0_hw_fini,
   2240 	.suspend = sdma_v4_0_suspend,
   2241 	.resume = sdma_v4_0_resume,
   2242 	.is_idle = sdma_v4_0_is_idle,
   2243 	.wait_for_idle = sdma_v4_0_wait_for_idle,
   2244 	.soft_reset = sdma_v4_0_soft_reset,
   2245 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
   2246 	.set_powergating_state = sdma_v4_0_set_powergating_state,
   2247 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
   2248 };
   2249 
   2250 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
   2251 	.type = AMDGPU_RING_TYPE_SDMA,
   2252 	.align_mask = 0xf,
   2253 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
   2254 	.support_64bit_ptrs = true,
   2255 	.vmhub = AMDGPU_MMHUB_0,
   2256 	.get_rptr = sdma_v4_0_ring_get_rptr,
   2257 	.get_wptr = sdma_v4_0_ring_get_wptr,
   2258 	.set_wptr = sdma_v4_0_ring_set_wptr,
   2259 	.emit_frame_size =
   2260 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
   2261 		3 + /* hdp invalidate */
   2262 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
   2263 		/* sdma_v4_0_ring_emit_vm_flush */
   2264 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
   2265 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
   2266 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
   2267 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
   2268 	.emit_ib = sdma_v4_0_ring_emit_ib,
   2269 	.emit_fence = sdma_v4_0_ring_emit_fence,
   2270 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
   2271 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
   2272 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
   2273 	.test_ring = sdma_v4_0_ring_test_ring,
   2274 	.test_ib = sdma_v4_0_ring_test_ib,
   2275 	.insert_nop = sdma_v4_0_ring_insert_nop,
   2276 	.pad_ib = sdma_v4_0_ring_pad_ib,
   2277 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
   2278 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
   2279 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
   2280 };
   2281 
   2282 /*
   2283  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
   2284  * So create a individual constant ring_funcs for those instances.
   2285  */
   2286 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
   2287 	.type = AMDGPU_RING_TYPE_SDMA,
   2288 	.align_mask = 0xf,
   2289 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
   2290 	.support_64bit_ptrs = true,
   2291 	.vmhub = AMDGPU_MMHUB_1,
   2292 	.get_rptr = sdma_v4_0_ring_get_rptr,
   2293 	.get_wptr = sdma_v4_0_ring_get_wptr,
   2294 	.set_wptr = sdma_v4_0_ring_set_wptr,
   2295 	.emit_frame_size =
   2296 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
   2297 		3 + /* hdp invalidate */
   2298 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
   2299 		/* sdma_v4_0_ring_emit_vm_flush */
   2300 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
   2301 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
   2302 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
   2303 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
   2304 	.emit_ib = sdma_v4_0_ring_emit_ib,
   2305 	.emit_fence = sdma_v4_0_ring_emit_fence,
   2306 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
   2307 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
   2308 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
   2309 	.test_ring = sdma_v4_0_ring_test_ring,
   2310 	.test_ib = sdma_v4_0_ring_test_ib,
   2311 	.insert_nop = sdma_v4_0_ring_insert_nop,
   2312 	.pad_ib = sdma_v4_0_ring_pad_ib,
   2313 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
   2314 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
   2315 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
   2316 };
   2317 
   2318 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
   2319 	.type = AMDGPU_RING_TYPE_SDMA,
   2320 	.align_mask = 0xf,
   2321 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
   2322 	.support_64bit_ptrs = true,
   2323 	.vmhub = AMDGPU_MMHUB_0,
   2324 	.get_rptr = sdma_v4_0_ring_get_rptr,
   2325 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
   2326 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
   2327 	.emit_frame_size =
   2328 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
   2329 		3 + /* hdp invalidate */
   2330 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
   2331 		/* sdma_v4_0_ring_emit_vm_flush */
   2332 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
   2333 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
   2334 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
   2335 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
   2336 	.emit_ib = sdma_v4_0_ring_emit_ib,
   2337 	.emit_fence = sdma_v4_0_ring_emit_fence,
   2338 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
   2339 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
   2340 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
   2341 	.test_ring = sdma_v4_0_ring_test_ring,
   2342 	.test_ib = sdma_v4_0_ring_test_ib,
   2343 	.insert_nop = sdma_v4_0_ring_insert_nop,
   2344 	.pad_ib = sdma_v4_0_ring_pad_ib,
   2345 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
   2346 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
   2347 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
   2348 };
   2349 
   2350 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
   2351 	.type = AMDGPU_RING_TYPE_SDMA,
   2352 	.align_mask = 0xf,
   2353 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
   2354 	.support_64bit_ptrs = true,
   2355 	.vmhub = AMDGPU_MMHUB_1,
   2356 	.get_rptr = sdma_v4_0_ring_get_rptr,
   2357 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
   2358 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
   2359 	.emit_frame_size =
   2360 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
   2361 		3 + /* hdp invalidate */
   2362 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
   2363 		/* sdma_v4_0_ring_emit_vm_flush */
   2364 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
   2365 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
   2366 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
   2367 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
   2368 	.emit_ib = sdma_v4_0_ring_emit_ib,
   2369 	.emit_fence = sdma_v4_0_ring_emit_fence,
   2370 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
   2371 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
   2372 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
   2373 	.test_ring = sdma_v4_0_ring_test_ring,
   2374 	.test_ib = sdma_v4_0_ring_test_ib,
   2375 	.insert_nop = sdma_v4_0_ring_insert_nop,
   2376 	.pad_ib = sdma_v4_0_ring_pad_ib,
   2377 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
   2378 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
   2379 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
   2380 };
   2381 
   2382 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
   2383 {
   2384 	int i;
   2385 
   2386 	for (i = 0; i < adev->sdma.num_instances; i++) {
   2387 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
   2388 			adev->sdma.instance[i].ring.funcs =
   2389 					&sdma_v4_0_ring_funcs_2nd_mmhub;
   2390 		else
   2391 			adev->sdma.instance[i].ring.funcs =
   2392 					&sdma_v4_0_ring_funcs;
   2393 		adev->sdma.instance[i].ring.me = i;
   2394 		if (adev->sdma.has_page_queue) {
   2395 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
   2396 				adev->sdma.instance[i].page.funcs =
   2397 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
   2398 			else
   2399 				adev->sdma.instance[i].page.funcs =
   2400 					&sdma_v4_0_page_ring_funcs;
   2401 			adev->sdma.instance[i].page.me = i;
   2402 		}
   2403 	}
   2404 }
   2405 
   2406 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
   2407 	.set = sdma_v4_0_set_trap_irq_state,
   2408 	.process = sdma_v4_0_process_trap_irq,
   2409 };
   2410 
   2411 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
   2412 	.process = sdma_v4_0_process_illegal_inst_irq,
   2413 };
   2414 
   2415 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
   2416 	.set = sdma_v4_0_set_ecc_irq_state,
   2417 	.process = amdgpu_sdma_process_ecc_irq,
   2418 };
   2419 
   2420 
   2421 
   2422 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
   2423 {
   2424 	switch (adev->sdma.num_instances) {
   2425 	case 1:
   2426 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
   2427 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
   2428 		break;
   2429 	case 8:
   2430 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
   2431 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
   2432 		break;
   2433 	case 2:
   2434 	default:
   2435 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
   2436 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
   2437 		break;
   2438 	}
   2439 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
   2440 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
   2441 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
   2442 }
   2443 
   2444 /**
   2445  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
   2446  *
   2447  * @ring: amdgpu_ring structure holding ring information
   2448  * @src_offset: src GPU address
   2449  * @dst_offset: dst GPU address
   2450  * @byte_count: number of bytes to xfer
   2451  *
   2452  * Copy GPU buffers using the DMA engine (VEGA10/12).
   2453  * Used by the amdgpu ttm implementation to move pages if
   2454  * registered as the asic copy callback.
   2455  */
   2456 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
   2457 				       uint64_t src_offset,
   2458 				       uint64_t dst_offset,
   2459 				       uint32_t byte_count)
   2460 {
   2461 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
   2462 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
   2463 	ib->ptr[ib->length_dw++] = byte_count - 1;
   2464 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
   2465 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
   2466 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
   2467 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
   2468 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
   2469 }
   2470 
   2471 /**
   2472  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
   2473  *
   2474  * @ring: amdgpu_ring structure holding ring information
   2475  * @src_data: value to write to buffer
   2476  * @dst_offset: dst GPU address
   2477  * @byte_count: number of bytes to xfer
   2478  *
   2479  * Fill GPU buffers using the DMA engine (VEGA10/12).
   2480  */
   2481 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
   2482 				       uint32_t src_data,
   2483 				       uint64_t dst_offset,
   2484 				       uint32_t byte_count)
   2485 {
   2486 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
   2487 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
   2488 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
   2489 	ib->ptr[ib->length_dw++] = src_data;
   2490 	ib->ptr[ib->length_dw++] = byte_count - 1;
   2491 }
   2492 
   2493 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
   2494 	.copy_max_bytes = 0x400000,
   2495 	.copy_num_dw = 7,
   2496 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
   2497 
   2498 	.fill_max_bytes = 0x400000,
   2499 	.fill_num_dw = 5,
   2500 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
   2501 };
   2502 
   2503 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
   2504 {
   2505 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
   2506 	if (adev->sdma.has_page_queue)
   2507 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
   2508 	else
   2509 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
   2510 }
   2511 
   2512 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
   2513 	.copy_pte_num_dw = 7,
   2514 	.copy_pte = sdma_v4_0_vm_copy_pte,
   2515 
   2516 	.write_pte = sdma_v4_0_vm_write_pte,
   2517 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
   2518 };
   2519 
   2520 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
   2521 {
   2522 	struct drm_gpu_scheduler *sched;
   2523 	unsigned i;
   2524 
   2525 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
   2526 	for (i = 0; i < adev->sdma.num_instances; i++) {
   2527 		if (adev->sdma.has_page_queue)
   2528 			sched = &adev->sdma.instance[i].page.sched;
   2529 		else
   2530 			sched = &adev->sdma.instance[i].ring.sched;
   2531 		adev->vm_manager.vm_pte_scheds[i] = sched;
   2532 	}
   2533 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
   2534 }
   2535 
   2536 static void sdma_v4_0_get_ras_error_count(uint32_t value,
   2537 					uint32_t instance,
   2538 					uint32_t *sec_count)
   2539 {
   2540 	uint32_t i;
   2541 	uint32_t sec_cnt;
   2542 
   2543 	/* double bits error (multiple bits) error detection is not supported */
   2544 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
   2545 		/* the SDMA_EDC_COUNTER register in each sdma instance
   2546 		 * shares the same sed shift_mask
   2547 		 * */
   2548 		sec_cnt = (value &
   2549 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
   2550 			sdma_v4_0_ras_fields[i].sec_count_shift;
   2551 		if (sec_cnt) {
   2552 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
   2553 				sdma_v4_0_ras_fields[i].name,
   2554 				instance, sec_cnt);
   2555 			*sec_count += sec_cnt;
   2556 		}
   2557 	}
   2558 }
   2559 
   2560 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
   2561 			uint32_t instance, void *ras_error_status)
   2562 {
   2563 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
   2564 	uint32_t sec_count = 0;
   2565 	uint32_t reg_value = 0;
   2566 
   2567 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
   2568 	/* double bit error is not supported */
   2569 	if (reg_value)
   2570 		sdma_v4_0_get_ras_error_count(reg_value,
   2571 				instance, &sec_count);
   2572 	/* err_data->ce_count should be initialized to 0
   2573 	 * before calling into this function */
   2574 	err_data->ce_count += sec_count;
   2575 	/* double bit error is not supported
   2576 	 * set ue count to 0 */
   2577 	err_data->ue_count = 0;
   2578 
   2579 	return 0;
   2580 };
   2581 
   2582 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
   2583 	.ras_late_init = amdgpu_sdma_ras_late_init,
   2584 	.ras_fini = amdgpu_sdma_ras_fini,
   2585 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
   2586 };
   2587 
   2588 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
   2589 {
   2590 	switch (adev->asic_type) {
   2591 	case CHIP_VEGA20:
   2592 	case CHIP_ARCTURUS:
   2593 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
   2594 		break;
   2595 	default:
   2596 		break;
   2597 	}
   2598 }
   2599 
   2600 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
   2601 	.type = AMD_IP_BLOCK_TYPE_SDMA,
   2602 	.major = 4,
   2603 	.minor = 0,
   2604 	.rev = 0,
   2605 	.funcs = &sdma_v4_0_ip_funcs,
   2606 };
   2607