1 /* $NetBSD: uipc_socket.c,v 1.314 2025/07/16 19:14:13 kre Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.314 2025/07/16 19:14:13 kre Exp $"); 75 76 #ifdef _KERNEL_OPT 77 #include "opt_compat_netbsd.h" 78 #include "opt_mbuftrace.h" 79 #include "opt_multiprocessor.h" /* XXX */ 80 #include "opt_pipe.h" 81 #include "opt_sctp.h" 82 #include "opt_sock_counters.h" 83 #include "opt_somaxkva.h" 84 #include "opt_sosend_loan.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/types.h> 89 90 #include <sys/compat_stub.h> 91 #include <sys/condvar.h> 92 #include <sys/domain.h> 93 #include <sys/event.h> 94 #include <sys/file.h> 95 #include <sys/filedesc.h> 96 #include <sys/kauth.h> 97 #include <sys/kernel.h> 98 #include <sys/kmem.h> 99 #include <sys/kthread.h> 100 #include <sys/mbuf.h> 101 #include <sys/mutex.h> 102 #include <sys/poll.h> 103 #include <sys/proc.h> 104 #include <sys/protosw.h> 105 #include <sys/resourcevar.h> 106 #include <sys/sdt.h> 107 #include <sys/signalvar.h> 108 #include <sys/socket.h> 109 #include <sys/socketvar.h> 110 #include <sys/systm.h> 111 #include <sys/uidinfo.h> 112 113 #include <compat/sys/socket.h> 114 #include <compat/sys/time.h> 115 116 #include <uvm/uvm_extern.h> 117 #include <uvm/uvm_loan.h> 118 #include <uvm/uvm_page.h> 119 120 #ifdef SCTP 121 #include <netinet/sctp_route.h> 122 #endif 123 124 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 125 126 extern const struct fileops socketops; 127 128 static int sooptions; 129 extern int somaxconn; /* patchable (XXX sysctl) */ 130 int somaxconn = SOMAXCONN; 131 kmutex_t *softnet_lock; 132 133 #ifdef SOSEND_COUNTERS 134 #include <sys/device.h> 135 136 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 137 NULL, "sosend", "loan big"); 138 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 139 NULL, "sosend", "copy big"); 140 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 141 NULL, "sosend", "copy small"); 142 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 143 NULL, "sosend", "kva limit"); 144 145 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 146 147 EVCNT_ATTACH_STATIC(sosend_loan_big); 148 EVCNT_ATTACH_STATIC(sosend_copy_big); 149 EVCNT_ATTACH_STATIC(sosend_copy_small); 150 EVCNT_ATTACH_STATIC(sosend_kvalimit); 151 #else 152 153 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 154 155 #endif /* SOSEND_COUNTERS */ 156 157 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 158 int sock_loan_thresh = -1; 159 #else 160 int sock_loan_thresh = 4096; 161 #endif 162 163 static kmutex_t so_pendfree_lock; 164 static struct mbuf *so_pendfree = NULL; 165 166 #ifndef SOMAXKVA 167 #define SOMAXKVA (16 * 1024 * 1024) 168 #endif 169 int somaxkva = SOMAXKVA; 170 static int socurkva; 171 static kcondvar_t socurkva_cv; 172 173 #ifndef SOFIXEDBUF 174 #define SOFIXEDBUF true 175 #endif 176 bool sofixedbuf = SOFIXEDBUF; 177 178 static kauth_listener_t socket_listener; 179 180 #define SOCK_LOAN_CHUNK 65536 181 182 static void sopendfree_thread(void *); 183 static kcondvar_t pendfree_thread_cv; 184 static lwp_t *sopendfree_lwp; 185 186 static void sysctl_kern_socket_setup(void); 187 static struct sysctllog *socket_sysctllog; 188 189 static vsize_t 190 sokvareserve(struct socket *so, vsize_t len) 191 { 192 int error; 193 194 mutex_enter(&so_pendfree_lock); 195 while (socurkva + len > somaxkva) { 196 SOSEND_COUNTER_INCR(&sosend_kvalimit); 197 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 198 if (error) { 199 len = 0; 200 break; 201 } 202 } 203 socurkva += len; 204 mutex_exit(&so_pendfree_lock); 205 return len; 206 } 207 208 static void 209 sokvaunreserve(vsize_t len) 210 { 211 212 mutex_enter(&so_pendfree_lock); 213 socurkva -= len; 214 cv_broadcast(&socurkva_cv); 215 mutex_exit(&so_pendfree_lock); 216 } 217 218 /* 219 * sokvaalloc: allocate kva for loan. 220 */ 221 vaddr_t 222 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 223 { 224 vaddr_t lva; 225 226 if (sokvareserve(so, len) == 0) 227 return 0; 228 229 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 230 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 231 if (lva == 0) { 232 sokvaunreserve(len); 233 return 0; 234 } 235 236 return lva; 237 } 238 239 /* 240 * sokvafree: free kva for loan. 241 */ 242 void 243 sokvafree(vaddr_t sva, vsize_t len) 244 { 245 246 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 247 sokvaunreserve(len); 248 } 249 250 static void 251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 252 { 253 vaddr_t sva, eva; 254 vsize_t len; 255 int npgs; 256 257 KASSERT(pgs != NULL); 258 259 eva = round_page((vaddr_t) buf + size); 260 sva = trunc_page((vaddr_t) buf); 261 len = eva - sva; 262 npgs = len >> PAGE_SHIFT; 263 264 pmap_kremove(sva, len); 265 pmap_update(pmap_kernel()); 266 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 267 sokvafree(sva, len); 268 } 269 270 /* 271 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock 272 * so_pendfree_lock when freeing mbufs. 273 */ 274 static void 275 sopendfree_thread(void *v) 276 { 277 struct mbuf *m, *next; 278 size_t rv; 279 280 mutex_enter(&so_pendfree_lock); 281 282 for (;;) { 283 rv = 0; 284 while (so_pendfree != NULL) { 285 m = so_pendfree; 286 so_pendfree = NULL; 287 mutex_exit(&so_pendfree_lock); 288 289 for (; m != NULL; m = next) { 290 next = m->m_next; 291 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 292 0); 293 KASSERT(m->m_ext.ext_refcnt == 0); 294 295 rv += m->m_ext.ext_size; 296 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 297 m->m_ext.ext_size); 298 pool_cache_put(mb_cache, m); 299 } 300 301 mutex_enter(&so_pendfree_lock); 302 } 303 if (rv) 304 cv_broadcast(&socurkva_cv); 305 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 306 } 307 panic("sopendfree_thread"); 308 /* NOTREACHED */ 309 } 310 311 void 312 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 313 { 314 315 KASSERT(m != NULL); 316 317 /* 318 * postpone freeing mbuf. 319 * 320 * we can't do it in interrupt context 321 * because we need to put kva back to kernel_map. 322 */ 323 324 mutex_enter(&so_pendfree_lock); 325 m->m_next = so_pendfree; 326 so_pendfree = m; 327 cv_signal(&pendfree_thread_cv); 328 mutex_exit(&so_pendfree_lock); 329 } 330 331 static long 332 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 333 { 334 struct iovec *iov = uio->uio_iov; 335 vaddr_t sva, eva; 336 vsize_t len; 337 vaddr_t lva; 338 int npgs, error; 339 vaddr_t va; 340 int i; 341 342 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 343 return 0; 344 345 if (iov->iov_len < (size_t) space) 346 space = iov->iov_len; 347 if (space > SOCK_LOAN_CHUNK) 348 space = SOCK_LOAN_CHUNK; 349 350 eva = round_page((vaddr_t) iov->iov_base + space); 351 sva = trunc_page((vaddr_t) iov->iov_base); 352 len = eva - sva; 353 npgs = len >> PAGE_SHIFT; 354 355 KASSERT(npgs <= M_EXT_MAXPAGES); 356 357 lva = sokvaalloc(sva, len, so); 358 if (lva == 0) 359 return 0; 360 361 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 362 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 363 if (error) { 364 sokvafree(lva, len); 365 return 0; 366 } 367 368 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 369 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 370 VM_PROT_READ, 0); 371 pmap_update(pmap_kernel()); 372 373 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 374 375 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 376 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 377 378 uio->uio_resid -= space; 379 /* uio_offset not updated, not set/used for write(2) */ 380 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 381 uio->uio_iov->iov_len -= space; 382 if (uio->uio_iov->iov_len == 0) { 383 uio->uio_iov++; 384 uio->uio_iovcnt--; 385 } 386 387 return space; 388 } 389 390 static int 391 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 392 void *arg0, void *arg1, void *arg2, void *arg3) 393 { 394 int result; 395 enum kauth_network_req req; 396 397 result = KAUTH_RESULT_DEFER; 398 req = (enum kauth_network_req)(uintptr_t)arg0; 399 400 if ((action != KAUTH_NETWORK_SOCKET) && 401 (action != KAUTH_NETWORK_BIND)) 402 return result; 403 404 switch (req) { 405 case KAUTH_REQ_NETWORK_BIND_PORT: 406 result = KAUTH_RESULT_ALLOW; 407 break; 408 409 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 410 /* Normal users can only drop their own connections. */ 411 struct socket *so = (struct socket *)arg1; 412 413 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 414 result = KAUTH_RESULT_ALLOW; 415 416 break; 417 } 418 419 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 420 /* We allow "raw" routing/bluetooth sockets to anyone. */ 421 switch ((u_long)arg1) { 422 case PF_ROUTE: 423 case PF_OROUTE: 424 case PF_BLUETOOTH: 425 case PF_CAN: 426 result = KAUTH_RESULT_ALLOW; 427 break; 428 default: 429 /* Privileged, let secmodel handle this. */ 430 if ((u_long)arg2 == SOCK_RAW) 431 break; 432 result = KAUTH_RESULT_ALLOW; 433 break; 434 } 435 break; 436 437 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 438 result = KAUTH_RESULT_ALLOW; 439 440 break; 441 442 default: 443 break; 444 } 445 446 return result; 447 } 448 449 void 450 soinit(void) 451 { 452 453 sysctl_kern_socket_setup(); 454 455 #ifdef SCTP 456 /* Update the SCTP function hooks if necessary*/ 457 458 vec_sctp_add_ip_address = sctp_add_ip_address; 459 vec_sctp_delete_ip_address = sctp_delete_ip_address; 460 #endif 461 462 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 463 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 464 cv_init(&socurkva_cv, "sokva"); 465 cv_init(&pendfree_thread_cv, "sopendfr"); 466 soinit2(); 467 468 /* Set the initial adjusted socket buffer size. */ 469 if (sb_max_set(sb_max)) 470 panic("bad initial sb_max value: %lu", sb_max); 471 472 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 473 socket_listener_cb, NULL); 474 } 475 476 void 477 soinit1(void) 478 { 479 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 480 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 481 if (error) 482 panic("soinit1 %d", error); 483 } 484 485 /* 486 * socreate: create a new socket of the specified type and the protocol. 487 * 488 * => Caller may specify another socket for lock sharing (must not be held). 489 * => Returns the new socket without lock held. 490 */ 491 int 492 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 493 struct socket *lockso) 494 { 495 const struct protosw *prp; 496 struct socket *so; 497 uid_t uid; 498 int error; 499 kmutex_t *lock; 500 501 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 502 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 503 KAUTH_ARG(proto)); 504 if (error != 0) 505 return error; 506 507 if (proto) 508 prp = pffindproto(dom, proto, type); 509 else 510 prp = pffindtype(dom, type); 511 if (prp == NULL) { 512 /* no support for domain */ 513 if (pffinddomain(dom) == 0) 514 return SET_ERROR(EAFNOSUPPORT); 515 /* no support for socket type */ 516 if (proto == 0 && type != 0) 517 return SET_ERROR(EPROTOTYPE); 518 return SET_ERROR(EPROTONOSUPPORT); 519 } 520 if (prp->pr_usrreqs == NULL) 521 return SET_ERROR(EPROTONOSUPPORT); 522 if (prp->pr_type != type) 523 return SET_ERROR(EPROTOTYPE); 524 525 so = soget(true); 526 so->so_type = type; 527 so->so_proto = prp; 528 so->so_send = sosend; 529 so->so_receive = soreceive; 530 so->so_options = sooptions; 531 #ifdef MBUFTRACE 532 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 533 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 534 so->so_mowner = &prp->pr_domain->dom_mowner; 535 #endif 536 uid = kauth_cred_geteuid(l->l_cred); 537 so->so_uidinfo = uid_find(uid); 538 so->so_egid = kauth_cred_getegid(l->l_cred); 539 so->so_cpid = l->l_proc->p_pid; 540 541 /* 542 * Lock assigned and taken during PCB attach, unless we share 543 * the lock with another socket, e.g. socketpair(2) case. 544 */ 545 if (lockso) { 546 /* 547 * lockso->so_lock should be stable at this point, so 548 * no need for atomic_load_*. 549 */ 550 lock = lockso->so_lock; 551 so->so_lock = lock; 552 mutex_obj_hold(lock); 553 mutex_enter(lock); 554 } 555 556 /* Attach the PCB (returns with the socket lock held). */ 557 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 558 KASSERT(solocked(so)); 559 560 if (error) { 561 KASSERT(so->so_pcb == NULL); 562 so->so_state |= SS_NOFDREF; 563 sofree(so); 564 return error; 565 } 566 so->so_cred = kauth_cred_hold(l->l_cred); 567 sounlock(so); 568 569 *aso = so; 570 return 0; 571 } 572 573 /* 574 * fsocreate: create a socket and a file descriptor associated with it. 575 * Returns the allocated file structure in *fpp, but the descriptor 576 * is not visible yet for the process. 577 * Caller is responsible for calling fd_affix() for the returned *fpp once 578 * it's socket initialization is finished successfully, or fd_abort() if it's 579 * initialization fails. 580 * 581 * 582 * => On success, write file descriptor to *fdout and *fpp and return zero. 583 * => On failure, return non-zero; *fdout and *fpp will be undefined. 584 */ 585 int 586 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout, 587 file_t **fpp, struct socket *lockso) 588 { 589 lwp_t *l = curlwp; 590 int error, fd, flags; 591 struct socket *so; 592 file_t *fp; 593 594 flags = type & SOCK_FLAGS_MASK; 595 type &= ~SOCK_FLAGS_MASK; 596 error = socreate(domain, &so, type, proto, l, lockso); 597 if (error) { 598 return error; 599 } 600 601 if ((error = fd_allocfile(&fp, &fd)) != 0) { 602 soclose(so); 603 return error; 604 } 605 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 606 fd_set_foclose(l, fd, (flags & SOCK_CLOFORK) != 0); 607 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 608 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 609 fp->f_type = DTYPE_SOCKET; 610 fp->f_ops = &socketops; 611 if (flags & SOCK_NONBLOCK) { 612 so->so_state |= SS_NBIO; 613 } 614 fp->f_socket = so; 615 616 if (sop != NULL) { 617 *sop = so; 618 } 619 *fdout = fd; 620 *fpp = fp; 621 return error; 622 } 623 624 int 625 sofamily(const struct socket *so) 626 { 627 const struct protosw *pr; 628 const struct domain *dom; 629 630 if ((pr = so->so_proto) == NULL) 631 return AF_UNSPEC; 632 if ((dom = pr->pr_domain) == NULL) 633 return AF_UNSPEC; 634 return dom->dom_family; 635 } 636 637 int 638 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 639 { 640 int error; 641 642 solock(so); 643 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 644 sounlock(so); 645 return SET_ERROR(EAFNOSUPPORT); 646 } 647 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 648 sounlock(so); 649 return error; 650 } 651 652 int 653 solisten(struct socket *so, int backlog, struct lwp *l) 654 { 655 int error; 656 short oldopt, oldqlimit; 657 658 solock(so); 659 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 660 SS_ISDISCONNECTING)) != 0) { 661 sounlock(so); 662 return SET_ERROR(EINVAL); 663 } 664 oldopt = so->so_options; 665 oldqlimit = so->so_qlimit; 666 if (TAILQ_EMPTY(&so->so_q)) 667 so->so_options |= SO_ACCEPTCONN; 668 if (backlog < 0) 669 backlog = 0; 670 so->so_qlimit = uimin(backlog, somaxconn); 671 672 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 673 if (error != 0) { 674 so->so_options = oldopt; 675 so->so_qlimit = oldqlimit; 676 sounlock(so); 677 return error; 678 } 679 sounlock(so); 680 return 0; 681 } 682 683 void 684 sofree(struct socket *so) 685 { 686 u_int refs; 687 688 KASSERT(solocked(so)); 689 690 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 691 sounlock(so); 692 return; 693 } 694 if (so->so_head) { 695 /* 696 * We must not decommission a socket that's on the accept(2) 697 * queue. If we do, then accept(2) may hang after select(2) 698 * indicated that the listening socket was ready. 699 */ 700 if (!soqremque(so, 0)) { 701 sounlock(so); 702 return; 703 } 704 } 705 if (so->so_rcv.sb_hiwat) 706 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 707 RLIM_INFINITY); 708 if (so->so_snd.sb_hiwat) 709 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 710 RLIM_INFINITY); 711 sbrelease(&so->so_snd, so); 712 KASSERT(!cv_has_waiters(&so->so_cv)); 713 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 714 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 715 sorflush(so); 716 refs = so->so_aborting; /* XXX */ 717 /* Remove accept filter if one is present. */ 718 if (so->so_accf != NULL) 719 (void)accept_filt_clear(so); 720 sounlock(so); 721 if (refs == 0) /* XXX */ 722 soput(so); 723 } 724 725 /* 726 * soclose: close a socket on last file table reference removal. 727 * Initiate disconnect if connected. Free socket when disconnect complete. 728 */ 729 int 730 soclose(struct socket *so) 731 { 732 struct socket *so2; 733 int error = 0; 734 735 solock(so); 736 if (so->so_options & SO_ACCEPTCONN) { 737 for (;;) { 738 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 739 KASSERT(solocked2(so, so2)); 740 (void) soqremque(so2, 0); 741 /* soabort drops the lock. */ 742 (void) soabort(so2); 743 solock(so); 744 continue; 745 } 746 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 747 KASSERT(solocked2(so, so2)); 748 (void) soqremque(so2, 1); 749 /* soabort drops the lock. */ 750 (void) soabort(so2); 751 solock(so); 752 continue; 753 } 754 break; 755 } 756 } 757 if (so->so_pcb == NULL) 758 goto discard; 759 if (so->so_state & SS_ISCONNECTED) { 760 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 761 error = sodisconnect(so); 762 if (error) 763 goto drop; 764 } 765 if (so->so_options & SO_LINGER) { 766 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 767 (SS_ISDISCONNECTING|SS_NBIO)) 768 goto drop; 769 while (so->so_state & SS_ISCONNECTED) { 770 error = sowait(so, true, so->so_linger * hz); 771 if (error) 772 break; 773 } 774 } 775 } 776 drop: 777 if (so->so_pcb) { 778 KASSERT(solocked(so)); 779 (*so->so_proto->pr_usrreqs->pr_detach)(so); 780 } 781 discard: 782 KASSERT((so->so_state & SS_NOFDREF) == 0); 783 kauth_cred_free(so->so_cred); 784 so->so_cred = NULL; 785 so->so_state |= SS_NOFDREF; 786 sofree(so); 787 return error; 788 } 789 790 /* 791 * Must be called with the socket locked.. Will return with it unlocked. 792 */ 793 int 794 soabort(struct socket *so) 795 { 796 u_int refs; 797 int error; 798 799 KASSERT(solocked(so)); 800 KASSERT(so->so_head == NULL); 801 802 so->so_aborting++; /* XXX */ 803 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 804 refs = --so->so_aborting; /* XXX */ 805 if (error || (refs == 0)) { 806 sofree(so); 807 } else { 808 sounlock(so); 809 } 810 return error; 811 } 812 813 int 814 soaccept(struct socket *so, struct sockaddr *nam) 815 { 816 int error; 817 818 KASSERT(solocked(so)); 819 KASSERT((so->so_state & SS_NOFDREF) != 0); 820 821 so->so_state &= ~SS_NOFDREF; 822 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 823 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 824 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 825 else 826 error = SET_ERROR(ECONNABORTED); 827 828 return error; 829 } 830 831 int 832 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 833 { 834 int error; 835 836 KASSERT(solocked(so)); 837 838 if (so->so_options & SO_ACCEPTCONN) 839 return SET_ERROR(EOPNOTSUPP); 840 /* 841 * If protocol is connection-based, can only connect once. 842 * Otherwise, if connected, try to disconnect first. 843 * This allows user to disconnect by connecting to, e.g., 844 * a null address. 845 */ 846 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 847 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 848 (error = sodisconnect(so)))) { 849 error = SET_ERROR(EISCONN); 850 } else { 851 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 852 return SET_ERROR(EAFNOSUPPORT); 853 } 854 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 855 } 856 857 return error; 858 } 859 860 int 861 soconnect2(struct socket *so1, struct socket *so2) 862 { 863 KASSERT(solocked2(so1, so2)); 864 865 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 866 } 867 868 int 869 sodisconnect(struct socket *so) 870 { 871 int error; 872 873 KASSERT(solocked(so)); 874 875 if ((so->so_state & SS_ISCONNECTED) == 0) { 876 error = SET_ERROR(ENOTCONN); 877 } else if (so->so_state & SS_ISDISCONNECTING) { 878 error = SET_ERROR(EALREADY); 879 } else { 880 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 881 } 882 return error; 883 } 884 885 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 886 /* 887 * Send on a socket. 888 * If send must go all at once and message is larger than 889 * send buffering, then hard error. 890 * Lock against other senders. 891 * If must go all at once and not enough room now, then 892 * inform user that this would block and do nothing. 893 * Otherwise, if nonblocking, send as much as possible. 894 * The data to be sent is described by "uio" if nonzero, 895 * otherwise by the mbuf chain "top" (which must be null 896 * if uio is not). Data provided in mbuf chain must be small 897 * enough to send all at once. 898 * 899 * Returns nonzero on error, timeout or signal; callers 900 * must check for short counts if EINTR/ERESTART are returned. 901 * Data and control buffers are freed on return. 902 */ 903 int 904 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 905 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 906 { 907 struct mbuf **mp, *m; 908 long space, len, resid, clen, mlen; 909 int error, s, dontroute, atomic; 910 short wakeup_state = 0; 911 912 clen = 0; 913 914 /* 915 * solock() provides atomicity of access. splsoftnet() prevents 916 * protocol processing soft interrupts from interrupting us and 917 * blocking (expensive). 918 */ 919 s = splsoftnet(); 920 solock(so); 921 atomic = sosendallatonce(so) || top; 922 if (uio) 923 resid = uio->uio_resid; 924 else 925 resid = top->m_pkthdr.len; 926 /* 927 * In theory resid should be unsigned. 928 * However, space must be signed, as it might be less than 0 929 * if we over-committed, and we must use a signed comparison 930 * of space and resid. On the other hand, a negative resid 931 * causes us to loop sending 0-length segments to the protocol. 932 */ 933 if (resid < 0) { 934 error = SET_ERROR(EINVAL); 935 goto out; 936 } 937 dontroute = 938 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 939 (so->so_proto->pr_flags & PR_ATOMIC); 940 l->l_ru.ru_msgsnd++; 941 if (control) 942 clen = control->m_len; 943 restart: 944 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 945 goto out; 946 do { 947 if (so->so_state & SS_CANTSENDMORE) { 948 error = SET_ERROR(EPIPE); 949 goto release; 950 } 951 if (so->so_error) { 952 error = SET_ERROR(so->so_error); 953 if ((flags & MSG_PEEK) == 0) 954 so->so_error = 0; 955 goto release; 956 } 957 if ((so->so_state & SS_ISCONNECTED) == 0) { 958 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 959 if (resid || clen == 0) { 960 error = SET_ERROR(ENOTCONN); 961 goto release; 962 } 963 } else if (addr == NULL) { 964 error = SET_ERROR(EDESTADDRREQ); 965 goto release; 966 } 967 } 968 space = sbspace(&so->so_snd); 969 if (flags & MSG_OOB) 970 space += 1024; 971 if ((atomic && resid > so->so_snd.sb_hiwat) || 972 clen > so->so_snd.sb_hiwat) { 973 error = SET_ERROR(EMSGSIZE); 974 goto release; 975 } 976 if (space < resid + clen && 977 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 978 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 979 error = SET_ERROR(EWOULDBLOCK); 980 goto release; 981 } 982 sbunlock(&so->so_snd); 983 if (wakeup_state & SS_RESTARTSYS) { 984 error = SET_ERROR(ERESTART); 985 goto out; 986 } 987 error = sbwait(&so->so_snd); 988 if (error) 989 goto out; 990 wakeup_state = so->so_state; 991 goto restart; 992 } 993 wakeup_state = 0; 994 mp = ⊤ 995 space -= clen; 996 do { 997 if (uio == NULL) { 998 /* 999 * Data is prepackaged in "top". 1000 */ 1001 resid = 0; 1002 if (flags & MSG_EOR) 1003 top->m_flags |= M_EOR; 1004 } else do { 1005 sounlock(so); 1006 splx(s); 1007 if (top == NULL) { 1008 m = m_gethdr(M_WAIT, MT_DATA); 1009 mlen = MHLEN; 1010 m->m_pkthdr.len = 0; 1011 m_reset_rcvif(m); 1012 } else { 1013 m = m_get(M_WAIT, MT_DATA); 1014 mlen = MLEN; 1015 } 1016 MCLAIM(m, so->so_snd.sb_mowner); 1017 if (sock_loan_thresh >= 0 && 1018 uio->uio_iov->iov_len >= sock_loan_thresh && 1019 space >= sock_loan_thresh && 1020 (len = sosend_loan(so, uio, m, 1021 space)) != 0) { 1022 SOSEND_COUNTER_INCR(&sosend_loan_big); 1023 space -= len; 1024 goto have_data; 1025 } 1026 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1027 SOSEND_COUNTER_INCR(&sosend_copy_big); 1028 m_clget(m, M_DONTWAIT); 1029 if ((m->m_flags & M_EXT) == 0) 1030 goto nopages; 1031 mlen = MCLBYTES; 1032 if (atomic && top == 0) { 1033 len = lmin(MCLBYTES - max_hdr, 1034 resid); 1035 m->m_data += max_hdr; 1036 } else 1037 len = lmin(MCLBYTES, resid); 1038 space -= len; 1039 } else { 1040 nopages: 1041 SOSEND_COUNTER_INCR(&sosend_copy_small); 1042 len = lmin(lmin(mlen, resid), space); 1043 space -= len; 1044 /* 1045 * For datagram protocols, leave room 1046 * for protocol headers in first mbuf. 1047 */ 1048 if (atomic && top == 0 && len < mlen) 1049 m_align(m, len); 1050 } 1051 error = uiomove(mtod(m, void *), (int)len, uio); 1052 have_data: 1053 resid = uio->uio_resid; 1054 m->m_len = len; 1055 *mp = m; 1056 top->m_pkthdr.len += len; 1057 s = splsoftnet(); 1058 solock(so); 1059 if (error != 0) 1060 goto release; 1061 mp = &m->m_next; 1062 if (resid <= 0) { 1063 if (flags & MSG_EOR) 1064 top->m_flags |= M_EOR; 1065 break; 1066 } 1067 } while (space > 0 && atomic); 1068 1069 if (so->so_state & SS_CANTSENDMORE) { 1070 error = SET_ERROR(EPIPE); 1071 goto release; 1072 } 1073 if (dontroute) 1074 so->so_options |= SO_DONTROUTE; 1075 if (resid > 0) 1076 so->so_state |= SS_MORETOCOME; 1077 if (flags & MSG_OOB) { 1078 error = (*so->so_proto->pr_usrreqs->pr_sendoob)( 1079 so, top, control); 1080 } else { 1081 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1082 top, addr, control, l); 1083 } 1084 if (dontroute) 1085 so->so_options &= ~SO_DONTROUTE; 1086 if (resid > 0) 1087 so->so_state &= ~SS_MORETOCOME; 1088 clen = 0; 1089 control = NULL; 1090 top = NULL; 1091 mp = ⊤ 1092 if (error != 0) 1093 goto release; 1094 } while (resid && space > 0); 1095 } while (resid); 1096 1097 release: 1098 sbunlock(&so->so_snd); 1099 out: 1100 sounlock(so); 1101 splx(s); 1102 m_freem(top); 1103 m_freem(control); 1104 return error; 1105 } 1106 1107 /* 1108 * Following replacement or removal of the first mbuf on the first 1109 * mbuf chain of a socket buffer, push necessary state changes back 1110 * into the socket buffer so that other consumers see the values 1111 * consistently. 'nextrecord' is the caller's locally stored value of 1112 * the original value of sb->sb_mb->m_nextpkt which must be restored 1113 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1114 */ 1115 static void 1116 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1117 { 1118 1119 KASSERT(solocked(sb->sb_so)); 1120 1121 /* 1122 * First, update for the new value of nextrecord. If necessary, 1123 * make it the first record. 1124 */ 1125 if (sb->sb_mb != NULL) 1126 sb->sb_mb->m_nextpkt = nextrecord; 1127 else 1128 sb->sb_mb = nextrecord; 1129 1130 /* 1131 * Now update any dependent socket buffer fields to reflect 1132 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1133 * the addition of a second clause that takes care of the 1134 * case where sb_mb has been updated, but remains the last 1135 * record. 1136 */ 1137 if (sb->sb_mb == NULL) { 1138 sb->sb_mbtail = NULL; 1139 sb->sb_lastrecord = NULL; 1140 } else if (sb->sb_mb->m_nextpkt == NULL) 1141 sb->sb_lastrecord = sb->sb_mb; 1142 } 1143 1144 /* 1145 * Implement receive operations on a socket. 1146 * 1147 * We depend on the way that records are added to the sockbuf by sbappend*. In 1148 * particular, each record (mbufs linked through m_next) must begin with an 1149 * address if the protocol so specifies, followed by an optional mbuf or mbufs 1150 * containing ancillary data, and then zero or more mbufs of data. 1151 * 1152 * In order to avoid blocking network interrupts for the entire time here, we 1153 * splx() while doing the actual copy to user space. Although the sockbuf is 1154 * locked, new data may still be appended, and thus we must maintain 1155 * consistency of the sockbuf during that time. 1156 * 1157 * The caller may receive the data as a single mbuf chain by supplying an mbuf 1158 * **mp0 for use in returning the chain. The uio is then used only for the 1159 * count in uio_resid. 1160 */ 1161 int 1162 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1163 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1164 { 1165 struct lwp *l = curlwp; 1166 struct mbuf *m, **mp, *mt; 1167 size_t len, offset, moff, orig_resid; 1168 int atomic, flags, error, s, type; 1169 const struct protosw *pr; 1170 struct mbuf *nextrecord; 1171 int mbuf_removed = 0; 1172 const struct domain *dom; 1173 short wakeup_state = 0; 1174 1175 pr = so->so_proto; 1176 atomic = pr->pr_flags & PR_ATOMIC; 1177 dom = pr->pr_domain; 1178 mp = mp0; 1179 type = 0; 1180 orig_resid = uio->uio_resid; 1181 1182 if (paddr != NULL) 1183 *paddr = NULL; 1184 if (controlp != NULL) 1185 *controlp = NULL; 1186 if (flagsp != NULL) 1187 flags = *flagsp &~ MSG_EOR; 1188 else 1189 flags = 0; 1190 1191 if (flags & MSG_OOB) { 1192 m = m_get(M_WAIT, MT_DATA); 1193 solock(so); 1194 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1195 sounlock(so); 1196 if (error) 1197 goto bad; 1198 do { 1199 error = uiomove(mtod(m, void *), 1200 MIN(uio->uio_resid, m->m_len), uio); 1201 m = m_free(m); 1202 } while (uio->uio_resid > 0 && error == 0 && m); 1203 bad: 1204 m_freem(m); 1205 return error; 1206 } 1207 if (mp != NULL) 1208 *mp = NULL; 1209 1210 /* 1211 * solock() provides atomicity of access. splsoftnet() prevents 1212 * protocol processing soft interrupts from interrupting us and 1213 * blocking (expensive). 1214 */ 1215 s = splsoftnet(); 1216 solock(so); 1217 restart: 1218 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1219 sounlock(so); 1220 splx(s); 1221 return error; 1222 } 1223 m = so->so_rcv.sb_mb; 1224 1225 /* 1226 * If we have less data than requested, block awaiting more 1227 * (subject to any timeout) if: 1228 * 1. the current count is less than the low water mark, 1229 * 2. MSG_WAITALL is set, and it is possible to do the entire 1230 * receive operation at once if we block (resid <= hiwat), or 1231 * 3. MSG_DONTWAIT is not set. 1232 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1233 * we have to do the receive in sections, and thus risk returning 1234 * a short count if a timeout or signal occurs after we start. 1235 */ 1236 if (m == NULL || 1237 ((flags & MSG_DONTWAIT) == 0 && 1238 so->so_rcv.sb_cc < uio->uio_resid && 1239 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1240 ((flags & MSG_WAITALL) && 1241 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1242 m->m_nextpkt == NULL && !atomic)) { 1243 #ifdef DIAGNOSTIC 1244 if (m == NULL && so->so_rcv.sb_cc) 1245 panic("receive 1"); 1246 #endif 1247 if (so->so_error || so->so_rerror) { 1248 u_short *e; 1249 if (m != NULL) 1250 goto dontblock; 1251 e = so->so_error ? &so->so_error : &so->so_rerror; 1252 error = SET_ERROR(*e); 1253 if ((flags & MSG_PEEK) == 0) 1254 *e = 0; 1255 goto release; 1256 } 1257 if (so->so_state & SS_CANTRCVMORE) { 1258 if (m != NULL) 1259 goto dontblock; 1260 else 1261 goto release; 1262 } 1263 for (; m != NULL; m = m->m_next) 1264 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1265 m = so->so_rcv.sb_mb; 1266 goto dontblock; 1267 } 1268 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1269 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1270 error = SET_ERROR(ENOTCONN); 1271 goto release; 1272 } 1273 if (uio->uio_resid == 0) 1274 goto release; 1275 if ((so->so_state & SS_NBIO) || 1276 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1277 error = SET_ERROR(EWOULDBLOCK); 1278 goto release; 1279 } 1280 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1281 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1282 sbunlock(&so->so_rcv); 1283 if (wakeup_state & SS_RESTARTSYS) 1284 error = SET_ERROR(ERESTART); 1285 else 1286 error = sbwait(&so->so_rcv); 1287 if (error != 0) { 1288 sounlock(so); 1289 splx(s); 1290 return error; 1291 } 1292 wakeup_state = so->so_state; 1293 goto restart; 1294 } 1295 1296 dontblock: 1297 /* 1298 * On entry here, m points to the first record of the socket buffer. 1299 * From this point onward, we maintain 'nextrecord' as a cache of the 1300 * pointer to the next record in the socket buffer. We must keep the 1301 * various socket buffer pointers and local stack versions of the 1302 * pointers in sync, pushing out modifications before dropping the 1303 * socket lock, and re-reading them when picking it up. 1304 * 1305 * Otherwise, we will race with the network stack appending new data 1306 * or records onto the socket buffer by using inconsistent/stale 1307 * versions of the field, possibly resulting in socket buffer 1308 * corruption. 1309 * 1310 * By holding the high-level sblock(), we prevent simultaneous 1311 * readers from pulling off the front of the socket buffer. 1312 */ 1313 if (l != NULL) 1314 l->l_ru.ru_msgrcv++; 1315 KASSERT(m == so->so_rcv.sb_mb); 1316 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1317 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1318 nextrecord = m->m_nextpkt; 1319 1320 if (pr->pr_flags & PR_ADDR) { 1321 KASSERT(m->m_type == MT_SONAME); 1322 orig_resid = 0; 1323 if (flags & MSG_PEEK) { 1324 if (paddr) 1325 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1326 m = m->m_next; 1327 } else { 1328 sbfree(&so->so_rcv, m); 1329 mbuf_removed = 1; 1330 if (paddr != NULL) { 1331 *paddr = m; 1332 so->so_rcv.sb_mb = m->m_next; 1333 m->m_next = NULL; 1334 m = so->so_rcv.sb_mb; 1335 } else { 1336 m = so->so_rcv.sb_mb = m_free(m); 1337 } 1338 sbsync(&so->so_rcv, nextrecord); 1339 } 1340 } 1341 1342 if (pr->pr_flags & PR_ADDR_OPT) { 1343 /* 1344 * For SCTP we may be getting a whole message OR a partial 1345 * delivery. 1346 */ 1347 if (m->m_type == MT_SONAME) { 1348 orig_resid = 0; 1349 if (flags & MSG_PEEK) { 1350 if (paddr) 1351 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1352 m = m->m_next; 1353 } else { 1354 sbfree(&so->so_rcv, m); 1355 mbuf_removed = 1; 1356 if (paddr) { 1357 *paddr = m; 1358 so->so_rcv.sb_mb = m->m_next; 1359 m->m_next = 0; 1360 m = so->so_rcv.sb_mb; 1361 } else { 1362 m = so->so_rcv.sb_mb = m_free(m); 1363 } 1364 sbsync(&so->so_rcv, nextrecord); 1365 } 1366 } 1367 } 1368 1369 /* 1370 * Process one or more MT_CONTROL mbufs present before any data mbufs 1371 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1372 * just copy the data; if !MSG_PEEK, we call into the protocol to 1373 * perform externalization (or freeing if controlp == NULL). 1374 */ 1375 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1376 struct mbuf *cm = NULL, *cmn; 1377 struct mbuf **cme = &cm; 1378 1379 do { 1380 if (flags & MSG_PEEK) { 1381 if (controlp != NULL) { 1382 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT); 1383 controlp = (*controlp == NULL ? NULL : 1384 &(*controlp)->m_next); 1385 } 1386 m = m->m_next; 1387 } else { 1388 sbfree(&so->so_rcv, m); 1389 so->so_rcv.sb_mb = m->m_next; 1390 m->m_next = NULL; 1391 *cme = m; 1392 cme = &(*cme)->m_next; 1393 m = so->so_rcv.sb_mb; 1394 } 1395 } while (m != NULL && m->m_type == MT_CONTROL); 1396 if ((flags & MSG_PEEK) == 0) 1397 sbsync(&so->so_rcv, nextrecord); 1398 1399 for (; cm != NULL; cm = cmn) { 1400 cmn = cm->m_next; 1401 cm->m_next = NULL; 1402 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1403 if (controlp != NULL) { 1404 if (dom->dom_externalize != NULL && 1405 type == SCM_RIGHTS) { 1406 sounlock(so); 1407 splx(s); 1408 error = (*dom->dom_externalize)(cm, l, 1409 ((flags & MSG_CMSG_CLOEXEC) ? 1410 O_CLOEXEC : 0) | 1411 ((flags & MSG_CMSG_CLOFORK) ? 1412 O_CLOFORK : 0)); 1413 s = splsoftnet(); 1414 solock(so); 1415 } 1416 *controlp = cm; 1417 while (*controlp != NULL) 1418 controlp = &(*controlp)->m_next; 1419 } else { 1420 /* 1421 * Dispose of any SCM_RIGHTS message that went 1422 * through the read path rather than recv. 1423 */ 1424 if (dom->dom_dispose != NULL && 1425 type == SCM_RIGHTS) { 1426 sounlock(so); 1427 (*dom->dom_dispose)(cm); 1428 solock(so); 1429 } 1430 m_freem(cm); 1431 } 1432 } 1433 if (m != NULL) 1434 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1435 else 1436 nextrecord = so->so_rcv.sb_mb; 1437 orig_resid = 0; 1438 } 1439 1440 /* If m is non-NULL, we have some data to read. */ 1441 if (__predict_true(m != NULL)) { 1442 type = m->m_type; 1443 if (type == MT_OOBDATA) 1444 flags |= MSG_OOB; 1445 } 1446 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1447 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1448 1449 moff = 0; 1450 offset = 0; 1451 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1452 /* 1453 * If the type of mbuf has changed, end the receive 1454 * operation and do a short read. 1455 */ 1456 if (m->m_type == MT_OOBDATA) { 1457 if (type != MT_OOBDATA) 1458 break; 1459 } else if (type == MT_OOBDATA) { 1460 break; 1461 } else if (m->m_type == MT_CONTROL) { 1462 break; 1463 } 1464 #ifdef DIAGNOSTIC 1465 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) { 1466 panic("%s: m_type=%d", __func__, m->m_type); 1467 } 1468 #endif 1469 1470 so->so_state &= ~SS_RCVATMARK; 1471 wakeup_state = 0; 1472 len = uio->uio_resid; 1473 if (so->so_oobmark && len > so->so_oobmark - offset) 1474 len = so->so_oobmark - offset; 1475 if (len > m->m_len - moff) 1476 len = m->m_len - moff; 1477 1478 /* 1479 * If mp is set, just pass back the mbufs. 1480 * Otherwise copy them out via the uio, then free. 1481 * Sockbuf must be consistent here (points to current mbuf, 1482 * it points to next record) when we drop priority; 1483 * we must note any additions to the sockbuf when we 1484 * block interrupts again. 1485 */ 1486 if (mp == NULL) { 1487 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1488 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1489 sounlock(so); 1490 splx(s); 1491 error = uiomove(mtod(m, char *) + moff, len, uio); 1492 s = splsoftnet(); 1493 solock(so); 1494 if (error != 0) { 1495 /* 1496 * If any part of the record has been removed 1497 * (such as the MT_SONAME mbuf, which will 1498 * happen when PR_ADDR, and thus also 1499 * PR_ATOMIC, is set), then drop the entire 1500 * record to maintain the atomicity of the 1501 * receive operation. 1502 * 1503 * This avoids a later panic("receive 1a") 1504 * when compiled with DIAGNOSTIC. 1505 */ 1506 if (m && mbuf_removed && atomic) 1507 (void) sbdroprecord(&so->so_rcv); 1508 1509 goto release; 1510 } 1511 } else { 1512 uio->uio_resid -= len; 1513 } 1514 1515 if (len == m->m_len - moff) { 1516 if (m->m_flags & M_EOR) 1517 flags |= MSG_EOR; 1518 #ifdef SCTP 1519 if (m->m_flags & M_NOTIFICATION) 1520 flags |= MSG_NOTIFICATION; 1521 #endif 1522 if (flags & MSG_PEEK) { 1523 m = m->m_next; 1524 moff = 0; 1525 } else { 1526 nextrecord = m->m_nextpkt; 1527 sbfree(&so->so_rcv, m); 1528 if (mp) { 1529 *mp = m; 1530 mp = &m->m_next; 1531 so->so_rcv.sb_mb = m = m->m_next; 1532 *mp = NULL; 1533 } else { 1534 m = so->so_rcv.sb_mb = m_free(m); 1535 } 1536 /* 1537 * If m != NULL, we also know that 1538 * so->so_rcv.sb_mb != NULL. 1539 */ 1540 KASSERT(so->so_rcv.sb_mb == m); 1541 if (m) { 1542 m->m_nextpkt = nextrecord; 1543 if (nextrecord == NULL) 1544 so->so_rcv.sb_lastrecord = m; 1545 } else { 1546 so->so_rcv.sb_mb = nextrecord; 1547 SB_EMPTY_FIXUP(&so->so_rcv); 1548 } 1549 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1550 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1551 } 1552 } else if (flags & MSG_PEEK) { 1553 moff += len; 1554 } else { 1555 if (mp != NULL) { 1556 mt = m_copym(m, 0, len, M_NOWAIT); 1557 if (__predict_false(mt == NULL)) { 1558 sounlock(so); 1559 mt = m_copym(m, 0, len, M_WAIT); 1560 solock(so); 1561 } 1562 *mp = mt; 1563 } 1564 m->m_data += len; 1565 m->m_len -= len; 1566 so->so_rcv.sb_cc -= len; 1567 } 1568 1569 if (so->so_oobmark) { 1570 if ((flags & MSG_PEEK) == 0) { 1571 so->so_oobmark -= len; 1572 if (so->so_oobmark == 0) { 1573 so->so_state |= SS_RCVATMARK; 1574 break; 1575 } 1576 } else { 1577 offset += len; 1578 if (offset == so->so_oobmark) 1579 break; 1580 } 1581 } else { 1582 so->so_state &= ~SS_POLLRDBAND; 1583 } 1584 if (flags & MSG_EOR) 1585 break; 1586 1587 /* 1588 * If the MSG_WAITALL flag is set (for non-atomic socket), 1589 * we must not quit until "uio->uio_resid == 0" or an error 1590 * termination. If a signal/timeout occurs, return 1591 * with a short count but without error. 1592 * Keep sockbuf locked against other readers. 1593 */ 1594 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1595 !sosendallatonce(so) && !nextrecord) { 1596 if (so->so_error || so->so_rerror || 1597 so->so_state & SS_CANTRCVMORE) 1598 break; 1599 /* 1600 * If we are peeking and the socket receive buffer is 1601 * full, stop since we can't get more data to peek at. 1602 */ 1603 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1604 break; 1605 /* 1606 * If we've drained the socket buffer, tell the 1607 * protocol in case it needs to do something to 1608 * get it filled again. 1609 */ 1610 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1611 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1612 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1613 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1614 if (wakeup_state & SS_RESTARTSYS) 1615 error = SET_ERROR(ERESTART); 1616 else 1617 error = sbwait(&so->so_rcv); 1618 if (error != 0) { 1619 sbunlock(&so->so_rcv); 1620 sounlock(so); 1621 splx(s); 1622 return 0; 1623 } 1624 if ((m = so->so_rcv.sb_mb) != NULL) 1625 nextrecord = m->m_nextpkt; 1626 wakeup_state = so->so_state; 1627 } 1628 } 1629 1630 if (m && atomic) { 1631 flags |= MSG_TRUNC; 1632 if ((flags & MSG_PEEK) == 0) 1633 (void) sbdroprecord(&so->so_rcv); 1634 } 1635 if ((flags & MSG_PEEK) == 0) { 1636 if (m == NULL) { 1637 /* 1638 * First part is an inline SB_EMPTY_FIXUP(). Second 1639 * part makes sure sb_lastrecord is up-to-date if 1640 * there is still data in the socket buffer. 1641 */ 1642 so->so_rcv.sb_mb = nextrecord; 1643 if (so->so_rcv.sb_mb == NULL) { 1644 so->so_rcv.sb_mbtail = NULL; 1645 so->so_rcv.sb_lastrecord = NULL; 1646 } else if (nextrecord->m_nextpkt == NULL) 1647 so->so_rcv.sb_lastrecord = nextrecord; 1648 } 1649 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1650 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1651 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1652 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1653 } 1654 if (orig_resid == uio->uio_resid && orig_resid && 1655 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1656 sbunlock(&so->so_rcv); 1657 goto restart; 1658 } 1659 1660 if (flagsp != NULL) 1661 *flagsp |= flags; 1662 release: 1663 sbunlock(&so->so_rcv); 1664 sounlock(so); 1665 splx(s); 1666 return error; 1667 } 1668 1669 int 1670 soshutdown(struct socket *so, int how) 1671 { 1672 const struct protosw *pr; 1673 int error; 1674 1675 KASSERT(solocked(so)); 1676 1677 pr = so->so_proto; 1678 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1679 return SET_ERROR(EINVAL); 1680 1681 if (how == SHUT_RD || how == SHUT_RDWR) { 1682 sorflush(so); 1683 error = 0; 1684 } 1685 if (how == SHUT_WR || how == SHUT_RDWR) 1686 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1687 1688 return error; 1689 } 1690 1691 void 1692 sorestart(struct socket *so) 1693 { 1694 /* 1695 * An application has called close() on an fd on which another 1696 * of its threads has called a socket system call. 1697 * Mark this and wake everyone up, and code that would block again 1698 * instead returns ERESTART. 1699 * On system call re-entry the fd is validated and EBADF returned. 1700 * Any other fd will block again on the 2nd syscall. 1701 */ 1702 solock(so); 1703 so->so_state |= SS_RESTARTSYS; 1704 cv_broadcast(&so->so_cv); 1705 cv_broadcast(&so->so_snd.sb_cv); 1706 cv_broadcast(&so->so_rcv.sb_cv); 1707 sounlock(so); 1708 } 1709 1710 void 1711 sorflush(struct socket *so) 1712 { 1713 struct sockbuf *sb, asb; 1714 const struct protosw *pr; 1715 1716 KASSERT(solocked(so)); 1717 1718 sb = &so->so_rcv; 1719 pr = so->so_proto; 1720 socantrcvmore(so); 1721 sb->sb_flags |= SB_NOINTR; 1722 (void )sblock(sb, M_WAITOK); 1723 sbunlock(sb); 1724 asb = *sb; 1725 /* 1726 * Clear most of the sockbuf structure, but leave some of the 1727 * fields valid. 1728 */ 1729 memset(&sb->sb_startzero, 0, 1730 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1731 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1732 sounlock(so); 1733 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1734 solock(so); 1735 } 1736 sbrelease(&asb, so); 1737 } 1738 1739 /* 1740 * internal set SOL_SOCKET options 1741 */ 1742 static int 1743 sosetopt1(struct socket *so, const struct sockopt *sopt) 1744 { 1745 int error, opt; 1746 int optval = 0; /* XXX: gcc */ 1747 struct linger l; 1748 struct timeval tv; 1749 1750 opt = sopt->sopt_name; 1751 1752 switch (opt) { 1753 1754 case SO_ACCEPTFILTER: 1755 error = accept_filt_setopt(so, sopt); 1756 KASSERT(solocked(so)); 1757 break; 1758 1759 case SO_LINGER: 1760 error = sockopt_get(sopt, &l, sizeof(l)); 1761 solock(so); 1762 if (error) 1763 break; 1764 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1765 l.l_linger > (INT_MAX / hz)) { 1766 error = SET_ERROR(EDOM); 1767 break; 1768 } 1769 so->so_linger = l.l_linger; 1770 if (l.l_onoff) 1771 so->so_options |= SO_LINGER; 1772 else 1773 so->so_options &= ~SO_LINGER; 1774 break; 1775 1776 case SO_DEBUG: 1777 case SO_KEEPALIVE: 1778 case SO_DONTROUTE: 1779 case SO_USELOOPBACK: 1780 case SO_BROADCAST: 1781 case SO_REUSEADDR: 1782 case SO_REUSEPORT: 1783 case SO_OOBINLINE: 1784 case SO_TIMESTAMP: 1785 case SO_NOSIGPIPE: 1786 case SO_RERROR: 1787 error = sockopt_getint(sopt, &optval); 1788 solock(so); 1789 if (error) 1790 break; 1791 if (optval) 1792 so->so_options |= opt; 1793 else 1794 so->so_options &= ~opt; 1795 break; 1796 1797 case SO_SNDBUF: 1798 case SO_RCVBUF: 1799 case SO_SNDLOWAT: 1800 case SO_RCVLOWAT: 1801 error = sockopt_getint(sopt, &optval); 1802 solock(so); 1803 if (error) 1804 break; 1805 1806 /* 1807 * Values < 1 make no sense for any of these 1808 * options, so disallow them. 1809 */ 1810 if (optval < 1) { 1811 error = SET_ERROR(EINVAL); 1812 break; 1813 } 1814 1815 switch (opt) { 1816 case SO_SNDBUF: 1817 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1818 error = SET_ERROR(ENOBUFS); 1819 break; 1820 } 1821 if (sofixedbuf) 1822 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1823 break; 1824 1825 case SO_RCVBUF: 1826 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1827 error = SET_ERROR(ENOBUFS); 1828 break; 1829 } 1830 if (sofixedbuf) 1831 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1832 break; 1833 1834 /* 1835 * Make sure the low-water is never greater than 1836 * the high-water. 1837 */ 1838 case SO_SNDLOWAT: 1839 if (optval > so->so_snd.sb_hiwat) 1840 optval = so->so_snd.sb_hiwat; 1841 1842 so->so_snd.sb_lowat = optval; 1843 break; 1844 1845 case SO_RCVLOWAT: 1846 if (optval > so->so_rcv.sb_hiwat) 1847 optval = so->so_rcv.sb_hiwat; 1848 1849 so->so_rcv.sb_lowat = optval; 1850 break; 1851 } 1852 break; 1853 1854 case SO_SNDTIMEO: 1855 case SO_RCVTIMEO: 1856 solock(so); 1857 error = sockopt_get(sopt, &tv, sizeof(tv)); 1858 if (error) 1859 break; 1860 1861 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1862 error = SET_ERROR(EDOM); 1863 break; 1864 } 1865 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1866 error = SET_ERROR(EDOM); 1867 break; 1868 } 1869 1870 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1871 if (optval == 0 && tv.tv_usec != 0) 1872 optval = 1; 1873 1874 switch (opt) { 1875 case SO_SNDTIMEO: 1876 so->so_snd.sb_timeo = optval; 1877 break; 1878 case SO_RCVTIMEO: 1879 so->so_rcv.sb_timeo = optval; 1880 break; 1881 } 1882 break; 1883 1884 default: 1885 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook, 1886 (opt, so, sopt), enosys(), error); 1887 if (error == ENOSYS || error == EPASSTHROUGH) { 1888 solock(so); 1889 error = SET_ERROR(ENOPROTOOPT); 1890 } 1891 break; 1892 } 1893 KASSERT(solocked(so)); 1894 return error; 1895 } 1896 1897 int 1898 sosetopt(struct socket *so, struct sockopt *sopt) 1899 { 1900 int error, prerr; 1901 1902 if (sopt->sopt_level == SOL_SOCKET) { 1903 error = sosetopt1(so, sopt); 1904 KASSERT(solocked(so)); 1905 } else { 1906 error = SET_ERROR(ENOPROTOOPT); 1907 solock(so); 1908 } 1909 1910 if ((error == 0 || error == ENOPROTOOPT) && 1911 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1912 /* give the protocol stack a shot */ 1913 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1914 if (prerr == 0) 1915 error = 0; 1916 else if (prerr != ENOPROTOOPT) 1917 error = prerr; 1918 } 1919 sounlock(so); 1920 return error; 1921 } 1922 1923 /* 1924 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1925 */ 1926 int 1927 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1928 const void *val, size_t valsize) 1929 { 1930 struct sockopt sopt; 1931 int error; 1932 1933 KASSERT(valsize == 0 || val != NULL); 1934 1935 sockopt_init(&sopt, level, name, valsize); 1936 sockopt_set(&sopt, val, valsize); 1937 1938 error = sosetopt(so, &sopt); 1939 1940 sockopt_destroy(&sopt); 1941 1942 return error; 1943 } 1944 1945 /* 1946 * internal get SOL_SOCKET options 1947 */ 1948 static int 1949 sogetopt1(struct socket *so, struct sockopt *sopt) 1950 { 1951 int error, optval, opt; 1952 struct linger l; 1953 struct timeval tv; 1954 1955 switch ((opt = sopt->sopt_name)) { 1956 1957 case SO_ACCEPTFILTER: 1958 error = accept_filt_getopt(so, sopt); 1959 break; 1960 1961 case SO_LINGER: 1962 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1963 l.l_linger = so->so_linger; 1964 1965 error = sockopt_set(sopt, &l, sizeof(l)); 1966 break; 1967 1968 case SO_USELOOPBACK: 1969 case SO_DONTROUTE: 1970 case SO_DEBUG: 1971 case SO_KEEPALIVE: 1972 case SO_REUSEADDR: 1973 case SO_REUSEPORT: 1974 case SO_BROADCAST: 1975 case SO_OOBINLINE: 1976 case SO_TIMESTAMP: 1977 case SO_NOSIGPIPE: 1978 case SO_RERROR: 1979 case SO_ACCEPTCONN: 1980 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1981 break; 1982 1983 case SO_TYPE: 1984 error = sockopt_setint(sopt, so->so_type); 1985 break; 1986 1987 case SO_ERROR: 1988 if (so->so_error == 0) { 1989 so->so_error = so->so_rerror; 1990 so->so_rerror = 0; 1991 } 1992 error = sockopt_setint(sopt, so->so_error); 1993 so->so_error = 0; 1994 break; 1995 1996 case SO_SNDBUF: 1997 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1998 break; 1999 2000 case SO_RCVBUF: 2001 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 2002 break; 2003 2004 case SO_SNDLOWAT: 2005 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 2006 break; 2007 2008 case SO_RCVLOWAT: 2009 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 2010 break; 2011 2012 case SO_SNDTIMEO: 2013 case SO_RCVTIMEO: 2014 optval = (opt == SO_SNDTIMEO ? 2015 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2016 2017 memset(&tv, 0, sizeof(tv)); 2018 tv.tv_sec = optval / hz; 2019 tv.tv_usec = (optval % hz) * tick; 2020 2021 error = sockopt_set(sopt, &tv, sizeof(tv)); 2022 break; 2023 2024 case SO_OVERFLOWED: 2025 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 2026 break; 2027 2028 default: 2029 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook, 2030 (opt, so, sopt), enosys(), error); 2031 if (error) 2032 error = SET_ERROR(ENOPROTOOPT); 2033 break; 2034 } 2035 2036 return error; 2037 } 2038 2039 int 2040 sogetopt(struct socket *so, struct sockopt *sopt) 2041 { 2042 int error; 2043 2044 solock(so); 2045 if (sopt->sopt_level != SOL_SOCKET) { 2046 if (so->so_proto && so->so_proto->pr_ctloutput) { 2047 error = ((*so->so_proto->pr_ctloutput) 2048 (PRCO_GETOPT, so, sopt)); 2049 } else 2050 error = SET_ERROR(ENOPROTOOPT); 2051 } else { 2052 error = sogetopt1(so, sopt); 2053 } 2054 sounlock(so); 2055 return error; 2056 } 2057 2058 /* 2059 * alloc sockopt data buffer buffer 2060 * - will be released at destroy 2061 */ 2062 static int 2063 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2064 { 2065 void *data; 2066 2067 KASSERT(sopt->sopt_size == 0); 2068 2069 if (len > sizeof(sopt->sopt_buf)) { 2070 data = kmem_zalloc(len, kmflag); 2071 if (data == NULL) 2072 return SET_ERROR(ENOMEM); 2073 sopt->sopt_data = data; 2074 } else 2075 sopt->sopt_data = sopt->sopt_buf; 2076 2077 sopt->sopt_size = len; 2078 return 0; 2079 } 2080 2081 /* 2082 * initialise sockopt storage 2083 * - MAY sleep during allocation 2084 */ 2085 void 2086 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2087 { 2088 2089 memset(sopt, 0, sizeof(*sopt)); 2090 2091 sopt->sopt_level = level; 2092 sopt->sopt_name = name; 2093 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2094 } 2095 2096 /* 2097 * destroy sockopt storage 2098 * - will release any held memory references 2099 */ 2100 void 2101 sockopt_destroy(struct sockopt *sopt) 2102 { 2103 2104 if (sopt->sopt_data != sopt->sopt_buf) 2105 kmem_free(sopt->sopt_data, sopt->sopt_size); 2106 2107 memset(sopt, 0, sizeof(*sopt)); 2108 } 2109 2110 /* 2111 * set sockopt value 2112 * - value is copied into sockopt 2113 * - memory is allocated when necessary, will not sleep 2114 */ 2115 int 2116 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2117 { 2118 int error; 2119 2120 if (sopt->sopt_size == 0) { 2121 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2122 if (error) 2123 return error; 2124 } 2125 2126 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2127 if (sopt->sopt_retsize > 0) { 2128 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize); 2129 } 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * common case of set sockopt integer value 2136 */ 2137 int 2138 sockopt_setint(struct sockopt *sopt, int val) 2139 { 2140 2141 return sockopt_set(sopt, &val, sizeof(int)); 2142 } 2143 2144 /* 2145 * get sockopt value 2146 * - correct size must be given 2147 */ 2148 int 2149 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2150 { 2151 2152 if (sopt->sopt_size != len) 2153 return SET_ERROR(EINVAL); 2154 2155 memcpy(buf, sopt->sopt_data, len); 2156 return 0; 2157 } 2158 2159 /* 2160 * common case of get sockopt integer value 2161 */ 2162 int 2163 sockopt_getint(const struct sockopt *sopt, int *valp) 2164 { 2165 2166 return sockopt_get(sopt, valp, sizeof(int)); 2167 } 2168 2169 /* 2170 * set sockopt value from mbuf 2171 * - ONLY for legacy code 2172 * - mbuf is released by sockopt 2173 * - will not sleep 2174 */ 2175 int 2176 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2177 { 2178 size_t len; 2179 int error; 2180 2181 len = m_length(m); 2182 2183 if (sopt->sopt_size == 0) { 2184 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2185 if (error) 2186 return error; 2187 } 2188 2189 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2190 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data); 2191 m_freem(m); 2192 2193 return 0; 2194 } 2195 2196 /* 2197 * get sockopt value into mbuf 2198 * - ONLY for legacy code 2199 * - mbuf to be released by the caller 2200 * - will not sleep 2201 */ 2202 struct mbuf * 2203 sockopt_getmbuf(const struct sockopt *sopt) 2204 { 2205 struct mbuf *m; 2206 2207 if (sopt->sopt_size > MCLBYTES) 2208 return NULL; 2209 2210 m = m_get(M_DONTWAIT, MT_SOOPTS); 2211 if (m == NULL) 2212 return NULL; 2213 2214 if (sopt->sopt_size > MLEN) { 2215 MCLGET(m, M_DONTWAIT); 2216 if ((m->m_flags & M_EXT) == 0) { 2217 m_free(m); 2218 return NULL; 2219 } 2220 } 2221 2222 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2223 m->m_len = sopt->sopt_size; 2224 2225 return m; 2226 } 2227 2228 void 2229 sohasoutofband(struct socket *so) 2230 { 2231 2232 so->so_state |= SS_POLLRDBAND; 2233 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2234 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2235 } 2236 2237 static void 2238 filt_sordetach(struct knote *kn) 2239 { 2240 struct socket *so; 2241 2242 so = ((file_t *)kn->kn_obj)->f_socket; 2243 solock(so); 2244 if (selremove_knote(&so->so_rcv.sb_sel, kn)) 2245 so->so_rcv.sb_flags &= ~SB_KNOTE; 2246 sounlock(so); 2247 } 2248 2249 /*ARGSUSED*/ 2250 static int 2251 filt_soread(struct knote *kn, long hint) 2252 { 2253 struct socket *so; 2254 int rv; 2255 2256 so = ((file_t *)kn->kn_obj)->f_socket; 2257 if (hint != NOTE_SUBMIT) 2258 solock(so); 2259 kn->kn_data = so->so_rcv.sb_cc; 2260 if (so->so_state & SS_CANTRCVMORE) { 2261 knote_set_eof(kn, 0); 2262 kn->kn_fflags = so->so_error; 2263 rv = 1; 2264 } else if (so->so_error || so->so_rerror) 2265 rv = 1; 2266 else if (kn->kn_sfflags & NOTE_LOWAT) 2267 rv = (kn->kn_data >= kn->kn_sdata); 2268 else 2269 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2270 if (hint != NOTE_SUBMIT) 2271 sounlock(so); 2272 return rv; 2273 } 2274 2275 static void 2276 filt_sowdetach(struct knote *kn) 2277 { 2278 struct socket *so; 2279 2280 so = ((file_t *)kn->kn_obj)->f_socket; 2281 solock(so); 2282 if (selremove_knote(&so->so_snd.sb_sel, kn)) 2283 so->so_snd.sb_flags &= ~SB_KNOTE; 2284 sounlock(so); 2285 } 2286 2287 /*ARGSUSED*/ 2288 static int 2289 filt_sowrite(struct knote *kn, long hint) 2290 { 2291 struct socket *so; 2292 int rv; 2293 2294 so = ((file_t *)kn->kn_obj)->f_socket; 2295 if (hint != NOTE_SUBMIT) 2296 solock(so); 2297 kn->kn_data = sbspace(&so->so_snd); 2298 if (so->so_state & SS_CANTSENDMORE) { 2299 knote_set_eof(kn, 0); 2300 kn->kn_fflags = so->so_error; 2301 rv = 1; 2302 } else if (so->so_error) 2303 rv = 1; 2304 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2305 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2306 rv = 0; 2307 else if (kn->kn_sfflags & NOTE_LOWAT) 2308 rv = (kn->kn_data >= kn->kn_sdata); 2309 else 2310 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2311 if (hint != NOTE_SUBMIT) 2312 sounlock(so); 2313 return rv; 2314 } 2315 2316 static int 2317 filt_soempty(struct knote *kn, long hint) 2318 { 2319 struct socket *so; 2320 int rv; 2321 2322 so = ((file_t *)kn->kn_obj)->f_socket; 2323 if (hint != NOTE_SUBMIT) 2324 solock(so); 2325 rv = (kn->kn_data = sbused(&so->so_snd)) == 0 || 2326 (so->so_options & SO_ACCEPTCONN) != 0; 2327 if (hint != NOTE_SUBMIT) 2328 sounlock(so); 2329 return rv; 2330 } 2331 2332 /*ARGSUSED*/ 2333 static int 2334 filt_solisten(struct knote *kn, long hint) 2335 { 2336 struct socket *so; 2337 int rv; 2338 2339 so = ((file_t *)kn->kn_obj)->f_socket; 2340 2341 /* 2342 * Set kn_data to number of incoming connections, not 2343 * counting partial (incomplete) connections. 2344 */ 2345 if (hint != NOTE_SUBMIT) 2346 solock(so); 2347 kn->kn_data = so->so_qlen; 2348 rv = (kn->kn_data > 0); 2349 if (hint != NOTE_SUBMIT) 2350 sounlock(so); 2351 return rv; 2352 } 2353 2354 static const struct filterops solisten_filtops = { 2355 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 2356 .f_attach = NULL, 2357 .f_detach = filt_sordetach, 2358 .f_event = filt_solisten, 2359 }; 2360 2361 static const struct filterops soread_filtops = { 2362 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 2363 .f_attach = NULL, 2364 .f_detach = filt_sordetach, 2365 .f_event = filt_soread, 2366 }; 2367 2368 static const struct filterops sowrite_filtops = { 2369 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 2370 .f_attach = NULL, 2371 .f_detach = filt_sowdetach, 2372 .f_event = filt_sowrite, 2373 }; 2374 2375 static const struct filterops soempty_filtops = { 2376 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 2377 .f_attach = NULL, 2378 .f_detach = filt_sowdetach, 2379 .f_event = filt_soempty, 2380 }; 2381 2382 int 2383 soo_kqfilter(struct file *fp, struct knote *kn) 2384 { 2385 struct socket *so; 2386 struct sockbuf *sb; 2387 2388 so = ((file_t *)kn->kn_obj)->f_socket; 2389 solock(so); 2390 switch (kn->kn_filter) { 2391 case EVFILT_READ: 2392 if (so->so_options & SO_ACCEPTCONN) 2393 kn->kn_fop = &solisten_filtops; 2394 else 2395 kn->kn_fop = &soread_filtops; 2396 sb = &so->so_rcv; 2397 break; 2398 case EVFILT_WRITE: 2399 kn->kn_fop = &sowrite_filtops; 2400 sb = &so->so_snd; 2401 2402 #ifdef PIPE_SOCKETPAIR 2403 if (so->so_state & SS_ISAPIPE) { 2404 /* Other end of pipe has been closed. */ 2405 if (so->so_state & SS_ISDISCONNECTED) { 2406 sounlock(so); 2407 return SET_ERROR(EBADF); 2408 } 2409 } 2410 #endif 2411 break; 2412 case EVFILT_EMPTY: 2413 kn->kn_fop = &soempty_filtops; 2414 sb = &so->so_snd; 2415 break; 2416 default: 2417 sounlock(so); 2418 return SET_ERROR(EINVAL); 2419 } 2420 selrecord_knote(&sb->sb_sel, kn); 2421 sb->sb_flags |= SB_KNOTE; 2422 sounlock(so); 2423 return 0; 2424 } 2425 2426 static int 2427 sodopoll(struct socket *so, int events) 2428 { 2429 int revents; 2430 2431 revents = 0; 2432 2433 if (events & (POLLIN | POLLRDNORM)) 2434 if (soreadable(so)) 2435 revents |= events & (POLLIN | POLLRDNORM); 2436 2437 if (events & (POLLOUT | POLLWRNORM)) 2438 if (sowritable(so)) 2439 revents |= events & (POLLOUT | POLLWRNORM); 2440 2441 if (events & (POLLPRI | POLLRDBAND)) 2442 if (so->so_state & SS_POLLRDBAND) 2443 revents |= events & (POLLPRI | POLLRDBAND); 2444 2445 return revents; 2446 } 2447 2448 int 2449 sopoll(struct socket *so, int events) 2450 { 2451 int revents = 0; 2452 2453 #ifndef DIAGNOSTIC 2454 /* 2455 * Do a quick, unlocked check in expectation that the socket 2456 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2457 * as the solocked() assertions will fail. 2458 */ 2459 if ((revents = sodopoll(so, events)) != 0) 2460 return revents; 2461 #endif 2462 2463 solock(so); 2464 if ((revents = sodopoll(so, events)) == 0) { 2465 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2466 selrecord(curlwp, &so->so_rcv.sb_sel); 2467 so->so_rcv.sb_flags |= SB_NOTIFY; 2468 } 2469 2470 if (events & (POLLOUT | POLLWRNORM)) { 2471 selrecord(curlwp, &so->so_snd.sb_sel); 2472 so->so_snd.sb_flags |= SB_NOTIFY; 2473 } 2474 } 2475 sounlock(so); 2476 2477 return revents; 2478 } 2479 2480 struct mbuf ** 2481 sbsavetimestamp(int opt, struct mbuf **mp) 2482 { 2483 struct timeval tv; 2484 int error; 2485 2486 memset(&tv, 0, sizeof(tv)); 2487 microtime(&tv); 2488 2489 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error); 2490 if (error == 0) 2491 return mp; 2492 2493 if (opt & SO_TIMESTAMP) { 2494 *mp = sbcreatecontrol(&tv, sizeof(tv), 2495 SCM_TIMESTAMP, SOL_SOCKET); 2496 if (*mp) 2497 mp = &(*mp)->m_next; 2498 } 2499 return mp; 2500 } 2501 2502 2503 #include <sys/sysctl.h> 2504 2505 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2506 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2507 2508 /* 2509 * sysctl helper routine for kern.somaxkva. ensures that the given 2510 * value is not too small. 2511 * (XXX should we maybe make sure it's not too large as well?) 2512 */ 2513 static int 2514 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2515 { 2516 int error, new_somaxkva; 2517 struct sysctlnode node; 2518 2519 new_somaxkva = somaxkva; 2520 node = *rnode; 2521 node.sysctl_data = &new_somaxkva; 2522 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2523 if (error || newp == NULL) 2524 return error; 2525 2526 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2527 return SET_ERROR(EINVAL); 2528 2529 mutex_enter(&so_pendfree_lock); 2530 somaxkva = new_somaxkva; 2531 cv_broadcast(&socurkva_cv); 2532 mutex_exit(&so_pendfree_lock); 2533 2534 return error; 2535 } 2536 2537 /* 2538 * sysctl helper routine for kern.sbmax. Basically just ensures that 2539 * any new value is not too small. 2540 */ 2541 static int 2542 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2543 { 2544 int error, new_sbmax; 2545 struct sysctlnode node; 2546 2547 new_sbmax = sb_max; 2548 node = *rnode; 2549 node.sysctl_data = &new_sbmax; 2550 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2551 if (error || newp == NULL) 2552 return error; 2553 2554 KERNEL_LOCK(1, NULL); 2555 error = sb_max_set(new_sbmax); 2556 KERNEL_UNLOCK_ONE(NULL); 2557 2558 return error; 2559 } 2560 2561 /* 2562 * sysctl helper routine for kern.sooptions. Ensures that only allowed 2563 * options can be set. 2564 */ 2565 static int 2566 sysctl_kern_sooptions(SYSCTLFN_ARGS) 2567 { 2568 int error, new_options; 2569 struct sysctlnode node; 2570 2571 new_options = sooptions; 2572 node = *rnode; 2573 node.sysctl_data = &new_options; 2574 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2575 if (error || newp == NULL) 2576 return error; 2577 2578 if (new_options & ~SO_DEFOPTS) 2579 return SET_ERROR(EINVAL); 2580 2581 sooptions = new_options; 2582 2583 return 0; 2584 } 2585 2586 static void 2587 sysctl_kern_socket_setup(void) 2588 { 2589 2590 KASSERT(socket_sysctllog == NULL); 2591 2592 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2593 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2594 CTLTYPE_INT, "somaxkva", 2595 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2596 "used for socket buffers"), 2597 sysctl_kern_somaxkva, 0, NULL, 0, 2598 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2599 2600 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2601 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2602 CTLTYPE_BOOL, "sofixedbuf", 2603 SYSCTL_DESCR("Prevent scaling of fixed socket buffers"), 2604 NULL, 0, &sofixedbuf, 0, 2605 CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL); 2606 2607 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2608 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2609 CTLTYPE_INT, "sbmax", 2610 SYSCTL_DESCR("Maximum socket buffer size"), 2611 sysctl_kern_sbmax, 0, NULL, 0, 2612 CTL_KERN, KERN_SBMAX, CTL_EOL); 2613 2614 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2615 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2616 CTLTYPE_INT, "sooptions", 2617 SYSCTL_DESCR("Default socket options"), 2618 sysctl_kern_sooptions, 0, NULL, 0, 2619 CTL_KERN, CTL_CREATE, CTL_EOL); 2620 } 2621