Home | History | Annotate | Line # | Download | only in sparc
      1 /*	$NetBSD: cache.c,v 1.102 2021/01/24 07:36:54 mrg Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996
      5  *	The President and Fellows of Harvard College. All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This software was developed by the Computer Systems Engineering group
     10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     11  * contributed to Berkeley.
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by Harvard University.
     16  *	This product includes software developed by the University of
     17  *	California, Lawrence Berkeley Laboratory.
     18  *
     19  * Redistribution and use in source and binary forms, with or without
     20  * modification, are permitted provided that the following conditions
     21  * are met:
     22  *
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. All advertising materials mentioning features or use of this software
     29  *    must display the following acknowledgement:
     30  *	This product includes software developed by Aaron Brown and
     31  *	Harvard University.
     32  *	This product includes software developed by the University of
     33  *	California, Berkeley and its contributors.
     34  * 4. Neither the name of the University nor the names of its contributors
     35  *    may be used to endorse or promote products derived from this software
     36  *    without specific prior written permission.
     37  *
     38  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     39  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     41  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     42  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     43  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     44  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     45  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     46  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     47  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     48  * SUCH DAMAGE.
     49  *
     50  *	@(#)cache.c	8.2 (Berkeley) 10/30/93
     51  *
     52  */
     53 
     54 /*
     55  * Cache routines.
     56  *
     57  * TODO:
     58  *	- rework range flush
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: cache.c,v 1.102 2021/01/24 07:36:54 mrg Exp $");
     63 
     64 #include "opt_multiprocessor.h"
     65 #include "opt_sparc_arch.h"
     66 
     67 #include <sys/param.h>
     68 #include <sys/systm.h>
     69 #include <sys/kernel.h>
     70 
     71 #include <uvm/uvm_extern.h>
     72 
     73 #include <machine/ctlreg.h>
     74 #include <machine/pte.h>
     75 #include <machine/locore.h>
     76 
     77 #include <sparc/sparc/asm.h>
     78 #include <sparc/sparc/cache.h>
     79 #include <sparc/sparc/cpuvar.h>
     80 
     81 struct evcnt vcache_flush_pg =
     82 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC,0,"vcfl","pg");
     83 EVCNT_ATTACH_STATIC(vcache_flush_pg);
     84 struct evcnt vcache_flush_seg =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC,0,"vcfl","seg");
     86 EVCNT_ATTACH_STATIC(vcache_flush_seg);
     87 struct evcnt vcache_flush_reg =
     88 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC,0,"vcfl","reg");
     89 EVCNT_ATTACH_STATIC(vcache_flush_reg);
     90 struct evcnt vcache_flush_ctx =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC,0,"vcfl","ctx");
     92 EVCNT_ATTACH_STATIC(vcache_flush_ctx);
     93 struct evcnt vcache_flush_range =
     94 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC,0,"vcfl","rng");
     95 EVCNT_ATTACH_STATIC(vcache_flush_range);
     96 
     97 int cache_alias_dist;		/* Cache anti-aliasing constants */
     98 int cache_alias_bits;
     99 u_long dvma_cachealign;
    100 
    101 /*
    102  * Enable the cache.
    103  * We need to clear out the valid bits first.
    104  */
    105 void
    106 sun4_cache_enable(void)
    107 {
    108 	u_int i, lim, ls, ts;
    109 
    110 	cache_alias_bits = CPU_ISSUN4
    111 				? CACHE_ALIAS_BITS_SUN4
    112 				: CACHE_ALIAS_BITS_SUN4C;
    113 	cache_alias_dist = CPU_ISSUN4
    114 				? CACHE_ALIAS_DIST_SUN4
    115 				: CACHE_ALIAS_DIST_SUN4C;
    116 
    117 	ls = CACHEINFO.c_linesize;
    118 	ts = CACHEINFO.c_totalsize;
    119 
    120 	for (i = AC_CACHETAGS, lim = i + ts; i < lim; i += ls)
    121 		sta(i, ASI_CONTROL, 0);
    122 
    123 	stba(AC_SYSENABLE, ASI_CONTROL,
    124 	     lduba(AC_SYSENABLE, ASI_CONTROL) | SYSEN_CACHE);
    125 	CACHEINFO.c_enabled = 1;
    126 
    127 #ifdef notyet
    128 	if (cpuinfo.flags & SUN4_IOCACHE) {
    129 		stba(AC_SYSENABLE, ASI_CONTROL,
    130 		     lduba(AC_SYSENABLE, ASI_CONTROL) | SYSEN_IOCACHE);
    131 		printf("iocache enabled\n");
    132 	}
    133 #endif
    134 }
    135 
    136 /*
    137  * XXX Hammer is a bit too big, here; SUN4D systems only have Viking.
    138  */
    139 #if defined(SUN4M) || defined(SUN4D)
    140 void
    141 ms1_cache_enable(void)
    142 {
    143 	u_int pcr;
    144 
    145 	cache_alias_dist = uimax(
    146 		CACHEINFO.ic_totalsize / CACHEINFO.ic_associativity,
    147 		CACHEINFO.dc_totalsize / CACHEINFO.dc_associativity);
    148 	cache_alias_bits = (cache_alias_dist - 1) & ~PGOFSET;
    149 
    150 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    151 
    152 	/* We "flash-clear" the I/D caches. */
    153 	if ((pcr & MS1_PCR_ICE) == 0)
    154 		sta(0, ASI_ICACHECLR, 0);
    155 	if ((pcr & MS1_PCR_DCE) == 0)
    156 		sta(0, ASI_DCACHECLR, 0);
    157 
    158 	/* Turn on caches */
    159 	sta(SRMMU_PCR, ASI_SRMMU, pcr | MS1_PCR_DCE | MS1_PCR_ICE);
    160 
    161 	CACHEINFO.c_enabled = CACHEINFO.dc_enabled = 1;
    162 
    163 	/*
    164 	 * When zeroing or copying pages, there might still be entries in
    165 	 * the cache, since we don't flush pages from the cache when
    166 	 * unmapping them (`vactype' is VAC_NONE).  Fortunately, the
    167 	 * MS1 cache is write-through and not write-allocate, so we can
    168 	 * use cacheable access while not displacing cache lines.
    169 	 */
    170 	CACHEINFO.c_flags |= CACHE_MANDATORY;
    171 }
    172 
    173 void
    174 viking_cache_enable(void)
    175 {
    176 	u_int pcr;
    177 
    178 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    179 
    180 	if ((pcr & VIKING_PCR_ICE) == 0) {
    181 		/* I-cache not on; "flash-clear" it now. */
    182 		sta(0x80000000, ASI_ICACHECLR, 0);	/* Unlock */
    183 		sta(0, ASI_ICACHECLR, 0);		/* clear */
    184 	}
    185 	if ((pcr & VIKING_PCR_DCE) == 0) {
    186 		/* D-cache not on: "flash-clear" it. */
    187 		sta(0x80000000, ASI_DCACHECLR, 0);
    188 		sta(0, ASI_DCACHECLR, 0);
    189 	}
    190 
    191 	/* Turn on caches via MMU */
    192 	sta(SRMMU_PCR, ASI_SRMMU, pcr | VIKING_PCR_DCE | VIKING_PCR_ICE);
    193 
    194 	CACHEINFO.c_enabled = CACHEINFO.dc_enabled = 1;
    195 
    196 	/* Now turn on MultiCache if it exists */
    197 	if (cpuinfo.mxcc && CACHEINFO.ec_totalsize > 0) {
    198 		/* Set external cache enable bit in MXCC control register */
    199 		stda(MXCC_CTRLREG, ASI_CONTROL,
    200 		     ldda(MXCC_CTRLREG, ASI_CONTROL) | MXCC_CTRLREG_CE);
    201 		CACHEINFO.c_flags |= CACHE_PAGETABLES; /* Ok to cache PTEs */
    202 		CACHEINFO.ec_enabled = 1;
    203 	}
    204 }
    205 
    206 void
    207 hypersparc_cache_enable(void)
    208 {
    209 	int i, ls, ts;
    210 	u_int pcr, v;
    211 	int alias_dist;
    212 
    213 	/*
    214 	 * Setup the anti-aliasing constants and DVMA alignment constraint.
    215 	 */
    216 	alias_dist = CACHEINFO.c_totalsize;
    217 	if (alias_dist > cache_alias_dist) {
    218 		cache_alias_dist = alias_dist;
    219 		cache_alias_bits = (alias_dist - 1) & ~PGOFSET;
    220 		dvma_cachealign = cache_alias_dist;
    221 	}
    222 
    223 	ls = CACHEINFO.c_linesize;
    224 	ts = CACHEINFO.c_totalsize;
    225 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    226 
    227 	/* Now reset cache tag memory if cache not yet enabled */
    228 	if ((pcr & HYPERSPARC_PCR_CE) == 0)
    229 		for (i = 0; i < ts; i += ls)
    230 			sta(i, ASI_DCACHETAG, 0);
    231 
    232 	pcr &= ~(HYPERSPARC_PCR_CE | HYPERSPARC_PCR_CM);
    233 	hypersparc_cache_flush_all();
    234 
    235 	/* Enable write-back cache */
    236 	pcr |= HYPERSPARC_PCR_CE;
    237 	if (CACHEINFO.c_vactype == VAC_WRITEBACK)
    238 		pcr |= HYPERSPARC_PCR_CM;
    239 
    240 	sta(SRMMU_PCR, ASI_SRMMU, pcr);
    241 	CACHEINFO.c_enabled = 1;
    242 
    243 	/* XXX: should add support */
    244 	if (CACHEINFO.c_hwflush)
    245 		panic("cache_enable: can't handle 4M with hw-flush cache");
    246 
    247 	/*
    248 	 * Enable instruction cache and, on single-processor machines,
    249 	 * disable `Unimplemented Flush Traps'.
    250 	 */
    251 	v = HYPERSPARC_ICCR_ICE | (sparc_ncpus <= 1 ? HYPERSPARC_ICCR_FTD : 0);
    252 	wrasr(v, HYPERSPARC_ASRNUM_ICCR);
    253 }
    254 
    255 
    256 void
    257 swift_cache_enable(void)
    258 {
    259 	int i, ls, ts;
    260 	u_int pcr;
    261 
    262 	cache_alias_dist = uimax(
    263 		CACHEINFO.ic_totalsize / CACHEINFO.ic_associativity,
    264 		CACHEINFO.dc_totalsize / CACHEINFO.dc_associativity);
    265 	cache_alias_bits = (cache_alias_dist - 1) & ~PGOFSET;
    266 
    267 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    268 
    269 	/* Now reset cache tag memory if cache not yet enabled */
    270 	ls = CACHEINFO.ic_linesize;
    271 	ts = CACHEINFO.ic_totalsize;
    272 	if ((pcr & SWIFT_PCR_ICE) == 0)
    273 		for (i = 0; i < ts; i += ls)
    274 			sta(i, ASI_ICACHETAG, 0);
    275 
    276 	ls = CACHEINFO.dc_linesize;
    277 	ts = CACHEINFO.dc_totalsize;
    278 	if ((pcr & SWIFT_PCR_DCE) == 0)
    279 		for (i = 0; i < ts; i += ls)
    280 			sta(i, ASI_DCACHETAG, 0);
    281 
    282 	pcr |= (SWIFT_PCR_ICE | SWIFT_PCR_DCE);
    283 	sta(SRMMU_PCR, ASI_SRMMU, pcr);
    284 	CACHEINFO.c_enabled = 1;
    285 }
    286 
    287 void
    288 cypress_cache_enable(void)
    289 {
    290 	int i, ls, ts;
    291 	u_int pcr;
    292 	int alias_dist;
    293 
    294 	alias_dist = CACHEINFO.c_totalsize;
    295 	if (alias_dist > cache_alias_dist) {
    296 		cache_alias_dist = alias_dist;
    297 		cache_alias_bits = (alias_dist - 1) & ~PGOFSET;
    298 		dvma_cachealign = alias_dist;
    299 	}
    300 
    301 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    302 	pcr &= ~CYPRESS_PCR_CM;
    303 
    304 	/* Now reset cache tag memory if cache not yet enabled */
    305 	ls = CACHEINFO.c_linesize;
    306 	ts = CACHEINFO.c_totalsize;
    307 	if ((pcr & CYPRESS_PCR_CE) == 0)
    308 		for (i = 0; i < ts; i += ls)
    309 			sta(i, ASI_DCACHETAG, 0);
    310 
    311 	pcr |= CYPRESS_PCR_CE;
    312 	/* If put in write-back mode, turn it on */
    313 	if (CACHEINFO.c_vactype == VAC_WRITEBACK)
    314 		pcr |= CYPRESS_PCR_CM;
    315 	sta(SRMMU_PCR, ASI_SRMMU, pcr);
    316 	CACHEINFO.c_enabled = 1;
    317 }
    318 
    319 void
    320 turbosparc_cache_enable(void)
    321 {
    322 	int i, ls, ts;
    323 	u_int pcr, pcf;
    324 	/* External cache sizes in KB; see Turbo sparc manual */
    325 	static const int ts_ecache_table[8] = {0,256,512,1024,512,1024,1024,0};
    326 
    327 	cache_alias_dist = uimax(
    328 		CACHEINFO.ic_totalsize / CACHEINFO.ic_associativity,
    329 		CACHEINFO.dc_totalsize / CACHEINFO.dc_associativity);
    330 	cache_alias_bits = (cache_alias_dist - 1) & ~PGOFSET;
    331 
    332 	pcr = lda(SRMMU_PCR, ASI_SRMMU);
    333 
    334 	/* Now reset cache tag memory if cache not yet enabled */
    335 	ls = CACHEINFO.ic_linesize;
    336 	ts = CACHEINFO.ic_totalsize;
    337 	if ((pcr & TURBOSPARC_PCR_ICE) == 0)
    338 		for (i = 0; i < ts; i += ls)
    339 			sta(i, ASI_ICACHETAG, 0);
    340 
    341 	ls = CACHEINFO.dc_linesize;
    342 	ts = CACHEINFO.dc_totalsize;
    343 	if ((pcr & TURBOSPARC_PCR_DCE) == 0)
    344 		for (i = 0; i < ts; i += ls)
    345 			sta(i, ASI_DCACHETAG, 0);
    346 
    347 	pcr |= (TURBOSPARC_PCR_ICE | TURBOSPARC_PCR_DCE);
    348 	sta(SRMMU_PCR, ASI_SRMMU, pcr);
    349 
    350 	pcf = lda(SRMMU_PCFG, ASI_SRMMU);
    351 	if (pcf & TURBOSPARC_PCFG_SE) {
    352 		/*
    353 		 * Record external cache info. The Turbosparc's second-
    354 		 * level cache is physically addressed/tagged and is
    355 		 * not exposed by the PROM.
    356 		 */
    357 		CACHEINFO.ec_totalsize = 1024 *
    358 			ts_ecache_table[(pcf & TURBOSPARC_PCFG_SCC)];
    359 		CACHEINFO.ec_linesize = 32;
    360 	}
    361 	if (pcf & TURBOSPARC_PCFG_SNP)
    362 		printf(": DVMA coherent ");
    363 
    364 	CACHEINFO.c_enabled = 1;
    365 }
    366 #endif /* SUN4M || SUN4D */
    367 
    368 
    369 /*
    370  * Note: the sun4 & sun4c the cache flush functions ignore the `ctx'
    371  * parameter. This can be done since the pmap operations that need
    372  * to flush cache lines will already have switched to the proper
    373  * context to manipulate the MMU. Hence we can avoid the overhead
    374  * if saving and restoring the context here.
    375  */
    376 
    377 /*
    378  * Flush the current context from the cache.
    379  *
    380  * This is done by writing to each cache line in the `flush context'
    381  * address space (or, for hardware flush, once to each page in the
    382  * hardware flush space, for all cache pages).
    383  */
    384 void
    385 sun4_vcache_flush_context(int ctx)
    386 {
    387 	char *p;
    388 	int i, ls;
    389 
    390 	vcache_flush_ctx.ev_count++;
    391 	p = (char *)0;	/* addresses 0..cacheinfo.c_totalsize will do fine */
    392 	if (CACHEINFO.c_hwflush) {
    393 		ls = PAGE_SIZE;
    394 		i = CACHEINFO.c_totalsize >> PGSHIFT;
    395 		for (; --i >= 0; p += ls)
    396 			sta(p, ASI_HWFLUSHCTX, 0);
    397 	} else {
    398 		ls = CACHEINFO.c_linesize;
    399 		i = CACHEINFO.c_nlines;
    400 		for (; --i >= 0; p += ls)
    401 			sta(p, ASI_FLUSHCTX, 0);
    402 	}
    403 }
    404 
    405 /*
    406  * Flush the given virtual region from the cache.
    407  *
    408  * This is also done by writing to each cache line, except that
    409  * now the addresses must include the virtual region number, and
    410  * we use the `flush region' space.
    411  *
    412  * This function is only called on sun4's with 3-level MMUs; there's
    413  * no hw-flush space.
    414  */
    415 void
    416 sun4_vcache_flush_region(int vreg, int ctx)
    417 {
    418 	int i, ls;
    419 	char *p;
    420 
    421 	vcache_flush_reg.ev_count++;
    422 	p = (char *)VRTOVA(vreg);	/* reg..reg+sz rather than 0..sz */
    423 	ls = CACHEINFO.c_linesize;
    424 	i = CACHEINFO.c_nlines;
    425 	for (; --i >= 0; p += ls)
    426 		sta(p, ASI_FLUSHREG, 0);
    427 }
    428 
    429 /*
    430  * Flush the given virtual segment from the cache.
    431  *
    432  * This is also done by writing to each cache line, except that
    433  * now the addresses must include the virtual segment number, and
    434  * we use the `flush segment' space.
    435  *
    436  * Again, for hardware, we just write each page (in hw-flush space).
    437  */
    438 void
    439 sun4_vcache_flush_segment(int vreg, int vseg, int ctx)
    440 {
    441 	int i, ls;
    442 	char *p;
    443 
    444 	vcache_flush_seg.ev_count++;
    445 	p = (char *)VSTOVA(vreg, vseg);	/* seg..seg+sz rather than 0..sz */
    446 	if (CACHEINFO.c_hwflush) {
    447 		ls = PAGE_SIZE;
    448 		i = CACHEINFO.c_totalsize >> PGSHIFT;
    449 		for (; --i >= 0; p += ls)
    450 			sta(p, ASI_HWFLUSHSEG, 0);
    451 	} else {
    452 		ls = CACHEINFO.c_linesize;
    453 		i = CACHEINFO.c_nlines;
    454 		for (; --i >= 0; p += ls)
    455 			sta(p, ASI_FLUSHSEG, 0);
    456 	}
    457 }
    458 
    459 /*
    460  * Flush the given virtual page from the cache.
    461  * (va is the actual address, and must be aligned on a page boundary.)
    462  * Again we write to each cache line.
    463  */
    464 void
    465 sun4_vcache_flush_page(int va, int ctx)
    466 {
    467 	int i, ls;
    468 	char *p;
    469 
    470 #ifdef DEBUG
    471 	if (va & PGOFSET)
    472 		panic("cache_flush_page: asked to flush misaligned va 0x%x",va);
    473 #endif
    474 
    475 	vcache_flush_pg.ev_count++;
    476 	p = (char *)va;
    477 	ls = CACHEINFO.c_linesize;
    478 	i = PAGE_SIZE >> CACHEINFO.c_l2linesize;
    479 	for (; --i >= 0; p += ls)
    480 		sta(p, ASI_FLUSHPG, 0);
    481 }
    482 
    483 /*
    484  * Flush the given virtual page from the cache.
    485  * (va is the actual address, and must be aligned on a page boundary.)
    486  * This version uses hardware-assisted flush operation and just needs
    487  * one write into ASI_HWFLUSHPG space to flush all cache lines.
    488  */
    489 void
    490 sun4_vcache_flush_page_hw(int va, int ctx)
    491 {
    492 	char *p;
    493 
    494 #ifdef DEBUG
    495 	if (va & PGOFSET)
    496 		panic("cache_flush_page: asked to flush misaligned va 0x%x",va);
    497 #endif
    498 
    499 	vcache_flush_pg.ev_count++;
    500 	p = (char *)va;
    501 	sta(p, ASI_HWFLUSHPG, 0);
    502 }
    503 
    504 /*
    505  * Flush a range of virtual addresses (in the current context).
    506  * The first byte is at (base&~PGOFSET) and the last one is just
    507  * before byte (base+len).
    508  *
    509  * We choose the best of (context,segment,page) here.
    510  */
    511 
    512 #define CACHE_FLUSH_MAGIC	(CACHEINFO.c_totalsize / PAGE_SIZE)
    513 
    514 void
    515 sun4_cache_flush(void *base, u_int len)
    516 {
    517 	int i, ls, baseoff;
    518 	char *p;
    519 
    520 	if (CACHEINFO.c_vactype == VAC_NONE)
    521 		return;
    522 
    523 	/*
    524 	 * Figure out how much must be flushed.
    525 	 *
    526 	 * If we need to do CACHE_FLUSH_MAGIC pages,  we can do a segment
    527 	 * in the same number of loop iterations.  We can also do the whole
    528 	 * region. If we need to do between 2 and NSEGRG, do the region.
    529 	 * If we need to do two or more regions, just go ahead and do the
    530 	 * whole context. This might not be ideal (e.g., fsck likes to do
    531 	 * 65536-byte reads, which might not necessarily be aligned).
    532 	 *
    533 	 * We could try to be sneaky here and use the direct mapping
    534 	 * to avoid flushing things `below' the start and `above' the
    535 	 * ending address (rather than rounding to whole pages and
    536 	 * segments), but I did not want to debug that now and it is
    537 	 * not clear it would help much.
    538 	 *
    539 	 * (XXX the magic number 16 is now wrong, must review policy)
    540 	 */
    541 	baseoff = (int)base & PGOFSET;
    542 	i = (baseoff + len + PGOFSET) >> PGSHIFT;
    543 
    544 	vcache_flush_range.ev_count++;
    545 
    546 	if (__predict_true(i < CACHE_FLUSH_MAGIC)) {
    547 		/* cache_flush_page, for i pages */
    548 		p = (char *)((int)base & ~baseoff);
    549 		if (CACHEINFO.c_hwflush) {
    550 			for (; --i >= 0; p += PAGE_SIZE)
    551 				sta(p, ASI_HWFLUSHPG, 0);
    552 		} else {
    553 			ls = CACHEINFO.c_linesize;
    554 			i <<= PGSHIFT - CACHEINFO.c_l2linesize;
    555 			for (; --i >= 0; p += ls)
    556 				sta(p, ASI_FLUSHPG, 0);
    557 		}
    558 		return;
    559 	}
    560 
    561 	baseoff = (u_int)base & SGOFSET;
    562 	i = (baseoff + len + SGOFSET) >> SGSHIFT;
    563 	if (__predict_true(i == 1)) {
    564 		sun4_vcache_flush_segment(VA_VREG(base), VA_VSEG(base), 0);
    565 		return;
    566 	}
    567 
    568 	if (HASSUN4_MMU3L) {
    569 		baseoff = (u_int)base & RGOFSET;
    570 		i = (baseoff + len + RGOFSET) >> RGSHIFT;
    571 		if (i == 1)
    572 			sun4_vcache_flush_region(VA_VREG(base), 0);
    573 		else
    574 			sun4_vcache_flush_context(0);
    575 	} else
    576 		sun4_vcache_flush_context(0);
    577 }
    578 
    579 
    580 #if defined(SUN4M) || defined(SUN4D)
    581 #define trapoff()	do { setpsr(getpsr() & ~PSR_ET); } while(0)
    582 #define trapon()	do { setpsr(getpsr() | PSR_ET); } while(0)
    583 /*
    584  * Flush the current context from the cache.
    585  *
    586  * This is done by writing to each cache line in the `flush context'
    587  * address space.
    588  */
    589 void
    590 srmmu_vcache_flush_context(int ctx)
    591 {
    592 	int i, ls, octx;
    593 	char *p;
    594 
    595 	vcache_flush_ctx.ev_count++;
    596 	p = (char *)0;	/* addresses 0..cacheinfo.c_totalsize will do fine */
    597 	ls = CACHEINFO.c_linesize;
    598 	i = CACHEINFO.c_nlines;
    599 	octx = getcontext4m();
    600 	trapoff();
    601 	setcontext4m(ctx);
    602 	for (; --i >= 0; p += ls)
    603 		sta(p, ASI_IDCACHELFC, 0);
    604 	setcontext4m(octx);
    605 	trapon();
    606 }
    607 
    608 /*
    609  * Flush the given virtual region from the cache.
    610  *
    611  * This is also done by writing to each cache line, except that
    612  * now the addresses must include the virtual region number, and
    613  * we use the `flush region' space.
    614  */
    615 void
    616 srmmu_vcache_flush_region(int vreg, int ctx)
    617 {
    618 	int i, ls, octx;
    619 	char *p;
    620 
    621 	vcache_flush_reg.ev_count++;
    622 	p = (char *)VRTOVA(vreg);	/* reg..reg+sz rather than 0..sz */
    623 	ls = CACHEINFO.c_linesize;
    624 	i = CACHEINFO.c_nlines;
    625 	octx = getcontext4m();
    626 	trapoff();
    627 	setcontext4m(ctx);
    628 	for (; --i >= 0; p += ls)
    629 		sta(p, ASI_IDCACHELFR, 0);
    630 	setcontext4m(octx);
    631 	trapon();
    632 }
    633 
    634 /*
    635  * Flush the given virtual segment from the cache.
    636  *
    637  * This is also done by writing to each cache line, except that
    638  * now the addresses must include the virtual segment number, and
    639  * we use the `flush segment' space.
    640  *
    641  * Again, for hardware, we just write each page (in hw-flush space).
    642  */
    643 void
    644 srmmu_vcache_flush_segment(int vreg, int vseg, int ctx)
    645 {
    646 	int i, ls, octx;
    647 	char *p;
    648 
    649 	vcache_flush_seg.ev_count++;
    650 	p = (char *)VSTOVA(vreg, vseg);	/* seg..seg+sz rather than 0..sz */
    651 	ls = CACHEINFO.c_linesize;
    652 	i = CACHEINFO.c_nlines;
    653 	octx = getcontext4m();
    654 	trapoff();
    655 	setcontext4m(ctx);
    656 	for (; --i >= 0; p += ls)
    657 		sta(p, ASI_IDCACHELFS, 0);
    658 	setcontext4m(octx);
    659 	trapon();
    660 }
    661 
    662 /*
    663  * Flush the given virtual page from the cache.
    664  * (va is the actual address, and must be aligned on a page boundary.)
    665  * Again we write to each cache line.
    666  */
    667 void
    668 srmmu_vcache_flush_page(int va, int ctx)
    669 {
    670 	int i, ls, octx;
    671 	char *p;
    672 
    673 #ifdef DEBUG
    674 	if (va & PGOFSET)
    675 		panic("cache_flush_page: asked to flush misaligned va 0x%x",va);
    676 #endif
    677 
    678 	vcache_flush_pg.ev_count++;
    679 	p = (char *)va;
    680 
    681 	/*
    682 	 * XXX - if called early during bootstrap, we don't have the cache
    683 	 *	 info yet. Make up a cache line size (double-word aligned)
    684 	 */
    685 	if ((ls = CACHEINFO.c_linesize) == 0)
    686 		ls = 8;
    687 	i = PAGE_SIZE;
    688 	octx = getcontext4m();
    689 	trapoff();
    690 	setcontext4m(ctx);
    691 	for (; i > 0; p += ls, i -= ls)
    692 		sta(p, ASI_IDCACHELFP, 0);
    693 #if defined(MULTIPROCESSOR)
    694 	/*
    695 	 * The page flush operation will have caused a MMU table walk
    696 	 * on Hypersparc because the is physically tagged. Since the pmap
    697 	 * functions will not always cross flush it in the MP case (because
    698 	 * may not be active on this CPU) we flush the TLB entry now.
    699 	 */
    700 	/*if (cpuinfo.cpu_type == CPUTYP_HS_MBUS) -- more work than it's worth */
    701 		sta(va | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0);
    702 
    703 #endif
    704 	setcontext4m(octx);
    705 	trapon();
    706 }
    707 
    708 /*
    709  * Flush entire cache.
    710  */
    711 void
    712 srmmu_cache_flush_all(void)
    713 {
    714 
    715 	srmmu_vcache_flush_context(0);
    716 }
    717 
    718 void
    719 srmmu_vcache_flush_range(int va, int len, int ctx)
    720 {
    721 	int i, ls, offset;
    722 	char *p;
    723 	int octx;
    724 
    725 	/*
    726 	 * XXX - if called early during bootstrap, we don't have the cache
    727 	 *	 info yet. Make up a cache line size (double-word aligned)
    728 	 */
    729 	if ((ls = CACHEINFO.c_linesize) == 0)
    730 		ls = 8;
    731 
    732 	vcache_flush_range.ev_count++;
    733 
    734 	/* Compute # of cache lines covered by this range */
    735 	offset = va & (ls - 1);
    736 	i = len + offset;
    737 	p = (char *)(va & ~(ls - 1));
    738 
    739 	octx = getcontext4m();
    740 	trapoff();
    741 	setcontext4m(ctx);
    742 	for (; i > 0; p += ls, i -= ls)
    743 		sta(p, ASI_IDCACHELFP, 0);
    744 
    745 #if defined(MULTIPROCESSOR)
    746 	if (cpuinfo.cpu_type == CPUTYP_HS_MBUS) {
    747 		/*
    748 		 * See hypersparc comment in srmmu_vcache_flush_page().
    749 		 */
    750 		offset = va & PGOFSET;
    751 		i = (offset + len + PGOFSET) >> PGSHIFT;
    752 
    753 		va = va & ~PGOFSET;
    754 		for (; --i >= 0; va += PAGE_SIZE)
    755 			sta(va | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0);
    756 	}
    757 #endif
    758 	setcontext4m(octx);
    759 	trapon();
    760 	return;
    761 }
    762 
    763 /*
    764  * Flush a range of virtual addresses (in the current context).
    765  *
    766  * We choose the best of (context,segment,page) here.
    767  */
    768 
    769 void
    770 srmmu_cache_flush(void *base, u_int len)
    771 {
    772 	int ctx = getcontext4m();
    773 	int i, baseoff;
    774 
    775 
    776 	/*
    777 	 * Figure out the most efficient way to flush.
    778 	 *
    779 	 * If we need to do CACHE_FLUSH_MAGIC pages,  we can do a segment
    780 	 * in the same number of loop iterations.  We can also do the whole
    781 	 * region. If we need to do between 2 and NSEGRG, do the region.
    782 	 * If we need to do two or more regions, just go ahead and do the
    783 	 * whole context. This might not be ideal (e.g., fsck likes to do
    784 	 * 65536-byte reads, which might not necessarily be aligned).
    785 	 *
    786 	 * We could try to be sneaky here and use the direct mapping
    787 	 * to avoid flushing things `below' the start and `above' the
    788 	 * ending address (rather than rounding to whole pages and
    789 	 * segments), but I did not want to debug that now and it is
    790 	 * not clear it would help much.
    791 	 *
    792 	 */
    793 
    794 	if (__predict_true(len < CACHEINFO.c_totalsize)) {
    795 #if defined(MULTIPROCESSOR)
    796 		FXCALL3(cpuinfo.sp_vcache_flush_range,
    797 			cpuinfo.ft_vcache_flush_range,
    798 			(int)base, len, ctx, CPUSET_ALL);
    799 #else
    800 		cpuinfo.sp_vcache_flush_range((int)base, len, ctx);
    801 #endif
    802 		return;
    803 	}
    804 
    805 	baseoff = (u_int)base & SGOFSET;
    806 	i = (baseoff + len + SGOFSET) >> SGSHIFT;
    807 	if (__predict_true(i == 1)) {
    808 #if defined(MULTIPROCESSOR)
    809 		FXCALL3(cpuinfo.sp_vcache_flush_segment,
    810 			cpuinfo.ft_vcache_flush_segment,
    811 			VA_VREG(base), VA_VSEG(base), ctx, CPUSET_ALL);
    812 #else
    813 		srmmu_vcache_flush_segment(VA_VREG(base), VA_VSEG(base), ctx);
    814 #endif
    815 		return;
    816 	}
    817 
    818 	baseoff = (u_int)base & RGOFSET;
    819 	i = (baseoff + len + RGOFSET) >> RGSHIFT;
    820 	while (i--) {
    821 #if defined(MULTIPROCESSOR)
    822 		FXCALL2(cpuinfo.sp_vcache_flush_region,
    823 		       cpuinfo.ft_vcache_flush_region,
    824 		       VA_VREG(base), ctx, CPUSET_ALL);
    825 #else
    826 		srmmu_vcache_flush_region(VA_VREG(base), ctx);
    827 #endif
    828 		base = ((char *)base + NBPRG);
    829 	}
    830 }
    831 
    832 int ms1_cacheflush_magic = 0;
    833 #define MS1_CACHEFLUSH_MAGIC	ms1_cacheflush_magic
    834 
    835 void
    836 ms1_cache_flush(void *base, u_int len)
    837 {
    838 
    839 	/*
    840 	 * Although physically tagged, we still need to flush the
    841 	 * data cache after (if we have a write-through cache) or before
    842 	 * (in case of write-back caches) DMA operations.
    843 	 */
    844 
    845 #if MS1_CACHEFLUSH_MAGIC
    846 	if (len <= MS1_CACHEFLUSH_MAGIC) {
    847 		/*
    848 		 * If the range to be flushed is sufficiently small
    849 		 * invalidate the covered cache lines by hand.
    850 		 *
    851 		 * The MicroSPARC I has a direct-mapped virtually addressed
    852 		 * physically tagged data cache which is organised as
    853 		 * 128 lines of 16 bytes. Virtual address bits [4-10]
    854 		 * select the cache line. The cache tags are accessed
    855 		 * through the standard DCACHE control space using the
    856 		 * same address bits as those used to select the cache
    857 		 * line in the virtual address.
    858 		 *
    859 		 * Note: we don't bother to compare the actual tags
    860 		 * since that would require looking up physical addresses.
    861 		 *
    862 		 * The format of the tags we read from ASI_DCACHE control
    863 		 * space is:
    864 		 *
    865 		 * 31     27 26            11 10         1 0
    866 		 * +--------+----------------+------------+-+
    867 		 * |  xxx   |    PA[26-11]   |    xxx     |V|
    868 		 * +--------+----------------+------------+-+
    869 		 *
    870 		 * PA: bits 11-26 of the physical address
    871 		 * V:  line valid bit
    872 		 */
    873 		int tagaddr = ((u_int)base & 0x7f0);
    874 
    875 		len = roundup(len, 16);
    876 		while (len != 0) {
    877 			int tag = lda(tagaddr, ASI_DCACHETAG);
    878 			if ((tag & 1) == 1) {
    879 				/* Mark this cache line invalid */
    880 				sta(tagaddr, ASI_DCACHETAG, 0);
    881 			}
    882 			len -= 16;
    883 			tagaddr = (tagaddr + 16) & 0x7f0;
    884 		}
    885 	} else
    886 #endif
    887 		/* Flush entire data cache */
    888 		sta(0, ASI_DCACHECLR, 0);
    889 }
    890 
    891 
    892 /*
    893  * Flush entire cache.
    894  */
    895 void
    896 ms1_cache_flush_all(void)
    897 {
    898 
    899 	/* Flash-clear both caches */
    900 	sta(0, ASI_ICACHECLR, 0);
    901 	sta(0, ASI_DCACHECLR, 0);
    902 }
    903 
    904 void
    905 hypersparc_cache_flush_all(void)
    906 {
    907 
    908 	srmmu_vcache_flush_context(getcontext4m());
    909 	/* Flush instruction cache */
    910 	hypersparc_pure_vcache_flush();
    911 }
    912 
    913 void
    914 cypress_cache_flush_all(void)
    915 {
    916 	char *p;
    917 	int i, ls;
    918 
    919 	/* Fill the cache with known read-only content */
    920 	p = (char *)kernel_text;
    921 	ls = CACHEINFO.c_linesize;
    922 	i = CACHEINFO.c_nlines;
    923 	for (; --i >= 0; p += ls)
    924 		(*(volatile char *)p);
    925 }
    926 
    927 
    928 void
    929 viking_cache_flush(void *base, u_int len)
    930 {
    931 }
    932 
    933 void
    934 viking_pcache_flush_page(paddr_t pa, int invalidate_only)
    935 {
    936 	int set, i;
    937 
    938 	/*
    939 	 * The viking's on-chip data cache is 4-way set associative,
    940 	 * consisting of 128 sets, each holding 4 lines of 32 bytes.
    941 	 * Note that one 4096 byte page exactly covers all 128 sets
    942 	 * in the cache.
    943 	 */
    944 	if (invalidate_only) {
    945 		u_int pa_tag = (pa >> 12);
    946 		u_int tagaddr;
    947 		uint64_t tag;
    948 
    949 		/*
    950 		 * Loop over all sets and invalidate all entries tagged
    951 		 * with the given physical address by resetting the cache
    952 		 * tag in ASI_DCACHETAG control space.
    953 		 *
    954 		 * The address format for accessing a tag is:
    955 		 *
    956 		 * 31   30      27   26                  11      5 4  3 2    0
    957 		 * +------+-----+------+-------//--------+--------+----+-----+
    958 		 * | type | xxx | line |       xxx       |  set   | xx | 0   |
    959 		 * +------+-----+------+-------//--------+--------+----+-----+
    960 		 *
    961 		 * set:  the cache set tag to be read (0-127)
    962 		 * line: the line within the set (0-3)
    963 		 * type: 1: read set tag; 2: read physical tag
    964 		 *
    965 		 * The (type 2) tag read from this address is a 64-bit word
    966 		 * formatted as follows:
    967 		 *
    968 		 *          5         4         4
    969 		 * 63       6         8         0            23               0
    970 		 * +-------+-+-------+-+-------+-+-----------+----------------+
    971 		 * |  xxx  |V|  xxx  |D|  xxx  |S|    xxx    |    PA[35-12]   |
    972 		 * +-------+-+-------+-+-------+-+-----------+----------------+
    973 		 *
    974 		 * PA: bits 12-35 of the physical address
    975 		 * S:  line shared bit (not present on SuperSPARC-II)
    976 		 * D:  line dirty bit (not present on SuperSPARC-II)
    977 		 * V:  line valid bit
    978 		 */
    979 
    980 #define VIKING_DCACHETAG_S	0x0000010000000000ULL	/* line valid bit */
    981 #define VIKING_DCACHETAG_D	0x0001000000000000ULL	/* line dirty bit */
    982 #define VIKING_DCACHETAG_V	0x0100000000000000ULL	/* line shared bit */
    983 #define VIKING_DCACHETAG_PAMASK	0x0000000000ffffffULL	/* PA tag field */
    984 
    985 		for (set = 0; set < 128; set++) {
    986 			/* Set set number and access type */
    987 			tagaddr = (set << 5) | (2 << 30);
    988 
    989 			/* Examine the tag for each line in the set */
    990 			for (i = 0 ; i < 4; i++) {
    991 				tag = ldda(tagaddr | (i << 26), ASI_DCACHETAG);
    992 				/*
    993 				 * If this is a valid tag and the PA field
    994 				 * matches clear the tag.
    995 				 */
    996 				if ((tag & VIKING_DCACHETAG_PAMASK) == pa_tag &&
    997 				    (tag & VIKING_DCACHETAG_V) != 0)
    998 					stda(tagaddr | (i << 26),
    999 					     ASI_DCACHETAG, 0);
   1000 			}
   1001 		}
   1002 
   1003 	} else {
   1004 		/*
   1005 		 * Force the cache to validate its backing memory
   1006 		 * by displacing all cache lines with known read-only
   1007 		 * content from the start of kernel text.
   1008 		 *
   1009 		 * Note that this thrashes the entire cache. However,
   1010 		 * we currently only need to call upon this code
   1011 		 * once at boot time.
   1012 		 */
   1013 		for (set = 0; set < 128; set++) {
   1014 			int *v = (int *)(kernel_text + (set << 5));
   1015 
   1016 			/*
   1017 			 * We need to read (2*associativity-1) different
   1018 			 * locations to be sure to displace the entire set.
   1019 			 */
   1020 			i = 2 * 4 - 1;
   1021 			while (i--) {
   1022 				(*(volatile int *)v);
   1023 				v += 4096;
   1024 			}
   1025 		}
   1026 	}
   1027 }
   1028 #endif /* SUN4M || SUN4D */
   1029 
   1030 
   1031 #if defined(MULTIPROCESSOR)
   1032 /*
   1033  * Cache flushing on multi-processor systems involves sending
   1034  * inter-processor messages to flush the cache on each module.
   1035  *
   1036  * The current context of the originating processor is passed in the
   1037  * message. This assumes the allocation of CPU contextses is a global
   1038  * operation (remember that the actual context tables for the CPUs
   1039  * are distinct).
   1040  */
   1041 
   1042 void
   1043 smp_vcache_flush_page(int va, int ctx)
   1044 {
   1045 
   1046 	FXCALL2(cpuinfo.sp_vcache_flush_page, cpuinfo.ft_vcache_flush_page,
   1047 		va, ctx, CPUSET_ALL);
   1048 }
   1049 
   1050 void
   1051 smp_vcache_flush_segment(int vr, int vs, int ctx)
   1052 {
   1053 
   1054 	FXCALL3(cpuinfo.sp_vcache_flush_segment, cpuinfo.ft_vcache_flush_segment,
   1055 		vr, vs, ctx, CPUSET_ALL);
   1056 }
   1057 
   1058 void
   1059 smp_vcache_flush_region(int vr, int ctx)
   1060 {
   1061 
   1062 	FXCALL2(cpuinfo.sp_vcache_flush_region, cpuinfo.ft_vcache_flush_region,
   1063 		vr, ctx, CPUSET_ALL);
   1064 }
   1065 
   1066 void
   1067 smp_vcache_flush_context(int ctx)
   1068 {
   1069 
   1070 	FXCALL1(cpuinfo.sp_vcache_flush_context, cpuinfo.ft_vcache_flush_context,
   1071 		ctx, CPUSET_ALL);
   1072 }
   1073 #endif /* MULTIPROCESSOR */
   1074