1 /* $NetBSD: i915_gem_shrinker.c,v 1.3 2021/12/19 11:33:49 riastradh Exp $ */ 2 3 /* 4 * SPDX-License-Identifier: MIT 5 * 6 * Copyright 2008-2015 Intel Corporation 7 */ 8 9 #include <sys/cdefs.h> 10 __KERNEL_RCSID(0, "$NetBSD: i915_gem_shrinker.c,v 1.3 2021/12/19 11:33:49 riastradh Exp $"); 11 12 #include <linux/oom.h> 13 #include <linux/sched/mm.h> 14 #include <linux/shmem_fs.h> 15 #include <linux/slab.h> 16 #include <linux/swap.h> 17 #include <linux/pci.h> 18 #include <linux/dma-buf.h> 19 #include <linux/vmalloc.h> 20 #include <drm/i915_drm.h> 21 22 #include "i915_trace.h" 23 24 static bool swap_available(void) 25 { 26 return get_nr_swap_pages() > 0; 27 } 28 29 static bool can_release_pages(struct drm_i915_gem_object *obj) 30 { 31 /* Consider only shrinkable ojects. */ 32 if (!i915_gem_object_is_shrinkable(obj)) 33 return false; 34 35 /* 36 * Only report true if by unbinding the object and putting its pages 37 * we can actually make forward progress towards freeing physical 38 * pages. 39 * 40 * If the pages are pinned for any other reason than being bound 41 * to the GPU, simply unbinding from the GPU is not going to succeed 42 * in releasing our pin count on the pages themselves. 43 */ 44 if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count)) 45 return false; 46 47 /* 48 * We can only return physical pages to the system if we can either 49 * discard the contents (because the user has marked them as being 50 * purgeable) or if we can move their contents out to swap. 51 */ 52 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; 53 } 54 55 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, 56 unsigned long shrink) 57 { 58 unsigned long flags; 59 60 flags = 0; 61 if (shrink & I915_SHRINK_ACTIVE) 62 flags = I915_GEM_OBJECT_UNBIND_ACTIVE; 63 64 if (i915_gem_object_unbind(obj, flags) == 0) 65 __i915_gem_object_put_pages(obj); 66 67 return !i915_gem_object_has_pages(obj); 68 } 69 70 static void try_to_writeback(struct drm_i915_gem_object *obj, 71 unsigned int flags) 72 { 73 switch (obj->mm.madv) { 74 case I915_MADV_DONTNEED: 75 i915_gem_object_truncate(obj); 76 case __I915_MADV_PURGED: 77 return; 78 } 79 80 if (flags & I915_SHRINK_WRITEBACK) 81 i915_gem_object_writeback(obj); 82 } 83 84 /** 85 * i915_gem_shrink - Shrink buffer object caches 86 * @i915: i915 device 87 * @target: amount of memory to make available, in pages 88 * @nr_scanned: optional output for number of pages scanned (incremental) 89 * @shrink: control flags for selecting cache types 90 * 91 * This function is the main interface to the shrinker. It will try to release 92 * up to @target pages of main memory backing storage from buffer objects. 93 * Selection of the specific caches can be done with @flags. This is e.g. useful 94 * when purgeable objects should be removed from caches preferentially. 95 * 96 * Note that it's not guaranteed that released amount is actually available as 97 * free system memory - the pages might still be in-used to due to other reasons 98 * (like cpu mmaps) or the mm core has reused them before we could grab them. 99 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to 100 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). 101 * 102 * Also note that any kind of pinning (both per-vma address space pins and 103 * backing storage pins at the buffer object level) result in the shrinker code 104 * having to skip the object. 105 * 106 * Returns: 107 * The number of pages of backing storage actually released. 108 */ 109 unsigned long 110 i915_gem_shrink(struct drm_i915_private *i915, 111 unsigned long target, 112 unsigned long *nr_scanned, 113 unsigned int shrink) 114 { 115 const struct { 116 struct list_head *list; 117 unsigned int bit; 118 } phases[] = { 119 { &i915->mm.purge_list, ~0u }, 120 { 121 &i915->mm.shrink_list, 122 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND 123 }, 124 { NULL, 0 }, 125 }, *phase; 126 intel_wakeref_t wakeref = 0; 127 unsigned long count = 0; 128 unsigned long scanned = 0; 129 130 /* 131 * When shrinking the active list, we should also consider active 132 * contexts. Active contexts are pinned until they are retired, and 133 * so can not be simply unbound to retire and unpin their pages. To 134 * shrink the contexts, we must wait until the gpu is idle and 135 * completed its switch to the kernel context. In short, we do 136 * not have a good mechanism for idling a specific context. 137 */ 138 139 trace_i915_gem_shrink(i915, target, shrink); 140 141 /* 142 * Unbinding of objects will require HW access; Let us not wake the 143 * device just to recover a little memory. If absolutely necessary, 144 * we will force the wake during oom-notifier. 145 */ 146 if (shrink & I915_SHRINK_BOUND) { 147 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); 148 if (!wakeref) 149 shrink &= ~I915_SHRINK_BOUND; 150 } 151 152 /* 153 * As we may completely rewrite the (un)bound list whilst unbinding 154 * (due to retiring requests) we have to strictly process only 155 * one element of the list at the time, and recheck the list 156 * on every iteration. 157 * 158 * In particular, we must hold a reference whilst removing the 159 * object as we may end up waiting for and/or retiring the objects. 160 * This might release the final reference (held by the active list) 161 * and result in the object being freed from under us. This is 162 * similar to the precautions the eviction code must take whilst 163 * removing objects. 164 * 165 * Also note that although these lists do not hold a reference to 166 * the object we can safely grab one here: The final object 167 * unreferencing and the bound_list are both protected by the 168 * dev->struct_mutex and so we won't ever be able to observe an 169 * object on the bound_list with a reference count equals 0. 170 */ 171 for (phase = phases; phase->list; phase++) { 172 struct list_head still_in_list; 173 struct drm_i915_gem_object *obj; 174 unsigned long flags; 175 176 if ((shrink & phase->bit) == 0) 177 continue; 178 179 INIT_LIST_HEAD(&still_in_list); 180 181 /* 182 * We serialize our access to unreferenced objects through 183 * the use of the struct_mutex. While the objects are not 184 * yet freed (due to RCU then a workqueue) we still want 185 * to be able to shrink their pages, so they remain on 186 * the unbound/bound list until actually freed. 187 */ 188 spin_lock_irqsave(&i915->mm.obj_lock, flags); 189 while (count < target && 190 (obj = list_first_entry_or_null(phase->list, 191 typeof(*obj), 192 mm.link))) { 193 list_move_tail(&obj->mm.link, &still_in_list); 194 195 if (shrink & I915_SHRINK_VMAPS && 196 !is_vmalloc_addr(obj->mm.mapping)) 197 continue; 198 199 if (!(shrink & I915_SHRINK_ACTIVE) && 200 i915_gem_object_is_framebuffer(obj)) 201 continue; 202 203 if (!(shrink & I915_SHRINK_BOUND) && 204 atomic_read(&obj->bind_count)) 205 continue; 206 207 if (!can_release_pages(obj)) 208 continue; 209 210 if (!kref_get_unless_zero(&obj->base.refcount)) 211 continue; 212 213 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 214 215 if (unsafe_drop_pages(obj, shrink)) { 216 /* May arrive from get_pages on another bo */ 217 mutex_lock(&obj->mm.lock); 218 if (!i915_gem_object_has_pages(obj)) { 219 try_to_writeback(obj, shrink); 220 count += obj->base.size >> PAGE_SHIFT; 221 } 222 mutex_unlock(&obj->mm.lock); 223 } 224 225 scanned += obj->base.size >> PAGE_SHIFT; 226 i915_gem_object_put(obj); 227 228 spin_lock_irqsave(&i915->mm.obj_lock, flags); 229 } 230 list_splice_tail(&still_in_list, phase->list); 231 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 232 } 233 234 if (shrink & I915_SHRINK_BOUND) 235 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 236 237 if (nr_scanned) 238 *nr_scanned += scanned; 239 return count; 240 } 241 242 /** 243 * i915_gem_shrink_all - Shrink buffer object caches completely 244 * @i915: i915 device 245 * 246 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all 247 * caches completely. It also first waits for and retires all outstanding 248 * requests to also be able to release backing storage for active objects. 249 * 250 * This should only be used in code to intentionally quiescent the gpu or as a 251 * last-ditch effort when memory seems to have run out. 252 * 253 * Returns: 254 * The number of pages of backing storage actually released. 255 */ 256 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) 257 { 258 intel_wakeref_t wakeref; 259 unsigned long freed = 0; 260 261 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 262 freed = i915_gem_shrink(i915, -1UL, NULL, 263 I915_SHRINK_BOUND | 264 I915_SHRINK_UNBOUND | 265 I915_SHRINK_ACTIVE); 266 } 267 268 return freed; 269 } 270 271 static unsigned long 272 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 273 { 274 struct drm_i915_private *i915 = 275 container_of(shrinker, struct drm_i915_private, mm.shrinker); 276 unsigned long num_objects; 277 unsigned long count; 278 279 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; 280 num_objects = READ_ONCE(i915->mm.shrink_count); 281 282 /* 283 * Update our preferred vmscan batch size for the next pass. 284 * Our rough guess for an effective batch size is roughly 2 285 * available GEM objects worth of pages. That is we don't want 286 * the shrinker to fire, until it is worth the cost of freeing an 287 * entire GEM object. 288 */ 289 if (num_objects) { 290 unsigned long avg = 2 * count / num_objects; 291 292 i915->mm.shrinker.batch = 293 max((i915->mm.shrinker.batch + avg) >> 1, 294 128ul /* default SHRINK_BATCH */); 295 } 296 297 return count; 298 } 299 300 static unsigned long 301 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 302 { 303 struct drm_i915_private *i915 = 304 container_of(shrinker, struct drm_i915_private, mm.shrinker); 305 unsigned long freed; 306 307 sc->nr_scanned = 0; 308 309 freed = i915_gem_shrink(i915, 310 sc->nr_to_scan, 311 &sc->nr_scanned, 312 I915_SHRINK_BOUND | 313 I915_SHRINK_UNBOUND); 314 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { 315 intel_wakeref_t wakeref; 316 317 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 318 freed += i915_gem_shrink(i915, 319 sc->nr_to_scan - sc->nr_scanned, 320 &sc->nr_scanned, 321 I915_SHRINK_ACTIVE | 322 I915_SHRINK_BOUND | 323 I915_SHRINK_UNBOUND | 324 I915_SHRINK_WRITEBACK); 325 } 326 } 327 328 return sc->nr_scanned ? freed : SHRINK_STOP; 329 } 330 331 static int 332 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 333 { 334 struct drm_i915_private *i915 = 335 container_of(nb, struct drm_i915_private, mm.oom_notifier); 336 struct drm_i915_gem_object *obj; 337 unsigned long unevictable, available, freed_pages; 338 intel_wakeref_t wakeref; 339 unsigned long flags; 340 341 freed_pages = 0; 342 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 343 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 344 I915_SHRINK_ACTIVE | 345 I915_SHRINK_BOUND | 346 I915_SHRINK_UNBOUND | 347 I915_SHRINK_WRITEBACK); 348 349 /* Because we may be allocating inside our own driver, we cannot 350 * assert that there are no objects with pinned pages that are not 351 * being pointed to by hardware. 352 */ 353 available = unevictable = 0; 354 spin_lock_irqsave(&i915->mm.obj_lock, flags); 355 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 356 if (!can_release_pages(obj)) 357 unevictable += obj->base.size >> PAGE_SHIFT; 358 else 359 available += obj->base.size >> PAGE_SHIFT; 360 } 361 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 362 363 if (freed_pages || available) 364 pr_info("Purging GPU memory, %lu pages freed, " 365 "%lu pages still pinned, %lu pages left available.\n", 366 freed_pages, unevictable, available); 367 368 *(unsigned long *)ptr += freed_pages; 369 return NOTIFY_DONE; 370 } 371 372 static int 373 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) 374 { 375 struct drm_i915_private *i915 = 376 container_of(nb, struct drm_i915_private, mm.vmap_notifier); 377 struct i915_vma *vma, *next; 378 unsigned long freed_pages = 0; 379 intel_wakeref_t wakeref; 380 381 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 382 freed_pages += i915_gem_shrink(i915, -1UL, NULL, 383 I915_SHRINK_BOUND | 384 I915_SHRINK_UNBOUND | 385 I915_SHRINK_VMAPS); 386 387 /* We also want to clear any cached iomaps as they wrap vmap */ 388 mutex_lock(&i915->ggtt.vm.mutex); 389 list_for_each_entry_safe(vma, next, 390 &i915->ggtt.vm.bound_list, vm_link) { 391 unsigned long count = vma->node.size >> PAGE_SHIFT; 392 393 if (!vma->iomap || i915_vma_is_active(vma)) 394 continue; 395 396 if (__i915_vma_unbind(vma) == 0) 397 freed_pages += count; 398 } 399 mutex_unlock(&i915->ggtt.vm.mutex); 400 401 *(unsigned long *)ptr += freed_pages; 402 return NOTIFY_DONE; 403 } 404 405 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) 406 { 407 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 408 i915->mm.shrinker.count_objects = i915_gem_shrinker_count; 409 i915->mm.shrinker.seeks = DEFAULT_SEEKS; 410 i915->mm.shrinker.batch = 4096; 411 WARN_ON(register_shrinker(&i915->mm.shrinker)); 412 413 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 414 WARN_ON(register_oom_notifier(&i915->mm.oom_notifier)); 415 416 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; 417 WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier)); 418 } 419 420 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) 421 { 422 WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); 423 WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier)); 424 unregister_shrinker(&i915->mm.shrinker); 425 } 426 427 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, 428 struct mutex *mutex) 429 { 430 #if IS_ENABLED(CONFIG_LOCKDEP) 431 bool unlock = false; 432 433 if (!IS_ENABLED(CONFIG_LOCKDEP)) 434 return; 435 436 if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) { 437 mutex_acquire(&i915->drm.struct_mutex.dep_map, 438 I915_MM_NORMAL, 0, _RET_IP_); 439 unlock = true; 440 } 441 442 fs_reclaim_acquire(GFP_KERNEL); 443 444 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); 445 mutex_release(&mutex->dep_map, _RET_IP_); 446 447 fs_reclaim_release(GFP_KERNEL); 448 449 if (unlock) 450 mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_); 451 #endif 452 } 453 454 #define obj_to_i915(obj__) to_i915((obj__)->base.dev) 455 456 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) 457 { 458 struct drm_i915_private *i915 = obj_to_i915(obj); 459 unsigned long flags; 460 461 /* 462 * We can only be called while the pages are pinned or when 463 * the pages are released. If pinned, we should only be called 464 * from a single caller under controlled conditions; and on release 465 * only one caller may release us. Neither the two may cross. 466 */ 467 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0)) 468 return; 469 470 spin_lock_irqsave(&i915->mm.obj_lock, flags); 471 if (!atomic_fetch_inc(&obj->mm.shrink_pin) && 472 !list_empty(&obj->mm.link)) { 473 list_del_init(&obj->mm.link); 474 i915->mm.shrink_count--; 475 i915->mm.shrink_memory -= obj->base.size; 476 } 477 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 478 } 479 480 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, 481 struct list_head *head) 482 { 483 struct drm_i915_private *i915 = obj_to_i915(obj); 484 unsigned long flags; 485 486 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 487 if (!i915_gem_object_is_shrinkable(obj)) 488 return; 489 490 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1)) 491 return; 492 493 spin_lock_irqsave(&i915->mm.obj_lock, flags); 494 GEM_BUG_ON(!kref_read(&obj->base.refcount)); 495 if (atomic_dec_and_test(&obj->mm.shrink_pin)) { 496 GEM_BUG_ON(!list_empty(&obj->mm.link)); 497 498 list_add_tail(&obj->mm.link, head); 499 i915->mm.shrink_count++; 500 i915->mm.shrink_memory += obj->base.size; 501 502 } 503 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 504 } 505 506 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) 507 { 508 __i915_gem_object_make_shrinkable(obj, 509 &obj_to_i915(obj)->mm.shrink_list); 510 } 511 512 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) 513 { 514 __i915_gem_object_make_shrinkable(obj, 515 &obj_to_i915(obj)->mm.purge_list); 516 } 517