Home | History | Annotate | Line # | Download | only in gem
      1 /*	$NetBSD: i915_gem_shrinker.c,v 1.3 2021/12/19 11:33:49 riastradh Exp $	*/
      2 
      3 /*
      4  * SPDX-License-Identifier: MIT
      5  *
      6  * Copyright  2008-2015 Intel Corporation
      7  */
      8 
      9 #include <sys/cdefs.h>
     10 __KERNEL_RCSID(0, "$NetBSD: i915_gem_shrinker.c,v 1.3 2021/12/19 11:33:49 riastradh Exp $");
     11 
     12 #include <linux/oom.h>
     13 #include <linux/sched/mm.h>
     14 #include <linux/shmem_fs.h>
     15 #include <linux/slab.h>
     16 #include <linux/swap.h>
     17 #include <linux/pci.h>
     18 #include <linux/dma-buf.h>
     19 #include <linux/vmalloc.h>
     20 #include <drm/i915_drm.h>
     21 
     22 #include "i915_trace.h"
     23 
     24 static bool swap_available(void)
     25 {
     26 	return get_nr_swap_pages() > 0;
     27 }
     28 
     29 static bool can_release_pages(struct drm_i915_gem_object *obj)
     30 {
     31 	/* Consider only shrinkable ojects. */
     32 	if (!i915_gem_object_is_shrinkable(obj))
     33 		return false;
     34 
     35 	/*
     36 	 * Only report true if by unbinding the object and putting its pages
     37 	 * we can actually make forward progress towards freeing physical
     38 	 * pages.
     39 	 *
     40 	 * If the pages are pinned for any other reason than being bound
     41 	 * to the GPU, simply unbinding from the GPU is not going to succeed
     42 	 * in releasing our pin count on the pages themselves.
     43 	 */
     44 	if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
     45 		return false;
     46 
     47 	/*
     48 	 * We can only return physical pages to the system if we can either
     49 	 * discard the contents (because the user has marked them as being
     50 	 * purgeable) or if we can move their contents out to swap.
     51 	 */
     52 	return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
     53 }
     54 
     55 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj,
     56 			      unsigned long shrink)
     57 {
     58 	unsigned long flags;
     59 
     60 	flags = 0;
     61 	if (shrink & I915_SHRINK_ACTIVE)
     62 		flags = I915_GEM_OBJECT_UNBIND_ACTIVE;
     63 
     64 	if (i915_gem_object_unbind(obj, flags) == 0)
     65 		__i915_gem_object_put_pages(obj);
     66 
     67 	return !i915_gem_object_has_pages(obj);
     68 }
     69 
     70 static void try_to_writeback(struct drm_i915_gem_object *obj,
     71 			     unsigned int flags)
     72 {
     73 	switch (obj->mm.madv) {
     74 	case I915_MADV_DONTNEED:
     75 		i915_gem_object_truncate(obj);
     76 	case __I915_MADV_PURGED:
     77 		return;
     78 	}
     79 
     80 	if (flags & I915_SHRINK_WRITEBACK)
     81 		i915_gem_object_writeback(obj);
     82 }
     83 
     84 /**
     85  * i915_gem_shrink - Shrink buffer object caches
     86  * @i915: i915 device
     87  * @target: amount of memory to make available, in pages
     88  * @nr_scanned: optional output for number of pages scanned (incremental)
     89  * @shrink: control flags for selecting cache types
     90  *
     91  * This function is the main interface to the shrinker. It will try to release
     92  * up to @target pages of main memory backing storage from buffer objects.
     93  * Selection of the specific caches can be done with @flags. This is e.g. useful
     94  * when purgeable objects should be removed from caches preferentially.
     95  *
     96  * Note that it's not guaranteed that released amount is actually available as
     97  * free system memory - the pages might still be in-used to due to other reasons
     98  * (like cpu mmaps) or the mm core has reused them before we could grab them.
     99  * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
    100  * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
    101  *
    102  * Also note that any kind of pinning (both per-vma address space pins and
    103  * backing storage pins at the buffer object level) result in the shrinker code
    104  * having to skip the object.
    105  *
    106  * Returns:
    107  * The number of pages of backing storage actually released.
    108  */
    109 unsigned long
    110 i915_gem_shrink(struct drm_i915_private *i915,
    111 		unsigned long target,
    112 		unsigned long *nr_scanned,
    113 		unsigned int shrink)
    114 {
    115 	const struct {
    116 		struct list_head *list;
    117 		unsigned int bit;
    118 	} phases[] = {
    119 		{ &i915->mm.purge_list, ~0u },
    120 		{
    121 			&i915->mm.shrink_list,
    122 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
    123 		},
    124 		{ NULL, 0 },
    125 	}, *phase;
    126 	intel_wakeref_t wakeref = 0;
    127 	unsigned long count = 0;
    128 	unsigned long scanned = 0;
    129 
    130 	/*
    131 	 * When shrinking the active list, we should also consider active
    132 	 * contexts. Active contexts are pinned until they are retired, and
    133 	 * so can not be simply unbound to retire and unpin their pages. To
    134 	 * shrink the contexts, we must wait until the gpu is idle and
    135 	 * completed its switch to the kernel context. In short, we do
    136 	 * not have a good mechanism for idling a specific context.
    137 	 */
    138 
    139 	trace_i915_gem_shrink(i915, target, shrink);
    140 
    141 	/*
    142 	 * Unbinding of objects will require HW access; Let us not wake the
    143 	 * device just to recover a little memory. If absolutely necessary,
    144 	 * we will force the wake during oom-notifier.
    145 	 */
    146 	if (shrink & I915_SHRINK_BOUND) {
    147 		wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
    148 		if (!wakeref)
    149 			shrink &= ~I915_SHRINK_BOUND;
    150 	}
    151 
    152 	/*
    153 	 * As we may completely rewrite the (un)bound list whilst unbinding
    154 	 * (due to retiring requests) we have to strictly process only
    155 	 * one element of the list at the time, and recheck the list
    156 	 * on every iteration.
    157 	 *
    158 	 * In particular, we must hold a reference whilst removing the
    159 	 * object as we may end up waiting for and/or retiring the objects.
    160 	 * This might release the final reference (held by the active list)
    161 	 * and result in the object being freed from under us. This is
    162 	 * similar to the precautions the eviction code must take whilst
    163 	 * removing objects.
    164 	 *
    165 	 * Also note that although these lists do not hold a reference to
    166 	 * the object we can safely grab one here: The final object
    167 	 * unreferencing and the bound_list are both protected by the
    168 	 * dev->struct_mutex and so we won't ever be able to observe an
    169 	 * object on the bound_list with a reference count equals 0.
    170 	 */
    171 	for (phase = phases; phase->list; phase++) {
    172 		struct list_head still_in_list;
    173 		struct drm_i915_gem_object *obj;
    174 		unsigned long flags;
    175 
    176 		if ((shrink & phase->bit) == 0)
    177 			continue;
    178 
    179 		INIT_LIST_HEAD(&still_in_list);
    180 
    181 		/*
    182 		 * We serialize our access to unreferenced objects through
    183 		 * the use of the struct_mutex. While the objects are not
    184 		 * yet freed (due to RCU then a workqueue) we still want
    185 		 * to be able to shrink their pages, so they remain on
    186 		 * the unbound/bound list until actually freed.
    187 		 */
    188 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
    189 		while (count < target &&
    190 		       (obj = list_first_entry_or_null(phase->list,
    191 						       typeof(*obj),
    192 						       mm.link))) {
    193 			list_move_tail(&obj->mm.link, &still_in_list);
    194 
    195 			if (shrink & I915_SHRINK_VMAPS &&
    196 			    !is_vmalloc_addr(obj->mm.mapping))
    197 				continue;
    198 
    199 			if (!(shrink & I915_SHRINK_ACTIVE) &&
    200 			    i915_gem_object_is_framebuffer(obj))
    201 				continue;
    202 
    203 			if (!(shrink & I915_SHRINK_BOUND) &&
    204 			    atomic_read(&obj->bind_count))
    205 				continue;
    206 
    207 			if (!can_release_pages(obj))
    208 				continue;
    209 
    210 			if (!kref_get_unless_zero(&obj->base.refcount))
    211 				continue;
    212 
    213 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
    214 
    215 			if (unsafe_drop_pages(obj, shrink)) {
    216 				/* May arrive from get_pages on another bo */
    217 				mutex_lock(&obj->mm.lock);
    218 				if (!i915_gem_object_has_pages(obj)) {
    219 					try_to_writeback(obj, shrink);
    220 					count += obj->base.size >> PAGE_SHIFT;
    221 				}
    222 				mutex_unlock(&obj->mm.lock);
    223 			}
    224 
    225 			scanned += obj->base.size >> PAGE_SHIFT;
    226 			i915_gem_object_put(obj);
    227 
    228 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
    229 		}
    230 		list_splice_tail(&still_in_list, phase->list);
    231 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
    232 	}
    233 
    234 	if (shrink & I915_SHRINK_BOUND)
    235 		intel_runtime_pm_put(&i915->runtime_pm, wakeref);
    236 
    237 	if (nr_scanned)
    238 		*nr_scanned += scanned;
    239 	return count;
    240 }
    241 
    242 /**
    243  * i915_gem_shrink_all - Shrink buffer object caches completely
    244  * @i915: i915 device
    245  *
    246  * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
    247  * caches completely. It also first waits for and retires all outstanding
    248  * requests to also be able to release backing storage for active objects.
    249  *
    250  * This should only be used in code to intentionally quiescent the gpu or as a
    251  * last-ditch effort when memory seems to have run out.
    252  *
    253  * Returns:
    254  * The number of pages of backing storage actually released.
    255  */
    256 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
    257 {
    258 	intel_wakeref_t wakeref;
    259 	unsigned long freed = 0;
    260 
    261 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
    262 		freed = i915_gem_shrink(i915, -1UL, NULL,
    263 					I915_SHRINK_BOUND |
    264 					I915_SHRINK_UNBOUND |
    265 					I915_SHRINK_ACTIVE);
    266 	}
    267 
    268 	return freed;
    269 }
    270 
    271 static unsigned long
    272 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
    273 {
    274 	struct drm_i915_private *i915 =
    275 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
    276 	unsigned long num_objects;
    277 	unsigned long count;
    278 
    279 	count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
    280 	num_objects = READ_ONCE(i915->mm.shrink_count);
    281 
    282 	/*
    283 	 * Update our preferred vmscan batch size for the next pass.
    284 	 * Our rough guess for an effective batch size is roughly 2
    285 	 * available GEM objects worth of pages. That is we don't want
    286 	 * the shrinker to fire, until it is worth the cost of freeing an
    287 	 * entire GEM object.
    288 	 */
    289 	if (num_objects) {
    290 		unsigned long avg = 2 * count / num_objects;
    291 
    292 		i915->mm.shrinker.batch =
    293 			max((i915->mm.shrinker.batch + avg) >> 1,
    294 			    128ul /* default SHRINK_BATCH */);
    295 	}
    296 
    297 	return count;
    298 }
    299 
    300 static unsigned long
    301 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
    302 {
    303 	struct drm_i915_private *i915 =
    304 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
    305 	unsigned long freed;
    306 
    307 	sc->nr_scanned = 0;
    308 
    309 	freed = i915_gem_shrink(i915,
    310 				sc->nr_to_scan,
    311 				&sc->nr_scanned,
    312 				I915_SHRINK_BOUND |
    313 				I915_SHRINK_UNBOUND);
    314 	if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
    315 		intel_wakeref_t wakeref;
    316 
    317 		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
    318 			freed += i915_gem_shrink(i915,
    319 						 sc->nr_to_scan - sc->nr_scanned,
    320 						 &sc->nr_scanned,
    321 						 I915_SHRINK_ACTIVE |
    322 						 I915_SHRINK_BOUND |
    323 						 I915_SHRINK_UNBOUND |
    324 						 I915_SHRINK_WRITEBACK);
    325 		}
    326 	}
    327 
    328 	return sc->nr_scanned ? freed : SHRINK_STOP;
    329 }
    330 
    331 static int
    332 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
    333 {
    334 	struct drm_i915_private *i915 =
    335 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
    336 	struct drm_i915_gem_object *obj;
    337 	unsigned long unevictable, available, freed_pages;
    338 	intel_wakeref_t wakeref;
    339 	unsigned long flags;
    340 
    341 	freed_pages = 0;
    342 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
    343 		freed_pages += i915_gem_shrink(i915, -1UL, NULL,
    344 					       I915_SHRINK_ACTIVE |
    345 					       I915_SHRINK_BOUND |
    346 					       I915_SHRINK_UNBOUND |
    347 					       I915_SHRINK_WRITEBACK);
    348 
    349 	/* Because we may be allocating inside our own driver, we cannot
    350 	 * assert that there are no objects with pinned pages that are not
    351 	 * being pointed to by hardware.
    352 	 */
    353 	available = unevictable = 0;
    354 	spin_lock_irqsave(&i915->mm.obj_lock, flags);
    355 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
    356 		if (!can_release_pages(obj))
    357 			unevictable += obj->base.size >> PAGE_SHIFT;
    358 		else
    359 			available += obj->base.size >> PAGE_SHIFT;
    360 	}
    361 	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
    362 
    363 	if (freed_pages || available)
    364 		pr_info("Purging GPU memory, %lu pages freed, "
    365 			"%lu pages still pinned, %lu pages left available.\n",
    366 			freed_pages, unevictable, available);
    367 
    368 	*(unsigned long *)ptr += freed_pages;
    369 	return NOTIFY_DONE;
    370 }
    371 
    372 static int
    373 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
    374 {
    375 	struct drm_i915_private *i915 =
    376 		container_of(nb, struct drm_i915_private, mm.vmap_notifier);
    377 	struct i915_vma *vma, *next;
    378 	unsigned long freed_pages = 0;
    379 	intel_wakeref_t wakeref;
    380 
    381 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
    382 		freed_pages += i915_gem_shrink(i915, -1UL, NULL,
    383 					       I915_SHRINK_BOUND |
    384 					       I915_SHRINK_UNBOUND |
    385 					       I915_SHRINK_VMAPS);
    386 
    387 	/* We also want to clear any cached iomaps as they wrap vmap */
    388 	mutex_lock(&i915->ggtt.vm.mutex);
    389 	list_for_each_entry_safe(vma, next,
    390 				 &i915->ggtt.vm.bound_list, vm_link) {
    391 		unsigned long count = vma->node.size >> PAGE_SHIFT;
    392 
    393 		if (!vma->iomap || i915_vma_is_active(vma))
    394 			continue;
    395 
    396 		if (__i915_vma_unbind(vma) == 0)
    397 			freed_pages += count;
    398 	}
    399 	mutex_unlock(&i915->ggtt.vm.mutex);
    400 
    401 	*(unsigned long *)ptr += freed_pages;
    402 	return NOTIFY_DONE;
    403 }
    404 
    405 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
    406 {
    407 	i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
    408 	i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
    409 	i915->mm.shrinker.seeks = DEFAULT_SEEKS;
    410 	i915->mm.shrinker.batch = 4096;
    411 	WARN_ON(register_shrinker(&i915->mm.shrinker));
    412 
    413 	i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
    414 	WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
    415 
    416 	i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
    417 	WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
    418 }
    419 
    420 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
    421 {
    422 	WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
    423 	WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
    424 	unregister_shrinker(&i915->mm.shrinker);
    425 }
    426 
    427 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
    428 				    struct mutex *mutex)
    429 {
    430 #if IS_ENABLED(CONFIG_LOCKDEP)
    431 	bool unlock = false;
    432 
    433 	if (!IS_ENABLED(CONFIG_LOCKDEP))
    434 		return;
    435 
    436 	if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
    437 		mutex_acquire(&i915->drm.struct_mutex.dep_map,
    438 			      I915_MM_NORMAL, 0, _RET_IP_);
    439 		unlock = true;
    440 	}
    441 
    442 	fs_reclaim_acquire(GFP_KERNEL);
    443 
    444 	mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
    445 	mutex_release(&mutex->dep_map, _RET_IP_);
    446 
    447 	fs_reclaim_release(GFP_KERNEL);
    448 
    449 	if (unlock)
    450 		mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_);
    451 #endif
    452 }
    453 
    454 #define obj_to_i915(obj__) to_i915((obj__)->base.dev)
    455 
    456 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
    457 {
    458 	struct drm_i915_private *i915 = obj_to_i915(obj);
    459 	unsigned long flags;
    460 
    461 	/*
    462 	 * We can only be called while the pages are pinned or when
    463 	 * the pages are released. If pinned, we should only be called
    464 	 * from a single caller under controlled conditions; and on release
    465 	 * only one caller may release us. Neither the two may cross.
    466 	 */
    467 	if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0))
    468 		return;
    469 
    470 	spin_lock_irqsave(&i915->mm.obj_lock, flags);
    471 	if (!atomic_fetch_inc(&obj->mm.shrink_pin) &&
    472 	    !list_empty(&obj->mm.link)) {
    473 		list_del_init(&obj->mm.link);
    474 		i915->mm.shrink_count--;
    475 		i915->mm.shrink_memory -= obj->base.size;
    476 	}
    477 	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
    478 }
    479 
    480 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
    481 					      struct list_head *head)
    482 {
    483 	struct drm_i915_private *i915 = obj_to_i915(obj);
    484 	unsigned long flags;
    485 
    486 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
    487 	if (!i915_gem_object_is_shrinkable(obj))
    488 		return;
    489 
    490 	if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1))
    491 		return;
    492 
    493 	spin_lock_irqsave(&i915->mm.obj_lock, flags);
    494 	GEM_BUG_ON(!kref_read(&obj->base.refcount));
    495 	if (atomic_dec_and_test(&obj->mm.shrink_pin)) {
    496 		GEM_BUG_ON(!list_empty(&obj->mm.link));
    497 
    498 		list_add_tail(&obj->mm.link, head);
    499 		i915->mm.shrink_count++;
    500 		i915->mm.shrink_memory += obj->base.size;
    501 
    502 	}
    503 	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
    504 }
    505 
    506 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
    507 {
    508 	__i915_gem_object_make_shrinkable(obj,
    509 					  &obj_to_i915(obj)->mm.shrink_list);
    510 }
    511 
    512 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
    513 {
    514 	__i915_gem_object_make_shrinkable(obj,
    515 					  &obj_to_i915(obj)->mm.purge_list);
    516 }
    517