1 /* $NetBSD: sun2.c,v 1.13 2020/06/20 18:45:06 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross and Matthew Fredette. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Standalone functions specific to the Sun2. 34 */ 35 36 /* 37 * We need to get the sun2 NBSG definition, even if we're 38 * building this with a different sun68k target. 39 */ 40 #include <arch/sun2/include/pmap.h> 41 42 #include <sys/param.h> 43 #include <machine/idprom.h> 44 #include <machine/mon.h> 45 46 #include <arch/sun2/include/pte.h> 47 #include <arch/sun2/sun2/control.h> 48 #ifdef notyet 49 #include <arch/sun3/sun3/vme.h> 50 #else 51 #define VME16_BASE MBIO_BASE 52 #define VME16_MASK MBIO_MASK 53 #endif 54 #include <arch/sun2/sun2/mbmem.h> 55 #include <arch/sun2/sun2/mbio.h> 56 57 #include <stand.h> 58 59 #include "libsa.h" 60 #include "dvma.h" 61 #include "saio.h" /* enum MAPTYPES */ 62 63 #define OBIO_MASK 0xFFFFFF 64 65 static u_int sun2_get_pte(vaddr_t); 66 static void sun2_set_pte(vaddr_t, u_int); 67 static void dvma2_init(void); 68 static char * dvma2_alloc(int); 69 static void dvma2_free(char *, int); 70 static char * dvma2_mapin(char *, int); 71 static void dvma2_mapout(char *, int); 72 static char * dev2_mapin(int, u_long, int); 73 static int sun2_get_segmap(vaddr_t); 74 static void sun2_set_segmap(vaddr_t, int); 75 76 struct mapinfo { 77 int maptype; 78 int pgtype; 79 u_int base; 80 u_int mask; 81 }; 82 83 #ifdef notyet 84 struct mapinfo 85 sun2_mapinfo[MAP__NTYPES] = { 86 /* On-board memory, I/O */ 87 { MAP_MAINMEM, PGT_OBMEM, 0, ~0 }, 88 { MAP_OBIO, PGT_OBIO, 0, OBIO_MASK }, 89 /* Multibus memory, I/O */ 90 { MAP_MBMEM, PGT_MBMEM, MBMEM_BASE, MBMEM_MASK }, 91 { MAP_MBIO, PGT_MBIO, MBIO_BASE, MBIO_MASK }, 92 /* VME A16 */ 93 { MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK }, 94 { MAP_VME16A32D, 0, 0, 0 }, 95 /* VME A24 */ 96 { MAP_VME24A16D, 0, 0, 0 }, 97 { MAP_VME24A32D, 0, 0, 0 }, 98 /* VME A32 */ 99 { MAP_VME32A16D, 0, 0, 0 }, 100 { MAP_VME32A32D, 0, 0, 0 }, 101 }; 102 #endif 103 104 /* The virtual address we will use for PROM device mappings. */ 105 int sun2_devmap = SUN3_MONSHORTSEG; 106 107 static char * 108 dev2_mapin(int maptype, u_long physaddr, int length) 109 { 110 #ifdef notyet 111 u_int i, pa, pte, pgva, va; 112 113 if ((sun2_devmap + length) > SUN3_MONSHORTPAGE) 114 panic("dev2_mapin: length=%d", length); 115 116 for (i = 0; i < MAP__NTYPES; i++) 117 if (sun2_mapinfo[i].maptype == maptype) 118 goto found; 119 panic("dev2_mapin: bad maptype"); 120 found: 121 122 if (physaddr & ~(sun2_mapinfo[i].mask)) 123 panic("dev2_mapin: bad address"); 124 pa = sun2_mapinfo[i].base += physaddr; 125 126 pte = PA_PGNUM(pa) | PG_PERM | 127 sun2_mapinfo[i].pgtype; 128 129 va = pgva = sun2_devmap; 130 do { 131 sun2_set_pte(pgva, pte); 132 pgva += NBPG; 133 pte += 1; 134 length -= NBPG; 135 } while (length > 0); 136 sun2_devmap = pgva; 137 va += (physaddr & PGOFSET); 138 139 #ifdef DEBUG_PROM 140 if (debug) 141 printf("dev2_mapin: va=0x%x pte=0x%x\n", 142 va, sun2_get_pte(va)); 143 #endif 144 return ((char*)va); 145 #else 146 panic("dev2_mapin"); 147 return(NULL); 148 #endif 149 } 150 151 /***************************************************************** 152 * DVMA support 153 */ 154 155 /* 156 * The easiest way to deal with the need for DVMA mappings is to 157 * create a DVMA alias mapping of the entire address range used by 158 * the boot program. That way, dvma_mapin can just compute the 159 * DVMA alias address, and dvma_mapout does nothing. 160 * 161 * Note that this assumes that standalone programs will do I/O 162 * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked. 163 */ 164 165 #define DVMA_BASE 0x00f00000 166 #define DVMA_MAPLEN 0x38000 /* 256K - 32K (save MONSHORTSEG) */ 167 168 #define SA_MIN_VA 0x220000 169 #define SA_MAX_VA (SA_MIN_VA + DVMA_MAPLEN) 170 171 /* This points to the end of the free DVMA space. */ 172 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN; 173 174 static void 175 dvma2_init(void) 176 { 177 int segva, dmava, sme; 178 179 segva = SA_MIN_VA; 180 dmava = DVMA_BASE; 181 182 while (segva < SA_MAX_VA) { 183 sme = sun2_get_segmap(segva); 184 sun2_set_segmap(dmava, sme); 185 segva += NBSG; 186 dmava += NBSG; 187 } 188 } 189 190 /* Convert a local address to a DVMA address. */ 191 static char * 192 dvma2_mapin(char *addr, int len) 193 { 194 int va = (int)addr; 195 196 /* Make sure the address is in the DVMA map. */ 197 if ((va < SA_MIN_VA) || (va >= SA_MAX_VA)) 198 panic("dvma2_mapin: 0x%x outside 0x%x..0x%x", 199 va, SA_MIN_VA, SA_MAX_VA); 200 201 va -= SA_MIN_VA; 202 va += DVMA_BASE; 203 204 return ((char *) va); 205 } 206 207 /* Destroy a DVMA address alias. */ 208 void 209 dvma2_mapout(char *addr, int len) 210 { 211 int va = (int)addr; 212 213 /* Make sure the address is in the DVMA map. */ 214 if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN))) 215 panic("dvma2_mapout"); 216 } 217 218 static char * 219 dvma2_alloc(int len) 220 { 221 len = m68k_round_page(len); 222 dvma2_end -= len; 223 return((char*)dvma2_end); 224 } 225 226 void 227 dvma2_free(char *dvma, int len) 228 { 229 /* not worth the trouble */ 230 } 231 232 /***************************************************************** 233 * Control space stuff... 234 */ 235 236 static u_int 237 sun2_get_pte(vaddr_t va) 238 { 239 u_int pte; 240 241 pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va)); 242 if (pte & PG_VALID) { 243 /* 244 * This clears bit 30 (the kernel readable bit, which 245 * should always be set), bit 28 (which should always 246 * be set) and bit 26 (the user writable bit, which we 247 * always have tracking the kernel writable bit). In 248 * the protection, this leaves bit 29 (the kernel 249 * writable bit) and bit 27 (the user readable bit). 250 * See pte2.h for more about this hack. 251 */ 252 pte &= ~(0x54000000); 253 /* 254 * Flip bit 27 (the user readable bit) to become bit 255 * 27 (the PG_SYSTEM bit). 256 */ 257 pte ^= (PG_SYSTEM); 258 } 259 return (pte); 260 } 261 262 static void 263 sun2_set_pte(vaddr_t va, u_int pte) 264 { 265 if (pte & PG_VALID) { 266 /* Clear bit 26 (the user writable bit). */ 267 pte &= (~0x04000000); 268 /* 269 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27 270 * (the user readable bit). 271 */ 272 pte ^= (PG_SYSTEM); 273 /* 274 * Always set bits 30 (the kernel readable bit) and 275 * bit 28, and set bit 26 (the user writable bit) iff 276 * bit 29 (the kernel writable bit) is set *and* bit 277 * 27 (the user readable bit) is set. This latter bit 278 * of logic is expressed in the bizarre second term 279 * below, chosen because it needs no branches. 280 */ 281 #if (PG_WRITE >> 2) != PG_SYSTEM 282 #error "PG_WRITE and PG_SYSTEM definitions don't match!" 283 #endif 284 pte |= 0x50000000 285 | ((((pte & PG_WRITE) >> 2) & pte) >> 1); 286 } 287 set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte); 288 } 289 290 static int 291 sun2_get_segmap(vaddr_t va) 292 { 293 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va); 294 return (get_control_byte(va)); 295 } 296 297 static void 298 sun2_set_segmap(vaddr_t va, int sme) 299 { 300 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va); 301 set_control_byte(va, sme); 302 } 303 304 /* 305 * Copy the IDPROM contents into the passed buffer. 306 * The caller (idprom.c) will do the checksum. 307 */ 308 void 309 sun2_getidprom(u_char *dst) 310 { 311 vaddr_t src; /* control space address */ 312 int len, x; 313 314 src = IDPROM_BASE; 315 len = sizeof(struct idprom); 316 do { 317 x = get_control_byte(src); 318 src += NBPG; 319 *dst++ = x; 320 } while (--len > 0); 321 } 322 323 /***************************************************************** 324 * Init our function pointers, etc. 325 */ 326 327 /* 328 * For booting, the PROM in fredette's Sun 2/120 doesn't map 329 * much main memory, and what is mapped is mapped strangely. 330 * Low virtual memory is mapped like: 331 * 332 * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical 333 * 0x0c0000 - 0x0fffff virtual -> invalid 334 * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical 335 * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical 336 * 337 * I think the SunOS authors wanted to load kernels starting at 338 * physical zero, and assumed that kernels would be less 339 * than 768K (0x0c0000) long. Also, the PROM maps physical 340 * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the 341 * easy road and just add more mappings to use that physical 342 * memory while loading (the PROM might do DMA there). 343 * 344 * What we do, then, is assume a 4MB machine (you'll really 345 * need that to run NetBSD at all anyways), and we map two 346 * chunks of physical and virtual space: 347 * 348 * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical 349 * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical 350 * 351 * And then we load starting at virtual 0x400000. We will do 352 * all of this mapping just by copying PMEGs. 353 * 354 * After the load is done, but before we enter the kernel, we're 355 * done with the PROM, so we copy the part of the kernel that 356 * got loaded at physical 0x2c0000 down to physical 0x0c0000. 357 * This can't just be a PMEG copy; we've actually got to move 358 * bytes in physical memory. 359 * 360 * These two chunks of physical and virtual space are defined 361 * in macros below. Some of the macros are only for completeness: 362 */ 363 #define MEM_CHUNK0_SIZE (0x0c0000) 364 #define MEM_CHUNK0_LOAD_PHYS (0x000000) 365 #define MEM_CHUNK0_LOAD_VIRT (0x400000) 366 #define MEM_CHUNK0_LOAD_VIRT_PROM MEM_CHUNK0_LOAD_PHYS 367 #define MEM_CHUNK0_COPY_PHYS MEM_CHUNK0_LOAD_PHYS 368 #define MEM_CHUNK0_COPY_VIRT MEM_CHUNK0_COPY_PHYS 369 370 #define MEM_CHUNK1_SIZE (0x140000) 371 #define MEM_CHUNK1_LOAD_PHYS (0x2c0000) 372 #define MEM_CHUNK1_LOAD_VIRT (MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE) 373 #define MEM_CHUNK1_LOAD_VIRT_PROM MEM_CHUNK1_LOAD_PHYS 374 #define MEM_CHUNK1_COPY_PHYS (MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE) 375 #define MEM_CHUNK1_COPY_VIRT MEM_CHUNK1_COPY_PHYS 376 377 /* Maps memory for loading. */ 378 u_long 379 sun2_map_mem_load(void) 380 { 381 vaddr_t off; 382 383 /* Map chunk zero for loading. */ 384 for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG) 385 sun2_set_segmap(MEM_CHUNK0_LOAD_VIRT + off, 386 sun2_get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off)); 387 388 /* Map chunk one for loading. */ 389 for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG) 390 sun2_set_segmap(MEM_CHUNK1_LOAD_VIRT + off, 391 sun2_get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off)); 392 393 /* Tell our caller where in virtual space to load. */ 394 return MEM_CHUNK0_LOAD_VIRT; 395 } 396 397 /* Remaps memory for running. */ 398 void * 399 sun2_map_mem_run(void *entry) 400 { 401 vaddr_t off, off_end; 402 int sme; 403 u_int pte; 404 405 /* Chunk zero is already mapped and copied. */ 406 407 /* Chunk one needs to be mapped and copied. */ 408 pte = (sun2_get_pte(0) & ~PG_FRAME); 409 for(off = 0; off < MEM_CHUNK1_SIZE; ) { 410 411 /* 412 * We use the PMEG immediately before the 413 * segment we're copying in the PROM virtual 414 * mapping of the chunk. If this is the first 415 * segment, this is the PMEG the PROM used to 416 * map 0x2b8000 virtual to 0x2b8000 physical, 417 * which I'll assume is unused. For the second 418 * and subsequent segments, this will be the 419 * PMEG used to map the previous segment, which 420 * is now (since we already copied it) unused. 421 */ 422 sme = sun2_get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG); 423 sun2_set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme); 424 425 /* Set the PTEs in this new PMEG. */ 426 for(off_end = off + NBSG; off < off_end; off += NBPG) 427 sun2_set_pte(MEM_CHUNK1_COPY_VIRT + off, 428 pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off)); 429 430 /* Copy this segment. */ 431 memcpy((void *)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)), 432 (void *)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)), 433 NBSG); 434 } 435 436 /* Tell our caller where in virtual space to enter. */ 437 return ((char *)entry) - MEM_CHUNK0_LOAD_VIRT; 438 } 439 440 void 441 sun2_init(void) 442 { 443 /* Set the function pointers. */ 444 dev_mapin_p = dev2_mapin; 445 dvma_alloc_p = dvma2_alloc; 446 dvma_free_p = dvma2_free; 447 dvma_mapin_p = dvma2_mapin; 448 dvma_mapout_p = dvma2_mapout; 449 450 /* Prepare DVMA segment. */ 451 dvma2_init(); 452 } 453