1 /* $NetBSD: kern_time.c,v 1.231 2026/02/07 01:47:23 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.231 2026/02/07 01:47:23 riastradh Exp $"); 66 67 #include <sys/param.h> 68 #include <sys/types.h> 69 70 #include <sys/callout.h> 71 #include <sys/cpu.h> 72 #include <sys/errno.h> 73 #include <sys/intr.h> 74 #include <sys/kauth.h> 75 #include <sys/kernel.h> 76 #include <sys/kmem.h> 77 #include <sys/lwp.h> 78 #include <sys/mount.h> 79 #include <sys/mutex.h> 80 #include <sys/proc.h> 81 #include <sys/queue.h> 82 #include <sys/resourcevar.h> 83 #include <sys/sdt.h> 84 #include <sys/signal.h> 85 #include <sys/signalvar.h> 86 #include <sys/syscallargs.h> 87 #include <sys/syslog.h> 88 #include <sys/systm.h> 89 #include <sys/timetc.h> 90 #include <sys/timevar.h> 91 #include <sys/timex.h> 92 #include <sys/vnode.h> 93 94 #include <machine/limits.h> 95 96 kmutex_t itimer_mutex __cacheline_aligned; /* XXX static */ 97 static struct itlist itimer_realtime_changed_notify; 98 99 static void itimer_callout(void *); 100 static void ptimer_intr(void *); 101 static void *ptimer_sih __read_mostly; 102 static TAILQ_HEAD(, ptimer) ptimer_queue; 103 104 #define CLOCK_VIRTUAL_P(clockid) \ 105 ((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF) 106 107 CTASSERT(ITIMER_REAL == CLOCK_REALTIME); 108 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL); 109 CTASSERT(ITIMER_PROF == CLOCK_PROF); 110 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC); 111 112 /* 113 * Initialize timekeeping. 114 */ 115 void 116 time_init(void) 117 { 118 119 mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED); 120 LIST_INIT(&itimer_realtime_changed_notify); 121 122 TAILQ_INIT(&ptimer_queue); 123 ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, 124 ptimer_intr, NULL); 125 } 126 127 /* 128 * Check if the time will wrap if set to ts. 129 * 130 * ts - timespec describing the new time 131 * delta - the delta between the current time and ts 132 */ 133 bool 134 time_wraps(struct timespec *ts, struct timespec *delta) 135 { 136 137 /* 138 * Don't allow the time to be set forward so far it 139 * will wrap and become negative, thus allowing an 140 * attacker to bypass the next check below. The 141 * cutoff is 1 year before rollover occurs, so even 142 * if the attacker uses adjtime(2) to move the time 143 * past the cutoff, it will take a very long time 144 * to get to the wrap point. 145 */ 146 if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) || 147 (delta->tv_sec < 0 || delta->tv_nsec < 0)) 148 return true; 149 150 return false; 151 } 152 153 /* 154 * itimer_lock: 155 * 156 * Acquire the interval timer data lock. 157 */ 158 void 159 itimer_lock(void) 160 { 161 mutex_spin_enter(&itimer_mutex); 162 } 163 164 /* 165 * itimer_unlock: 166 * 167 * Release the interval timer data lock. 168 */ 169 void 170 itimer_unlock(void) 171 { 172 mutex_spin_exit(&itimer_mutex); 173 } 174 175 /* 176 * itimer_lock_held: 177 * 178 * Check that the interval timer lock is held for diagnostic 179 * assertions. 180 */ 181 inline bool __diagused 182 itimer_lock_held(void) 183 { 184 return mutex_owned(&itimer_mutex); 185 } 186 187 /* 188 * Time of day and interval timer support. 189 * 190 * These routines provide the kernel entry points to get and set 191 * the time-of-day and per-process interval timers. Subroutines 192 * here provide support for adding and subtracting timeval structures 193 * and decrementing interval timers, optionally reloading the interval 194 * timers when they expire. 195 */ 196 197 /* This function is used by clock_settime and settimeofday */ 198 static int 199 settime1(struct proc *p, const struct timespec *ts, bool check_kauth) 200 { 201 struct timespec delta, now; 202 203 /* 204 * The time being set to an unreasonable value will cause 205 * unreasonable system behaviour. 206 */ 207 if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36)) 208 return SET_ERROR(EINVAL); 209 210 nanotime(&now); 211 timespecsub(ts, &now, &delta); 212 213 if (check_kauth && kauth_authorize_system(kauth_cred_get(), 214 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts), 215 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) { 216 return SET_ERROR(EPERM); 217 } 218 219 #ifdef notyet 220 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */ 221 return SET_ERROR(EPERM); 222 } 223 #endif 224 225 tc_setclock(ts); 226 227 resettodr(); 228 229 /* 230 * Notify pending CLOCK_REALTIME timers about the real time change. 231 * There may be inactive timers on this list, but this happens 232 * comparatively less often than timers firing, and so it's better 233 * to put the extra checks here than to complicate the other code 234 * path. 235 */ 236 struct itimer *it; 237 itimer_lock(); 238 LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) { 239 KASSERT(it->it_ops->ito_realtime_changed != NULL); 240 if (timespecisset(&it->it_time.it_value)) { 241 (*it->it_ops->ito_realtime_changed)(it); 242 } 243 } 244 itimer_unlock(); 245 246 return 0; 247 } 248 249 int 250 settime(struct proc *p, struct timespec *ts) 251 { 252 return settime1(p, ts, true); 253 } 254 255 /* ARGSUSED */ 256 int 257 sys___clock_gettime50(struct lwp *l, 258 const struct sys___clock_gettime50_args *uap, register_t *retval) 259 { 260 /* { 261 syscallarg(clockid_t) clock_id; 262 syscallarg(struct timespec *) tp; 263 } */ 264 int error; 265 struct timespec ats; 266 267 error = clock_gettime1(SCARG(uap, clock_id), &ats); 268 if (error != 0) 269 return error; 270 271 return copyout(&ats, SCARG(uap, tp), sizeof(ats)); 272 } 273 274 /* ARGSUSED */ 275 int 276 sys___clock_settime50(struct lwp *l, 277 const struct sys___clock_settime50_args *uap, register_t *retval) 278 { 279 /* { 280 syscallarg(clockid_t) clock_id; 281 syscallarg(const struct timespec *) tp; 282 } */ 283 int error; 284 struct timespec ats; 285 286 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 287 return error; 288 289 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true); 290 } 291 292 293 int 294 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp, 295 bool check_kauth) 296 { 297 int error; 298 299 if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L) 300 return SET_ERROR(EINVAL); 301 302 switch (clock_id) { 303 case CLOCK_REALTIME: 304 if ((error = settime1(p, tp, check_kauth)) != 0) 305 return error; 306 break; 307 case CLOCK_MONOTONIC: 308 return SET_ERROR(EINVAL); /* read-only clock */ 309 default: 310 return SET_ERROR(EINVAL); 311 } 312 313 return 0; 314 } 315 316 int 317 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap, 318 register_t *retval) 319 { 320 /* { 321 syscallarg(clockid_t) clock_id; 322 syscallarg(struct timespec *) tp; 323 } */ 324 struct timespec ts; 325 int error; 326 327 if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0) 328 return error; 329 330 if (SCARG(uap, tp)) 331 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 332 333 return error; 334 } 335 336 int 337 clock_getres1(clockid_t clock_id, struct timespec *ts) 338 { 339 340 switch (clock_id) { 341 case CLOCK_REALTIME: 342 case CLOCK_MONOTONIC: 343 case CLOCK_PROCESS_CPUTIME_ID: 344 case CLOCK_THREAD_CPUTIME_ID: 345 ts->tv_sec = 0; 346 if (tc_getfrequency() > 1000000000) 347 ts->tv_nsec = 1; 348 else 349 ts->tv_nsec = 1000000000 / tc_getfrequency(); 350 break; 351 default: 352 return SET_ERROR(EINVAL); 353 } 354 355 return 0; 356 } 357 358 /* ARGSUSED */ 359 int 360 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap, 361 register_t *retval) 362 { 363 /* { 364 syscallarg(struct timespec *) rqtp; 365 syscallarg(struct timespec *) rmtp; 366 } */ 367 struct timespec rmt, rqt; 368 int error, error1; 369 370 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 371 if (error) 372 return error; 373 374 error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt, 375 SCARG(uap, rmtp) ? &rmt : NULL); 376 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 377 return error; 378 379 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 380 return error1 ? error1 : error; 381 } 382 383 /* ARGSUSED */ 384 int 385 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap, 386 register_t *retval) 387 { 388 /* { 389 syscallarg(clockid_t) clock_id; 390 syscallarg(int) flags; 391 syscallarg(struct timespec *) rqtp; 392 syscallarg(struct timespec *) rmtp; 393 } */ 394 struct timespec rmt, rqt; 395 int error, error1; 396 397 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec)); 398 if (error) 399 goto out; 400 401 error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt, 402 SCARG(uap, rmtp) ? &rmt : NULL); 403 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR)) 404 goto out; 405 406 if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 && 407 (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0) 408 error = error1; 409 out: 410 *retval = error; 411 return 0; 412 } 413 414 int 415 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt, 416 struct timespec *rmt) 417 { 418 struct timespec rmtstart; 419 int error, timo; 420 421 if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) { 422 if (error == ETIMEDOUT) { 423 error = 0; 424 if (rmt != NULL) 425 rmt->tv_sec = rmt->tv_nsec = 0; 426 } 427 return error; 428 } 429 430 /* 431 * Avoid inadvertently sleeping forever 432 */ 433 if (timo == 0) 434 timo = 1; 435 again: 436 error = kpause("nanoslp", true, timo, NULL); 437 if (error == EWOULDBLOCK) 438 error = 0; 439 if (rmt != NULL || error == 0) { 440 struct timespec rmtend; 441 struct timespec t0; 442 struct timespec *t; 443 int err; 444 445 err = clock_gettime1(clock_id, &rmtend); 446 if (err != 0) 447 return err; 448 449 t = (rmt != NULL) ? rmt : &t0; 450 if (flags & TIMER_ABSTIME) { 451 timespecsub(rqt, &rmtend, t); 452 } else { 453 if (timespeccmp(&rmtend, &rmtstart, <)) 454 timespecclear(t); /* clock wound back */ 455 else 456 timespecsub(&rmtend, &rmtstart, t); 457 if (timespeccmp(rqt, t, <)) 458 timespecclear(t); 459 else 460 timespecsub(rqt, t, t); 461 } 462 if (t->tv_sec < 0) 463 timespecclear(t); 464 if (error == 0) { 465 timo = tstohz(t); 466 if (timo > 0) 467 goto again; 468 } 469 } 470 471 if (error == ERESTART) 472 error = SET_ERROR(EINTR); 473 474 return error; 475 } 476 477 int 478 sys_clock_getcpuclockid2(struct lwp *l, 479 const struct sys_clock_getcpuclockid2_args *uap, 480 register_t *retval) 481 { 482 /* { 483 syscallarg(idtype_t idtype; 484 syscallarg(id_t id); 485 syscallarg(clockid_t *)clock_id; 486 } */ 487 pid_t pid; 488 lwpid_t lid; 489 clockid_t clock_id; 490 id_t id = SCARG(uap, id); 491 492 switch (SCARG(uap, idtype)) { 493 case P_PID: 494 pid = id == 0 ? l->l_proc->p_pid : id; 495 clock_id = CLOCK_PROCESS_CPUTIME_ID | pid; 496 break; 497 case P_LWPID: 498 lid = id == 0 ? l->l_lid : id; 499 clock_id = CLOCK_THREAD_CPUTIME_ID | lid; 500 break; 501 default: 502 return SET_ERROR(EINVAL); 503 } 504 return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id)); 505 } 506 507 /* ARGSUSED */ 508 int 509 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap, 510 register_t *retval) 511 { 512 /* { 513 syscallarg(struct timeval *) tp; 514 syscallarg(void *) tzp; really "struct timezone *"; 515 } */ 516 struct timeval atv; 517 int error = 0; 518 struct timezone tzfake; 519 520 if (SCARG(uap, tp)) { 521 memset(&atv, 0, sizeof(atv)); 522 microtime(&atv); 523 error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); 524 if (error) 525 return error; 526 } 527 if (SCARG(uap, tzp)) { 528 /* 529 * NetBSD has no kernel notion of time zone, so we just 530 * fake up a timezone struct and return it if demanded. 531 */ 532 tzfake.tz_minuteswest = 0; 533 tzfake.tz_dsttime = 0; 534 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); 535 } 536 return error; 537 } 538 539 /* ARGSUSED */ 540 int 541 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap, 542 register_t *retval) 543 { 544 /* { 545 syscallarg(const struct timeval *) tv; 546 syscallarg(const void *) tzp; really "const struct timezone *"; 547 } */ 548 549 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true); 550 } 551 552 int 553 settimeofday1(const struct timeval *utv, bool userspace, 554 const void *utzp, struct lwp *l, bool check_kauth) 555 { 556 struct timeval atv; 557 struct timespec ts; 558 int error; 559 560 /* Verify all parameters before changing time. */ 561 562 /* 563 * NetBSD has no kernel notion of time zone, and only an 564 * obsolete program would try to set it, so we log a warning. 565 */ 566 if (utzp) 567 log(LOG_WARNING, "pid %d attempted to set the " 568 "(obsolete) kernel time zone\n", l->l_proc->p_pid); 569 570 if (utv == NULL) 571 return 0; 572 573 if (userspace) { 574 if ((error = copyin(utv, &atv, sizeof(atv))) != 0) 575 return error; 576 utv = &atv; 577 } 578 579 if (utv->tv_usec < 0 || utv->tv_usec >= 1000000) 580 return SET_ERROR(EINVAL); 581 582 TIMEVAL_TO_TIMESPEC(utv, &ts); 583 return settime1(l->l_proc, &ts, check_kauth); 584 } 585 586 int time_adjusted; /* set if an adjustment is made */ 587 588 /* ARGSUSED */ 589 int 590 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap, 591 register_t *retval) 592 { 593 /* { 594 syscallarg(const struct timeval *) delta; 595 syscallarg(struct timeval *) olddelta; 596 } */ 597 int error; 598 struct timeval atv, oldatv; 599 600 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, 601 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0) 602 return error; 603 604 if (SCARG(uap, delta)) { 605 error = copyin(SCARG(uap, delta), &atv, 606 sizeof(*SCARG(uap, delta))); 607 if (error) 608 return error; 609 } 610 adjtime1(SCARG(uap, delta) ? &atv : NULL, 611 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc); 612 if (SCARG(uap, olddelta)) 613 error = copyout(&oldatv, SCARG(uap, olddelta), 614 sizeof(*SCARG(uap, olddelta))); 615 return error; 616 } 617 618 void 619 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p) 620 { 621 622 if (olddelta) { 623 memset(olddelta, 0, sizeof(*olddelta)); 624 mutex_spin_enter(&timecounter_lock); 625 olddelta->tv_sec = time_adjtime / 1000000; 626 olddelta->tv_usec = time_adjtime % 1000000; 627 if (olddelta->tv_usec < 0) { 628 olddelta->tv_usec += 1000000; 629 olddelta->tv_sec--; 630 } 631 mutex_spin_exit(&timecounter_lock); 632 } 633 634 if (delta) { 635 mutex_spin_enter(&timecounter_lock); 636 /* 637 * XXX This should maybe just report failure to 638 * userland for nonsense deltas. 639 */ 640 if (delta->tv_sec > INT64_MAX/1000000 - 1) { 641 time_adjtime = INT64_MAX; 642 } else if (delta->tv_sec < INT64_MIN/1000000 + 1) { 643 time_adjtime = INT64_MIN; 644 } else { 645 time_adjtime = delta->tv_sec * 1000000 646 + MAX(-999999, MIN(999999, delta->tv_usec)); 647 } 648 649 if (time_adjtime) { 650 /* We need to save the system time during shutdown */ 651 time_adjusted |= 1; 652 } 653 mutex_spin_exit(&timecounter_lock); 654 } 655 } 656 657 /* 658 * Interval timer support. 659 * 660 * The itimer_*() routines provide generic support for interval timers, 661 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL, 662 * CLOCK_PROF). 663 * 664 * Real timers keep their deadline as an absolute time, and are fired 665 * by a callout. Virtual timers are kept as a linked-list of deltas, 666 * and are processed by hardclock(). 667 * 668 * Because the real time timer callout may be delayed in real time due 669 * to interrupt processing on the system, it is possible for the real 670 * time timeout routine (itimer_callout()) run past after its deadline. 671 * It does not suffice, therefore, to reload the real timer .it_value 672 * from the timer's .it_interval. Rather, we compute the next deadline 673 * in absolute time based on the current time and the .it_interval value, 674 * and report any overruns. 675 * 676 * Note that while the virtual timers are supported in a generic fashion 677 * here, they only (currently) make sense as per-process timers, and thus 678 * only really work for that case. 679 */ 680 681 /* 682 * itimer_init: 683 * 684 * Initialize the common data for an interval timer. 685 */ 686 void 687 itimer_init(struct itimer * const it, const struct itimer_ops * const ops, 688 clockid_t const id, struct itlist * const itl) 689 { 690 691 KASSERT(itimer_lock_held()); 692 KASSERT(ops != NULL); 693 694 timespecclear(&it->it_time.it_value); 695 it->it_ops = ops; 696 it->it_clockid = id; 697 it->it_overruns = 0; 698 it->it_dying = false; 699 if (!CLOCK_VIRTUAL_P(id)) { 700 KASSERT(itl == NULL); 701 callout_init(&it->it_ch, CALLOUT_MPSAFE); 702 callout_setfunc(&it->it_ch, itimer_callout, it); 703 if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) { 704 LIST_INSERT_HEAD(&itimer_realtime_changed_notify, 705 it, it_rtchgq); 706 } 707 } else { 708 KASSERT(itl != NULL); 709 it->it_vlist = itl; 710 it->it_active = false; 711 } 712 } 713 714 /* 715 * itimer_poison: 716 * 717 * Poison an interval timer, preventing it from being scheduled 718 * or processed, in preparation for freeing the timer. 719 */ 720 void 721 itimer_poison(struct itimer * const it) 722 { 723 724 KASSERT(itimer_lock_held()); 725 726 it->it_dying = true; 727 728 /* 729 * For non-virtual timers, stop the callout, or wait for it to 730 * run if it has already fired. It cannot restart again after 731 * this point: the callout won't restart itself when dying, no 732 * other users holding the lock can restart it, and any other 733 * users waiting for callout_halt concurrently (itimer_settime) 734 * will restart from the top. 735 */ 736 if (!CLOCK_VIRTUAL_P(it->it_clockid)) { 737 callout_halt(&it->it_ch, &itimer_mutex); 738 if (it->it_clockid == CLOCK_REALTIME && 739 it->it_ops->ito_realtime_changed != NULL) { 740 LIST_REMOVE(it, it_rtchgq); 741 } 742 } 743 } 744 745 /* 746 * itimer_fini: 747 * 748 * Release resources used by an interval timer. 749 * 750 * N.B. itimer_lock must be held on entry, and is released on exit. 751 */ 752 void 753 itimer_fini(struct itimer * const it) 754 { 755 756 KASSERT(itimer_lock_held()); 757 758 /* All done with the global state. */ 759 itimer_unlock(); 760 761 /* Destroy the callout, if needed. */ 762 if (!CLOCK_VIRTUAL_P(it->it_clockid)) 763 callout_destroy(&it->it_ch); 764 } 765 766 /* 767 * itimer_decr: 768 * 769 * Decrement an interval timer by a specified number of nanoseconds, 770 * which must be less than a second, i.e. < 1000000000. If the timer 771 * expires, then reload it. In this case, carry over (nsec - old value) 772 * to reduce the value reloaded into the timer so that the timer does 773 * not drift. This routine assumes that it is called in a context where 774 * the timers on which it is operating cannot change in value. 775 * 776 * Returns true if the timer has expired. 777 */ 778 static bool 779 itimer_decr(struct itimer *it, int nsec) 780 { 781 struct itimerspec *itp; 782 int error __diagused; 783 784 KASSERT(itimer_lock_held()); 785 KASSERT(CLOCK_VIRTUAL_P(it->it_clockid)); 786 787 itp = &it->it_time; 788 if (itp->it_value.tv_nsec < nsec) { 789 if (itp->it_value.tv_sec == 0) { 790 /* expired, and already in next interval */ 791 nsec -= itp->it_value.tv_nsec; 792 goto expire; 793 } 794 itp->it_value.tv_nsec += 1000000000; 795 itp->it_value.tv_sec--; 796 } 797 itp->it_value.tv_nsec -= nsec; 798 nsec = 0; 799 if (timespecisset(&itp->it_value)) 800 return false; 801 /* expired, exactly at end of interval */ 802 expire: 803 if (timespecisset(&itp->it_interval)) { 804 itp->it_value = itp->it_interval; 805 itp->it_value.tv_nsec -= nsec; 806 if (itp->it_value.tv_nsec < 0) { 807 itp->it_value.tv_nsec += 1000000000; 808 itp->it_value.tv_sec--; 809 } 810 error = itimer_settime(it); 811 KASSERT(error == 0); /* virtual, never fails */ 812 } else 813 itp->it_value.tv_nsec = 0; /* sec is already 0 */ 814 return true; 815 } 816 817 /* 818 * itimer_arm_real: 819 * 820 * Arm a non-virtual timer. 821 */ 822 static void 823 itimer_arm_real(struct itimer * const it) 824 { 825 826 KASSERT(!it->it_dying); 827 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid)); 828 KASSERT(!callout_pending(&it->it_ch)); 829 830 /* 831 * Don't need to check tshzto() return value, here. 832 * callout_schedule() does it for us. 833 */ 834 callout_schedule(&it->it_ch, 835 (it->it_clockid == CLOCK_MONOTONIC 836 ? tshztoup(&it->it_time.it_value) 837 : tshzto(&it->it_time.it_value))); 838 } 839 840 /* 841 * itimer_callout: 842 * 843 * Callout to expire a non-virtual timer. Queue it up for processing, 844 * and then reload, if it is configured to do so. 845 * 846 * N.B. A delay in processing this callout causes multiple 847 * SIGALRM calls to be compressed into one. 848 */ 849 static void 850 itimer_callout(void *arg) 851 { 852 struct timespec now, next; 853 struct itimer * const it = arg; 854 int overruns; 855 856 itimer_lock(); 857 (*it->it_ops->ito_fire)(it); 858 859 if (!timespecisset(&it->it_time.it_interval)) { 860 timespecclear(&it->it_time.it_value); 861 itimer_unlock(); 862 return; 863 } 864 865 if (it->it_clockid == CLOCK_MONOTONIC) { 866 getnanouptime(&now); 867 } else { 868 getnanotime(&now); 869 } 870 871 /* 872 * Given the current itimer value and interval and the time 873 * now, compute the next itimer value and count overruns. 874 */ 875 itimer_transition(&it->it_time, &now, &next, &overruns); 876 it->it_time.it_value = next; 877 it->it_overruns += MIN(INT_MAX - overruns, overruns); 878 879 /* 880 * Reset the callout, if it's not going away. 881 */ 882 if (!it->it_dying) 883 itimer_arm_real(it); 884 itimer_unlock(); 885 } 886 887 /* 888 * itimer_settime: 889 * 890 * Set up the given interval timer. The value in it->it_time.it_value 891 * is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC 892 * timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers. 893 * 894 * If the callout had already fired but not yet run, fails with 895 * ERESTART -- caller must restart from the top to look up a timer. 896 * 897 * Caller is responsible for validating it->it_value and 898 * it->it_interval, e.g. with itimerfix or itimespecfix. 899 */ 900 int 901 itimer_settime(struct itimer *it) 902 { 903 struct itimer *itn, *pitn; 904 struct itlist *itl; 905 906 KASSERT(itimer_lock_held()); 907 KASSERT(!it->it_dying); 908 KASSERT(it->it_time.it_value.tv_sec >= 0); 909 KASSERT(it->it_time.it_value.tv_nsec >= 0); 910 KASSERT(it->it_time.it_value.tv_nsec < 1000000000); 911 KASSERT(it->it_time.it_interval.tv_sec >= 0); 912 KASSERT(it->it_time.it_interval.tv_nsec >= 0); 913 KASSERT(it->it_time.it_interval.tv_nsec < 1000000000); 914 915 if (!CLOCK_VIRTUAL_P(it->it_clockid)) { 916 /* 917 * Try to stop the callout. However, if it had already 918 * fired, we have to drop the lock to wait for it, so 919 * the world may have changed and pt may not be there 920 * any more. In that case, tell the caller to start 921 * over from the top. 922 */ 923 if (callout_halt(&it->it_ch, &itimer_mutex)) 924 return SET_ERROR(ERESTART); 925 KASSERT(!it->it_dying); 926 927 /* Now we can touch it and start it up again. */ 928 if (timespecisset(&it->it_time.it_value)) 929 itimer_arm_real(it); 930 } else { 931 if (it->it_active) { 932 itn = LIST_NEXT(it, it_list); 933 LIST_REMOVE(it, it_list); 934 for ( ; itn; itn = LIST_NEXT(itn, it_list)) 935 timespecadd(&it->it_time.it_value, 936 &itn->it_time.it_value, 937 &itn->it_time.it_value); 938 } 939 if (timespecisset(&it->it_time.it_value)) { 940 itl = it->it_vlist; 941 for (itn = LIST_FIRST(itl), pitn = NULL; 942 itn && timespeccmp(&it->it_time.it_value, 943 &itn->it_time.it_value, >); 944 pitn = itn, itn = LIST_NEXT(itn, it_list)) 945 timespecsub(&it->it_time.it_value, 946 &itn->it_time.it_value, 947 &it->it_time.it_value); 948 949 if (pitn) 950 LIST_INSERT_AFTER(pitn, it, it_list); 951 else 952 LIST_INSERT_HEAD(itl, it, it_list); 953 954 for ( ; itn ; itn = LIST_NEXT(itn, it_list)) 955 timespecsub(&itn->it_time.it_value, 956 &it->it_time.it_value, 957 &itn->it_time.it_value); 958 959 it->it_active = true; 960 } else { 961 it->it_active = false; 962 } 963 } 964 965 /* Success! */ 966 return 0; 967 } 968 969 /* 970 * itimer_gettime: 971 * 972 * Return the remaining time of an interval timer. 973 */ 974 void 975 itimer_gettime(const struct itimer *it, struct itimerspec *aits) 976 { 977 struct timespec now; 978 struct itimer *itn; 979 980 KASSERT(itimer_lock_held()); 981 KASSERT(!it->it_dying); 982 983 *aits = it->it_time; 984 if (!CLOCK_VIRTUAL_P(it->it_clockid)) { 985 /* 986 * Convert from absolute to relative time in .it_value 987 * part of real time timer. If time for real time 988 * timer has passed return 0, else return difference 989 * between current time and time for the timer to go 990 * off. 991 */ 992 if (timespecisset(&aits->it_value)) { 993 if (it->it_clockid == CLOCK_REALTIME) { 994 getnanotime(&now); 995 } else { /* CLOCK_MONOTONIC */ 996 getnanouptime(&now); 997 } 998 if (timespeccmp(&aits->it_value, &now, <)) 999 timespecclear(&aits->it_value); 1000 else 1001 timespecsub(&aits->it_value, &now, 1002 &aits->it_value); 1003 } 1004 } else if (it->it_active) { 1005 for (itn = LIST_FIRST(it->it_vlist); itn && itn != it; 1006 itn = LIST_NEXT(itn, it_list)) 1007 timespecadd(&aits->it_value, 1008 &itn->it_time.it_value, &aits->it_value); 1009 KASSERT(itn != NULL); /* it should be findable on the list */ 1010 } else 1011 timespecclear(&aits->it_value); 1012 } 1013 1014 /* 1015 * Per-process timer support. 1016 * 1017 * Both the BSD getitimer() family and the POSIX timer_*() family of 1018 * routines are supported. 1019 * 1020 * All timers are kept in an array pointed to by p_timers, which is 1021 * allocated on demand - many processes don't use timers at all. The 1022 * first four elements in this array are reserved for the BSD timers: 1023 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element 1024 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be 1025 * allocated by the timer_create() syscall. 1026 * 1027 * These timers are a "sub-class" of interval timer. 1028 */ 1029 1030 /* 1031 * ptimer_free: 1032 * 1033 * Free the per-process timer at the specified index. 1034 */ 1035 static void 1036 ptimer_free(struct ptimers *pts, int index) 1037 { 1038 struct itimer *it; 1039 struct ptimer *pt; 1040 1041 KASSERT(itimer_lock_held()); 1042 1043 it = pts->pts_timers[index]; 1044 pt = container_of(it, struct ptimer, pt_itimer); 1045 pts->pts_timers[index] = NULL; 1046 itimer_poison(it); 1047 1048 /* 1049 * Remove it from the queue to be signalled. Must be done 1050 * after itimer is poisoned, because we may have had to wait 1051 * for the callout to complete. 1052 */ 1053 if (pt->pt_queued) { 1054 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain); 1055 pt->pt_queued = false; 1056 } 1057 1058 itimer_fini(it); /* releases itimer_lock */ 1059 kmem_free(pt, sizeof(*pt)); 1060 } 1061 1062 /* 1063 * ptimers_alloc: 1064 * 1065 * Allocate a ptimers for the specified process. 1066 */ 1067 static struct ptimers * 1068 ptimers_alloc(struct proc *p) 1069 { 1070 struct ptimers *pts; 1071 int i; 1072 1073 pts = kmem_alloc(sizeof(*pts), KM_SLEEP); 1074 LIST_INIT(&pts->pts_virtual); 1075 LIST_INIT(&pts->pts_prof); 1076 for (i = 0; i < TIMER_MAX; i++) 1077 pts->pts_timers[i] = NULL; 1078 itimer_lock(); 1079 if (p->p_timers == NULL) { 1080 p->p_timers = pts; 1081 itimer_unlock(); 1082 return pts; 1083 } 1084 itimer_unlock(); 1085 kmem_free(pts, sizeof(*pts)); 1086 return p->p_timers; 1087 } 1088 1089 /* 1090 * ptimers_free: 1091 * 1092 * Clean up the per-process timers. If "which" is set to TIMERS_ALL, 1093 * then clean up all timers and free all the data structures. If 1094 * "which" is set to TIMERS_POSIX, only clean up the timers allocated 1095 * by timer_create(), not the BSD setitimer() timers, and only free the 1096 * structure if none of those remain. 1097 * 1098 * This function is exported because it is needed in the exec and 1099 * exit code paths. 1100 */ 1101 void 1102 ptimers_free(struct proc *p, int which) 1103 { 1104 struct ptimers *pts; 1105 struct itimer *itn; 1106 struct timespec ts; 1107 int i; 1108 1109 if (p->p_timers == NULL) 1110 return; 1111 1112 pts = p->p_timers; 1113 itimer_lock(); 1114 if (which == TIMERS_ALL) { 1115 p->p_timers = NULL; 1116 i = 0; 1117 } else { 1118 timespecclear(&ts); 1119 for (itn = LIST_FIRST(&pts->pts_virtual); 1120 itn && itn != pts->pts_timers[ITIMER_VIRTUAL]; 1121 itn = LIST_NEXT(itn, it_list)) { 1122 KASSERT(itn->it_clockid == CLOCK_VIRTUAL); 1123 timespecadd(&ts, &itn->it_time.it_value, &ts); 1124 } 1125 LIST_FIRST(&pts->pts_virtual) = NULL; 1126 if (itn) { 1127 KASSERT(itn->it_clockid == CLOCK_VIRTUAL); 1128 timespecadd(&ts, &itn->it_time.it_value, 1129 &itn->it_time.it_value); 1130 LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list); 1131 } 1132 timespecclear(&ts); 1133 for (itn = LIST_FIRST(&pts->pts_prof); 1134 itn && itn != pts->pts_timers[ITIMER_PROF]; 1135 itn = LIST_NEXT(itn, it_list)) { 1136 KASSERT(itn->it_clockid == CLOCK_PROF); 1137 timespecadd(&ts, &itn->it_time.it_value, &ts); 1138 } 1139 LIST_FIRST(&pts->pts_prof) = NULL; 1140 if (itn) { 1141 KASSERT(itn->it_clockid == CLOCK_PROF); 1142 timespecadd(&ts, &itn->it_time.it_value, 1143 &itn->it_time.it_value); 1144 LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list); 1145 } 1146 i = TIMER_MIN; 1147 } 1148 for ( ; i < TIMER_MAX; i++) { 1149 if (pts->pts_timers[i] != NULL) { 1150 /* Free the timer and release the lock. */ 1151 ptimer_free(pts, i); 1152 /* Reacquire the lock for the next one. */ 1153 itimer_lock(); 1154 } 1155 } 1156 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL && 1157 pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) { 1158 p->p_timers = NULL; 1159 itimer_unlock(); 1160 kmem_free(pts, sizeof(*pts)); 1161 } else 1162 itimer_unlock(); 1163 } 1164 1165 /* 1166 * ptimer_fire: 1167 * 1168 * Fire a per-process timer. 1169 */ 1170 static void 1171 ptimer_fire(struct itimer *it) 1172 { 1173 struct ptimer *pt = container_of(it, struct ptimer, pt_itimer); 1174 1175 KASSERT(itimer_lock_held()); 1176 1177 /* 1178 * XXX Can overrun, but we don't do signal queueing yet, anyway. 1179 * XXX Relying on the clock interrupt is stupid. 1180 */ 1181 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) { 1182 return; 1183 } 1184 1185 if (!pt->pt_queued) { 1186 TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain); 1187 pt->pt_queued = true; 1188 softint_schedule(ptimer_sih); 1189 } 1190 } 1191 1192 /* 1193 * Operations vector for per-process timers (BSD and POSIX). 1194 */ 1195 static const struct itimer_ops ptimer_itimer_ops = { 1196 .ito_fire = ptimer_fire, 1197 }; 1198 1199 /* 1200 * sys_timer_create: 1201 * 1202 * System call to create a POSIX timer. 1203 */ 1204 int 1205 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, 1206 register_t *retval) 1207 { 1208 /* { 1209 syscallarg(clockid_t) clock_id; 1210 syscallarg(struct sigevent *) evp; 1211 syscallarg(timer_t *) timerid; 1212 } */ 1213 1214 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id), 1215 SCARG(uap, evp), copyin, l); 1216 } 1217 1218 int 1219 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp, 1220 copyin_t fetch_event, struct lwp *l) 1221 { 1222 int error; 1223 timer_t timerid; 1224 struct itlist *itl; 1225 struct ptimers *pts; 1226 struct ptimer *pt; 1227 struct proc *p; 1228 1229 p = l->l_proc; 1230 1231 if ((u_int)id > CLOCK_MONOTONIC) 1232 return SET_ERROR(EINVAL); 1233 1234 if ((pts = p->p_timers) == NULL) 1235 pts = ptimers_alloc(p); 1236 1237 pt = kmem_zalloc(sizeof(*pt), KM_SLEEP); 1238 if (evp != NULL) { 1239 if (((error = 1240 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) || 1241 ((pt->pt_ev.sigev_notify < SIGEV_NONE) || 1242 (pt->pt_ev.sigev_notify > SIGEV_SA)) || 1243 (pt->pt_ev.sigev_notify == SIGEV_SIGNAL && 1244 (pt->pt_ev.sigev_signo <= 0 || 1245 pt->pt_ev.sigev_signo >= NSIG))) { 1246 kmem_free(pt, sizeof(*pt)); 1247 return (error ? error : SET_ERROR(EINVAL)); 1248 } 1249 } 1250 1251 /* Find a free timer slot, skipping those reserved for setitimer(). */ 1252 itimer_lock(); 1253 for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++) 1254 if (pts->pts_timers[timerid] == NULL) 1255 break; 1256 if (timerid == TIMER_MAX) { 1257 itimer_unlock(); 1258 kmem_free(pt, sizeof(*pt)); 1259 return SET_ERROR(EAGAIN); 1260 } 1261 if (evp == NULL) { 1262 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1263 switch (id) { 1264 case CLOCK_REALTIME: 1265 case CLOCK_MONOTONIC: 1266 pt->pt_ev.sigev_signo = SIGALRM; 1267 break; 1268 case CLOCK_VIRTUAL: 1269 pt->pt_ev.sigev_signo = SIGVTALRM; 1270 break; 1271 case CLOCK_PROF: 1272 pt->pt_ev.sigev_signo = SIGPROF; 1273 break; 1274 } 1275 pt->pt_ev.sigev_value.sival_int = timerid; 1276 } 1277 1278 switch (id) { 1279 case CLOCK_VIRTUAL: 1280 itl = &pts->pts_virtual; 1281 break; 1282 case CLOCK_PROF: 1283 itl = &pts->pts_prof; 1284 break; 1285 default: 1286 itl = NULL; 1287 } 1288 1289 itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl); 1290 pt->pt_proc = p; 1291 pt->pt_poverruns = 0; 1292 pt->pt_entry = timerid; 1293 pt->pt_queued = false; 1294 1295 pts->pts_timers[timerid] = &pt->pt_itimer; 1296 itimer_unlock(); 1297 1298 return copyout(&timerid, tid, sizeof(timerid)); 1299 } 1300 1301 /* 1302 * sys_timer_delete: 1303 * 1304 * System call to delete a POSIX timer. 1305 */ 1306 int 1307 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, 1308 register_t *retval) 1309 { 1310 /* { 1311 syscallarg(timer_t) timerid; 1312 } */ 1313 struct proc *p = l->l_proc; 1314 timer_t timerid; 1315 struct ptimers *pts; 1316 struct itimer *it, *itn; 1317 1318 timerid = SCARG(uap, timerid); 1319 pts = p->p_timers; 1320 1321 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 1322 return SET_ERROR(EINVAL); 1323 1324 itimer_lock(); 1325 if ((it = pts->pts_timers[timerid]) == NULL) { 1326 itimer_unlock(); 1327 return SET_ERROR(EINVAL); 1328 } 1329 1330 if (CLOCK_VIRTUAL_P(it->it_clockid)) { 1331 if (it->it_active) { 1332 itn = LIST_NEXT(it, it_list); 1333 LIST_REMOVE(it, it_list); 1334 for ( ; itn; itn = LIST_NEXT(itn, it_list)) 1335 timespecadd(&it->it_time.it_value, 1336 &itn->it_time.it_value, 1337 &itn->it_time.it_value); 1338 it->it_active = false; 1339 } 1340 } 1341 1342 /* Free the timer and release the lock. */ 1343 ptimer_free(pts, timerid); 1344 1345 return 0; 1346 } 1347 1348 /* 1349 * sys___timer_settime50: 1350 * 1351 * System call to set/arm a POSIX timer. 1352 */ 1353 int 1354 sys___timer_settime50(struct lwp *l, 1355 const struct sys___timer_settime50_args *uap, 1356 register_t *retval) 1357 { 1358 /* { 1359 syscallarg(timer_t) timerid; 1360 syscallarg(int) flags; 1361 syscallarg(const struct itimerspec *) value; 1362 syscallarg(struct itimerspec *) ovalue; 1363 } */ 1364 int error; 1365 struct itimerspec value, ovalue, *ovp = NULL; 1366 1367 if ((error = copyin(SCARG(uap, value), &value, 1368 sizeof(struct itimerspec))) != 0) 1369 return error; 1370 1371 if (SCARG(uap, ovalue)) 1372 ovp = &ovalue; 1373 1374 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp, 1375 SCARG(uap, flags), l->l_proc)) != 0) 1376 return error; 1377 1378 if (ovp) 1379 return copyout(&ovalue, SCARG(uap, ovalue), 1380 sizeof(struct itimerspec)); 1381 return 0; 1382 } 1383 1384 int 1385 dotimer_settime(int timerid, struct itimerspec *value, 1386 struct itimerspec *ovalue, int flags, struct proc *p) 1387 { 1388 struct timespec now; 1389 struct itimerspec val; 1390 struct ptimers *pts; 1391 struct itimer *it; 1392 int error; 1393 1394 pts = p->p_timers; 1395 1396 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 1397 return SET_ERROR(EINVAL); 1398 val = *value; 1399 if (itimespecfix(&val.it_value) != 0 || 1400 itimespecfix(&val.it_interval) != 0) 1401 return SET_ERROR(EINVAL); 1402 1403 itimer_lock(); 1404 restart: 1405 if ((it = pts->pts_timers[timerid]) == NULL) { 1406 error = SET_ERROR(EINVAL); 1407 goto out; 1408 } 1409 1410 if (ovalue) 1411 itimer_gettime(it, ovalue); 1412 it->it_time = val; 1413 1414 /* 1415 * If we've been passed a relative time for a realtime timer, 1416 * convert it to absolute; if an absolute time for a virtual 1417 * timer, convert it to relative and make sure we don't set it 1418 * to zero, which would cancel the timer, or let it go 1419 * negative, which would confuse the comparison tests. 1420 */ 1421 if (timespecisset(&it->it_time.it_value)) { 1422 if (!CLOCK_VIRTUAL_P(it->it_clockid)) { 1423 if ((flags & TIMER_ABSTIME) == 0) { 1424 if (it->it_clockid == CLOCK_REALTIME) { 1425 getnanotime(&now); 1426 } else { /* CLOCK_MONOTONIC */ 1427 getnanouptime(&now); 1428 } 1429 if (!timespecaddok(&it->it_time.it_value, 1430 &now)) { 1431 error = SET_ERROR(EINVAL); 1432 goto out; 1433 } 1434 timespecadd(&it->it_time.it_value, &now, 1435 &it->it_time.it_value); 1436 } 1437 } else { 1438 if ((flags & TIMER_ABSTIME) != 0) { 1439 getnanotime(&now); 1440 if (!timespecsubok(&it->it_time.it_value, 1441 &now)) { 1442 error = SET_ERROR(EINVAL); 1443 goto out; 1444 } 1445 timespecsub(&it->it_time.it_value, &now, 1446 &it->it_time.it_value); 1447 if (!timespecisset(&it->it_time.it_value) || 1448 it->it_time.it_value.tv_sec < 0) { 1449 it->it_time.it_value.tv_sec = 0; 1450 it->it_time.it_value.tv_nsec = 1; 1451 } 1452 } 1453 } 1454 } 1455 1456 error = itimer_settime(it); 1457 if (error == ERESTART) { 1458 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid)); 1459 goto restart; 1460 } 1461 KASSERT(error == 0); 1462 out: 1463 itimer_unlock(); 1464 1465 return error; 1466 } 1467 1468 /* 1469 * sys___timer_gettime50: 1470 * 1471 * System call to return the time remaining until a POSIX timer fires. 1472 */ 1473 int 1474 sys___timer_gettime50(struct lwp *l, 1475 const struct sys___timer_gettime50_args *uap, register_t *retval) 1476 { 1477 /* { 1478 syscallarg(timer_t) timerid; 1479 syscallarg(struct itimerspec *) value; 1480 } */ 1481 struct itimerspec its; 1482 int error; 1483 1484 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc, 1485 &its)) != 0) 1486 return error; 1487 1488 return copyout(&its, SCARG(uap, value), sizeof(its)); 1489 } 1490 1491 int 1492 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its) 1493 { 1494 struct itimer *it; 1495 struct ptimers *pts; 1496 1497 pts = p->p_timers; 1498 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 1499 return SET_ERROR(EINVAL); 1500 itimer_lock(); 1501 if ((it = pts->pts_timers[timerid]) == NULL) { 1502 itimer_unlock(); 1503 return SET_ERROR(EINVAL); 1504 } 1505 itimer_gettime(it, its); 1506 itimer_unlock(); 1507 1508 return 0; 1509 } 1510 1511 /* 1512 * sys_timer_getoverrun: 1513 * 1514 * System call to return the number of times a POSIX timer has 1515 * expired while a notification was already pending. The counter 1516 * is reset when a timer expires and a notification can be posted. 1517 */ 1518 int 1519 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, 1520 register_t *retval) 1521 { 1522 /* { 1523 syscallarg(timer_t) timerid; 1524 } */ 1525 struct proc *p = l->l_proc; 1526 struct ptimers *pts; 1527 int timerid; 1528 struct itimer *it; 1529 struct ptimer *pt; 1530 1531 timerid = SCARG(uap, timerid); 1532 1533 pts = p->p_timers; 1534 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX) 1535 return SET_ERROR(EINVAL); 1536 itimer_lock(); 1537 if ((it = pts->pts_timers[timerid]) == NULL) { 1538 itimer_unlock(); 1539 return SET_ERROR(EINVAL); 1540 } 1541 pt = container_of(it, struct ptimer, pt_itimer); 1542 *retval = pt->pt_poverruns; 1543 if (*retval >= DELAYTIMER_MAX) 1544 *retval = DELAYTIMER_MAX; 1545 itimer_unlock(); 1546 1547 return 0; 1548 } 1549 1550 /* 1551 * sys___getitimer50: 1552 * 1553 * System call to get the time remaining before a BSD timer fires. 1554 */ 1555 int 1556 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap, 1557 register_t *retval) 1558 { 1559 /* { 1560 syscallarg(int) which; 1561 syscallarg(struct itimerval *) itv; 1562 } */ 1563 struct proc *p = l->l_proc; 1564 struct itimerval aitv; 1565 int error; 1566 1567 memset(&aitv, 0, sizeof(aitv)); 1568 error = dogetitimer(p, SCARG(uap, which), &aitv); 1569 if (error) 1570 return error; 1571 return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)); 1572 } 1573 1574 int 1575 dogetitimer(struct proc *p, int which, struct itimerval *itvp) 1576 { 1577 struct ptimers *pts; 1578 struct itimer *it; 1579 struct itimerspec its; 1580 1581 if ((u_int)which > ITIMER_MONOTONIC) 1582 return SET_ERROR(EINVAL); 1583 1584 itimer_lock(); 1585 pts = p->p_timers; 1586 if (pts == NULL || (it = pts->pts_timers[which]) == NULL) { 1587 timerclear(&itvp->it_value); 1588 timerclear(&itvp->it_interval); 1589 } else { 1590 itimer_gettime(it, &its); 1591 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value); 1592 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval); 1593 } 1594 itimer_unlock(); 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * sys___setitimer50: 1601 * 1602 * System call to set/arm a BSD timer. 1603 */ 1604 int 1605 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap, 1606 register_t *retval) 1607 { 1608 /* { 1609 syscallarg(int) which; 1610 syscallarg(const struct itimerval *) itv; 1611 syscallarg(struct itimerval *) oitv; 1612 } */ 1613 struct proc *p = l->l_proc; 1614 int which = SCARG(uap, which); 1615 struct sys___getitimer50_args getargs; 1616 const struct itimerval *itvp; 1617 struct itimerval aitv; 1618 int error; 1619 1620 itvp = SCARG(uap, itv); 1621 if (itvp && 1622 (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0) 1623 return error; 1624 if (SCARG(uap, oitv) != NULL) { 1625 SCARG(&getargs, which) = which; 1626 SCARG(&getargs, itv) = SCARG(uap, oitv); 1627 if ((error = sys___getitimer50(l, &getargs, retval)) != 0) 1628 return error; 1629 } 1630 if (itvp == 0) 1631 return 0; 1632 1633 return dosetitimer(p, which, &aitv); 1634 } 1635 1636 int 1637 dosetitimer(struct proc *p, int which, struct itimerval *itvp) 1638 { 1639 struct timespec now; 1640 struct ptimers *pts; 1641 struct ptimer *spare; 1642 struct itimer *it; 1643 struct itlist *itl; 1644 int error; 1645 1646 if ((u_int)which > ITIMER_MONOTONIC) 1647 return SET_ERROR(EINVAL); 1648 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval)) 1649 return SET_ERROR(EINVAL); 1650 1651 /* 1652 * Don't bother allocating data structures if the process just 1653 * wants to clear the timer. 1654 */ 1655 spare = NULL; 1656 pts = p->p_timers; 1657 retry: 1658 if (!timerisset(&itvp->it_value) && (pts == NULL || 1659 pts->pts_timers[which] == NULL)) 1660 return 0; 1661 if (pts == NULL) 1662 pts = ptimers_alloc(p); 1663 itimer_lock(); 1664 restart: 1665 it = pts->pts_timers[which]; 1666 if (it == NULL) { 1667 struct ptimer *pt; 1668 1669 if (spare == NULL) { 1670 itimer_unlock(); 1671 spare = kmem_zalloc(sizeof(*spare), KM_SLEEP); 1672 goto retry; 1673 } 1674 pt = spare; 1675 spare = NULL; 1676 1677 it = &pt->pt_itimer; 1678 pt->pt_ev.sigev_notify = SIGEV_SIGNAL; 1679 pt->pt_ev.sigev_value.sival_int = which; 1680 1681 switch (which) { 1682 case ITIMER_REAL: 1683 case ITIMER_MONOTONIC: 1684 itl = NULL; 1685 pt->pt_ev.sigev_signo = SIGALRM; 1686 break; 1687 case ITIMER_VIRTUAL: 1688 itl = &pts->pts_virtual; 1689 pt->pt_ev.sigev_signo = SIGVTALRM; 1690 break; 1691 case ITIMER_PROF: 1692 itl = &pts->pts_prof; 1693 pt->pt_ev.sigev_signo = SIGPROF; 1694 break; 1695 default: 1696 panic("%s: can't happen %d", __func__, which); 1697 } 1698 itimer_init(it, &ptimer_itimer_ops, which, itl); 1699 pt->pt_proc = p; 1700 pt->pt_entry = which; 1701 1702 pts->pts_timers[which] = it; 1703 } 1704 1705 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value); 1706 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval); 1707 1708 error = 0; 1709 if (timespecisset(&it->it_time.it_value)) { 1710 /* Convert to absolute time */ 1711 /* XXX need to wrap in splclock for timecounters case? */ 1712 switch (which) { 1713 case ITIMER_REAL: 1714 getnanotime(&now); 1715 if (!timespecaddok(&it->it_time.it_value, &now)) { 1716 error = SET_ERROR(EINVAL); 1717 goto out; 1718 } 1719 timespecadd(&it->it_time.it_value, &now, 1720 &it->it_time.it_value); 1721 break; 1722 case ITIMER_MONOTONIC: 1723 getnanouptime(&now); 1724 if (!timespecaddok(&it->it_time.it_value, &now)) { 1725 error = SET_ERROR(EINVAL); 1726 goto out; 1727 } 1728 timespecadd(&it->it_time.it_value, &now, 1729 &it->it_time.it_value); 1730 break; 1731 default: 1732 break; 1733 } 1734 } 1735 1736 error = itimer_settime(it); 1737 if (error == ERESTART) { 1738 KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid)); 1739 goto restart; 1740 } 1741 KASSERT(error == 0); 1742 out: 1743 itimer_unlock(); 1744 if (spare != NULL) 1745 kmem_free(spare, sizeof(*spare)); 1746 1747 return error; 1748 } 1749 1750 /* 1751 * ptimer_tick: 1752 * 1753 * Called from hardclock() to decrement per-process virtual timers. 1754 */ 1755 void 1756 ptimer_tick(lwp_t *l, bool user) 1757 { 1758 struct ptimers *pts; 1759 struct itimer *it; 1760 proc_t *p; 1761 1762 p = l->l_proc; 1763 if (p->p_timers == NULL) 1764 return; 1765 1766 itimer_lock(); 1767 if ((pts = l->l_proc->p_timers) != NULL) { 1768 /* 1769 * Run current process's virtual and profile time, as needed. 1770 */ 1771 if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL) 1772 if (itimer_decr(it, tick * 1000)) 1773 (*it->it_ops->ito_fire)(it); 1774 if ((it = LIST_FIRST(&pts->pts_prof)) != NULL) 1775 if (itimer_decr(it, tick * 1000)) 1776 (*it->it_ops->ito_fire)(it); 1777 } 1778 itimer_unlock(); 1779 } 1780 1781 /* 1782 * ptimer_intr: 1783 * 1784 * Software interrupt handler for processing per-process 1785 * timer expiration. 1786 */ 1787 static void 1788 ptimer_intr(void *cookie) 1789 { 1790 ksiginfo_t ksi; 1791 struct itimer *it; 1792 struct ptimer *pt; 1793 proc_t *p; 1794 1795 mutex_enter(&proc_lock); 1796 itimer_lock(); 1797 while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) { 1798 it = &pt->pt_itimer; 1799 1800 TAILQ_REMOVE(&ptimer_queue, pt, pt_chain); 1801 KASSERT(pt->pt_queued); 1802 pt->pt_queued = false; 1803 1804 p = pt->pt_proc; 1805 if (p->p_timers == NULL) { 1806 /* Process is dying. */ 1807 continue; 1808 } 1809 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) { 1810 continue; 1811 } 1812 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) { 1813 if (it->it_overruns < INT_MAX) 1814 it->it_overruns++; 1815 continue; 1816 } 1817 1818 KSI_INIT(&ksi); 1819 ksi.ksi_signo = pt->pt_ev.sigev_signo; 1820 ksi.ksi_code = SI_TIMER; 1821 ksi.ksi_value = pt->pt_ev.sigev_value; 1822 pt->pt_poverruns = it->it_overruns; 1823 it->it_overruns = 0; 1824 itimer_unlock(); 1825 kpsignal(p, &ksi, NULL); 1826 itimer_lock(); 1827 } 1828 itimer_unlock(); 1829 mutex_exit(&proc_lock); 1830 } 1831