Home | History | Annotate | Line # | Download | only in kern
      1 /* $NetBSD: kern_tc.c,v 1.80 2026/01/04 01:54:31 riastradh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * ----------------------------------------------------------------------------
     34  * "THE BEER-WARE LICENSE" (Revision 42):
     35  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36  * can do whatever you want with this stuff. If we meet some day, and you think
     37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38  * ---------------------------------------------------------------------------
     39  */
     40 
     41 /*
     42  * https://papers.freebsd.org/2002/phk-timecounters.files/timecounter.pdf
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     47 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.80 2026/01/04 01:54:31 riastradh Exp $");
     48 
     49 #ifdef _KERNEL_OPT
     50 #include "opt_ntp.h"
     51 #endif
     52 
     53 #include <sys/param.h>
     54 
     55 #include <sys/atomic.h>
     56 #include <sys/evcnt.h>
     57 #include <sys/kauth.h>
     58 #include <sys/kernel.h>
     59 #include <sys/lock.h>
     60 #include <sys/mutex.h>
     61 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     62 #include <sys/sdt.h>
     63 #include <sys/sysctl.h>
     64 #include <sys/syslog.h>
     65 #include <sys/systm.h>
     66 #include <sys/timepps.h>
     67 #include <sys/timetc.h>
     68 #include <sys/timex.h>
     69 #include <sys/xcall.h>
     70 
     71 /*
     72  * A large step happens on boot.  This constant detects such steps.
     73  * It is relatively small so that ntp_update_second gets called enough
     74  * in the typical 'missed a couple of seconds' case, but doesn't loop
     75  * forever when the time step is large.
     76  */
     77 #define LARGE_STEP	200
     78 
     79 /*
     80  * Implement a dummy timecounter which we can use until we get a real one
     81  * in the air.  This allows the console and other early stuff to use
     82  * time services.
     83  */
     84 
     85 static u_int
     86 dummy_get_timecount(struct timecounter *tc)
     87 {
     88 	static u_int now;
     89 
     90 	return ++now;
     91 }
     92 
     93 static struct timecounter dummy_timecounter = {
     94 	.tc_get_timecount	= dummy_get_timecount,
     95 	.tc_counter_mask	= ~0u,
     96 	.tc_frequency		= 1000000,
     97 	.tc_name		= "dummy",
     98 	.tc_quality		= -1000000,
     99 	.tc_priv		= NULL,
    100 };
    101 
    102 struct timehands {
    103 	/* These fields must be initialized by the driver. */
    104 	struct timecounter	*th_counter;     /* active timecounter */
    105 	int64_t			th_adjustment;   /* frequency adjustment */
    106 						 /* (NTP/adjtime) */
    107 	uint64_t		th_scale;        /* scale factor (counter */
    108 						 /* tick->time) */
    109 	uint64_t 		th_offset_count; /* offset at last time */
    110 						 /* update (tc_windup()) */
    111 	struct bintime		th_offset;       /* bin (up)time at windup */
    112 	struct timeval		th_microtime;    /* cached microtime */
    113 	struct timespec		th_nanotime;     /* cached nanotime */
    114 	/* Fields not to be copied in tc_windup start with th_generation. */
    115 	volatile u_int		th_generation;   /* current generation */
    116 	struct timehands	*th_next;        /* next timehand */
    117 };
    118 
    119 static struct timehands th0;
    120 static struct timehands th9 = { .th_next = &th0, };
    121 static struct timehands th8 = { .th_next = &th9, };
    122 static struct timehands th7 = { .th_next = &th8, };
    123 static struct timehands th6 = { .th_next = &th7, };
    124 static struct timehands th5 = { .th_next = &th6, };
    125 static struct timehands th4 = { .th_next = &th5, };
    126 static struct timehands th3 = { .th_next = &th4, };
    127 static struct timehands th2 = { .th_next = &th3, };
    128 static struct timehands th1 = { .th_next = &th2, };
    129 static struct timehands th0 = {
    130 	.th_counter = &dummy_timecounter,
    131 	.th_scale = (uint64_t)-1 / 1000000,
    132 	.th_offset = { .sec = 1, .frac = 0 },
    133 	.th_generation = 1,
    134 	.th_next = &th1,
    135 };
    136 
    137 static struct timehands *volatile timehands = &th0;
    138 struct timecounter *timecounter = &dummy_timecounter;
    139 static struct timecounter *timecounters = &dummy_timecounter;
    140 
    141 /* used by savecore(8) */
    142 time_t time_second_legacy asm("time_second");
    143 
    144 #ifdef __HAVE_ATOMIC64_LOADSTORE
    145 volatile time_t time__second __cacheline_aligned = 1;
    146 volatile time_t time__uptime __cacheline_aligned = 1;
    147 #else
    148 static volatile struct {
    149 	uint32_t lo, hi;
    150 } time__uptime32 __cacheline_aligned = {
    151 	.lo = 1,
    152 }, time__second32 __cacheline_aligned = {
    153 	.lo = 1,
    154 };
    155 #endif
    156 
    157 static struct {
    158 	struct bintime bin;
    159 	volatile unsigned gen;	/* even when stable, odd when changing */
    160 } timebase __cacheline_aligned;
    161 
    162 static int timestepwarnings;
    163 
    164 kmutex_t timecounter_lock;
    165 static u_int timecounter_mods;
    166 static volatile int timecounter_removals = 1;
    167 static u_int timecounter_bad;
    168 
    169 #ifdef __HAVE_ATOMIC64_LOADSTORE
    170 
    171 static inline void
    172 setrealuptime(time_t second, time_t uptime)
    173 {
    174 
    175 	time_second_legacy = second;
    176 
    177 	atomic_store_relaxed(&time__second, second);
    178 	atomic_store_relaxed(&time__uptime, uptime);
    179 }
    180 
    181 #else
    182 
    183 static inline void
    184 setrealuptime(time_t second, time_t uptime)
    185 {
    186 	uint32_t seclo = second & 0xffffffff, sechi = second >> 32;
    187 	uint32_t uplo = uptime & 0xffffffff, uphi = uptime >> 32;
    188 
    189 	KDASSERT(mutex_owned(&timecounter_lock));
    190 
    191 	time_second_legacy = second;
    192 
    193 	/*
    194 	 * Fast path -- no wraparound, just updating the low bits, so
    195 	 * no need for seqlocked access.
    196 	 */
    197 	if (__predict_true(sechi == time__second32.hi) &&
    198 	    __predict_true(uphi == time__uptime32.hi)) {
    199 		atomic_store_relaxed(&time__second32.lo, seclo);
    200 		atomic_store_relaxed(&time__uptime32.lo, uplo);
    201 		return;
    202 	}
    203 
    204 	atomic_store_relaxed(&time__second32.hi, 0xffffffff);
    205 	atomic_store_relaxed(&time__uptime32.hi, 0xffffffff);
    206 	membar_producer();
    207 	atomic_store_relaxed(&time__second32.lo, seclo);
    208 	atomic_store_relaxed(&time__uptime32.lo, uplo);
    209 	membar_producer();
    210 	atomic_store_relaxed(&time__second32.hi, sechi);
    211 	atomic_store_relaxed(&time__uptime32.hi, uphi);
    212 }
    213 
    214 time_t
    215 getrealtime(void)
    216 {
    217 	uint32_t lo, hi;
    218 
    219 	do {
    220 		for (;;) {
    221 			hi = atomic_load_relaxed(&time__second32.hi);
    222 			if (__predict_true(hi != 0xffffffff))
    223 				break;
    224 			SPINLOCK_BACKOFF_HOOK;
    225 		}
    226 		membar_consumer();
    227 		lo = atomic_load_relaxed(&time__second32.lo);
    228 		membar_consumer();
    229 	} while (hi != atomic_load_relaxed(&time__second32.hi));
    230 
    231 	return ((time_t)hi << 32) | lo;
    232 }
    233 
    234 time_t
    235 getuptime(void)
    236 {
    237 	uint32_t lo, hi;
    238 
    239 	do {
    240 		for (;;) {
    241 			hi = atomic_load_relaxed(&time__uptime32.hi);
    242 			if (__predict_true(hi != 0xffffffff))
    243 				break;
    244 			SPINLOCK_BACKOFF_HOOK;
    245 		}
    246 		membar_consumer();
    247 		lo = atomic_load_relaxed(&time__uptime32.lo);
    248 		membar_consumer();
    249 	} while (hi != atomic_load_relaxed(&time__uptime32.hi));
    250 
    251 	return ((time_t)hi << 32) | lo;
    252 }
    253 
    254 time_t
    255 getboottime(void)
    256 {
    257 
    258 	return getrealtime() - getuptime();
    259 }
    260 
    261 uint32_t
    262 getuptime32(void)
    263 {
    264 
    265 	return atomic_load_relaxed(&time__uptime32.lo);
    266 }
    267 
    268 #endif	/* !defined(__HAVE_ATOMIC64_LOADSTORE) */
    269 
    270 /*
    271  * sysctl helper routine for kern.timercounter.hardware
    272  */
    273 static int
    274 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    275 {
    276 	struct sysctlnode node;
    277 	int error;
    278 	char newname[MAX_TCNAMELEN];
    279 	struct timecounter *newtc, *tc;
    280 
    281 	tc = timecounter;
    282 
    283 	strlcpy(newname, tc->tc_name, sizeof(newname));
    284 
    285 	node = *rnode;
    286 	node.sysctl_data = newname;
    287 	node.sysctl_size = sizeof(newname);
    288 
    289 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    290 
    291 	if (error ||
    292 	    newp == NULL ||
    293 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    294 		return error;
    295 
    296 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    297 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    298 	    NULL, NULL)) != 0)
    299 		return error;
    300 
    301 	if (!cold)
    302 		mutex_spin_enter(&timecounter_lock);
    303 	error = SET_ERROR(EINVAL);
    304 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    305 		if (strcmp(newname, newtc->tc_name) != 0)
    306 			continue;
    307 		/* Warm up new timecounter. */
    308 		(void)newtc->tc_get_timecount(newtc);
    309 		(void)newtc->tc_get_timecount(newtc);
    310 		timecounter = newtc;
    311 		error = 0;
    312 		break;
    313 	}
    314 	if (!cold)
    315 		mutex_spin_exit(&timecounter_lock);
    316 	return error;
    317 }
    318 
    319 static int
    320 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    321 {
    322 	char buf[MAX_TCNAMELEN+48];
    323 	char *where;
    324 	const char *spc;
    325 	struct timecounter *tc;
    326 	size_t needed, left, slen;
    327 	int error, mods;
    328 
    329 	if (newp != NULL)
    330 		return SET_ERROR(EPERM);
    331 	if (namelen != 0)
    332 		return SET_ERROR(EINVAL);
    333 
    334 	mutex_spin_enter(&timecounter_lock);
    335  retry:
    336 	spc = "";
    337 	error = 0;
    338 	needed = 0;
    339 	left = *oldlenp;
    340 	where = oldp;
    341 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    342 		if (where == NULL) {
    343 			needed += sizeof(buf);  /* be conservative */
    344 		} else {
    345 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    346 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    347 					tc->tc_frequency);
    348 			if (left < slen + 1)
    349 				break;
    350 		 	mods = timecounter_mods;
    351 			mutex_spin_exit(&timecounter_lock);
    352 			error = copyout(buf, where, slen + 1);
    353 			mutex_spin_enter(&timecounter_lock);
    354 			if (mods != timecounter_mods) {
    355 				goto retry;
    356 			}
    357 			spc = " ";
    358 			where += slen;
    359 			needed += slen;
    360 			left -= slen;
    361 		}
    362 	}
    363 	mutex_spin_exit(&timecounter_lock);
    364 
    365 	*oldlenp = needed;
    366 	return error;
    367 }
    368 
    369 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    370 {
    371 	const struct sysctlnode *node;
    372 
    373 	sysctl_createv(clog, 0, NULL, &node,
    374 		       CTLFLAG_PERMANENT,
    375 		       CTLTYPE_NODE, "timecounter",
    376 		       SYSCTL_DESCR("time counter information"),
    377 		       NULL, 0, NULL, 0,
    378 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    379 
    380 	if (node != NULL) {
    381 		sysctl_createv(clog, 0, NULL, NULL,
    382 			       CTLFLAG_PERMANENT,
    383 			       CTLTYPE_STRING, "choice",
    384 			       SYSCTL_DESCR("available counters"),
    385 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    386 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    387 
    388 		sysctl_createv(clog, 0, NULL, NULL,
    389 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    390 			       CTLTYPE_STRING, "hardware",
    391 			       SYSCTL_DESCR("currently active time counter"),
    392 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    393 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    394 
    395 		sysctl_createv(clog, 0, NULL, NULL,
    396 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    397 			       CTLTYPE_INT, "timestepwarnings",
    398 			       SYSCTL_DESCR("log time steps"),
    399 			       NULL, 0, &timestepwarnings, 0,
    400 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    401 	}
    402 }
    403 
    404 #ifdef TC_COUNTERS
    405 #define	TC_STATS(name)							\
    406 static struct evcnt n##name =						\
    407     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    408 EVCNT_ATTACH_STATIC(n##name)
    409 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    410 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    411 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    412 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    413 TC_STATS(setclock);
    414 #define	TC_COUNT(var)	var.ev_count++
    415 #undef TC_STATS
    416 #else
    417 #define	TC_COUNT(var)	/* nothing */
    418 #endif	/* TC_COUNTERS */
    419 
    420 static void tc_windup(void);
    421 
    422 /*
    423  * Return the difference between the timehands' counter value now and what
    424  * was when we copied it to the timehands' offset_count.
    425  */
    426 static inline u_int
    427 tc_delta(struct timehands *th)
    428 {
    429 	struct timecounter *tc;
    430 
    431 	tc = th->th_counter;
    432 	return (tc->tc_get_timecount(tc) -
    433 		 th->th_offset_count) & tc->tc_counter_mask;
    434 }
    435 
    436 /*
    437  * Functions for reading the time.  We have to loop until we are sure that
    438  * the timehands that we operated on was not updated under our feet.  See
    439  * the comment in <sys/timevar.h> for a description of these 12 functions.
    440  */
    441 
    442 void
    443 binuptime(struct bintime *bt)
    444 {
    445 	struct timehands *th;
    446 	lwp_t *l;
    447 	u_int lgen, gen;
    448 
    449 	TC_COUNT(nbinuptime);
    450 
    451 	/*
    452 	 * Provide exclusion against tc_detach().
    453 	 *
    454 	 * We record the number of timecounter removals before accessing
    455 	 * timecounter state.  Note that the LWP can be using multiple
    456 	 * "generations" at once, due to interrupts (interrupted while in
    457 	 * this function).  Hardware interrupts will borrow the interrupted
    458 	 * LWP's l_tcgen value for this purpose, and can themselves be
    459 	 * interrupted by higher priority interrupts.  In this case we need
    460 	 * to ensure that the oldest generation in use is recorded.
    461 	 *
    462 	 * splsched() is too expensive to use, so we take care to structure
    463 	 * this code in such a way that it is not required.  Likewise, we
    464 	 * do not disable preemption.
    465 	 *
    466 	 * Memory barriers are also too expensive to use for such a
    467 	 * performance critical function.  The good news is that we do not
    468 	 * need memory barriers for this type of exclusion, as the thread
    469 	 * updating timecounter_removals will issue a broadcast cross call
    470 	 * before inspecting our l_tcgen value (this elides memory ordering
    471 	 * issues).
    472 	 *
    473 	 * XXX If the author of the above comment knows how to make it
    474 	 * safe to avoid memory barriers around the access to
    475 	 * th->th_generation, I'm all ears.
    476 	 */
    477 	l = curlwp;
    478 	lgen = l->l_tcgen;
    479 	if (__predict_true(lgen == 0)) {
    480 		l->l_tcgen = timecounter_removals;
    481 	}
    482 	__insn_barrier();
    483 
    484 	do {
    485 		th = atomic_load_consume(&timehands);
    486 		gen = th->th_generation;
    487 		membar_consumer();
    488 		*bt = th->th_offset;
    489 		bintime_addx(bt, th->th_scale * tc_delta(th));
    490 		membar_consumer();
    491 	} while (gen == 0 || gen != th->th_generation);
    492 
    493 	__insn_barrier();
    494 	l->l_tcgen = lgen;
    495 }
    496 
    497 void
    498 nanouptime(struct timespec *tsp)
    499 {
    500 	struct bintime bt;
    501 
    502 	TC_COUNT(nnanouptime);
    503 	binuptime(&bt);
    504 	bintime2timespec(&bt, tsp);
    505 }
    506 
    507 void
    508 microuptime(struct timeval *tvp)
    509 {
    510 	struct bintime bt;
    511 
    512 	TC_COUNT(nmicrouptime);
    513 	binuptime(&bt);
    514 	bintime2timeval(&bt, tvp);
    515 }
    516 
    517 void
    518 bintime(struct bintime *bt)
    519 {
    520 	struct bintime boottime;
    521 
    522 	TC_COUNT(nbintime);
    523 	binuptime(bt);
    524 	getbinboottime(&boottime);
    525 	bintime_add(bt, &boottime);
    526 }
    527 
    528 void
    529 nanotime(struct timespec *tsp)
    530 {
    531 	struct bintime bt;
    532 
    533 	TC_COUNT(nnanotime);
    534 	bintime(&bt);
    535 	bintime2timespec(&bt, tsp);
    536 }
    537 
    538 void
    539 microtime(struct timeval *tvp)
    540 {
    541 	struct bintime bt;
    542 
    543 	TC_COUNT(nmicrotime);
    544 	bintime(&bt);
    545 	bintime2timeval(&bt, tvp);
    546 }
    547 
    548 void
    549 getbinuptime(struct bintime *bt)
    550 {
    551 	struct timehands *th;
    552 	u_int gen;
    553 
    554 	TC_COUNT(ngetbinuptime);
    555 	do {
    556 		th = atomic_load_consume(&timehands);
    557 		gen = th->th_generation;
    558 		membar_consumer();
    559 		*bt = th->th_offset;
    560 		membar_consumer();
    561 	} while (gen == 0 || gen != th->th_generation);
    562 }
    563 
    564 void
    565 getnanouptime(struct timespec *tsp)
    566 {
    567 	struct timehands *th;
    568 	u_int gen;
    569 
    570 	TC_COUNT(ngetnanouptime);
    571 	do {
    572 		th = atomic_load_consume(&timehands);
    573 		gen = th->th_generation;
    574 		membar_consumer();
    575 		bintime2timespec(&th->th_offset, tsp);
    576 		membar_consumer();
    577 	} while (gen == 0 || gen != th->th_generation);
    578 }
    579 
    580 void
    581 getmicrouptime(struct timeval *tvp)
    582 {
    583 	struct timehands *th;
    584 	u_int gen;
    585 
    586 	TC_COUNT(ngetmicrouptime);
    587 	do {
    588 		th = atomic_load_consume(&timehands);
    589 		gen = th->th_generation;
    590 		membar_consumer();
    591 		bintime2timeval(&th->th_offset, tvp);
    592 		membar_consumer();
    593 	} while (gen == 0 || gen != th->th_generation);
    594 }
    595 
    596 void
    597 getbintime(struct bintime *bt)
    598 {
    599 	struct timehands *th;
    600 	struct bintime boottime;
    601 	u_int gen;
    602 
    603 	TC_COUNT(ngetbintime);
    604 	do {
    605 		th = atomic_load_consume(&timehands);
    606 		gen = th->th_generation;
    607 		membar_consumer();
    608 		*bt = th->th_offset;
    609 		membar_consumer();
    610 	} while (gen == 0 || gen != th->th_generation);
    611 	getbinboottime(&boottime);
    612 	bintime_add(bt, &boottime);
    613 }
    614 
    615 static inline void
    616 dogetnanotime(struct timespec *tsp)
    617 {
    618 	struct timehands *th;
    619 	u_int gen;
    620 
    621 	TC_COUNT(ngetnanotime);
    622 	do {
    623 		th = atomic_load_consume(&timehands);
    624 		gen = th->th_generation;
    625 		membar_consumer();
    626 		*tsp = th->th_nanotime;
    627 		membar_consumer();
    628 	} while (gen == 0 || gen != th->th_generation);
    629 }
    630 
    631 void
    632 getnanotime(struct timespec *tsp)
    633 {
    634 
    635 	dogetnanotime(tsp);
    636 }
    637 
    638 void dtrace_getnanotime(struct timespec *tsp);
    639 
    640 void
    641 dtrace_getnanotime(struct timespec *tsp)
    642 {
    643 
    644 	dogetnanotime(tsp);
    645 }
    646 
    647 void
    648 getmicrotime(struct timeval *tvp)
    649 {
    650 	struct timehands *th;
    651 	u_int gen;
    652 
    653 	TC_COUNT(ngetmicrotime);
    654 	do {
    655 		th = atomic_load_consume(&timehands);
    656 		gen = th->th_generation;
    657 		membar_consumer();
    658 		*tvp = th->th_microtime;
    659 		membar_consumer();
    660 	} while (gen == 0 || gen != th->th_generation);
    661 }
    662 
    663 void
    664 getnanoboottime(struct timespec *tsp)
    665 {
    666 	struct bintime bt;
    667 
    668 	getbinboottime(&bt);
    669 	bintime2timespec(&bt, tsp);
    670 }
    671 
    672 void
    673 getmicroboottime(struct timeval *tvp)
    674 {
    675 	struct bintime bt;
    676 
    677 	getbinboottime(&bt);
    678 	bintime2timeval(&bt, tvp);
    679 }
    680 
    681 void
    682 getbinboottime(struct bintime *basep)
    683 {
    684 	struct bintime base;
    685 	unsigned gen;
    686 
    687 	do {
    688 		/* Spin until the timebase isn't changing.  */
    689 		while ((gen = atomic_load_relaxed(&timebase.gen)) & 1)
    690 			SPINLOCK_BACKOFF_HOOK;
    691 
    692 		/* Read out a snapshot of the timebase.  */
    693 		membar_consumer();
    694 		base = timebase.bin;
    695 		membar_consumer();
    696 
    697 		/* Restart if it changed while we were reading.  */
    698 	} while (gen != atomic_load_relaxed(&timebase.gen));
    699 
    700 	*basep = base;
    701 }
    702 
    703 /*
    704  * Initialize a new timecounter and possibly use it.
    705  */
    706 void
    707 tc_init(struct timecounter *tc)
    708 {
    709 	u_int u;
    710 
    711 	KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
    712 	    tc->tc_name);
    713 
    714 	u = tc->tc_frequency / tc->tc_counter_mask;
    715 	/* XXX: We need some margin here, 10% is a guess */
    716 	u *= 11;
    717 	u /= 10;
    718 	if (u > hz && tc->tc_quality >= 0) {
    719 		tc->tc_quality = -2000;
    720 		aprint_verbose(
    721 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    722 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    723 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    724 	} else if (tc->tc_quality >= 0 || bootverbose) {
    725 		aprint_verbose(
    726 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    727 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    728 		    tc->tc_quality);
    729 	}
    730 
    731 	mutex_spin_enter(&timecounter_lock);
    732 	tc->tc_next = timecounters;
    733 	timecounters = tc;
    734 	timecounter_mods++;
    735 	/*
    736 	 * Never automatically use a timecounter with negative quality.
    737 	 * Even though we run on the dummy counter, switching here may be
    738 	 * worse since this timecounter may not be monotonous.
    739 	 */
    740 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    741 	    (tc->tc_quality == timecounter->tc_quality &&
    742 	    tc->tc_frequency > timecounter->tc_frequency))) {
    743 		(void)tc->tc_get_timecount(tc);
    744 		(void)tc->tc_get_timecount(tc);
    745 		timecounter = tc;
    746 		tc_windup();
    747 	}
    748 	mutex_spin_exit(&timecounter_lock);
    749 }
    750 
    751 /*
    752  * Pick a new timecounter due to the existing counter going bad.
    753  */
    754 static void
    755 tc_pick(void)
    756 {
    757 	struct timecounter *best, *tc;
    758 
    759 	KASSERT(mutex_owned(&timecounter_lock));
    760 
    761 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    762 		if (tc->tc_quality > best->tc_quality)
    763 			best = tc;
    764 		else if (tc->tc_quality < best->tc_quality)
    765 			continue;
    766 		else if (tc->tc_frequency > best->tc_frequency)
    767 			best = tc;
    768 	}
    769 	(void)best->tc_get_timecount(best);
    770 	(void)best->tc_get_timecount(best);
    771 	timecounter = best;
    772 }
    773 
    774 /*
    775  * A timecounter has gone bad, arrange to pick a new one at the next
    776  * clock tick.
    777  */
    778 void
    779 tc_gonebad(struct timecounter *tc)
    780 {
    781 
    782 	tc->tc_quality = -100;
    783 	membar_producer();
    784 	atomic_inc_uint(&timecounter_bad);
    785 }
    786 
    787 /*
    788  * Stop using a timecounter and remove it from the timecounters list.
    789  */
    790 int
    791 tc_detach(struct timecounter *target)
    792 {
    793 	struct timecounter *tc;
    794 	struct timecounter **tcp = NULL;
    795 	int removals;
    796 	lwp_t *l;
    797 
    798 	/* First, find the timecounter. */
    799 	mutex_spin_enter(&timecounter_lock);
    800 	for (tcp = &timecounters, tc = timecounters;
    801 	     tc != NULL;
    802 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    803 		if (tc == target)
    804 			break;
    805 	}
    806 	if (tc == NULL) {
    807 		mutex_spin_exit(&timecounter_lock);
    808 		return SET_ERROR(ESRCH);
    809 	}
    810 
    811 	/* And now, remove it. */
    812 	*tcp = tc->tc_next;
    813 	if (timecounter == target) {
    814 		tc_pick();
    815 		tc_windup();
    816 	}
    817 	timecounter_mods++;
    818 	removals = timecounter_removals++;
    819 	mutex_spin_exit(&timecounter_lock);
    820 
    821 	/*
    822 	 * We now have to determine if any threads in the system are still
    823 	 * making use of this timecounter.
    824 	 *
    825 	 * We issue a broadcast cross call to elide memory ordering issues,
    826 	 * then scan all LWPs in the system looking at each's timecounter
    827 	 * generation number.  We need to see a value of zero (not actively
    828 	 * using a timecounter) or a value greater than our removal value.
    829 	 *
    830 	 * We may race with threads that read `timecounter_removals' and
    831 	 * and then get preempted before updating `l_tcgen'.  This is not
    832 	 * a problem, since it means that these threads have not yet started
    833 	 * accessing timecounter state.  All we do need is one clean
    834 	 * snapshot of the system where every thread appears not to be using
    835 	 * old timecounter state.
    836 	 */
    837 	for (;;) {
    838 		xc_barrier(0);
    839 
    840 		mutex_enter(&proc_lock);
    841 		LIST_FOREACH(l, &alllwp, l_list) {
    842 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    843 				/*
    844 				 * Not using timecounter or old timecounter
    845 				 * state at time of our xcall or later.
    846 				 */
    847 				continue;
    848 			}
    849 			break;
    850 		}
    851 		mutex_exit(&proc_lock);
    852 
    853 		/*
    854 		 * If the timecounter is still in use, wait at least 10ms
    855 		 * before retrying.
    856 		 */
    857 		if (l == NULL) {
    858 			break;
    859 		}
    860 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    861 	}
    862 
    863 	tc->tc_next = NULL;
    864 	return 0;
    865 }
    866 
    867 /* Report the frequency of the current timecounter. */
    868 uint64_t
    869 tc_getfrequency(void)
    870 {
    871 
    872 	return atomic_load_consume(&timehands)->th_counter->tc_frequency;
    873 }
    874 
    875 /*
    876  * Step our concept of UTC.  This is done by modifying our estimate of
    877  * when we booted.
    878  */
    879 void
    880 tc_setclock(const struct timespec *ts)
    881 {
    882 	struct timespec ts2;
    883 	struct bintime bt, bt2;
    884 
    885 	mutex_spin_enter(&timecounter_lock);
    886 	TC_COUNT(nsetclock);
    887 	binuptime(&bt2);
    888 	timespec2bintime(ts, &bt);
    889 	bintime_sub(&bt, &bt2);
    890 	bintime_add(&bt2, &timebase.bin);
    891 	timebase.gen |= 1;	/* change in progress */
    892 	membar_producer();
    893 	timebase.bin = bt;
    894 	membar_producer();
    895 	timebase.gen++;		/* commit change */
    896 	tc_windup();
    897 	mutex_spin_exit(&timecounter_lock);
    898 
    899 	if (timestepwarnings) {
    900 		bintime2timespec(&bt2, &ts2);
    901 		log(LOG_INFO,
    902 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    903 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    904 		    (long long)ts->tv_sec, ts->tv_nsec);
    905 	}
    906 }
    907 
    908 /*
    909  * Initialize the next struct timehands in the ring and make
    910  * it the active timehands.  Along the way we might switch to a different
    911  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    912  */
    913 static void
    914 tc_windup(void)
    915 {
    916 	struct bintime bt;
    917 	struct timehands *th, *tho;
    918 	uint64_t scale;
    919 	u_int delta, ncount, ogen;
    920 	int i, s_update;
    921 	time_t t;
    922 
    923 	KASSERT(mutex_owned(&timecounter_lock));
    924 
    925 	s_update = 0;
    926 
    927 	/*
    928 	 * Make the next timehands a copy of the current one, but do not
    929 	 * overwrite the generation or next pointer.  While we update
    930 	 * the contents, the generation must be zero.  Ensure global
    931 	 * visibility of the generation before proceeding.
    932 	 */
    933 	tho = timehands;
    934 	th = tho->th_next;
    935 	ogen = th->th_generation;
    936 	th->th_generation = 0;
    937 	membar_producer();
    938 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    939 
    940 	/*
    941 	 * Capture a timecounter delta on the current timecounter and if
    942 	 * changing timecounters, a counter value from the new timecounter.
    943 	 * Update the offset fields accordingly.
    944 	 */
    945 	delta = tc_delta(th);
    946 	if (th->th_counter != timecounter)
    947 		ncount = timecounter->tc_get_timecount(timecounter);
    948 	else
    949 		ncount = 0;
    950 	th->th_offset_count += delta;
    951 	bintime_addx(&th->th_offset, th->th_scale * delta);
    952 
    953 	/*
    954 	 * Hardware latching timecounters may not generate interrupts on
    955 	 * PPS events, so instead we poll them.  There is a finite risk that
    956 	 * the hardware might capture a count which is later than the one we
    957 	 * got above, and therefore possibly in the next NTP second which might
    958 	 * have a different rate than the current NTP second.  It doesn't
    959 	 * matter in practice.
    960 	 */
    961 	if (tho->th_counter->tc_poll_pps)
    962 		tho->th_counter->tc_poll_pps(tho->th_counter);
    963 
    964 	/*
    965 	 * Deal with NTP second processing.  The for loop normally
    966 	 * iterates at most once, but in extreme situations it might
    967 	 * keep NTP sane if timeouts are not run for several seconds.
    968 	 * At boot, the time step can be large when the TOD hardware
    969 	 * has been read, so on really large steps, we call
    970 	 * ntp_update_second only twice.  We need to call it twice in
    971 	 * case we missed a leap second.
    972 	 * If NTP is not compiled in ntp_update_second still calculates
    973 	 * the adjustment resulting from adjtime() calls.
    974 	 */
    975 	bt = th->th_offset;
    976 	bintime_add(&bt, &timebase.bin);
    977 	i = bt.sec - tho->th_microtime.tv_sec;
    978 	if (i > LARGE_STEP)
    979 		i = 2;
    980 	for (; i > 0; i--) {
    981 		t = bt.sec;
    982 		ntp_update_second(&th->th_adjustment, &bt.sec);
    983 		s_update = 1;
    984 		if (bt.sec != t) {
    985 			timebase.gen |= 1;	/* change in progress */
    986 			membar_producer();
    987 			timebase.bin.sec += bt.sec - t;
    988 			membar_producer();
    989 			timebase.gen++;		/* commit change */
    990 		}
    991 	}
    992 
    993 	/* Update the UTC timestamps used by the get*() functions. */
    994 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    995 	bintime2timeval(&bt, &th->th_microtime);
    996 	bintime2timespec(&bt, &th->th_nanotime);
    997 	/* Now is a good time to change timecounters. */
    998 	if (th->th_counter != timecounter) {
    999 		th->th_counter = timecounter;
   1000 		th->th_offset_count = ncount;
   1001 		s_update = 1;
   1002 	}
   1003 
   1004 	/*-
   1005 	 * Recalculate the scaling factor.  We want the number of 1/2^64
   1006 	 * fractions of a second per period of the hardware counter, taking
   1007 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
   1008 	 * processing provides us with.
   1009 	 *
   1010 	 * The th_adjustment is nanoseconds per second with 32 bit binary
   1011 	 * fraction and we want 64 bit binary fraction of second:
   1012 	 *
   1013 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
   1014 	 *
   1015 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
   1016 	 * we can only multiply by about 850 without overflowing, but that
   1017 	 * leaves suitably precise fractions for multiply before divide.
   1018 	 *
   1019 	 * Divide before multiply with a fraction of 2199/512 results in a
   1020 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
   1021 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
   1022  	 *
   1023 	 * We happily sacrifice the lowest of the 64 bits of our result
   1024 	 * to the goddess of code clarity.
   1025 	 *
   1026 	 */
   1027 	if (s_update) {
   1028 		scale = (uint64_t)1 << 63;
   1029 		scale += (th->th_adjustment / 1024) * 2199;
   1030 		scale /= th->th_counter->tc_frequency;
   1031 		th->th_scale = scale * 2;
   1032 	}
   1033 	/*
   1034 	 * Now that the struct timehands is again consistent, set the new
   1035 	 * generation number, making sure to not make it zero.  Ensure
   1036 	 * changes are globally visible before changing.
   1037 	 */
   1038 	if (++ogen == 0)
   1039 		ogen = 1;
   1040 	membar_producer();
   1041 	th->th_generation = ogen;
   1042 
   1043 	/*
   1044 	 * Go live with the new struct timehands.  Ensure changes are
   1045 	 * globally visible before changing.
   1046 	 */
   1047 	setrealuptime(th->th_microtime.tv_sec, th->th_offset.sec);
   1048 	atomic_store_release(&timehands, th);
   1049 
   1050 	/*
   1051 	 * Force users of the old timehand to move on.  This is
   1052 	 * necessary for MP systems; we need to ensure that the
   1053 	 * consumers will move away from the old timehand before
   1054 	 * we begin updating it again when we eventually wrap
   1055 	 * around.
   1056 	 */
   1057 	if (++tho->th_generation == 0)
   1058 		tho->th_generation = 1;
   1059 }
   1060 
   1061 /*
   1062  * RFC 2783 PPS-API implementation.
   1063  */
   1064 
   1065 int
   1066 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
   1067 {
   1068 	pps_params_t *app;
   1069 	pps_info_t *pipi;
   1070 #ifdef PPS_SYNC
   1071 	int *epi;
   1072 #endif
   1073 
   1074 	KASSERT(mutex_owned(&timecounter_lock));
   1075 
   1076 	KASSERT(pps != NULL);
   1077 
   1078 	switch (cmd) {
   1079 	case PPS_IOC_CREATE:
   1080 		return 0;
   1081 	case PPS_IOC_DESTROY:
   1082 		return 0;
   1083 	case PPS_IOC_SETPARAMS:
   1084 		app = (pps_params_t *)data;
   1085 		if (app->mode & ~pps->ppscap)
   1086 			return SET_ERROR(EINVAL);
   1087 		pps->ppsparam = *app;
   1088 		return 0;
   1089 	case PPS_IOC_GETPARAMS:
   1090 		app = (pps_params_t *)data;
   1091 		*app = pps->ppsparam;
   1092 		app->api_version = PPS_API_VERS_1;
   1093 		return 0;
   1094 	case PPS_IOC_GETCAP:
   1095 		*(int*)data = pps->ppscap;
   1096 		return 0;
   1097 	case PPS_IOC_FETCH:
   1098 		pipi = (pps_info_t *)data;
   1099 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
   1100 		*pipi = pps->ppsinfo;
   1101 		return 0;
   1102 	case PPS_IOC_KCBIND:
   1103 #ifdef PPS_SYNC
   1104 		epi = (int *)data;
   1105 		/* XXX Only root should be able to do this */
   1106 		if (*epi & ~pps->ppscap)
   1107 			return SET_ERROR(EINVAL);
   1108 		pps->kcmode = *epi;
   1109 		return 0;
   1110 #else
   1111 		return SET_ERROR(EOPNOTSUPP);
   1112 #endif
   1113 	default:
   1114 		return SET_ERROR(EPASSTHROUGH);
   1115 	}
   1116 }
   1117 
   1118 void
   1119 pps_init(struct pps_state *pps)
   1120 {
   1121 
   1122 	KASSERT(mutex_owned(&timecounter_lock));
   1123 
   1124 	pps->ppscap |= PPS_TSFMT_TSPEC;
   1125 	if (pps->ppscap & PPS_CAPTUREASSERT)
   1126 		pps->ppscap |= PPS_OFFSETASSERT;
   1127 	if (pps->ppscap & PPS_CAPTURECLEAR)
   1128 		pps->ppscap |= PPS_OFFSETCLEAR;
   1129 }
   1130 
   1131 /*
   1132  * capture a timestamp in the pps structure
   1133  */
   1134 void
   1135 pps_capture(struct pps_state *pps)
   1136 {
   1137 	struct timehands *th;
   1138 
   1139 	KASSERT(mutex_owned(&timecounter_lock));
   1140 	KASSERT(pps != NULL);
   1141 
   1142 	th = timehands;
   1143 	pps->capgen = th->th_generation;
   1144 	pps->capth = th;
   1145 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1146 	if (pps->capgen != th->th_generation)
   1147 		pps->capgen = 0;
   1148 }
   1149 
   1150 #ifdef PPS_DEBUG
   1151 int ppsdebug = 0;
   1152 #endif
   1153 
   1154 /*
   1155  * process a pps_capture()ed event
   1156  */
   1157 void
   1158 pps_event(struct pps_state *pps, int event)
   1159 {
   1160 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
   1161 }
   1162 
   1163 /*
   1164  * extended pps api /  kernel pll/fll entry point
   1165  *
   1166  * feed reference time stamps to PPS engine
   1167  *
   1168  * will simulate a PPS event and feed
   1169  * the NTP PLL/FLL if requested.
   1170  *
   1171  * the ref time stamps should be roughly once
   1172  * a second but do not need to be exactly in phase
   1173  * with the UTC second but should be close to it.
   1174  * this relaxation of requirements allows callout
   1175  * driven timestamping mechanisms to feed to pps
   1176  * capture/kernel pll logic.
   1177  *
   1178  * calling pattern is:
   1179  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
   1180  *  read timestamp from reference source
   1181  *  pps_ref_event()
   1182  *
   1183  * supported refmodes:
   1184  *  PPS_REFEVNT_CAPTURE
   1185  *    use system timestamp of pps_capture()
   1186  *  PPS_REFEVNT_CURRENT
   1187  *    use system timestamp of this call
   1188  *  PPS_REFEVNT_CAPCUR
   1189  *    use average of read capture and current system time stamp
   1190  *  PPS_REFEVNT_PPS
   1191  *    assume timestamp on second mark - ref_ts is ignored
   1192  *
   1193  */
   1194 
   1195 void
   1196 pps_ref_event(struct pps_state *pps,
   1197 	      int event,
   1198 	      struct bintime *ref_ts,
   1199 	      int refmode
   1200 	)
   1201 {
   1202 	struct bintime bt;	/* current time */
   1203 	struct bintime btd;	/* time difference */
   1204 	struct bintime bt_ref;	/* reference time */
   1205 	struct timespec ts, *tsp, *osp;
   1206 	struct timehands *th;
   1207 	uint64_t tcount, acount, dcount, *pcount;
   1208 	int foff, gen;
   1209 #ifdef PPS_SYNC
   1210 	int fhard;
   1211 #endif
   1212 	pps_seq_t *pseq;
   1213 
   1214 	KASSERT(mutex_owned(&timecounter_lock));
   1215 
   1216 	KASSERT(pps != NULL);
   1217 
   1218         /* pick up current time stamp if needed */
   1219 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1220 		/* pick up current time stamp */
   1221 		th = timehands;
   1222 		gen = th->th_generation;
   1223 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1224 		if (gen != th->th_generation)
   1225 			gen = 0;
   1226 
   1227 		/* If the timecounter was wound up underneath us, bail out. */
   1228 		if (pps->capgen == 0 ||
   1229 		    pps->capgen != pps->capth->th_generation ||
   1230 		    gen == 0 ||
   1231 		    gen != pps->capgen) {
   1232 #ifdef PPS_DEBUG
   1233 			if (ppsdebug & 0x1) {
   1234 				log(LOG_DEBUG,
   1235 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1236 				    pps, event);
   1237 			}
   1238 #endif
   1239 			return;
   1240 		}
   1241 	} else {
   1242 		tcount = 0;	/* keep GCC happy */
   1243 	}
   1244 
   1245 #ifdef PPS_DEBUG
   1246 	if (ppsdebug & 0x1) {
   1247 		struct timespec tmsp;
   1248 
   1249 		if (ref_ts == NULL) {
   1250 			tmsp.tv_sec = 0;
   1251 			tmsp.tv_nsec = 0;
   1252 		} else {
   1253 			bintime2timespec(ref_ts, &tmsp);
   1254 		}
   1255 
   1256 		log(LOG_DEBUG,
   1257 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1258 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1259 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1260 	}
   1261 #endif
   1262 
   1263 	/* setup correct event references */
   1264 	if (event == PPS_CAPTUREASSERT) {
   1265 		tsp = &pps->ppsinfo.assert_timestamp;
   1266 		osp = &pps->ppsparam.assert_offset;
   1267 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1268 #ifdef PPS_SYNC
   1269 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1270 #endif
   1271 		pcount = &pps->ppscount[0];
   1272 		pseq = &pps->ppsinfo.assert_sequence;
   1273 	} else {
   1274 		tsp = &pps->ppsinfo.clear_timestamp;
   1275 		osp = &pps->ppsparam.clear_offset;
   1276 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1277 #ifdef PPS_SYNC
   1278 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1279 #endif
   1280 		pcount = &pps->ppscount[1];
   1281 		pseq = &pps->ppsinfo.clear_sequence;
   1282 	}
   1283 
   1284 	/* determine system time stamp according to refmode */
   1285 	dcount = 0;		/* keep GCC happy */
   1286 	switch (refmode & PPS_REFEVNT_RMASK) {
   1287 	case PPS_REFEVNT_CAPTURE:
   1288 		acount = pps->capcount;	/* use capture timestamp */
   1289 		break;
   1290 
   1291 	case PPS_REFEVNT_CURRENT:
   1292 		acount = tcount; /* use current timestamp */
   1293 		break;
   1294 
   1295 	case PPS_REFEVNT_CAPCUR:
   1296 		/*
   1297 		 * calculate counter value between pps_capture() and
   1298 		 * pps_ref_event()
   1299 		 */
   1300 		dcount = tcount - pps->capcount;
   1301 		acount = (dcount / 2) + pps->capcount;
   1302 		break;
   1303 
   1304 	default:		/* ignore call error silently */
   1305 		return;
   1306 	}
   1307 
   1308 	/*
   1309 	 * If the timecounter changed, we cannot compare the count values, so
   1310 	 * we have to drop the rest of the PPS-stuff until the next event.
   1311 	 */
   1312 	if (pps->ppstc != pps->capth->th_counter) {
   1313 		pps->ppstc = pps->capth->th_counter;
   1314 		pps->capcount = acount;
   1315 		*pcount = acount;
   1316 		pps->ppscount[2] = acount;
   1317 #ifdef PPS_DEBUG
   1318 		if (ppsdebug & 0x1) {
   1319 			log(LOG_DEBUG,
   1320 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1321 			    pps, event);
   1322 		}
   1323 #endif
   1324 		return;
   1325 	}
   1326 
   1327 	pps->capcount = acount;
   1328 
   1329 	/* Convert the count to a bintime. */
   1330 	bt = pps->capth->th_offset;
   1331 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1332 	bintime_add(&bt, &timebase.bin);
   1333 
   1334 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1335 		/* determine difference to reference time stamp */
   1336 		bt_ref = *ref_ts;
   1337 
   1338 		btd = bt;
   1339 		bintime_sub(&btd, &bt_ref);
   1340 
   1341 		/*
   1342 		 * simulate a PPS timestamp by dropping the fraction
   1343 		 * and applying the offset
   1344 		 */
   1345 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1346 			bt.sec++;
   1347 		bt.frac = 0;
   1348 		bintime_add(&bt, &btd);
   1349 	} else {
   1350 		/*
   1351 		 * create ref_ts from current time -
   1352 		 * we are supposed to be called on
   1353 		 * the second mark
   1354 		 */
   1355 		bt_ref = bt;
   1356 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1357 			bt_ref.sec++;
   1358 		bt_ref.frac = 0;
   1359 	}
   1360 
   1361 	/* convert bintime to timestamp */
   1362 	bintime2timespec(&bt, &ts);
   1363 
   1364 	/* If the timecounter was wound up underneath us, bail out. */
   1365 	if (pps->capgen != pps->capth->th_generation)
   1366 		return;
   1367 
   1368 	/* store time stamp */
   1369 	*pcount = pps->capcount;
   1370 	(*pseq)++;
   1371 	*tsp = ts;
   1372 
   1373 	/* add offset correction */
   1374 	if (foff) {
   1375 		timespecadd(tsp, osp, tsp);
   1376 		if (tsp->tv_nsec < 0) {
   1377 			tsp->tv_nsec += 1000000000;
   1378 			tsp->tv_sec -= 1;
   1379 		}
   1380 	}
   1381 
   1382 #ifdef PPS_DEBUG
   1383 	if (ppsdebug & 0x2) {
   1384 		struct timespec ts2;
   1385 		struct timespec ts3;
   1386 
   1387 		bintime2timespec(&bt_ref, &ts2);
   1388 
   1389 		bt.sec = 0;
   1390 		bt.frac = 0;
   1391 
   1392 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1393 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1394 		}
   1395 		bintime2timespec(&bt, &ts3);
   1396 
   1397 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1398 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1399 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1400 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1401 		    timespec2ns(&ts3));
   1402 	}
   1403 #endif
   1404 
   1405 #ifdef PPS_SYNC
   1406 	if (fhard) {
   1407 		uint64_t scale;
   1408 		uint64_t div;
   1409 
   1410 		/*
   1411 		 * Feed the NTP PLL/FLL.
   1412 		 * The FLL wants to know how many (hardware) nanoseconds
   1413 		 * elapsed since the previous event (mod 1 second) thus
   1414 		 * we are actually looking at the frequency difference scaled
   1415 		 * in nsec.
   1416 		 * As the counter time stamps are not truly at 1Hz
   1417 		 * we need to scale the count by the elapsed
   1418 		 * reference time.
   1419 		 * valid sampling interval: [0.5..2[ sec
   1420 		 */
   1421 
   1422 		/* calculate elapsed raw count */
   1423 		tcount = pps->capcount - pps->ppscount[2];
   1424 		pps->ppscount[2] = pps->capcount;
   1425 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1426 
   1427 		/* calculate elapsed ref time */
   1428 		btd = bt_ref;
   1429 		bintime_sub(&btd, &pps->ref_time);
   1430 		pps->ref_time = bt_ref;
   1431 
   1432 		/* check that we stay below 2 sec */
   1433 		if (btd.sec < 0 || btd.sec > 1)
   1434 			return;
   1435 
   1436 		/* we want at least 0.5 sec between samples */
   1437 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1438 			return;
   1439 
   1440 		/*
   1441 		 * calculate cycles per period by multiplying
   1442 		 * the frequency with the elapsed period
   1443 		 * we pick a fraction of 30 bits
   1444 		 * ~1ns resolution for elapsed time
   1445 		 */
   1446 		div   = (uint64_t)btd.sec << 30;
   1447 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1448 		div  *= pps->capth->th_counter->tc_frequency;
   1449 		div >>= 30;
   1450 
   1451 		if (div == 0)	/* safeguard */
   1452 			return;
   1453 
   1454 		scale = (uint64_t)1 << 63;
   1455 		scale /= div;
   1456 		scale *= 2;
   1457 
   1458 		bt.sec = 0;
   1459 		bt.frac = 0;
   1460 		bintime_addx(&bt, scale * tcount);
   1461 		bintime2timespec(&bt, &ts);
   1462 
   1463 #ifdef PPS_DEBUG
   1464 		if (ppsdebug & 0x4) {
   1465 			struct timespec ts2;
   1466 			int64_t df;
   1467 
   1468 			bintime2timespec(&bt_ref, &ts2);
   1469 			df = timespec2ns(&ts);
   1470 			if (df > 500000000)
   1471 				df -= 1000000000;
   1472 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1473 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1474 			    ", freqdiff=%"PRIi64" ns/s\n",
   1475 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1476 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1477 			    df);
   1478 		}
   1479 #endif
   1480 
   1481 		hardpps(tsp, timespec2ns(&ts));
   1482 	}
   1483 #endif
   1484 }
   1485 
   1486 /*
   1487  * Timecounters need to be updated every so often to prevent the hardware
   1488  * counter from overflowing.  Updating also recalculates the cached values
   1489  * used by the get*() family of functions, so their precision depends on
   1490  * the update frequency.
   1491  */
   1492 
   1493 static int tc_tick;
   1494 
   1495 void
   1496 tc_ticktock(void)
   1497 {
   1498 	static int count;
   1499 
   1500 	if (++count < tc_tick)
   1501 		return;
   1502 	count = 0;
   1503 	mutex_spin_enter(&timecounter_lock);
   1504 	if (__predict_false(timecounter_bad != 0)) {
   1505 		/* An existing timecounter has gone bad, pick a new one. */
   1506 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1507 		if (timecounter->tc_quality < 0) {
   1508 			tc_pick();
   1509 		}
   1510 	}
   1511 	tc_windup();
   1512 	mutex_spin_exit(&timecounter_lock);
   1513 }
   1514 
   1515 void
   1516 inittimecounter(void)
   1517 {
   1518 	u_int p;
   1519 
   1520 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1521 
   1522 	/*
   1523 	 * Set the initial timeout to
   1524 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1525 	 * People should probably not use the sysctl to set the timeout
   1526 	 * to smaller than its initial value, since that value is the
   1527 	 * smallest reasonable one.  If they want better timestamps they
   1528 	 * should use the non-"get"* functions.
   1529 	 */
   1530 	if (hz > 1000)
   1531 		tc_tick = (hz + 500) / 1000;
   1532 	else
   1533 		tc_tick = 1;
   1534 	p = (tc_tick * 1000000) / hz;
   1535 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1536 	    p / 1000, p % 1000);
   1537 
   1538 	/* warm up new timecounter (again) and get rolling. */
   1539 	(void)timecounter->tc_get_timecount(timecounter);
   1540 	(void)timecounter->tc_get_timecount(timecounter);
   1541 }
   1542