Home | History | Annotate | Line # | Download | only in netinet
      1 /*	$NetBSD: tcp_input.c,v 1.441 2024/10/08 06:17:14 rin Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.441 2024/10/08 06:17:14 rin Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "opt_inet.h"
    145 #include "opt_ipsec.h"
    146 #include "opt_inet_csum.h"
    147 #include "opt_tcp_debug.h"
    148 #endif
    149 
    150 #include <sys/param.h>
    151 #include <sys/systm.h>
    152 #include <sys/malloc.h>
    153 #include <sys/mbuf.h>
    154 #include <sys/protosw.h>
    155 #include <sys/socket.h>
    156 #include <sys/socketvar.h>
    157 #include <sys/errno.h>
    158 #include <sys/syslog.h>
    159 #include <sys/pool.h>
    160 #include <sys/domain.h>
    161 #include <sys/kernel.h>
    162 #ifdef TCP_SIGNATURE
    163 #include <sys/md5.h>
    164 #endif
    165 #include <sys/lwp.h> /* for lwp0 */
    166 #include <sys/cprng.h>
    167 
    168 #include <net/if.h>
    169 #include <net/if_types.h>
    170 
    171 #include <netinet/in.h>
    172 #include <netinet/in_systm.h>
    173 #include <netinet/ip.h>
    174 #include <netinet/in_pcb.h>
    175 #include <netinet/in_var.h>
    176 #include <netinet/ip_var.h>
    177 #include <netinet/in_offload.h>
    178 
    179 #if NARP > 0
    180 #include <netinet/if_inarp.h>
    181 #endif
    182 #ifdef INET6
    183 #include <netinet/ip6.h>
    184 #include <netinet6/ip6_var.h>
    185 #include <netinet6/in6_pcb.h>
    186 #include <netinet6/ip6_var.h>
    187 #include <netinet6/in6_var.h>
    188 #include <netinet/icmp6.h>
    189 #include <netinet6/nd6.h>
    190 #ifdef TCP_SIGNATURE
    191 #include <netinet6/scope6_var.h>
    192 #endif
    193 #endif
    194 
    195 #ifndef INET6
    196 #include <netinet/ip6.h>
    197 #endif
    198 
    199 #include <netinet/tcp.h>
    200 #include <netinet/tcp_fsm.h>
    201 #include <netinet/tcp_seq.h>
    202 #include <netinet/tcp_timer.h>
    203 #include <netinet/tcp_var.h>
    204 #include <netinet/tcp_private.h>
    205 #include <netinet/tcp_congctl.h>
    206 #include <netinet/tcp_debug.h>
    207 #include <netinet/tcp_syncache.h>
    208 
    209 #ifdef INET6
    210 #include "faith.h"
    211 #if defined(NFAITH) && NFAITH > 0
    212 #include <net/if_faith.h>
    213 #endif
    214 #endif
    215 
    216 #ifdef IPSEC
    217 #include <netipsec/ipsec.h>
    218 #include <netipsec/key.h>
    219 #ifdef INET6
    220 #include <netipsec/ipsec6.h>
    221 #endif
    222 #endif	/* IPSEC*/
    223 
    224 #include <netinet/tcp_vtw.h>
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 int	tcp_do_autorcvbuf = 1;
    230 int	tcp_autorcvbuf_inc = 16 * 1024;
    231 int	tcp_autorcvbuf_max = 256 * 1024;
    232 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    233 
    234 int tcp_reass_maxqueuelen = 100;
    235 
    236 static int tcp_rst_ppslim_count = 0;
    237 static struct timeval tcp_rst_ppslim_last;
    238 static int tcp_ackdrop_ppslim_count = 0;
    239 static struct timeval tcp_ackdrop_ppslim_last;
    240 
    241 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    242 
    243 /* for modulo comparisons of timestamps */
    244 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    245 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    246 
    247 /*
    248  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    249  */
    250 static void
    251 nd_hint(struct tcpcb *tp)
    252 {
    253 	struct route *ro = NULL;
    254 	struct rtentry *rt;
    255 
    256 	if (tp == NULL)
    257 		return;
    258 
    259 	ro = &tp->t_inpcb->inp_route;
    260 	if (ro == NULL)
    261 		return;
    262 
    263 	rt = rtcache_validate(ro);
    264 	if (rt == NULL)
    265 		return;
    266 
    267 	switch (tp->t_family) {
    268 #if NARP > 0
    269 	case AF_INET:
    270 		arp_nud_hint(rt);
    271 		break;
    272 #endif
    273 #ifdef INET6
    274 	case AF_INET6:
    275 		nd6_nud_hint(rt);
    276 		break;
    277 #endif
    278 	}
    279 
    280 	rtcache_unref(rt, ro);
    281 }
    282 
    283 /*
    284  * Compute ACK transmission behavior.  Delay the ACK unless
    285  * we have already delayed an ACK (must send an ACK every two segments).
    286  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    287  * option is enabled.
    288  */
    289 static void
    290 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    291 {
    292 
    293 	if (tp->t_flags & TF_DELACK ||
    294 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    295 		tp->t_flags |= TF_ACKNOW;
    296 	else
    297 		TCP_SET_DELACK(tp);
    298 }
    299 
    300 static void
    301 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    302 {
    303 
    304 	/*
    305 	 * If we had a pending ICMP message that refers to data that have
    306 	 * just been acknowledged, disregard the recorded ICMP message.
    307 	 */
    308 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    309 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    310 		tp->t_flags &= ~TF_PMTUD_PEND;
    311 
    312 	/*
    313 	 * Keep track of the largest chunk of data
    314 	 * acknowledged since last PMTU update
    315 	 */
    316 	if (tp->t_pmtud_mss_acked < acked)
    317 		tp->t_pmtud_mss_acked = acked;
    318 }
    319 
    320 /*
    321  * Convert TCP protocol fields to host order for easier processing.
    322  */
    323 static void
    324 tcp_fields_to_host(struct tcphdr *th)
    325 {
    326 
    327 	NTOHL(th->th_seq);
    328 	NTOHL(th->th_ack);
    329 	NTOHS(th->th_win);
    330 	NTOHS(th->th_urp);
    331 }
    332 
    333 /*
    334  * ... and reverse the above.
    335  */
    336 static void
    337 tcp_fields_to_net(struct tcphdr *th)
    338 {
    339 
    340 	HTONL(th->th_seq);
    341 	HTONL(th->th_ack);
    342 	HTONS(th->th_win);
    343 	HTONS(th->th_urp);
    344 }
    345 
    346 static void
    347 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    348 {
    349 	if (th->th_urp > todrop) {
    350 		th->th_urp -= todrop;
    351 	} else {
    352 		*tiflags &= ~TH_URG;
    353 		th->th_urp = 0;
    354 	}
    355 }
    356 
    357 #ifdef TCP_CSUM_COUNTERS
    358 #include <sys/device.h>
    359 
    360 extern struct evcnt tcp_hwcsum_ok;
    361 extern struct evcnt tcp_hwcsum_bad;
    362 extern struct evcnt tcp_hwcsum_data;
    363 extern struct evcnt tcp_swcsum;
    364 #if defined(INET6)
    365 extern struct evcnt tcp6_hwcsum_ok;
    366 extern struct evcnt tcp6_hwcsum_bad;
    367 extern struct evcnt tcp6_hwcsum_data;
    368 extern struct evcnt tcp6_swcsum;
    369 #endif /* defined(INET6) */
    370 
    371 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    372 
    373 #else
    374 
    375 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    376 
    377 #endif /* TCP_CSUM_COUNTERS */
    378 
    379 #ifdef TCP_REASS_COUNTERS
    380 #include <sys/device.h>
    381 
    382 extern struct evcnt tcp_reass_;
    383 extern struct evcnt tcp_reass_empty;
    384 extern struct evcnt tcp_reass_iteration[8];
    385 extern struct evcnt tcp_reass_prependfirst;
    386 extern struct evcnt tcp_reass_prepend;
    387 extern struct evcnt tcp_reass_insert;
    388 extern struct evcnt tcp_reass_inserttail;
    389 extern struct evcnt tcp_reass_append;
    390 extern struct evcnt tcp_reass_appendtail;
    391 extern struct evcnt tcp_reass_overlaptail;
    392 extern struct evcnt tcp_reass_overlapfront;
    393 extern struct evcnt tcp_reass_segdup;
    394 extern struct evcnt tcp_reass_fragdup;
    395 
    396 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    397 
    398 #else
    399 
    400 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    401 
    402 #endif /* TCP_REASS_COUNTERS */
    403 
    404 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    405     int);
    406 
    407 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    408 #ifdef INET6
    409 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    410 #endif
    411 
    412 #if defined(MBUFTRACE)
    413 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    414 #endif /* defined(MBUFTRACE) */
    415 
    416 static struct pool tcpipqent_pool;
    417 
    418 void
    419 tcpipqent_init(void)
    420 {
    421 
    422 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    423 	    NULL, IPL_VM);
    424 }
    425 
    426 struct ipqent *
    427 tcpipqent_alloc(void)
    428 {
    429 	struct ipqent *ipqe;
    430 	int s;
    431 
    432 	s = splvm();
    433 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    434 	splx(s);
    435 
    436 	return ipqe;
    437 }
    438 
    439 void
    440 tcpipqent_free(struct ipqent *ipqe)
    441 {
    442 	int s;
    443 
    444 	s = splvm();
    445 	pool_put(&tcpipqent_pool, ipqe);
    446 	splx(s);
    447 }
    448 
    449 /*
    450  * Insert segment ti into reassembly queue of tcp with
    451  * control block tp.  Return TH_FIN if reassembly now includes
    452  * a segment with FIN.
    453  */
    454 static int
    455 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    456 {
    457 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    458 	struct socket *so = NULL;
    459 	int pkt_flags;
    460 	tcp_seq pkt_seq;
    461 	unsigned pkt_len;
    462 	u_long rcvpartdupbyte = 0;
    463 	u_long rcvoobyte;
    464 #ifdef TCP_REASS_COUNTERS
    465 	u_int count = 0;
    466 #endif
    467 	net_stat_ref_t tcps;
    468 
    469 	so = tp->t_inpcb->inp_socket;
    470 
    471 	TCP_REASS_LOCK_CHECK(tp);
    472 
    473 	/*
    474 	 * Call with th==NULL after become established to
    475 	 * force pre-ESTABLISHED data up to user socket.
    476 	 */
    477 	if (th == NULL)
    478 		goto present;
    479 
    480 	m_claimm(m, &tcp_reass_mowner);
    481 
    482 	rcvoobyte = tlen;
    483 	/*
    484 	 * Copy these to local variables because the TCP header gets munged
    485 	 * while we are collapsing mbufs.
    486 	 */
    487 	pkt_seq = th->th_seq;
    488 	pkt_len = tlen;
    489 	pkt_flags = th->th_flags;
    490 
    491 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    492 
    493 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    494 		/*
    495 		 * When we miss a packet, the vast majority of time we get
    496 		 * packets that follow it in order.  So optimize for that.
    497 		 */
    498 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    499 			p->ipqe_len += pkt_len;
    500 			p->ipqe_flags |= pkt_flags;
    501 			m_cat(p->ipqe_m, m);
    502 			m = NULL;
    503 			tiqe = p;
    504 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    505 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    506 			goto skip_replacement;
    507 		}
    508 		/*
    509 		 * While we're here, if the pkt is completely beyond
    510 		 * anything we have, just insert it at the tail.
    511 		 */
    512 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    513 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    514 			goto insert_it;
    515 		}
    516 	}
    517 
    518 	q = TAILQ_FIRST(&tp->segq);
    519 
    520 	if (q != NULL) {
    521 		/*
    522 		 * If this segment immediately precedes the first out-of-order
    523 		 * block, simply slap the segment in front of it and (mostly)
    524 		 * skip the complicated logic.
    525 		 */
    526 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    527 			q->ipqe_seq = pkt_seq;
    528 			q->ipqe_len += pkt_len;
    529 			q->ipqe_flags |= pkt_flags;
    530 			m_cat(m, q->ipqe_m);
    531 			q->ipqe_m = m;
    532 			tiqe = q;
    533 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    534 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    535 			goto skip_replacement;
    536 		}
    537 	} else {
    538 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    539 	}
    540 
    541 	/*
    542 	 * Find a segment which begins after this one does.
    543 	 */
    544 	for (p = NULL; q != NULL; q = nq) {
    545 		nq = TAILQ_NEXT(q, ipqe_q);
    546 #ifdef TCP_REASS_COUNTERS
    547 		count++;
    548 #endif
    549 
    550 		/*
    551 		 * If the received segment is just right after this
    552 		 * fragment, merge the two together and then check
    553 		 * for further overlaps.
    554 		 */
    555 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    556 			pkt_len += q->ipqe_len;
    557 			pkt_flags |= q->ipqe_flags;
    558 			pkt_seq = q->ipqe_seq;
    559 			m_cat(q->ipqe_m, m);
    560 			m = q->ipqe_m;
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    562 			goto free_ipqe;
    563 		}
    564 
    565 		/*
    566 		 * If the received segment is completely past this
    567 		 * fragment, we need to go to the next fragment.
    568 		 */
    569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    570 			p = q;
    571 			continue;
    572 		}
    573 
    574 		/*
    575 		 * If the fragment is past the received segment,
    576 		 * it (or any following) can't be concatenated.
    577 		 */
    578 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    579 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    580 			break;
    581 		}
    582 
    583 		/*
    584 		 * We've received all the data in this segment before.
    585 		 * Mark it as a duplicate and return.
    586 		 */
    587 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    588 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    589 			tcps = TCP_STAT_GETREF();
    590 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
    591 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, pkt_len);
    592 			TCP_STAT_PUTREF();
    593 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    594 			m_freem(m);
    595 			if (tiqe != NULL) {
    596 				tcpipqent_free(tiqe);
    597 			}
    598 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    599 			goto out;
    600 		}
    601 
    602 		/*
    603 		 * Received segment completely overlaps this fragment
    604 		 * so we drop the fragment (this keeps the temporal
    605 		 * ordering of segments correct).
    606 		 */
    607 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    608 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    609 			rcvpartdupbyte += q->ipqe_len;
    610 			m_freem(q->ipqe_m);
    611 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    612 			goto free_ipqe;
    613 		}
    614 
    615 		/*
    616 		 * Received segment extends past the end of the fragment.
    617 		 * Drop the overlapping bytes, merge the fragment and
    618 		 * segment, and treat as a longer received packet.
    619 		 */
    620 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    621 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    622 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    623 			m_adj(m, overlap);
    624 			rcvpartdupbyte += overlap;
    625 			m_cat(q->ipqe_m, m);
    626 			m = q->ipqe_m;
    627 			pkt_seq = q->ipqe_seq;
    628 			pkt_len += q->ipqe_len - overlap;
    629 			rcvoobyte -= overlap;
    630 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    631 			goto free_ipqe;
    632 		}
    633 
    634 		/*
    635 		 * Received segment extends past the front of the fragment.
    636 		 * Drop the overlapping bytes on the received packet. The
    637 		 * packet will then be concatenated with this fragment a
    638 		 * bit later.
    639 		 */
    640 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    641 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    642 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    643 			m_adj(m, -overlap);
    644 			pkt_len -= overlap;
    645 			rcvpartdupbyte += overlap;
    646 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    647 			rcvoobyte -= overlap;
    648 		}
    649 
    650 		/*
    651 		 * If the received segment immediately precedes this
    652 		 * fragment then tack the fragment onto this segment
    653 		 * and reinsert the data.
    654 		 */
    655 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    656 			pkt_len += q->ipqe_len;
    657 			pkt_flags |= q->ipqe_flags;
    658 			m_cat(m, q->ipqe_m);
    659 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    660 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    661 			tp->t_segqlen--;
    662 			KASSERT(tp->t_segqlen >= 0);
    663 			KASSERT(tp->t_segqlen != 0 ||
    664 			    (TAILQ_EMPTY(&tp->segq) &&
    665 			    TAILQ_EMPTY(&tp->timeq)));
    666 			if (tiqe == NULL) {
    667 				tiqe = q;
    668 			} else {
    669 				tcpipqent_free(q);
    670 			}
    671 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    672 			break;
    673 		}
    674 
    675 		/*
    676 		 * If the fragment is before the segment, remember it.
    677 		 * When this loop is terminated, p will contain the
    678 		 * pointer to the fragment that is right before the
    679 		 * received segment.
    680 		 */
    681 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    682 			p = q;
    683 
    684 		continue;
    685 
    686 		/*
    687 		 * This is a common operation.  It also will allow
    688 		 * to save doing a malloc/free in most instances.
    689 		 */
    690 	  free_ipqe:
    691 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    692 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    693 		tp->t_segqlen--;
    694 		KASSERT(tp->t_segqlen >= 0);
    695 		KASSERT(tp->t_segqlen != 0 ||
    696 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    697 		if (tiqe == NULL) {
    698 			tiqe = q;
    699 		} else {
    700 			tcpipqent_free(q);
    701 		}
    702 	}
    703 
    704 #ifdef TCP_REASS_COUNTERS
    705 	if (count > 7)
    706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    707 	else if (count > 0)
    708 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    709 #endif
    710 
    711 insert_it:
    712 	/* limit tcp segments per reassembly queue */
    713 	if (tp->t_segqlen > tcp_reass_maxqueuelen) {
    714 		TCP_STATINC(TCP_STAT_RCVMEMDROP);
    715 		m_freem(m);
    716 		goto out;
    717 	}
    718 
    719 	/*
    720 	 * Allocate a new queue entry (block) since the received segment
    721 	 * did not collapse onto any other out-of-order block. If it had
    722 	 * collapsed, tiqe would not be NULL and we would be reusing it.
    723 	 *
    724 	 * If the allocation fails, drop the packet.
    725 	 */
    726 	if (tiqe == NULL) {
    727 		tiqe = tcpipqent_alloc();
    728 		if (tiqe == NULL) {
    729 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    730 			m_freem(m);
    731 			goto out;
    732 		}
    733 	}
    734 
    735 	/*
    736 	 * Update the counters.
    737 	 */
    738 	tp->t_rcvoopack++;
    739 	tcps = TCP_STAT_GETREF();
    740 	_NET_STATINC_REF(tcps, TCP_STAT_RCVOOPACK);
    741 	_NET_STATADD_REF(tcps, TCP_STAT_RCVOOBYTE, rcvoobyte);
    742 	if (rcvpartdupbyte) {
    743 		_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
    744 		_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
    745 		    rcvpartdupbyte);
    746 	}
    747 	TCP_STAT_PUTREF();
    748 
    749 	/*
    750 	 * Insert the new fragment queue entry into both queues.
    751 	 */
    752 	tiqe->ipqe_m = m;
    753 	tiqe->ipqe_seq = pkt_seq;
    754 	tiqe->ipqe_len = pkt_len;
    755 	tiqe->ipqe_flags = pkt_flags;
    756 	if (p == NULL) {
    757 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    758 	} else {
    759 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    760 	}
    761 	tp->t_segqlen++;
    762 
    763 skip_replacement:
    764 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    765 
    766 present:
    767 	/*
    768 	 * Present data to user, advancing rcv_nxt through
    769 	 * completed sequence space.
    770 	 */
    771 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    772 		goto out;
    773 	q = TAILQ_FIRST(&tp->segq);
    774 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    775 		goto out;
    776 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    777 		goto out;
    778 
    779 	tp->rcv_nxt += q->ipqe_len;
    780 	pkt_flags = q->ipqe_flags & TH_FIN;
    781 	nd_hint(tp);
    782 
    783 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    784 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    785 	tp->t_segqlen--;
    786 	KASSERT(tp->t_segqlen >= 0);
    787 	KASSERT(tp->t_segqlen != 0 ||
    788 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    789 	if (so->so_state & SS_CANTRCVMORE)
    790 		m_freem(q->ipqe_m);
    791 	else
    792 		sbappendstream(&so->so_rcv, q->ipqe_m);
    793 	tcpipqent_free(q);
    794 	TCP_REASS_UNLOCK(tp);
    795 	sorwakeup(so);
    796 	return pkt_flags;
    797 
    798 out:
    799 	TCP_REASS_UNLOCK(tp);
    800 	return 0;
    801 }
    802 
    803 #ifdef INET6
    804 int
    805 tcp6_input(struct mbuf **mp, int *offp, int proto)
    806 {
    807 	struct mbuf *m = *mp;
    808 
    809 	/*
    810 	 * draft-itojun-ipv6-tcp-to-anycast
    811 	 * better place to put this in?
    812 	 */
    813 	if (m->m_flags & M_ANYCAST6) {
    814 		struct ip6_hdr *ip6;
    815 		if (m->m_len < sizeof(struct ip6_hdr)) {
    816 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    817 				TCP_STATINC(TCP_STAT_RCVSHORT);
    818 				return IPPROTO_DONE;
    819 			}
    820 		}
    821 		ip6 = mtod(m, struct ip6_hdr *);
    822 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    823 		    (char *)&ip6->ip6_dst - (char *)ip6);
    824 		return IPPROTO_DONE;
    825 	}
    826 
    827 	tcp_input(m, *offp, proto);
    828 	return IPPROTO_DONE;
    829 }
    830 #endif
    831 
    832 static void
    833 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    834 {
    835 	char src[INET_ADDRSTRLEN];
    836 	char dst[INET_ADDRSTRLEN];
    837 
    838 	if (ip) {
    839 		in_print(src, sizeof(src), &ip->ip_src);
    840 		in_print(dst, sizeof(dst), &ip->ip_dst);
    841 	} else {
    842 		strlcpy(src, "(unknown)", sizeof(src));
    843 		strlcpy(dst, "(unknown)", sizeof(dst));
    844 	}
    845 	log(LOG_INFO,
    846 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    847 	    dst, ntohs(th->th_dport),
    848 	    src, ntohs(th->th_sport));
    849 }
    850 
    851 #ifdef INET6
    852 static void
    853 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    854 {
    855 	char src[INET6_ADDRSTRLEN];
    856 	char dst[INET6_ADDRSTRLEN];
    857 
    858 	if (ip6) {
    859 		in6_print(src, sizeof(src), &ip6->ip6_src);
    860 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    861 	} else {
    862 		strlcpy(src, "(unknown v6)", sizeof(src));
    863 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    864 	}
    865 	log(LOG_INFO,
    866 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    867 	    dst, ntohs(th->th_dport),
    868 	    src, ntohs(th->th_sport));
    869 }
    870 #endif
    871 
    872 /*
    873  * Checksum extended TCP header and data.
    874  */
    875 int
    876 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    877     int toff, int off, int tlen)
    878 {
    879 	struct ifnet *rcvif;
    880 	int s;
    881 
    882 	/*
    883 	 * XXX it's better to record and check if this mbuf is
    884 	 * already checked.
    885 	 */
    886 
    887 	rcvif = m_get_rcvif(m, &s);
    888 	if (__predict_false(rcvif == NULL))
    889 		goto badcsum; /* XXX */
    890 
    891 	switch (af) {
    892 	case AF_INET:
    893 		switch (m->m_pkthdr.csum_flags &
    894 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    895 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    896 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    897 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    898 			goto badcsum;
    899 
    900 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    901 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    902 
    903 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    904 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    905 				const struct ip *ip =
    906 				    mtod(m, const struct ip *);
    907 
    908 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    909 				    ip->ip_dst.s_addr,
    910 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    911 			}
    912 			if ((hw_csum ^ 0xffff) != 0)
    913 				goto badcsum;
    914 			break;
    915 		}
    916 
    917 		case M_CSUM_TCPv4:
    918 			/* Checksum was okay. */
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    920 			break;
    921 
    922 		default:
    923 			/*
    924 			 * Must compute it ourselves.  Maybe skip checksum
    925 			 * on loopback interfaces.
    926 			 */
    927 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    928 					   tcp_do_loopback_cksum)) {
    929 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    930 				if (in4_cksum(m, IPPROTO_TCP, toff,
    931 					      tlen + off) != 0)
    932 					goto badcsum;
    933 			}
    934 			break;
    935 		}
    936 		break;
    937 
    938 #ifdef INET6
    939 	case AF_INET6:
    940 		switch (m->m_pkthdr.csum_flags &
    941 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    942 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    943 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    944 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    945 			goto badcsum;
    946 
    947 #if 0 /* notyet */
    948 		case M_CSUM_TCPv6|M_CSUM_DATA:
    949 #endif
    950 
    951 		case M_CSUM_TCPv6:
    952 			/* Checksum was okay. */
    953 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    954 			break;
    955 
    956 		default:
    957 			/*
    958 			 * Must compute it ourselves.  Maybe skip checksum
    959 			 * on loopback interfaces.
    960 			 */
    961 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    962 			    tcp_do_loopback_cksum)) {
    963 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    964 				if (in6_cksum(m, IPPROTO_TCP, toff,
    965 				    tlen + off) != 0)
    966 					goto badcsum;
    967 			}
    968 		}
    969 		break;
    970 #endif /* INET6 */
    971 	}
    972 	m_put_rcvif(rcvif, &s);
    973 
    974 	return 0;
    975 
    976 badcsum:
    977 	m_put_rcvif(rcvif, &s);
    978 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    979 	return -1;
    980 }
    981 
    982 /*
    983  * When a packet arrives addressed to a vestigial tcpbp, we
    984  * nevertheless have to respond to it per the spec.
    985  *
    986  * This code is duplicated from the one in tcp_input().
    987  */
    988 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    989     struct mbuf *m, int tlen)
    990 {
    991 	int tiflags;
    992 	int todrop;
    993 	uint32_t t_flags = 0;
    994 	net_stat_ref_t tcps;
    995 
    996 	tiflags = th->th_flags;
    997 	todrop  = vp->rcv_nxt - th->th_seq;
    998 
    999 	if (todrop > 0) {
   1000 		if (tiflags & TH_SYN) {
   1001 			tiflags &= ~TH_SYN;
   1002 			th->th_seq++;
   1003 			tcp_urp_drop(th, 1, &tiflags);
   1004 			todrop--;
   1005 		}
   1006 		if (todrop > tlen ||
   1007 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1008 			/*
   1009 			 * Any valid FIN or RST must be to the left of the
   1010 			 * window.  At this point the FIN or RST must be a
   1011 			 * duplicate or out of sequence; drop it.
   1012 			 */
   1013 			if (tiflags & TH_RST)
   1014 				goto drop;
   1015 			tiflags &= ~(TH_FIN|TH_RST);
   1016 
   1017 			/*
   1018 			 * Send an ACK to resynchronize and drop any data.
   1019 			 * But keep on processing for RST or ACK.
   1020 			 */
   1021 			t_flags |= TF_ACKNOW;
   1022 			todrop = tlen;
   1023 			tcps = TCP_STAT_GETREF();
   1024 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   1025 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
   1026 			TCP_STAT_PUTREF();
   1027 		} else if ((tiflags & TH_RST) &&
   1028 		    th->th_seq != vp->rcv_nxt) {
   1029 			/*
   1030 			 * Test for reset before adjusting the sequence
   1031 			 * number for overlapping data.
   1032 			 */
   1033 			goto dropafterack_ratelim;
   1034 		} else {
   1035 			tcps = TCP_STAT_GETREF();
   1036 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
   1037 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
   1038 			    todrop);
   1039 			TCP_STAT_PUTREF();
   1040 		}
   1041 
   1042 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1043 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1044 
   1045 		th->th_seq += todrop;
   1046 		tlen -= todrop;
   1047 		tcp_urp_drop(th, todrop, &tiflags);
   1048 	}
   1049 
   1050 	/*
   1051 	 * If new data are received on a connection after the
   1052 	 * user processes are gone, then RST the other end.
   1053 	 */
   1054 	if (tlen) {
   1055 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1056 		goto dropwithreset;
   1057 	}
   1058 
   1059 	/*
   1060 	 * If segment ends after window, drop trailing data
   1061 	 * (and PUSH and FIN); if nothing left, just ACK.
   1062 	 */
   1063 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1064 
   1065 	if (todrop > 0) {
   1066 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1067 		if (todrop >= tlen) {
   1068 			/*
   1069 			 * The segment actually starts after the window.
   1070 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1071 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1072 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1073 			 */
   1074 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1075 
   1076 			/*
   1077 			 * If a new connection request is received
   1078 			 * while in TIME_WAIT, drop the old connection
   1079 			 * and start over if the sequence numbers
   1080 			 * are above the previous ones.
   1081 			 */
   1082 			if ((tiflags & TH_SYN) &&
   1083 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1084 				/*
   1085 				 * We only support this in the !NOFDREF case, which
   1086 				 * is to say: not here.
   1087 				 */
   1088 				goto dropwithreset;
   1089 			}
   1090 
   1091 			/*
   1092 			 * If window is closed can only take segments at
   1093 			 * window edge, and have to drop data and PUSH from
   1094 			 * incoming segments.  Continue processing, but
   1095 			 * remember to ack.  Otherwise, drop segment
   1096 			 * and (if not RST) ack.
   1097 			 */
   1098 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1099 				t_flags |= TF_ACKNOW;
   1100 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1101 			} else {
   1102 				goto dropafterack;
   1103 			}
   1104 		} else {
   1105 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1106 		}
   1107 		m_adj(m, -todrop);
   1108 		tlen -= todrop;
   1109 		tiflags &= ~(TH_PUSH|TH_FIN);
   1110 	}
   1111 
   1112 	if (tiflags & TH_RST) {
   1113 		if (th->th_seq != vp->rcv_nxt)
   1114 			goto dropafterack_ratelim;
   1115 
   1116 		vtw_del(vp->ctl, vp->vtw);
   1117 		goto drop;
   1118 	}
   1119 
   1120 	/*
   1121 	 * If the ACK bit is off we drop the segment and return.
   1122 	 */
   1123 	if ((tiflags & TH_ACK) == 0) {
   1124 		if (t_flags & TF_ACKNOW)
   1125 			goto dropafterack;
   1126 		goto drop;
   1127 	}
   1128 
   1129 	/*
   1130 	 * In TIME_WAIT state the only thing that should arrive
   1131 	 * is a retransmission of the remote FIN.  Acknowledge
   1132 	 * it and restart the finack timer.
   1133 	 */
   1134 	vtw_restart(vp);
   1135 	goto dropafterack;
   1136 
   1137 dropafterack:
   1138 	/*
   1139 	 * Generate an ACK dropping incoming segment if it occupies
   1140 	 * sequence space, where the ACK reflects our state.
   1141 	 */
   1142 	if (tiflags & TH_RST)
   1143 		goto drop;
   1144 	goto dropafterack2;
   1145 
   1146 dropafterack_ratelim:
   1147 	/*
   1148 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1149 	 */
   1150 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1151 	    tcp_ackdrop_ppslim) == 0) {
   1152 		/* XXX stat */
   1153 		goto drop;
   1154 	}
   1155 	/* ...fall into dropafterack2... */
   1156 
   1157 dropafterack2:
   1158 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1159 	return;
   1160 
   1161 dropwithreset:
   1162 	/*
   1163 	 * Generate a RST, dropping incoming segment.
   1164 	 * Make ACK acceptable to originator of segment.
   1165 	 */
   1166 	if (tiflags & TH_RST)
   1167 		goto drop;
   1168 
   1169 	if (tiflags & TH_ACK) {
   1170 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1171 	} else {
   1172 		if (tiflags & TH_SYN)
   1173 			++tlen;
   1174 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1175 		    TH_RST|TH_ACK);
   1176 	}
   1177 	return;
   1178 drop:
   1179 	m_freem(m);
   1180 }
   1181 
   1182 /*
   1183  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1184  */
   1185 void
   1186 tcp_input(struct mbuf *m, int off, int proto)
   1187 {
   1188 	struct tcphdr *th;
   1189 	struct ip *ip;
   1190 	struct inpcb *inp;
   1191 #ifdef INET6
   1192 	struct ip6_hdr *ip6;
   1193 #endif
   1194 	u_int8_t *optp = NULL;
   1195 	int optlen = 0;
   1196 	int len, tlen, hdroptlen = 0;
   1197 	struct tcpcb *tp = NULL;
   1198 	int tiflags;
   1199 	struct socket *so = NULL;
   1200 	int todrop, acked, ourfinisacked, needoutput = 0;
   1201 	bool dupseg;
   1202 #ifdef TCP_DEBUG
   1203 	short ostate = 0;
   1204 #endif
   1205 	u_long tiwin;
   1206 	struct tcp_opt_info opti;
   1207 	int thlen, iphlen;
   1208 	int af;		/* af on the wire */
   1209 	struct mbuf *tcp_saveti = NULL;
   1210 	uint32_t ts_rtt;
   1211 	uint8_t iptos;
   1212 	net_stat_ref_t tcps;
   1213 	vestigial_inpcb_t vestige;
   1214 
   1215 	vestige.valid = 0;
   1216 
   1217 	MCLAIM(m, &tcp_rx_mowner);
   1218 
   1219 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1220 
   1221 	memset(&opti, 0, sizeof(opti));
   1222 	opti.ts_present = 0;
   1223 	opti.maxseg = 0;
   1224 
   1225 	/*
   1226 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1227 	 *
   1228 	 * TCP is, by definition, unicast, so we reject all
   1229 	 * multicast outright.
   1230 	 *
   1231 	 * Note, there are additional src/dst address checks in
   1232 	 * the AF-specific code below.
   1233 	 */
   1234 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1235 		/* XXX stat */
   1236 		goto drop;
   1237 	}
   1238 #ifdef INET6
   1239 	if (m->m_flags & M_ANYCAST6) {
   1240 		/* XXX stat */
   1241 		goto drop;
   1242 	}
   1243 #endif
   1244 
   1245 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
   1246 	if (th == NULL) {
   1247 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1248 		return;
   1249 	}
   1250 
   1251 	/*
   1252 	 * Enforce alignment requirements that are violated in
   1253 	 * some cases, see kern/50766 for details.
   1254 	 */
   1255 	if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
   1256 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
   1257 		if (m == NULL) {
   1258 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1259 			return;
   1260 		}
   1261 		th = (struct tcphdr *)(mtod(m, char *) + off);
   1262 	}
   1263 	KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1264 
   1265 	/*
   1266 	 * Get IP and TCP header.
   1267 	 * Note: IP leaves IP header in first mbuf.
   1268 	 */
   1269 	ip = mtod(m, struct ip *);
   1270 #ifdef INET6
   1271 	ip6 = mtod(m, struct ip6_hdr *);
   1272 #endif
   1273 	switch (ip->ip_v) {
   1274 	case 4:
   1275 		af = AF_INET;
   1276 		iphlen = sizeof(struct ip);
   1277 
   1278 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1279 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1280 			goto drop;
   1281 
   1282 		/* We do the checksum after PCB lookup... */
   1283 		len = ntohs(ip->ip_len);
   1284 		tlen = len - off;
   1285 		iptos = ip->ip_tos;
   1286 		break;
   1287 #ifdef INET6
   1288 	case 6:
   1289 		iphlen = sizeof(struct ip6_hdr);
   1290 		af = AF_INET6;
   1291 
   1292 		/*
   1293 		 * Be proactive about unspecified IPv6 address in source.
   1294 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1295 		 * unspecified IPv6 address can be used to confuse us.
   1296 		 *
   1297 		 * Note that packets with unspecified IPv6 destination is
   1298 		 * already dropped in ip6_input.
   1299 		 */
   1300 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1301 			/* XXX stat */
   1302 			goto drop;
   1303 		}
   1304 
   1305 		/*
   1306 		 * Make sure destination address is not multicast.
   1307 		 * Source address checked in ip6_input().
   1308 		 */
   1309 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1310 			/* XXX stat */
   1311 			goto drop;
   1312 		}
   1313 
   1314 		/* We do the checksum after PCB lookup... */
   1315 		len = m->m_pkthdr.len;
   1316 		tlen = len - off;
   1317 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1318 		break;
   1319 #endif
   1320 	default:
   1321 		m_freem(m);
   1322 		return;
   1323 	}
   1324 
   1325 
   1326 	/*
   1327 	 * Check that TCP offset makes sense, pull out TCP options and
   1328 	 * adjust length.
   1329 	 */
   1330 	thlen = th->th_off << 2;
   1331 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
   1332 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1333 		goto drop;
   1334 	}
   1335 	tlen -= thlen;
   1336 
   1337 	if (thlen > sizeof(struct tcphdr)) {
   1338 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
   1339 		if (th == NULL) {
   1340 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1341 			return;
   1342 		}
   1343 		KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1344 		optlen = thlen - sizeof(struct tcphdr);
   1345 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1346 
   1347 		/*
   1348 		 * Do quick retrieval of timestamp options.
   1349 		 *
   1350 		 * If timestamp is the only option and it's formatted as
   1351 		 * recommended in RFC 1323 appendix A, we quickly get the
   1352 		 * values now and don't bother calling tcp_dooptions(),
   1353 		 * etc.
   1354 		 */
   1355 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1356 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1357 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1358 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
   1359 		    (th->th_flags & TH_SYN) == 0) {
   1360 			opti.ts_present = 1;
   1361 			opti.ts_val = be32dec(optp + 4);
   1362 			opti.ts_ecr = be32dec(optp + 8);
   1363 			optp = NULL;	/* we've parsed the options */
   1364 		}
   1365 	}
   1366 	tiflags = th->th_flags;
   1367 
   1368 	/*
   1369 	 * Checksum extended TCP header and data
   1370 	 */
   1371 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
   1372 		goto badcsum;
   1373 
   1374 	/*
   1375 	 * Locate pcb for segment.
   1376 	 */
   1377 findpcb:
   1378 	inp = NULL;
   1379 	switch (af) {
   1380 	case AF_INET:
   1381 		inp = inpcb_lookup(&tcbtable, ip->ip_src, th->th_sport,
   1382 		    ip->ip_dst, th->th_dport, &vestige);
   1383 		if (inp == NULL && !vestige.valid) {
   1384 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1385 			inp = inpcb_lookup_bound(&tcbtable, ip->ip_dst,
   1386 			    th->th_dport);
   1387 		}
   1388 #ifdef INET6
   1389 		if (inp == NULL && !vestige.valid) {
   1390 			struct in6_addr s, d;
   1391 
   1392 			/* mapped addr case */
   1393 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1394 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1395 			inp = in6pcb_lookup(&tcbtable, &s,
   1396 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1397 			if (inp == NULL && !vestige.valid) {
   1398 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1399 				inp = in6pcb_lookup_bound(&tcbtable, &d,
   1400 				    th->th_dport, 0);
   1401 			}
   1402 		}
   1403 #endif
   1404 		if (inp == NULL && !vestige.valid) {
   1405 			TCP_STATINC(TCP_STAT_NOPORT);
   1406 			if (tcp_log_refused &&
   1407 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1408 				tcp4_log_refused(ip, th);
   1409 			}
   1410 			tcp_fields_to_host(th);
   1411 			goto dropwithreset_ratelim;
   1412 		}
   1413 #if defined(IPSEC)
   1414 		if (ipsec_used) {
   1415 			if (inp && ipsec_in_reject(m, inp))
   1416 				goto drop;
   1417 		}
   1418 #endif /*IPSEC*/
   1419 		break;
   1420 #ifdef INET6
   1421 	case AF_INET6:
   1422 	    {
   1423 		int faith;
   1424 
   1425 #if defined(NFAITH) && NFAITH > 0
   1426 		faith = faithprefix(&ip6->ip6_dst);
   1427 #else
   1428 		faith = 0;
   1429 #endif
   1430 		inp = in6pcb_lookup(&tcbtable, &ip6->ip6_src,
   1431 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1432 		if (inp == NULL && !vestige.valid) {
   1433 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1434 			inp = in6pcb_lookup_bound(&tcbtable, &ip6->ip6_dst,
   1435 			    th->th_dport, faith);
   1436 		}
   1437 		if (inp == NULL && !vestige.valid) {
   1438 			TCP_STATINC(TCP_STAT_NOPORT);
   1439 			if (tcp_log_refused &&
   1440 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1441 				tcp6_log_refused(ip6, th);
   1442 			}
   1443 			tcp_fields_to_host(th);
   1444 			goto dropwithreset_ratelim;
   1445 		}
   1446 #if defined(IPSEC)
   1447 		if (ipsec_used && inp && ipsec_in_reject(m, inp))
   1448 			goto drop;
   1449 #endif
   1450 		break;
   1451 	    }
   1452 #endif
   1453 	}
   1454 
   1455 	tcp_fields_to_host(th);
   1456 
   1457 	/*
   1458 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1459 	 * all data in the incoming segment is discarded.
   1460 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1461 	 * but should either do a listen or a connect soon.
   1462 	 */
   1463 	tp = NULL;
   1464 	so = NULL;
   1465 	if (inp) {
   1466 		/* Check the minimum TTL for socket. */
   1467 		if (inp->inp_af == AF_INET && ip->ip_ttl < in4p_ip_minttl(inp))
   1468 			goto drop;
   1469 
   1470 		tp = intotcpcb(inp);
   1471 		so = inp->inp_socket;
   1472 	} else if (vestige.valid) {
   1473 		/* We do not support the resurrection of vtw tcpcps. */
   1474 		tcp_vtw_input(th, &vestige, m, tlen);
   1475 		m = NULL;
   1476 		goto drop;
   1477 	}
   1478 
   1479 	if (tp == NULL)
   1480 		goto dropwithreset_ratelim;
   1481 	if (tp->t_state == TCPS_CLOSED)
   1482 		goto drop;
   1483 
   1484 	KASSERT(so->so_lock == softnet_lock);
   1485 	KASSERT(solocked(so));
   1486 
   1487 	/* Unscale the window into a 32-bit value. */
   1488 	if ((tiflags & TH_SYN) == 0)
   1489 		tiwin = th->th_win << tp->snd_scale;
   1490 	else
   1491 		tiwin = th->th_win;
   1492 
   1493 #ifdef INET6
   1494 	/* save packet options if user wanted */
   1495 	if (inp->inp_af == AF_INET6 && (inp->inp_flags & IN6P_CONTROLOPTS)) {
   1496 		m_freem(inp->inp_options);
   1497 		inp->inp_options = NULL;
   1498 		ip6_savecontrol(inp, &inp->inp_options, ip6, m);
   1499 	}
   1500 #endif
   1501 
   1502 	if (so->so_options & SO_DEBUG) {
   1503 #ifdef TCP_DEBUG
   1504 		ostate = tp->t_state;
   1505 #endif
   1506 
   1507 		tcp_saveti = NULL;
   1508 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1509 			goto nosave;
   1510 
   1511 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1512 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1513 			if (tcp_saveti == NULL)
   1514 				goto nosave;
   1515 		} else {
   1516 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1517 			if (tcp_saveti == NULL)
   1518 				goto nosave;
   1519 			MCLAIM(m, &tcp_mowner);
   1520 			tcp_saveti->m_len = iphlen;
   1521 			m_copydata(m, 0, iphlen,
   1522 			    mtod(tcp_saveti, void *));
   1523 		}
   1524 
   1525 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1526 			m_freem(tcp_saveti);
   1527 			tcp_saveti = NULL;
   1528 		} else {
   1529 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1530 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1531 			    sizeof(struct tcphdr));
   1532 		}
   1533 nosave:;
   1534 	}
   1535 
   1536 	if (so->so_options & SO_ACCEPTCONN) {
   1537 		union syn_cache_sa src;
   1538 		union syn_cache_sa dst;
   1539 
   1540 		KASSERT(tp->t_state == TCPS_LISTEN);
   1541 
   1542 		memset(&src, 0, sizeof(src));
   1543 		memset(&dst, 0, sizeof(dst));
   1544 		switch (af) {
   1545 		case AF_INET:
   1546 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1547 			src.sin.sin_family = AF_INET;
   1548 			src.sin.sin_addr = ip->ip_src;
   1549 			src.sin.sin_port = th->th_sport;
   1550 
   1551 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1552 			dst.sin.sin_family = AF_INET;
   1553 			dst.sin.sin_addr = ip->ip_dst;
   1554 			dst.sin.sin_port = th->th_dport;
   1555 			break;
   1556 #ifdef INET6
   1557 		case AF_INET6:
   1558 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1559 			src.sin6.sin6_family = AF_INET6;
   1560 			src.sin6.sin6_addr = ip6->ip6_src;
   1561 			src.sin6.sin6_port = th->th_sport;
   1562 
   1563 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1564 			dst.sin6.sin6_family = AF_INET6;
   1565 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1566 			dst.sin6.sin6_port = th->th_dport;
   1567 			break;
   1568 #endif
   1569 		}
   1570 
   1571 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1572 			if (tiflags & TH_RST) {
   1573 				syn_cache_reset(&src.sa, &dst.sa, th);
   1574 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1575 			    (TH_ACK|TH_SYN)) {
   1576 				/*
   1577 				 * Received a SYN,ACK. This should never
   1578 				 * happen while we are in LISTEN. Send an RST.
   1579 				 */
   1580 				goto badsyn;
   1581 			} else if (tiflags & TH_ACK) {
   1582 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1583 				if (so == NULL) {
   1584 					/*
   1585 					 * We don't have a SYN for this ACK;
   1586 					 * send an RST.
   1587 					 */
   1588 					goto badsyn;
   1589 				} else if (so == (struct socket *)(-1)) {
   1590 					/*
   1591 					 * We were unable to create the
   1592 					 * connection. If the 3-way handshake
   1593 					 * was completed, and RST has been
   1594 					 * sent to the peer. Since the mbuf
   1595 					 * might be in use for the reply, do
   1596 					 * not free it.
   1597 					 */
   1598 					m = NULL;
   1599 				} else {
   1600 					/*
   1601 					 * We have created a full-blown
   1602 					 * connection.
   1603 					 */
   1604 					inp = sotoinpcb(so);
   1605 					tp = intotcpcb(inp);
   1606 					if (tp == NULL)
   1607 						goto badsyn;	/*XXX*/
   1608 					tiwin <<= tp->snd_scale;
   1609 					goto after_listen;
   1610 				}
   1611 			} else {
   1612 				/*
   1613 				 * None of RST, SYN or ACK was set.
   1614 				 * This is an invalid packet for a
   1615 				 * TCB in LISTEN state.  Send a RST.
   1616 				 */
   1617 				goto badsyn;
   1618 			}
   1619 		} else {
   1620 			/*
   1621 			 * Received a SYN.
   1622 			 */
   1623 
   1624 #ifdef INET6
   1625 			/*
   1626 			 * If deprecated address is forbidden, we do
   1627 			 * not accept SYN to deprecated interface
   1628 			 * address to prevent any new inbound
   1629 			 * connection from getting established.
   1630 			 * When we do not accept SYN, we send a TCP
   1631 			 * RST, with deprecated source address (instead
   1632 			 * of dropping it).  We compromise it as it is
   1633 			 * much better for peer to send a RST, and
   1634 			 * RST will be the final packet for the
   1635 			 * exchange.
   1636 			 *
   1637 			 * If we do not forbid deprecated addresses, we
   1638 			 * accept the SYN packet.  RFC2462 does not
   1639 			 * suggest dropping SYN in this case.
   1640 			 * If we decipher RFC2462 5.5.4, it says like
   1641 			 * this:
   1642 			 * 1. use of deprecated addr with existing
   1643 			 *    communication is okay - "SHOULD continue
   1644 			 *    to be used"
   1645 			 * 2. use of it with new communication:
   1646 			 *   (2a) "SHOULD NOT be used if alternate
   1647 			 *        address with sufficient scope is
   1648 			 *        available"
   1649 			 *   (2b) nothing mentioned otherwise.
   1650 			 * Here we fall into (2b) case as we have no
   1651 			 * choice in our source address selection - we
   1652 			 * must obey the peer.
   1653 			 *
   1654 			 * The wording in RFC2462 is confusing, and
   1655 			 * there are multiple description text for
   1656 			 * deprecated address handling - worse, they
   1657 			 * are not exactly the same.  I believe 5.5.4
   1658 			 * is the best one, so we follow 5.5.4.
   1659 			 */
   1660 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1661 				struct in6_ifaddr *ia6;
   1662 				int s;
   1663 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1664 				if (rcvif == NULL)
   1665 					goto dropwithreset; /* XXX */
   1666 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1667 				    &ip6->ip6_dst)) &&
   1668 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1669 					tp = NULL;
   1670 					m_put_rcvif(rcvif, &s);
   1671 					goto dropwithreset;
   1672 				}
   1673 				m_put_rcvif(rcvif, &s);
   1674 			}
   1675 #endif
   1676 
   1677 			/*
   1678 			 * LISTEN socket received a SYN from itself? This
   1679 			 * can't possibly be valid; drop the packet.
   1680 			 */
   1681 			if (th->th_sport == th->th_dport) {
   1682 				int eq = 0;
   1683 
   1684 				switch (af) {
   1685 				case AF_INET:
   1686 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1687 					break;
   1688 #ifdef INET6
   1689 				case AF_INET6:
   1690 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1691 					    &ip6->ip6_dst);
   1692 					break;
   1693 #endif
   1694 				}
   1695 				if (eq) {
   1696 					TCP_STATINC(TCP_STAT_BADSYN);
   1697 					goto drop;
   1698 				}
   1699 			}
   1700 
   1701 			/*
   1702 			 * SYN looks ok; create compressed TCP
   1703 			 * state for it.
   1704 			 */
   1705 			if (so->so_qlen <= so->so_qlimit &&
   1706 			    syn_cache_add(&src.sa, &dst.sa, th, off,
   1707 			    so, m, optp, optlen, &opti))
   1708 				m = NULL;
   1709 		}
   1710 
   1711 		goto drop;
   1712 	}
   1713 
   1714 after_listen:
   1715 	/*
   1716 	 * From here on, we're dealing with !LISTEN.
   1717 	 */
   1718 	KASSERT(tp->t_state != TCPS_LISTEN);
   1719 
   1720 	/*
   1721 	 * Segment received on connection.
   1722 	 * Reset idle time and keep-alive timer.
   1723 	 */
   1724 	tp->t_rcvtime = tcp_now;
   1725 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1726 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1727 
   1728 	/*
   1729 	 * Process options.
   1730 	 */
   1731 #ifdef TCP_SIGNATURE
   1732 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1733 #else
   1734 	if (optp)
   1735 #endif
   1736 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
   1737 			goto drop;
   1738 
   1739 	if (TCP_SACK_ENABLED(tp)) {
   1740 		tcp_del_sackholes(tp, th);
   1741 	}
   1742 
   1743 	if (TCP_ECN_ALLOWED(tp)) {
   1744 		if (tiflags & TH_CWR) {
   1745 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1746 		}
   1747 		switch (iptos & IPTOS_ECN_MASK) {
   1748 		case IPTOS_ECN_CE:
   1749 			tp->t_flags |= TF_ECN_SND_ECE;
   1750 			TCP_STATINC(TCP_STAT_ECN_CE);
   1751 			break;
   1752 		case IPTOS_ECN_ECT0:
   1753 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1754 			break;
   1755 		case IPTOS_ECN_ECT1:
   1756 			/* XXX: ignore for now -- rpaulo */
   1757 			break;
   1758 		}
   1759 		/*
   1760 		 * Congestion experienced.
   1761 		 * Ignore if we are already trying to recover.
   1762 		 */
   1763 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1764 			tp->t_congctl->cong_exp(tp);
   1765 	}
   1766 
   1767 	if (opti.ts_present && opti.ts_ecr) {
   1768 		/*
   1769 		 * Calculate the RTT from the returned time stamp and the
   1770 		 * connection's time base.  If the time stamp is later than
   1771 		 * the current time, or is extremely old, fall back to non-1323
   1772 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1773 		 * at the same time.
   1774 		 *
   1775 		 * Note that ts_rtt is in units of slow ticks (500
   1776 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1777 		 * observed values will have large quantization noise.
   1778 		 * Our smoothed RTT is then the fraction of observed
   1779 		 * samples that are 1 tick instead of 0 (times 500
   1780 		 * ms).
   1781 		 *
   1782 		 * ts_rtt is increased by 1 to denote a valid sample,
   1783 		 * with 0 indicating an invalid measurement.  This
   1784 		 * extra 1 must be removed when ts_rtt is used, or
   1785 		 * else an erroneous extra 500 ms will result.
   1786 		 */
   1787 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1788 		if (ts_rtt > TCP_PAWS_IDLE)
   1789 			ts_rtt = 0;
   1790 	} else {
   1791 		ts_rtt = 0;
   1792 	}
   1793 
   1794 	/*
   1795 	 * Fast path: check for the two common cases of a uni-directional
   1796 	 * data transfer. If:
   1797 	 *    o We are in the ESTABLISHED state, and
   1798 	 *    o The packet has no control flags, and
   1799 	 *    o The packet is in-sequence, and
   1800 	 *    o The window didn't change, and
   1801 	 *    o We are not retransmitting
   1802 	 * It's a candidate.
   1803 	 *
   1804 	 * If the length (tlen) is zero and the ack moved forward, we're
   1805 	 * the sender side of the transfer. Just free the data acked and
   1806 	 * wake any higher level process that was blocked waiting for
   1807 	 * space.
   1808 	 *
   1809 	 * If the length is non-zero and the ack didn't move, we're the
   1810 	 * receiver side. If we're getting packets in-order (the reassembly
   1811 	 * queue is empty), add the data to the socket buffer and note
   1812 	 * that we need a delayed ack.
   1813 	 */
   1814 	if (tp->t_state == TCPS_ESTABLISHED &&
   1815 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1816 	        == TH_ACK &&
   1817 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1818 	    th->th_seq == tp->rcv_nxt &&
   1819 	    tiwin && tiwin == tp->snd_wnd &&
   1820 	    tp->snd_nxt == tp->snd_max) {
   1821 
   1822 		/*
   1823 		 * If last ACK falls within this segment's sequence numbers,
   1824 		 * record the timestamp.
   1825 		 * NOTE that the test is modified according to the latest
   1826 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1827 		 *
   1828 		 * note that we already know
   1829 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1830 		 */
   1831 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1832 			tp->ts_recent_age = tcp_now;
   1833 			tp->ts_recent = opti.ts_val;
   1834 		}
   1835 
   1836 		if (tlen == 0) {
   1837 			/* Ack prediction. */
   1838 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1839 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1840 			    tp->snd_cwnd >= tp->snd_wnd &&
   1841 			    tp->t_partialacks < 0) {
   1842 				/*
   1843 				 * this is a pure ack for outstanding data.
   1844 				 */
   1845 				if (ts_rtt)
   1846 					tcp_xmit_timer(tp, ts_rtt - 1);
   1847 				else if (tp->t_rtttime &&
   1848 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1849 					tcp_xmit_timer(tp,
   1850 					  tcp_now - tp->t_rtttime);
   1851 				acked = th->th_ack - tp->snd_una;
   1852 				tcps = TCP_STAT_GETREF();
   1853 				_NET_STATINC_REF(tcps, TCP_STAT_PREDACK);
   1854 				_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
   1855 				_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE,
   1856 				    acked);
   1857 				TCP_STAT_PUTREF();
   1858 				nd_hint(tp);
   1859 
   1860 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1861 					tp->t_lastm = NULL;
   1862 				sbdrop(&so->so_snd, acked);
   1863 				tp->t_lastoff -= acked;
   1864 
   1865 				icmp_check(tp, th, acked);
   1866 
   1867 				tp->snd_una = th->th_ack;
   1868 				tp->snd_fack = tp->snd_una;
   1869 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1870 					tp->snd_high = tp->snd_una;
   1871 				/*
   1872 				 * drag snd_wl2 along so only newer
   1873 				 * ACKs can update the window size.
   1874 				 * also avoids the state where snd_wl2
   1875 				 * is eventually larger than th_ack and thus
   1876 				 * blocking the window update mechanism and
   1877 				 * the connection gets stuck for a loooong
   1878 				 * time in the zero sized send window state.
   1879 				 *
   1880 				 * see PR/kern 55567
   1881 				 */
   1882 				tp->snd_wl2 = tp->snd_una;
   1883 
   1884 				m_freem(m);
   1885 
   1886 				/*
   1887 				 * If all outstanding data are acked, stop
   1888 				 * retransmit timer, otherwise restart timer
   1889 				 * using current (possibly backed-off) value.
   1890 				 * If process is waiting for space,
   1891 				 * wakeup/selnotify/signal.  If data
   1892 				 * are ready to send, let tcp_output
   1893 				 * decide between more output or persist.
   1894 				 */
   1895 				if (tp->snd_una == tp->snd_max)
   1896 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1897 				else if (TCP_TIMER_ISARMED(tp,
   1898 				    TCPT_PERSIST) == 0)
   1899 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1900 					    tp->t_rxtcur);
   1901 
   1902 				sowwakeup(so);
   1903 				if (so->so_snd.sb_cc) {
   1904 					KERNEL_LOCK(1, NULL);
   1905 					(void)tcp_output(tp);
   1906 					KERNEL_UNLOCK_ONE(NULL);
   1907 				}
   1908 				m_freem(tcp_saveti);
   1909 				return;
   1910 			}
   1911 		} else if (th->th_ack == tp->snd_una &&
   1912 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1913 		    tlen <= sbspace(&so->so_rcv)) {
   1914 			int newsize = 0;
   1915 
   1916 			/*
   1917 			 * this is a pure, in-sequence data packet
   1918 			 * with nothing on the reassembly queue and
   1919 			 * we have enough buffer space to take it.
   1920 			 */
   1921 			tp->rcv_nxt += tlen;
   1922 
   1923 			/*
   1924 			 * Pull rcv_up up to prevent seq wrap relative to
   1925 			 * rcv_nxt.
   1926 			 */
   1927 			tp->rcv_up = tp->rcv_nxt;
   1928 
   1929 			/*
   1930 			 * Pull snd_wl1 up to prevent seq wrap relative to
   1931 			 * th_seq.
   1932 			 */
   1933 			tp->snd_wl1 = th->th_seq;
   1934 
   1935 			tcps = TCP_STAT_GETREF();
   1936 			_NET_STATINC_REF(tcps, TCP_STAT_PREDDAT);
   1937 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
   1938 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
   1939 			TCP_STAT_PUTREF();
   1940 			nd_hint(tp);
   1941 		/*
   1942 		 * Automatic sizing enables the performance of large buffers
   1943 		 * and most of the efficiency of small ones by only allocating
   1944 		 * space when it is needed.
   1945 		 *
   1946 		 * On the receive side the socket buffer memory is only rarely
   1947 		 * used to any significant extent.  This allows us to be much
   1948 		 * more aggressive in scaling the receive socket buffer.  For
   1949 		 * the case that the buffer space is actually used to a large
   1950 		 * extent and we run out of kernel memory we can simply drop
   1951 		 * the new segments; TCP on the sender will just retransmit it
   1952 		 * later.  Setting the buffer size too big may only consume too
   1953 		 * much kernel memory if the application doesn't read() from
   1954 		 * the socket or packet loss or reordering makes use of the
   1955 		 * reassembly queue.
   1956 		 *
   1957 		 * The criteria to step up the receive buffer one notch are:
   1958 		 *  1. the number of bytes received during the time it takes
   1959 		 *     one timestamp to be reflected back to us (the RTT);
   1960 		 *  2. received bytes per RTT is within seven eighth of the
   1961 		 *     current socket buffer size;
   1962 		 *  3. receive buffer size has not hit maximal automatic size;
   1963 		 *
   1964 		 * This algorithm does one step per RTT at most and only if
   1965 		 * we receive a bulk stream w/o packet losses or reorderings.
   1966 		 * Shrinking the buffer during idle times is not necessary as
   1967 		 * it doesn't consume any memory when idle.
   1968 		 *
   1969 		 * TODO: Only step up if the application is actually serving
   1970 		 * the buffer to better manage the socket buffer resources.
   1971 		 */
   1972 			if (tcp_do_autorcvbuf &&
   1973 			    opti.ts_ecr &&
   1974 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1975 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1976 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1977 					if (tp->rfbuf_cnt >
   1978 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1979 					    so->so_rcv.sb_hiwat <
   1980 					    tcp_autorcvbuf_max) {
   1981 						newsize =
   1982 						    uimin(so->so_rcv.sb_hiwat +
   1983 						    tcp_autorcvbuf_inc,
   1984 						    tcp_autorcvbuf_max);
   1985 					}
   1986 					/* Start over with next RTT. */
   1987 					tp->rfbuf_ts = 0;
   1988 					tp->rfbuf_cnt = 0;
   1989 				} else
   1990 					tp->rfbuf_cnt += tlen;	/* add up */
   1991 			}
   1992 
   1993 			/*
   1994 			 * Drop TCP, IP headers and TCP options then add data
   1995 			 * to socket buffer.
   1996 			 */
   1997 			if (so->so_state & SS_CANTRCVMORE) {
   1998 				m_freem(m);
   1999 			} else {
   2000 				/*
   2001 				 * Set new socket buffer size.
   2002 				 * Give up when limit is reached.
   2003 				 */
   2004 				if (newsize)
   2005 					if (!sbreserve(&so->so_rcv,
   2006 					    newsize, so))
   2007 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2008 				m_adj(m, off + thlen);
   2009 				sbappendstream(&so->so_rcv, m);
   2010 			}
   2011 			sorwakeup(so);
   2012 			tcp_setup_ack(tp, th);
   2013 			if (tp->t_flags & TF_ACKNOW) {
   2014 				KERNEL_LOCK(1, NULL);
   2015 				(void)tcp_output(tp);
   2016 				KERNEL_UNLOCK_ONE(NULL);
   2017 			}
   2018 			m_freem(tcp_saveti);
   2019 			return;
   2020 		}
   2021 	}
   2022 
   2023 	/*
   2024 	 * Compute mbuf offset to TCP data segment.
   2025 	 */
   2026 	hdroptlen = off + thlen;
   2027 
   2028 	/*
   2029 	 * Calculate amount of space in receive window. Receive window is
   2030 	 * amount of space in rcv queue, but not less than advertised
   2031 	 * window.
   2032 	 */
   2033 	{
   2034 		int win;
   2035 		win = sbspace(&so->so_rcv);
   2036 		if (win < 0)
   2037 			win = 0;
   2038 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2039 	}
   2040 
   2041 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2042 	tp->rfbuf_ts = 0;
   2043 	tp->rfbuf_cnt = 0;
   2044 
   2045 	switch (tp->t_state) {
   2046 	/*
   2047 	 * If the state is SYN_SENT:
   2048 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2049 	 *	if seg contains a RST, then drop the connection.
   2050 	 *	if seg does not contain SYN, then drop it.
   2051 	 * Otherwise this is an acceptable SYN segment
   2052 	 *	initialize tp->rcv_nxt and tp->irs
   2053 	 *	if seg contains ack then advance tp->snd_una
   2054 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2055 	 *	    is ECN capable.
   2056 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2057 	 *	arrange for segment to be acked (eventually)
   2058 	 *	continue processing rest of data/controls, beginning with URG
   2059 	 */
   2060 	case TCPS_SYN_SENT:
   2061 		if ((tiflags & TH_ACK) &&
   2062 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2063 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2064 			goto dropwithreset;
   2065 		if (tiflags & TH_RST) {
   2066 			if (tiflags & TH_ACK)
   2067 				tp = tcp_drop(tp, ECONNREFUSED);
   2068 			goto drop;
   2069 		}
   2070 		if ((tiflags & TH_SYN) == 0)
   2071 			goto drop;
   2072 		if (tiflags & TH_ACK) {
   2073 			tp->snd_una = th->th_ack;
   2074 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2075 				tp->snd_nxt = tp->snd_una;
   2076 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2077 				tp->snd_high = tp->snd_una;
   2078 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2079 
   2080 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2081 				tp->t_flags |= TF_ECN_PERMIT;
   2082 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2083 			}
   2084 		}
   2085 		tp->irs = th->th_seq;
   2086 		tcp_rcvseqinit(tp);
   2087 		tp->t_flags |= TF_ACKNOW;
   2088 		tcp_mss_from_peer(tp, opti.maxseg);
   2089 
   2090 		/*
   2091 		 * Initialize the initial congestion window.  If we
   2092 		 * had to retransmit the SYN, we must initialize cwnd
   2093 		 * to 1 segment (i.e. the Loss Window).
   2094 		 */
   2095 		if (tp->t_flags & TF_SYN_REXMT)
   2096 			tp->snd_cwnd = tp->t_peermss;
   2097 		else {
   2098 			int ss = tcp_init_win;
   2099 			if (inp->inp_af == AF_INET && in_localaddr(in4p_faddr(inp)))
   2100 				ss = tcp_init_win_local;
   2101 #ifdef INET6
   2102 			else if (inp->inp_af == AF_INET6 && in6_localaddr(&in6p_faddr(inp)))
   2103 				ss = tcp_init_win_local;
   2104 #endif
   2105 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2106 		}
   2107 
   2108 		tcp_rmx_rtt(tp);
   2109 		if (tiflags & TH_ACK) {
   2110 			TCP_STATINC(TCP_STAT_CONNECTS);
   2111 			/*
   2112 			 * move tcp_established before soisconnected
   2113 			 * because upcall handler can drive tcp_output
   2114 			 * functionality.
   2115 			 * XXX we might call soisconnected at the end of
   2116 			 * all processing
   2117 			 */
   2118 			tcp_established(tp);
   2119 			soisconnected(so);
   2120 			/* Do window scaling on this connection? */
   2121 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2122 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2123 				tp->snd_scale = tp->requested_s_scale;
   2124 				tp->rcv_scale = tp->request_r_scale;
   2125 			}
   2126 			TCP_REASS_LOCK(tp);
   2127 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2128 			/*
   2129 			 * if we didn't have to retransmit the SYN,
   2130 			 * use its rtt as our initial srtt & rtt var.
   2131 			 */
   2132 			if (tp->t_rtttime)
   2133 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2134 		} else {
   2135 			tp->t_state = TCPS_SYN_RECEIVED;
   2136 		}
   2137 
   2138 		/*
   2139 		 * Advance th->th_seq to correspond to first data byte.
   2140 		 * If data, trim to stay within window,
   2141 		 * dropping FIN if necessary.
   2142 		 */
   2143 		th->th_seq++;
   2144 		if (tlen > tp->rcv_wnd) {
   2145 			todrop = tlen - tp->rcv_wnd;
   2146 			m_adj(m, -todrop);
   2147 			tlen = tp->rcv_wnd;
   2148 			tiflags &= ~TH_FIN;
   2149 			tcps = TCP_STAT_GETREF();
   2150 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACKAFTERWIN);
   2151 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTEAFTERWIN,
   2152 			    todrop);
   2153 			TCP_STAT_PUTREF();
   2154 		}
   2155 		tp->snd_wl1 = th->th_seq - 1;
   2156 		tp->rcv_up = th->th_seq;
   2157 		goto step6;
   2158 
   2159 	/*
   2160 	 * If the state is SYN_RECEIVED:
   2161 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2162 	 *	and generate an RST.  See page 36, rfc793
   2163 	 */
   2164 	case TCPS_SYN_RECEIVED:
   2165 		if ((tiflags & TH_ACK) &&
   2166 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2167 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2168 			goto dropwithreset;
   2169 		break;
   2170 	}
   2171 
   2172 	/*
   2173 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2174 	 */
   2175 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2176 	    tp->t_state != TCPS_SYN_SENT);
   2177 
   2178 	/*
   2179 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2180 	 * it's less than ts_recent, drop it.
   2181 	 */
   2182 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2183 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2184 		/* Check to see if ts_recent is over 24 days old.  */
   2185 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2186 			/*
   2187 			 * Invalidate ts_recent.  If this segment updates
   2188 			 * ts_recent, the age will be reset later and ts_recent
   2189 			 * will get a valid value.  If it does not, setting
   2190 			 * ts_recent to zero will at least satisfy the
   2191 			 * requirement that zero be placed in the timestamp
   2192 			 * echo reply when ts_recent isn't valid.  The
   2193 			 * age isn't reset until we get a valid ts_recent
   2194 			 * because we don't want out-of-order segments to be
   2195 			 * dropped when ts_recent is old.
   2196 			 */
   2197 			tp->ts_recent = 0;
   2198 		} else {
   2199 			tcps = TCP_STAT_GETREF();
   2200 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   2201 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, tlen);
   2202 			_NET_STATINC_REF(tcps, TCP_STAT_PAWSDROP);
   2203 			TCP_STAT_PUTREF();
   2204 			tcp_new_dsack(tp, th->th_seq, tlen);
   2205 			goto dropafterack;
   2206 		}
   2207 	}
   2208 
   2209 	/*
   2210 	 * Check that at least some bytes of the segment are within the
   2211 	 * receive window. If segment begins before rcv_nxt, drop leading
   2212 	 * data (and SYN); if nothing left, just ack.
   2213 	 */
   2214 	todrop = tp->rcv_nxt - th->th_seq;
   2215 	dupseg = false;
   2216 	if (todrop > 0) {
   2217 		if (tiflags & TH_SYN) {
   2218 			tiflags &= ~TH_SYN;
   2219 			th->th_seq++;
   2220 			tcp_urp_drop(th, 1, &tiflags);
   2221 			todrop--;
   2222 		}
   2223 		if (todrop > tlen ||
   2224 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2225 			/*
   2226 			 * Any valid FIN or RST must be to the left of the
   2227 			 * window.  At this point the FIN or RST must be a
   2228 			 * duplicate or out of sequence; drop it.
   2229 			 */
   2230 			if (tiflags & TH_RST)
   2231 				goto drop;
   2232 			tiflags &= ~(TH_FIN|TH_RST);
   2233 
   2234 			/*
   2235 			 * Send an ACK to resynchronize and drop any data.
   2236 			 * But keep on processing for RST or ACK.
   2237 			 */
   2238 			tp->t_flags |= TF_ACKNOW;
   2239 			todrop = tlen;
   2240 			dupseg = true;
   2241 			tcps = TCP_STAT_GETREF();
   2242 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   2243 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
   2244 			TCP_STAT_PUTREF();
   2245 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2246 			/*
   2247 			 * Test for reset before adjusting the sequence
   2248 			 * number for overlapping data.
   2249 			 */
   2250 			goto dropafterack_ratelim;
   2251 		} else {
   2252 			tcps = TCP_STAT_GETREF();
   2253 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
   2254 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
   2255 			    todrop);
   2256 			TCP_STAT_PUTREF();
   2257 		}
   2258 		tcp_new_dsack(tp, th->th_seq, todrop);
   2259 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
   2260 		th->th_seq += todrop;
   2261 		tlen -= todrop;
   2262 		tcp_urp_drop(th, todrop, &tiflags);
   2263 	}
   2264 
   2265 	/*
   2266 	 * If new data is received on a connection after the user processes
   2267 	 * are gone, then RST the other end.
   2268 	 */
   2269 	if ((so->so_state & SS_NOFDREF) &&
   2270 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2271 		tp = tcp_close(tp);
   2272 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2273 		goto dropwithreset;
   2274 	}
   2275 
   2276 	/*
   2277 	 * If the segment ends after the window, drop trailing data (and
   2278 	 * PUSH and FIN); if nothing left, just ACK.
   2279 	 */
   2280 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2281 	if (todrop > 0) {
   2282 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2283 		if (todrop >= tlen) {
   2284 			/*
   2285 			 * The segment actually starts after the window.
   2286 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2287 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2288 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2289 			 */
   2290 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2291 
   2292 			/*
   2293 			 * If a new connection request is received while in
   2294 			 * TIME_WAIT, drop the old connection and start over
   2295 			 * if the sequence numbers are above the previous
   2296 			 * ones.
   2297 			 *
   2298 			 * NOTE: We need to put the header fields back into
   2299 			 * network order.
   2300 			 */
   2301 			if ((tiflags & TH_SYN) &&
   2302 			    tp->t_state == TCPS_TIME_WAIT &&
   2303 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2304 				tp = tcp_close(tp);
   2305 				tcp_fields_to_net(th);
   2306 				m_freem(tcp_saveti);
   2307 				tcp_saveti = NULL;
   2308 				goto findpcb;
   2309 			}
   2310 
   2311 			/*
   2312 			 * If window is closed can only take segments at
   2313 			 * window edge, and have to drop data and PUSH from
   2314 			 * incoming segments.  Continue processing, but
   2315 			 * remember to ack.  Otherwise, drop segment
   2316 			 * and (if not RST) ack.
   2317 			 */
   2318 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2319 				KASSERT(todrop == tlen);
   2320 				tp->t_flags |= TF_ACKNOW;
   2321 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2322 			} else {
   2323 				goto dropafterack;
   2324 			}
   2325 		} else {
   2326 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2327 		}
   2328 		m_adj(m, -todrop);
   2329 		tlen -= todrop;
   2330 		tiflags &= ~(TH_PUSH|TH_FIN);
   2331 	}
   2332 
   2333 	/*
   2334 	 * If last ACK falls within this segment's sequence numbers,
   2335 	 *  record the timestamp.
   2336 	 * NOTE:
   2337 	 * 1) That the test incorporates suggestions from the latest
   2338 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2339 	 * 2) That updating only on newer timestamps interferes with
   2340 	 *    our earlier PAWS tests, so this check should be solely
   2341 	 *    predicated on the sequence space of this segment.
   2342 	 * 3) That we modify the segment boundary check to be
   2343 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2344 	 *    instead of RFC1323's
   2345 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2346 	 *    This modified check allows us to overcome RFC1323's
   2347 	 *    limitations as described in Stevens TCP/IP Illustrated
   2348 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2349 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2350 	 */
   2351 	if (opti.ts_present &&
   2352 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2353 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2354 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2355 		tp->ts_recent_age = tcp_now;
   2356 		tp->ts_recent = opti.ts_val;
   2357 	}
   2358 
   2359 	/*
   2360 	 * If the RST bit is set examine the state:
   2361 	 *    RECEIVED state:
   2362 	 *        If passive open, return to LISTEN state.
   2363 	 *        If active open, inform user that connection was refused.
   2364 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2365 	 *        Inform user that connection was reset, and close tcb.
   2366 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2367 	 *        Close the tcb.
   2368 	 */
   2369 	if (tiflags & TH_RST) {
   2370 		if (th->th_seq != tp->rcv_nxt)
   2371 			goto dropafterack_ratelim;
   2372 
   2373 		switch (tp->t_state) {
   2374 		case TCPS_SYN_RECEIVED:
   2375 			so->so_error = ECONNREFUSED;
   2376 			goto close;
   2377 
   2378 		case TCPS_ESTABLISHED:
   2379 		case TCPS_FIN_WAIT_1:
   2380 		case TCPS_FIN_WAIT_2:
   2381 		case TCPS_CLOSE_WAIT:
   2382 			so->so_error = ECONNRESET;
   2383 		close:
   2384 			tp->t_state = TCPS_CLOSED;
   2385 			TCP_STATINC(TCP_STAT_DROPS);
   2386 			tp = tcp_close(tp);
   2387 			goto drop;
   2388 
   2389 		case TCPS_CLOSING:
   2390 		case TCPS_LAST_ACK:
   2391 		case TCPS_TIME_WAIT:
   2392 			tp = tcp_close(tp);
   2393 			goto drop;
   2394 		}
   2395 	}
   2396 
   2397 	/*
   2398 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2399 	 * we must be in a synchronized state.  RFC793 states (under Reset
   2400 	 * Generation) that any unacceptable segment (an out-of-order SYN
   2401 	 * qualifies) received in a synchronized state must elicit only an
   2402 	 * empty acknowledgment segment ... and the connection remains in
   2403 	 * the same state.
   2404 	 */
   2405 	if (tiflags & TH_SYN) {
   2406 		if (tp->rcv_nxt == th->th_seq) {
   2407 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2408 			    TH_ACK);
   2409 			m_freem(tcp_saveti);
   2410 			return;
   2411 		}
   2412 
   2413 		goto dropafterack_ratelim;
   2414 	}
   2415 
   2416 	/*
   2417 	 * If the ACK bit is off we drop the segment and return.
   2418 	 */
   2419 	if ((tiflags & TH_ACK) == 0) {
   2420 		if (tp->t_flags & TF_ACKNOW)
   2421 			goto dropafterack;
   2422 		goto drop;
   2423 	}
   2424 
   2425 	/*
   2426 	 * From here on, we're doing ACK processing.
   2427 	 */
   2428 
   2429 	switch (tp->t_state) {
   2430 	/*
   2431 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2432 	 * ESTABLISHED state and continue processing, otherwise
   2433 	 * send an RST.
   2434 	 */
   2435 	case TCPS_SYN_RECEIVED:
   2436 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2437 		    SEQ_GT(th->th_ack, tp->snd_max))
   2438 			goto dropwithreset;
   2439 		TCP_STATINC(TCP_STAT_CONNECTS);
   2440 		soisconnected(so);
   2441 		tcp_established(tp);
   2442 		/* Do window scaling? */
   2443 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2444 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2445 			tp->snd_scale = tp->requested_s_scale;
   2446 			tp->rcv_scale = tp->request_r_scale;
   2447 		}
   2448 		TCP_REASS_LOCK(tp);
   2449 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2450 		tp->snd_wl1 = th->th_seq - 1;
   2451 		/* FALLTHROUGH */
   2452 
   2453 	/*
   2454 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2455 	 * ACKs.  If the ack is in the range
   2456 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2457 	 * then advance tp->snd_una to th->th_ack and drop
   2458 	 * data from the retransmission queue.  If this ACK reflects
   2459 	 * more up to date window information we update our window information.
   2460 	 */
   2461 	case TCPS_ESTABLISHED:
   2462 	case TCPS_FIN_WAIT_1:
   2463 	case TCPS_FIN_WAIT_2:
   2464 	case TCPS_CLOSE_WAIT:
   2465 	case TCPS_CLOSING:
   2466 	case TCPS_LAST_ACK:
   2467 	case TCPS_TIME_WAIT:
   2468 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2469 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2470 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2471 				/*
   2472 				 * If we have outstanding data (other than
   2473 				 * a window probe), this is a completely
   2474 				 * duplicate ack (ie, window info didn't
   2475 				 * change), the ack is the biggest we've
   2476 				 * seen and we've seen exactly our rexmt
   2477 				 * threshold of them, assume a packet
   2478 				 * has been dropped and retransmit it.
   2479 				 * Kludge snd_nxt & the congestion
   2480 				 * window so we send only this one
   2481 				 * packet.
   2482 				 */
   2483 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2484 				    th->th_ack != tp->snd_una)
   2485 					tp->t_dupacks = 0;
   2486 				else if (tp->t_partialacks < 0 &&
   2487 				    (++tp->t_dupacks == tcprexmtthresh ||
   2488 				     TCP_FACK_FASTRECOV(tp))) {
   2489 					/*
   2490 					 * Do the fast retransmit, and adjust
   2491 					 * congestion control parameters.
   2492 					 */
   2493 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2494 						/* False fast retransmit */
   2495 						break;
   2496 					}
   2497 					goto drop;
   2498 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2499 					tp->snd_cwnd += tp->t_segsz;
   2500 					KERNEL_LOCK(1, NULL);
   2501 					(void)tcp_output(tp);
   2502 					KERNEL_UNLOCK_ONE(NULL);
   2503 					goto drop;
   2504 				}
   2505 			} else {
   2506 				/*
   2507 				 * If the ack appears to be very old, only
   2508 				 * allow data that is in-sequence.  This
   2509 				 * makes it somewhat more difficult to insert
   2510 				 * forged data by guessing sequence numbers.
   2511 				 * Sent an ack to try to update the send
   2512 				 * sequence number on the other side.
   2513 				 */
   2514 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2515 				    SEQ_LT(th->th_ack,
   2516 				    tp->snd_una - tp->max_sndwnd))
   2517 					goto dropafterack;
   2518 			}
   2519 			break;
   2520 		}
   2521 		/*
   2522 		 * If the congestion window was inflated to account
   2523 		 * for the other side's cached packets, retract it.
   2524 		 */
   2525 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2526 
   2527 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2528 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2529 			goto dropafterack;
   2530 		}
   2531 		acked = th->th_ack - tp->snd_una;
   2532 		tcps = TCP_STAT_GETREF();
   2533 		_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
   2534 		_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE, acked);
   2535 		TCP_STAT_PUTREF();
   2536 
   2537 		/*
   2538 		 * If we have a timestamp reply, update smoothed
   2539 		 * round trip time.  If no timestamp is present but
   2540 		 * transmit timer is running and timed sequence
   2541 		 * number was acked, update smoothed round trip time.
   2542 		 * Since we now have an rtt measurement, cancel the
   2543 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2544 		 * Recompute the initial retransmit timer.
   2545 		 */
   2546 		if (ts_rtt)
   2547 			tcp_xmit_timer(tp, ts_rtt - 1);
   2548 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2549 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2550 
   2551 		/*
   2552 		 * If all outstanding data is acked, stop retransmit
   2553 		 * timer and remember to restart (more output or persist).
   2554 		 * If there is more data to be acked, restart retransmit
   2555 		 * timer, using current (possibly backed-off) value.
   2556 		 */
   2557 		if (th->th_ack == tp->snd_max) {
   2558 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2559 			needoutput = 1;
   2560 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2561 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2562 
   2563 		/*
   2564 		 * New data has been acked, adjust the congestion window.
   2565 		 */
   2566 		tp->t_congctl->newack(tp, th);
   2567 
   2568 		nd_hint(tp);
   2569 		if (acked > so->so_snd.sb_cc) {
   2570 			tp->snd_wnd -= so->so_snd.sb_cc;
   2571 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2572 			ourfinisacked = 1;
   2573 		} else {
   2574 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2575 				tp->t_lastm = NULL;
   2576 			sbdrop(&so->so_snd, acked);
   2577 			tp->t_lastoff -= acked;
   2578 			if (tp->snd_wnd > acked)
   2579 				tp->snd_wnd -= acked;
   2580 			else
   2581 				tp->snd_wnd = 0;
   2582 			ourfinisacked = 0;
   2583 		}
   2584 		sowwakeup(so);
   2585 
   2586 		icmp_check(tp, th, acked);
   2587 
   2588 		tp->snd_una = th->th_ack;
   2589 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2590 			tp->snd_fack = tp->snd_una;
   2591 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2592 			tp->snd_nxt = tp->snd_una;
   2593 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2594 			tp->snd_high = tp->snd_una;
   2595 
   2596 		switch (tp->t_state) {
   2597 
   2598 		/*
   2599 		 * In FIN_WAIT_1 STATE in addition to the processing
   2600 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2601 		 * then enter FIN_WAIT_2.
   2602 		 */
   2603 		case TCPS_FIN_WAIT_1:
   2604 			if (ourfinisacked) {
   2605 				/*
   2606 				 * If we can't receive any more
   2607 				 * data, then closing user can proceed.
   2608 				 * Starting the timer is contrary to the
   2609 				 * specification, but if we don't get a FIN
   2610 				 * we'll hang forever.
   2611 				 */
   2612 				if (so->so_state & SS_CANTRCVMORE) {
   2613 					soisdisconnected(so);
   2614 					if (tp->t_maxidle > 0)
   2615 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2616 						    tp->t_maxidle);
   2617 				}
   2618 				tp->t_state = TCPS_FIN_WAIT_2;
   2619 			}
   2620 			break;
   2621 
   2622 	 	/*
   2623 		 * In CLOSING STATE in addition to the processing for
   2624 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2625 		 * then enter the TIME-WAIT state, otherwise ignore
   2626 		 * the segment.
   2627 		 */
   2628 		case TCPS_CLOSING:
   2629 			if (ourfinisacked) {
   2630 				tp->t_state = TCPS_TIME_WAIT;
   2631 				tcp_canceltimers(tp);
   2632 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2633 				soisdisconnected(so);
   2634 			}
   2635 			break;
   2636 
   2637 		/*
   2638 		 * In LAST_ACK, we may still be waiting for data to drain
   2639 		 * and/or to be acked, as well as for the ack of our FIN.
   2640 		 * If our FIN is now acknowledged, delete the TCB,
   2641 		 * enter the closed state and return.
   2642 		 */
   2643 		case TCPS_LAST_ACK:
   2644 			if (ourfinisacked) {
   2645 				tp = tcp_close(tp);
   2646 				goto drop;
   2647 			}
   2648 			break;
   2649 
   2650 		/*
   2651 		 * In TIME_WAIT state the only thing that should arrive
   2652 		 * is a retransmission of the remote FIN.  Acknowledge
   2653 		 * it and restart the finack timer.
   2654 		 */
   2655 		case TCPS_TIME_WAIT:
   2656 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2657 			goto dropafterack;
   2658 		}
   2659 	}
   2660 
   2661 step6:
   2662 	/*
   2663 	 * Update window information.
   2664 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2665 	 */
   2666 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2667 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2668 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2669 		/* keep track of pure window updates */
   2670 		if (tlen == 0 &&
   2671 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2672 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2673 		tp->snd_wnd = tiwin;
   2674 		tp->snd_wl1 = th->th_seq;
   2675 		tp->snd_wl2 = th->th_ack;
   2676 		if (tp->snd_wnd > tp->max_sndwnd)
   2677 			tp->max_sndwnd = tp->snd_wnd;
   2678 		needoutput = 1;
   2679 	}
   2680 
   2681 	/*
   2682 	 * Process segments with URG.
   2683 	 */
   2684 	if ((tiflags & TH_URG) && th->th_urp &&
   2685 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2686 		/*
   2687 		 * This is a kludge, but if we receive and accept
   2688 		 * random urgent pointers, we'll crash in
   2689 		 * soreceive.  It's hard to imagine someone
   2690 		 * actually wanting to send this much urgent data.
   2691 		 */
   2692 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2693 			th->th_urp = 0;			/* XXX */
   2694 			tiflags &= ~TH_URG;		/* XXX */
   2695 			goto dodata;			/* XXX */
   2696 		}
   2697 
   2698 		/*
   2699 		 * If this segment advances the known urgent pointer,
   2700 		 * then mark the data stream.  This should not happen
   2701 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2702 		 * a FIN has been received from the remote side.
   2703 		 * In these states we ignore the URG.
   2704 		 *
   2705 		 * According to RFC961 (Assigned Protocols),
   2706 		 * the urgent pointer points to the last octet
   2707 		 * of urgent data.  We continue, however,
   2708 		 * to consider it to indicate the first octet
   2709 		 * of data past the urgent section as the original
   2710 		 * spec states (in one of two places).
   2711 		 */
   2712 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2713 			tp->rcv_up = th->th_seq + th->th_urp;
   2714 			so->so_oobmark = so->so_rcv.sb_cc +
   2715 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2716 			if (so->so_oobmark == 0)
   2717 				so->so_state |= SS_RCVATMARK;
   2718 			sohasoutofband(so);
   2719 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2720 		}
   2721 
   2722 		/*
   2723 		 * Remove out of band data so doesn't get presented to user.
   2724 		 * This can happen independent of advancing the URG pointer,
   2725 		 * but if two URG's are pending at once, some out-of-band
   2726 		 * data may creep in... ick.
   2727 		 */
   2728 		if (th->th_urp <= (u_int16_t)tlen &&
   2729 		    (so->so_options & SO_OOBINLINE) == 0)
   2730 			tcp_pulloutofband(so, th, m, hdroptlen);
   2731 	} else {
   2732 		/*
   2733 		 * If no out of band data is expected,
   2734 		 * pull receive urgent pointer along
   2735 		 * with the receive window.
   2736 		 */
   2737 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2738 			tp->rcv_up = tp->rcv_nxt;
   2739 	}
   2740 dodata:
   2741 
   2742 	/*
   2743 	 * Process the segment text, merging it into the TCP sequencing queue,
   2744 	 * and arranging for acknowledgement of receipt if necessary.
   2745 	 * This process logically involves adjusting tp->rcv_wnd as data
   2746 	 * is presented to the user (this happens in tcp_usrreq.c,
   2747 	 * tcp_rcvd()).  If a FIN has already been received on this
   2748 	 * connection then we just ignore the text.
   2749 	 */
   2750 	if ((tlen || (tiflags & TH_FIN)) &&
   2751 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2752 		/*
   2753 		 * Handle the common case:
   2754 		 *  o Segment is the next to be received, and
   2755 		 *  o The queue is empty, and
   2756 		 *  o The connection is established
   2757 		 * In this case, we avoid calling tcp_reass.
   2758 		 *
   2759 		 * tcp_setup_ack: set DELACK for segments received in order,
   2760 		 * but ack immediately when segments are out of order (so that
   2761 		 * fast retransmit can work).
   2762 		 */
   2763 		TCP_REASS_LOCK(tp);
   2764 		if (th->th_seq == tp->rcv_nxt &&
   2765 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2766 		    tp->t_state == TCPS_ESTABLISHED) {
   2767 			tcp_setup_ack(tp, th);
   2768 			tp->rcv_nxt += tlen;
   2769 			tiflags = th->th_flags & TH_FIN;
   2770 			tcps = TCP_STAT_GETREF();
   2771 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
   2772 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
   2773 			TCP_STAT_PUTREF();
   2774 			nd_hint(tp);
   2775 			if (so->so_state & SS_CANTRCVMORE) {
   2776 				m_freem(m);
   2777 			} else {
   2778 				m_adj(m, hdroptlen);
   2779 				sbappendstream(&(so)->so_rcv, m);
   2780 			}
   2781 			TCP_REASS_UNLOCK(tp);
   2782 			sorwakeup(so);
   2783 		} else {
   2784 			m_adj(m, hdroptlen);
   2785 			tiflags = tcp_reass(tp, th, m, tlen);
   2786 			tp->t_flags |= TF_ACKNOW;
   2787 		}
   2788 
   2789 		/*
   2790 		 * Note the amount of data that peer has sent into
   2791 		 * our window, in order to estimate the sender's
   2792 		 * buffer size.
   2793 		 */
   2794 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2795 	} else {
   2796 		m_freem(m);
   2797 		m = NULL;
   2798 		tiflags &= ~TH_FIN;
   2799 	}
   2800 
   2801 	/*
   2802 	 * If FIN is received ACK the FIN and let the user know
   2803 	 * that the connection is closing.  Ignore a FIN received before
   2804 	 * the connection is fully established.
   2805 	 */
   2806 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2807 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2808 			socantrcvmore(so);
   2809 			tp->t_flags |= TF_ACKNOW;
   2810 			tp->rcv_nxt++;
   2811 		}
   2812 		switch (tp->t_state) {
   2813 
   2814 	 	/*
   2815 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2816 		 */
   2817 		case TCPS_ESTABLISHED:
   2818 			tp->t_state = TCPS_CLOSE_WAIT;
   2819 			break;
   2820 
   2821 	 	/*
   2822 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2823 		 * enter the CLOSING state.
   2824 		 */
   2825 		case TCPS_FIN_WAIT_1:
   2826 			tp->t_state = TCPS_CLOSING;
   2827 			break;
   2828 
   2829 	 	/*
   2830 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2831 		 * starting the time-wait timer, turning off the other
   2832 		 * standard timers.
   2833 		 */
   2834 		case TCPS_FIN_WAIT_2:
   2835 			tp->t_state = TCPS_TIME_WAIT;
   2836 			tcp_canceltimers(tp);
   2837 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2838 			soisdisconnected(so);
   2839 			break;
   2840 
   2841 		/*
   2842 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2843 		 */
   2844 		case TCPS_TIME_WAIT:
   2845 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2846 			break;
   2847 		}
   2848 	}
   2849 #ifdef TCP_DEBUG
   2850 	if (so->so_options & SO_DEBUG)
   2851 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2852 #endif
   2853 
   2854 	/*
   2855 	 * Return any desired output.
   2856 	 */
   2857 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2858 		KERNEL_LOCK(1, NULL);
   2859 		(void)tcp_output(tp);
   2860 		KERNEL_UNLOCK_ONE(NULL);
   2861 	}
   2862 	m_freem(tcp_saveti);
   2863 
   2864 	if (tp->t_state == TCPS_TIME_WAIT
   2865 	    && (so->so_state & SS_NOFDREF)
   2866 	    && (tp->t_inpcb || af != AF_INET || af != AF_INET6)
   2867 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2868 	    && TAILQ_EMPTY(&tp->segq)
   2869 	    && vtw_add(af, tp)) {
   2870 		;
   2871 	}
   2872 	return;
   2873 
   2874 badsyn:
   2875 	/*
   2876 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2877 	 */
   2878 	TCP_STATINC(TCP_STAT_BADSYN);
   2879 	tp = NULL;
   2880 	goto dropwithreset;
   2881 
   2882 dropafterack:
   2883 	/*
   2884 	 * Generate an ACK dropping incoming segment if it occupies
   2885 	 * sequence space, where the ACK reflects our state.
   2886 	 */
   2887 	if (tiflags & TH_RST)
   2888 		goto drop;
   2889 	goto dropafterack2;
   2890 
   2891 dropafterack_ratelim:
   2892 	/*
   2893 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2894 	 */
   2895 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2896 	    tcp_ackdrop_ppslim) == 0) {
   2897 		/* XXX stat */
   2898 		goto drop;
   2899 	}
   2900 
   2901 dropafterack2:
   2902 	m_freem(m);
   2903 	tp->t_flags |= TF_ACKNOW;
   2904 	KERNEL_LOCK(1, NULL);
   2905 	(void)tcp_output(tp);
   2906 	KERNEL_UNLOCK_ONE(NULL);
   2907 	m_freem(tcp_saveti);
   2908 	return;
   2909 
   2910 dropwithreset_ratelim:
   2911 	/*
   2912 	 * We may want to rate-limit RSTs in certain situations,
   2913 	 * particularly if we are sending an RST in response to
   2914 	 * an attempt to connect to or otherwise communicate with
   2915 	 * a port for which we have no socket.
   2916 	 */
   2917 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2918 	    tcp_rst_ppslim) == 0) {
   2919 		/* XXX stat */
   2920 		goto drop;
   2921 	}
   2922 
   2923 dropwithreset:
   2924 	/*
   2925 	 * Generate a RST, dropping incoming segment.
   2926 	 * Make ACK acceptable to originator of segment.
   2927 	 */
   2928 	if (tiflags & TH_RST)
   2929 		goto drop;
   2930 	if (tiflags & TH_ACK) {
   2931 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2932 	} else {
   2933 		if (tiflags & TH_SYN)
   2934 			tlen++;
   2935 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2936 		    TH_RST|TH_ACK);
   2937 	}
   2938 	m_freem(tcp_saveti);
   2939 	return;
   2940 
   2941 badcsum:
   2942 drop:
   2943 	/*
   2944 	 * Drop space held by incoming segment and return.
   2945 	 */
   2946 	if (tp) {
   2947 		so = tp->t_inpcb->inp_socket;
   2948 #ifdef TCP_DEBUG
   2949 		if (so && (so->so_options & SO_DEBUG) != 0)
   2950 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2951 #endif
   2952 	}
   2953 	m_freem(tcp_saveti);
   2954 	m_freem(m);
   2955 	return;
   2956 }
   2957 
   2958 #ifdef TCP_SIGNATURE
   2959 int
   2960 tcp_signature_apply(void *fstate, void *data, u_int len)
   2961 {
   2962 
   2963 	MD5Update(fstate, (u_char *)data, len);
   2964 	return (0);
   2965 }
   2966 
   2967 struct secasvar *
   2968 tcp_signature_getsav(struct mbuf *m)
   2969 {
   2970 	struct ip *ip;
   2971 	struct ip6_hdr *ip6;
   2972 
   2973 	ip = mtod(m, struct ip *);
   2974 	switch (ip->ip_v) {
   2975 	case 4:
   2976 		ip = mtod(m, struct ip *);
   2977 		ip6 = NULL;
   2978 		break;
   2979 	case 6:
   2980 		ip = NULL;
   2981 		ip6 = mtod(m, struct ip6_hdr *);
   2982 		break;
   2983 	default:
   2984 		return (NULL);
   2985 	}
   2986 
   2987 #ifdef IPSEC
   2988 	union sockaddr_union dst;
   2989 
   2990 	/* Extract the destination from the IP header in the mbuf. */
   2991 	memset(&dst, 0, sizeof(union sockaddr_union));
   2992 	if (ip != NULL) {
   2993 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   2994 		dst.sa.sa_family = AF_INET;
   2995 		dst.sin.sin_addr = ip->ip_dst;
   2996 	} else {
   2997 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   2998 		dst.sa.sa_family = AF_INET6;
   2999 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3000 	}
   3001 
   3002 	/*
   3003 	 * Look up an SADB entry which matches the address of the peer.
   3004 	 */
   3005 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3006 #else
   3007 	return NULL;
   3008 #endif
   3009 }
   3010 
   3011 int
   3012 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3013     struct secasvar *sav, char *sig)
   3014 {
   3015 	MD5_CTX ctx;
   3016 	struct ip *ip;
   3017 	struct ipovly *ipovly;
   3018 #ifdef INET6
   3019 	struct ip6_hdr *ip6;
   3020 	struct ip6_hdr_pseudo ip6pseudo;
   3021 #endif
   3022 	struct ippseudo ippseudo;
   3023 	struct tcphdr th0;
   3024 	int l, tcphdrlen;
   3025 
   3026 	if (sav == NULL)
   3027 		return (-1);
   3028 
   3029 	tcphdrlen = th->th_off * 4;
   3030 
   3031 	switch (mtod(m, struct ip *)->ip_v) {
   3032 	case 4:
   3033 		MD5Init(&ctx);
   3034 		ip = mtod(m, struct ip *);
   3035 		memset(&ippseudo, 0, sizeof(ippseudo));
   3036 		ipovly = (struct ipovly *)ip;
   3037 		ippseudo.ippseudo_src = ipovly->ih_src;
   3038 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3039 		ippseudo.ippseudo_pad = 0;
   3040 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3041 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3042 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3043 		break;
   3044 #if INET6
   3045 	case 6:
   3046 		MD5Init(&ctx);
   3047 		ip6 = mtod(m, struct ip6_hdr *);
   3048 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3049 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3050 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3051 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3052 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3053 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3054 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3055 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3056 		break;
   3057 #endif
   3058 	default:
   3059 		return (-1);
   3060 	}
   3061 
   3062 	th0 = *th;
   3063 	th0.th_sum = 0;
   3064 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3065 
   3066 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3067 	if (l > 0)
   3068 		m_apply(m, thoff + tcphdrlen,
   3069 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3070 		    tcp_signature_apply, &ctx);
   3071 
   3072 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3073 	MD5Final(sig, &ctx);
   3074 
   3075 	return (0);
   3076 }
   3077 #endif
   3078 
   3079 /*
   3080  * Parse and process tcp options.
   3081  *
   3082  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3083  * Otherwise returns 0.
   3084  */
   3085 int
   3086 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3087     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3088 {
   3089 	u_int16_t mss;
   3090 	int opt, optlen = 0;
   3091 #ifdef TCP_SIGNATURE
   3092 	void *sigp = NULL;
   3093 	char sigbuf[TCP_SIGLEN];
   3094 	struct secasvar *sav = NULL;
   3095 #endif
   3096 
   3097 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3098 		opt = cp[0];
   3099 		if (opt == TCPOPT_EOL)
   3100 			break;
   3101 		if (opt == TCPOPT_NOP)
   3102 			optlen = 1;
   3103 		else {
   3104 			if (cnt < 2)
   3105 				break;
   3106 			optlen = cp[1];
   3107 			if (optlen < 2 || optlen > cnt)
   3108 				break;
   3109 		}
   3110 		switch (opt) {
   3111 
   3112 		default:
   3113 			continue;
   3114 
   3115 		case TCPOPT_MAXSEG:
   3116 			if (optlen != TCPOLEN_MAXSEG)
   3117 				continue;
   3118 			if (!(th->th_flags & TH_SYN))
   3119 				continue;
   3120 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3121 				continue;
   3122 			memcpy(&mss, cp + 2, sizeof(mss));
   3123 			oi->maxseg = ntohs(mss);
   3124 			break;
   3125 
   3126 		case TCPOPT_WINDOW:
   3127 			if (optlen != TCPOLEN_WINDOW)
   3128 				continue;
   3129 			if (!(th->th_flags & TH_SYN))
   3130 				continue;
   3131 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3132 				continue;
   3133 			tp->t_flags |= TF_RCVD_SCALE;
   3134 			tp->requested_s_scale = cp[2];
   3135 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3136 				char buf[INET6_ADDRSTRLEN];
   3137 				struct ip *ip = mtod(m, struct ip *);
   3138 #ifdef INET6
   3139 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3140 #endif
   3141 
   3142 				switch (ip->ip_v) {
   3143 				case 4:
   3144 					in_print(buf, sizeof(buf),
   3145 					    &ip->ip_src);
   3146 					break;
   3147 #ifdef INET6
   3148 				case 6:
   3149 					in6_print(buf, sizeof(buf),
   3150 					    &ip6->ip6_src);
   3151 					break;
   3152 #endif
   3153 				default:
   3154 					strlcpy(buf, "(unknown)", sizeof(buf));
   3155 					break;
   3156 				}
   3157 
   3158 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3159 				    "assuming %d\n",
   3160 				    tp->requested_s_scale, buf,
   3161 				    TCP_MAX_WINSHIFT);
   3162 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3163 			}
   3164 			break;
   3165 
   3166 		case TCPOPT_TIMESTAMP:
   3167 			if (optlen != TCPOLEN_TIMESTAMP)
   3168 				continue;
   3169 			oi->ts_present = 1;
   3170 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3171 			NTOHL(oi->ts_val);
   3172 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3173 			NTOHL(oi->ts_ecr);
   3174 
   3175 			if (!(th->th_flags & TH_SYN))
   3176 				continue;
   3177 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3178 				continue;
   3179 			/*
   3180 			 * A timestamp received in a SYN makes
   3181 			 * it ok to send timestamp requests and replies.
   3182 			 */
   3183 			tp->t_flags |= TF_RCVD_TSTMP;
   3184 			tp->ts_recent = oi->ts_val;
   3185 			tp->ts_recent_age = tcp_now;
   3186                         break;
   3187 
   3188 		case TCPOPT_SACK_PERMITTED:
   3189 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3190 				continue;
   3191 			if (!(th->th_flags & TH_SYN))
   3192 				continue;
   3193 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3194 				continue;
   3195 			if (tcp_do_sack) {
   3196 				tp->t_flags |= TF_SACK_PERMIT;
   3197 				tp->t_flags |= TF_WILL_SACK;
   3198 			}
   3199 			break;
   3200 
   3201 		case TCPOPT_SACK:
   3202 			tcp_sack_option(tp, th, cp, optlen);
   3203 			break;
   3204 #ifdef TCP_SIGNATURE
   3205 		case TCPOPT_SIGNATURE:
   3206 			if (optlen != TCPOLEN_SIGNATURE)
   3207 				continue;
   3208 			if (sigp &&
   3209 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
   3210 				return (-1);
   3211 
   3212 			sigp = sigbuf;
   3213 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3214 			tp->t_flags |= TF_SIGNATURE;
   3215 			break;
   3216 #endif
   3217 		}
   3218 	}
   3219 
   3220 #ifndef TCP_SIGNATURE
   3221 	return 0;
   3222 #else
   3223 	if (tp->t_flags & TF_SIGNATURE) {
   3224 		sav = tcp_signature_getsav(m);
   3225 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3226 			return (-1);
   3227 	}
   3228 
   3229 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3230 		goto out;
   3231 
   3232 	if (sigp) {
   3233 		char sig[TCP_SIGLEN];
   3234 
   3235 		tcp_fields_to_net(th);
   3236 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3237 			tcp_fields_to_host(th);
   3238 			goto out;
   3239 		}
   3240 		tcp_fields_to_host(th);
   3241 
   3242 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
   3243 			TCP_STATINC(TCP_STAT_BADSIG);
   3244 			goto out;
   3245 		} else
   3246 			TCP_STATINC(TCP_STAT_GOODSIG);
   3247 
   3248 		key_sa_recordxfer(sav, m);
   3249 		KEY_SA_UNREF(&sav);
   3250 	}
   3251 	return 0;
   3252 out:
   3253 	if (sav != NULL)
   3254 		KEY_SA_UNREF(&sav);
   3255 	return -1;
   3256 #endif
   3257 }
   3258 
   3259 /*
   3260  * Pull out of band byte out of a segment so
   3261  * it doesn't appear in the user's data queue.
   3262  * It is still reflected in the segment length for
   3263  * sequencing purposes.
   3264  */
   3265 void
   3266 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3267     struct mbuf *m, int off)
   3268 {
   3269 	int cnt = off + th->th_urp - 1;
   3270 
   3271 	while (cnt >= 0) {
   3272 		if (m->m_len > cnt) {
   3273 			char *cp = mtod(m, char *) + cnt;
   3274 			struct tcpcb *tp = sototcpcb(so);
   3275 
   3276 			tp->t_iobc = *cp;
   3277 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3278 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3279 			m->m_len--;
   3280 			return;
   3281 		}
   3282 		cnt -= m->m_len;
   3283 		m = m->m_next;
   3284 		if (m == NULL)
   3285 			break;
   3286 	}
   3287 	panic("tcp_pulloutofband");
   3288 }
   3289 
   3290 /*
   3291  * Collect new round-trip time estimate
   3292  * and update averages and current timeout.
   3293  *
   3294  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3295  * difference of two timestamps.
   3296  */
   3297 void
   3298 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3299 {
   3300 	int32_t delta;
   3301 
   3302 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3303 	if (tp->t_srtt != 0) {
   3304 		/*
   3305 		 * Compute the amount to add to srtt for smoothing,
   3306 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3307 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3308 		 * shift left 5 bits, subtract srtt to get the
   3309 		 * difference, and then shift right by TCP_RTT_SHIFT
   3310 		 * (3) to obtain 1/8 of the difference.
   3311 		 */
   3312 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3313 		/*
   3314 		 * This can never happen, because delta's lowest
   3315 		 * possible value is 1/8 of t_srtt.  But if it does,
   3316 		 * set srtt to some reasonable value, here chosen
   3317 		 * as 1/8 tick.
   3318 		 */
   3319 		if ((tp->t_srtt += delta) <= 0)
   3320 			tp->t_srtt = 1 << 2;
   3321 		/*
   3322 		 * RFC2988 requires that rttvar be updated first.
   3323 		 * This code is compliant because "delta" is the old
   3324 		 * srtt minus the new observation (scaled).
   3325 		 *
   3326 		 * RFC2988 says:
   3327 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3328 		 *
   3329 		 * delta is in units of 1/32 ticks, and has then been
   3330 		 * divided by 8.  This is equivalent to being in 1/16s
   3331 		 * units and divided by 4.  Subtract from it 1/4 of
   3332 		 * the existing rttvar to form the (signed) amount to
   3333 		 * adjust.
   3334 		 */
   3335 		if (delta < 0)
   3336 			delta = -delta;
   3337 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3338 		/*
   3339 		 * As with srtt, this should never happen.  There is
   3340 		 * no support in RFC2988 for this operation.  But 1/4s
   3341 		 * as rttvar when faced with something arguably wrong
   3342 		 * is ok.
   3343 		 */
   3344 		if ((tp->t_rttvar += delta) <= 0)
   3345 			tp->t_rttvar = 1 << 2;
   3346 
   3347 		/*
   3348 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3349 		 * Problem is: it doesn't work.  Disabled by defaulting
   3350 		 * tcp_rttlocal to 0; see corresponding code in
   3351 		 * tcp_subr that selects local vs remote in a different way.
   3352 		 *
   3353 		 * The static branch prediction hint here should be removed
   3354 		 * when the rtt estimator is fixed and the rtt_enable code
   3355 		 * is turned back on.
   3356 		 */
   3357 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3358 		    && tp->t_srtt > tcp_msl_remote_threshold
   3359 		    && tp->t_msl  < tcp_msl_remote) {
   3360 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
   3361 		}
   3362 	} else {
   3363 		/*
   3364 		 * This is the first measurement.  Per RFC2988, 2.2,
   3365 		 * set rtt=R and srtt=R/2.
   3366 		 * For srtt, storage representation is 1/32 ticks,
   3367 		 * so shift left by 5.
   3368 		 * For rttvar, storage representation is 1/16 ticks,
   3369 		 * So shift left by 4, but then right by 1 to halve.
   3370 		 */
   3371 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3372 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3373 	}
   3374 	tp->t_rtttime = 0;
   3375 	tp->t_rxtshift = 0;
   3376 
   3377 	/*
   3378 	 * the retransmit should happen at rtt + 4 * rttvar.
   3379 	 * Because of the way we do the smoothing, srtt and rttvar
   3380 	 * will each average +1/2 tick of bias.  When we compute
   3381 	 * the retransmit timer, we want 1/2 tick of rounding and
   3382 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3383 	 * firing of the timer.  The bias will give us exactly the
   3384 	 * 1.5 tick we need.  But, because the bias is
   3385 	 * statistical, we have to test that we don't drop below
   3386 	 * the minimum feasible timer (which is 2 ticks).
   3387 	 */
   3388 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3389 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3390 
   3391 	/*
   3392 	 * We received an ack for a packet that wasn't retransmitted;
   3393 	 * it is probably safe to discard any error indications we've
   3394 	 * received recently.  This isn't quite right, but close enough
   3395 	 * for now (a route might have failed after we sent a segment,
   3396 	 * and the return path might not be symmetrical).
   3397 	 */
   3398 	tp->t_softerror = 0;
   3399 }
   3400