Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * Upstream: https://github.com/rmind/thmap/
     29  */
     30 
     31 /*
     32  * Concurrent trie-hash map.
     33  *
     34  * The data structure is conceptually a radix trie on hashed keys.
     35  * Keys are hashed using a 32-bit function.  The root level is a special
     36  * case: it is managed using the compare-and-swap (CAS) atomic operation
     37  * and has a fanout of 64.  The subsequent levels are constructed using
     38  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
     39  * are created, more blocks of the 32-bit hash value might be generated
     40  * by incrementing the seed parameter of the hash function.
     41  *
     42  * Concurrency
     43  *
     44  * - READERS: Descending is simply walking through the slot values of
     45  *   the intermediate nodes.  It is lock-free as there is no intermediate
     46  *   state: the slot is either empty or has a pointer to the child node.
     47  *   The main assumptions here are the following:
     48  *
     49  *   i) modifications must preserve consistency with the respect to the
     50  *   readers i.e. the readers can only see the valid node values;
     51  *
     52  *   ii) any invalid view must "fail" the reads, e.g. by making them
     53  *   re-try from the root; this is a case for deletions and is achieved
     54  *   using the NODE_DELETED flag.
     55  *
     56  *   iii) the node destruction must be synchronized with the readers,
     57  *   e.g. by using the Epoch-based reclamation or other techniques.
     58  *
     59  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
     60  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
     61  *   exclusion amongst concurrent writers.  The lock order for the nodes
     62  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
     63  *   constraint here is that parent pointer never changes.
     64  *
     65  * - DELETES: In addition to writer's locking, the deletion keeps the
     66  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
     67  *   to indicate that the readers must re-start the walk from the root.
     68  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
     69  *   The leaf nodes just stay as-is until they are reclaimed.
     70  *
     71  * - ROOT LEVEL: The root level is a special case, as it is implemented
     72  *   as an array (rather than intermediate node).  The root-level slot can
     73  *   only be set using CAS and it can only be set to a valid intermediate
     74  *   node.  The root-level slot can only be cleared when the node it points
     75  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
     76  *   the insert/delete operations to re-try until the slot is set to NULL).
     77  *
     78  * References:
     79  *
     80  *	W. Litwin, 1981, Trie Hashing.
     81  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
     82  *	https://dl.acm.org/citation.cfm?id=582322
     83  *
     84  *	P. L. Lehman and S. B. Yao.
     85  *	Efficient locking for concurrent operations on B-trees.
     86  *	ACM TODS, 6(4):650-670, 1981
     87  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
     88  */
     89 
     90 #ifdef _KERNEL
     91 #include <sys/cdefs.h>
     92 #include <sys/param.h>
     93 #include <sys/types.h>
     94 #include <sys/thmap.h>
     95 #include <sys/kmem.h>
     96 #include <sys/lock.h>
     97 #include <sys/atomic.h>
     98 #include <sys/hash.h>
     99 #include <sys/cprng.h>
    100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
    101 #else
    102 #include <stdio.h>
    103 #include <stdlib.h>
    104 #include <stdbool.h>
    105 #include <stddef.h>
    106 #include <inttypes.h>
    107 #include <string.h>
    108 #include <limits.h>
    109 #define THMAP_RCSID(a) __RCSID(a)
    110 
    111 #include "thmap.h"
    112 #include "utils.h"
    113 #endif
    114 
    115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $");
    116 
    117 #include <crypto/blake2/blake2s.h>
    118 
    119 /*
    120  * NetBSD kernel wrappers
    121  */
    122 #ifdef _KERNEL
    123 #define	ASSERT KASSERT
    124 #define	atomic_thread_fence(x) membar_release() /* only used for release order */
    125 #define	atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
    126     (atomic_cas_32((p), *(e), (n)) == *(e))
    127 #define	atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
    128     (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
    129 #define	atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
    130 #define	murmurhash3 murmurhash2
    131 #endif
    132 
    133 /*
    134  * The root level fanout is 64 (indexed by the last 6 bits of the hash
    135  * value XORed with the length).  Each subsequent level, represented by
    136  * intermediate nodes, has a fanout of 16 (using 4 bits).
    137  *
    138  * The hash function produces 32-bit values.
    139  */
    140 
    141 #define	HASHVAL_SEEDLEN	(16)
    142 #define	HASHVAL_BITS	(32)
    143 #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
    144 #define	HASHVAL_SHIFT	(5)
    145 
    146 #define	ROOT_BITS	(6)
    147 #define	ROOT_SIZE	(1 << ROOT_BITS)
    148 #define	ROOT_MASK	(ROOT_SIZE - 1)
    149 #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
    150 
    151 #define	LEVEL_BITS	(4)
    152 #define	LEVEL_SIZE	(1 << LEVEL_BITS)
    153 #define	LEVEL_MASK	(LEVEL_SIZE - 1)
    154 
    155 /*
    156  * Instead of raw pointers, we use offsets from the base address.
    157  * This accommodates the use of this data structure in shared memory,
    158  * where mappings can be in different address spaces.
    159  *
    160  * The pointers must be aligned, since pointer tagging is used to
    161  * differentiate the intermediate nodes from leaves.  We reserve the
    162  * least significant bit.
    163  */
    164 typedef uintptr_t thmap_ptr_t;
    165 typedef uintptr_t atomic_thmap_ptr_t;			// C11 _Atomic
    166 
    167 #define	THMAP_NULL		((thmap_ptr_t)0)
    168 
    169 #define	THMAP_LEAF_BIT		(0x1)
    170 
    171 #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
    172 #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
    173 #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
    174 
    175 #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
    176 #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
    177 #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
    178 
    179 /*
    180  * State field.
    181  */
    182 
    183 #define	NODE_LOCKED		(1U << 31)		// lock (writers)
    184 #define	NODE_DELETED		(1U << 30)		// node deleted
    185 #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
    186 
    187 /*
    188  * There are two types of nodes:
    189  * - Intermediate nodes -- arrays pointing to another level or a leaf;
    190  * - Leaves, which store a key-value pair.
    191  */
    192 
    193 typedef struct {
    194 	uint32_t		state;			// C11 _Atomic
    195 	thmap_ptr_t		parent;
    196 	atomic_thmap_ptr_t	slots[LEVEL_SIZE];
    197 } thmap_inode_t;
    198 
    199 #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
    200 
    201 typedef struct {
    202 	thmap_ptr_t	key;
    203 	size_t		len;
    204 	void *		val;
    205 } thmap_leaf_t;
    206 
    207 typedef struct {
    208 	const uint8_t *	seed;		// secret seed
    209 	unsigned	rslot;		// root-level slot index
    210 	unsigned	level;		// current level in the tree
    211 	unsigned	hashidx;	// current hash index (block of bits)
    212 	uint32_t	hashval;	// current hash value
    213 } thmap_query_t;
    214 
    215 union thmap_align {
    216 	void *		p;
    217 	uint64_t	v;
    218 };
    219 
    220 typedef struct thmap_gc thmap_gc_t;
    221 struct thmap_gc {
    222 	size_t		len;
    223 	thmap_gc_t *	next;
    224 	char		data[] __aligned(sizeof(union thmap_align));
    225 };
    226 
    227 #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
    228 
    229 struct thmap {
    230 	uintptr_t		baseptr;
    231 	atomic_thmap_ptr_t *	root;
    232 	unsigned		flags;
    233 	const thmap_ops_t *	ops;
    234 	thmap_gc_t *		gc_list;		// C11 _Atomic
    235 	uint8_t			seed[HASHVAL_SEEDLEN];
    236 };
    237 
    238 static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
    239 
    240 /*
    241  * A few low-level helper routines.
    242  */
    243 
    244 static uintptr_t
    245 alloc_wrapper(size_t len)
    246 {
    247 	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
    248 }
    249 
    250 static void
    251 free_wrapper(uintptr_t addr, size_t len)
    252 {
    253 	kmem_intr_free((void *)addr, len);
    254 }
    255 
    256 static const thmap_ops_t thmap_default_ops = {
    257 	.alloc = alloc_wrapper,
    258 	.free = free_wrapper
    259 };
    260 
    261 static uintptr_t
    262 gc_alloc(const thmap_t *thmap, size_t len)
    263 {
    264 	const size_t alloclen = offsetof(struct thmap_gc, data[len]);
    265 	const uintptr_t gcaddr = thmap->ops->alloc(alloclen);
    266 
    267 	if (!gcaddr)
    268 		return 0;
    269 
    270 	thmap_gc_t *const gc = THMAP_GETPTR(thmap, gcaddr);
    271 	gc->len = len;
    272 	return THMAP_GETOFF(thmap, &gc->data[0]);
    273 }
    274 
    275 static void
    276 gc_free(const thmap_t *thmap, uintptr_t addr, size_t len)
    277 {
    278 	const size_t alloclen = offsetof(struct thmap_gc, data[len]);
    279 	char *const ptr = THMAP_GETPTR(thmap, addr);
    280 	thmap_gc_t *const gc = container_of(ptr, struct thmap_gc, data[0]);
    281 	const uintptr_t gcaddr = THMAP_GETOFF(thmap, gc);
    282 
    283 	KASSERTMSG(gc->len == len, "thmap=%p ops=%p addr=%p len=%zu"
    284 	    " gc=%p gc->len=%zu",
    285 	    thmap, thmap->ops, (void *)addr, len, gc, gc->len);
    286 	thmap->ops->free(gcaddr, alloclen);
    287 }
    288 
    289 /*
    290  * NODE LOCKING.
    291  */
    292 
    293 static inline bool __diagused
    294 node_locked_p(thmap_inode_t *node)
    295 {
    296 	return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
    297 }
    298 
    299 static void
    300 lock_node(thmap_inode_t *node)
    301 {
    302 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
    303 	uint32_t s;
    304 again:
    305 	s = atomic_load_relaxed(&node->state);
    306 	if (s & NODE_LOCKED) {
    307 		SPINLOCK_BACKOFF(bcount);
    308 		goto again;
    309 	}
    310 	/* Acquire from prior release in unlock_node.() */
    311 	if (!atomic_compare_exchange_weak_explicit_32(&node->state,
    312 	    &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
    313 		bcount = SPINLOCK_BACKOFF_MIN;
    314 		goto again;
    315 	}
    316 }
    317 
    318 static void
    319 unlock_node(thmap_inode_t *node)
    320 {
    321 	uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;
    322 
    323 	ASSERT(node_locked_p(node));
    324 	/* Release to subsequent acquire in lock_node(). */
    325 	atomic_store_release(&node->state, s);
    326 }
    327 
    328 /*
    329  * HASH VALUE AND KEY OPERATIONS.
    330  */
    331 
    332 static inline uint32_t
    333 hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len,
    334     uint32_t level)
    335 {
    336 	struct blake2s B;
    337 	uint32_t h;
    338 
    339 	if (level == 0)
    340 		return murmurhash3(key, len, 0);
    341 
    342 	/*
    343 	 * Byte order is not significant here because this is
    344 	 * intentionally secret and independent for each thmap.
    345 	 *
    346 	 * XXX We get 32 bytes of output at a time; we could march
    347 	 * through them sequentially rather than throwing away 28 bytes
    348 	 * and recomputing BLAKE2 each time.  But the number of
    349 	 * iterations ought to be geometric in the collision
    350 	 * probability at each level which should be very small anyway.
    351 	 */
    352 	blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN);
    353 	blake2s_update(&B, &level, sizeof level);
    354 	blake2s_update(&B, key, len);
    355 	blake2s_final(&B, &h);
    356 
    357 	return h;
    358 }
    359 
    360 static inline void
    361 hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN],
    362     const void * restrict key, size_t len)
    363 {
    364 	const uint32_t hashval = hash(seed, key, len, 0);
    365 
    366 	query->seed = seed;
    367 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
    368 	query->level = 0;
    369 	query->hashval = hashval;
    370 	query->hashidx = 0;
    371 }
    372 
    373 /*
    374  * hashval_getslot: given the key, compute the hash (if not already cached)
    375  * and return the offset for the current level.
    376  */
    377 static unsigned
    378 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
    379 {
    380 	const unsigned offset = query->level * LEVEL_BITS;
    381 	const unsigned shift = offset & HASHVAL_MOD;
    382 	const unsigned i = offset >> HASHVAL_SHIFT;
    383 
    384 	if (query->hashidx != i) {
    385 		/* Generate a hash value for a required range. */
    386 		query->hashval = hash(query->seed, key, len, i);
    387 		query->hashidx = i;
    388 	}
    389 	return (query->hashval >> shift) & LEVEL_MASK;
    390 }
    391 
    392 static unsigned
    393 hashval_getleafslot(const thmap_t *thmap,
    394     const thmap_leaf_t *leaf, unsigned level)
    395 {
    396 	const void *key = THMAP_GETPTR(thmap, leaf->key);
    397 	const unsigned offset = level * LEVEL_BITS;
    398 	const unsigned shift = offset & HASHVAL_MOD;
    399 	const unsigned i = offset >> HASHVAL_SHIFT;
    400 
    401 	return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK;
    402 }
    403 
    404 static inline unsigned
    405 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
    406     const thmap_leaf_t *leaf)
    407 {
    408 	if (__predict_true(query->hashidx == 0)) {
    409 		return query->hashval & LEVEL_MASK;
    410 	}
    411 	return hashval_getleafslot(thmap, leaf, 0);
    412 }
    413 
    414 static bool
    415 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
    416     const void * restrict key, size_t len)
    417 {
    418 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
    419 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
    420 }
    421 
    422 /*
    423  * INTER-NODE OPERATIONS.
    424  */
    425 
    426 static thmap_inode_t *
    427 node_create(thmap_t *thmap, thmap_inode_t *parent)
    428 {
    429 	thmap_inode_t *node;
    430 	uintptr_t p;
    431 
    432 	p = gc_alloc(thmap, THMAP_INODE_LEN);
    433 	if (!p) {
    434 		return NULL;
    435 	}
    436 	node = THMAP_GETPTR(thmap, p);
    437 	ASSERT(THMAP_ALIGNED_P(node));
    438 
    439 	memset(node, 0, THMAP_INODE_LEN);
    440 	if (parent) {
    441 		/* Not yet published, no need for ordering. */
    442 		atomic_store_relaxed(&node->state, NODE_LOCKED);
    443 		node->parent = THMAP_GETOFF(thmap, parent);
    444 	}
    445 	return node;
    446 }
    447 
    448 static void
    449 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
    450 {
    451 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
    452 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
    453 	ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);
    454 
    455 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);
    456 
    457 	/*
    458 	 * If node is public already, caller is responsible for issuing
    459 	 * release fence; if node is not public, no ordering is needed.
    460 	 * Hence relaxed ordering.
    461 	 */
    462 	atomic_store_relaxed(&node->slots[slot], child);
    463 	atomic_store_relaxed(&node->state,
    464 	    atomic_load_relaxed(&node->state) + 1);
    465 }
    466 
    467 static void
    468 node_remove(thmap_inode_t *node, unsigned slot)
    469 {
    470 	ASSERT(node_locked_p(node));
    471 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
    472 	ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);
    473 
    474 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
    475 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);
    476 
    477 	/* Element will be GC-ed later; no need for ordering here. */
    478 	atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
    479 	atomic_store_relaxed(&node->state,
    480 	    atomic_load_relaxed(&node->state) - 1);
    481 }
    482 
    483 /*
    484  * LEAF OPERATIONS.
    485  */
    486 
    487 static thmap_leaf_t *
    488 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
    489 {
    490 	thmap_leaf_t *leaf;
    491 	uintptr_t leaf_off, key_off;
    492 
    493 	leaf_off = gc_alloc(thmap, sizeof(thmap_leaf_t));
    494 	if (!leaf_off) {
    495 		return NULL;
    496 	}
    497 	leaf = THMAP_GETPTR(thmap, leaf_off);
    498 	ASSERT(THMAP_ALIGNED_P(leaf));
    499 
    500 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    501 		/*
    502 		 * Copy the key.
    503 		 */
    504 		key_off = gc_alloc(thmap, len);
    505 		if (!key_off) {
    506 			gc_free(thmap, leaf_off, sizeof(thmap_leaf_t));
    507 			return NULL;
    508 		}
    509 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
    510 		leaf->key = key_off;
    511 	} else {
    512 		/* Otherwise, we use a reference. */
    513 		leaf->key = (uintptr_t)key;
    514 	}
    515 	leaf->len = len;
    516 	leaf->val = val;
    517 	return leaf;
    518 }
    519 
    520 static void
    521 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
    522 {
    523 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    524 		gc_free(thmap, leaf->key, leaf->len);
    525 	}
    526 	gc_free(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    527 }
    528 
    529 static thmap_leaf_t *
    530 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
    531 {
    532 	thmap_ptr_t node;
    533 
    534 	/* Consume from prior release in thmap_put(). */
    535 	node = atomic_load_consume(&parent->slots[slot]);
    536 	if (THMAP_INODE_P(node)) {
    537 		return NULL;
    538 	}
    539 	return THMAP_NODE(thmap, node);
    540 }
    541 
    542 /*
    543  * ROOT OPERATIONS.
    544  */
    545 
    546 /*
    547  * root_try_put: Try to set a root pointer at query->rslot.
    548  *
    549  * => Implies release operation on success.
    550  * => Implies no ordering on failure.
    551  */
    552 static inline int
    553 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
    554 {
    555 	thmap_ptr_t expected;
    556 	const unsigned i = query->rslot;
    557 	thmap_inode_t *node;
    558 	thmap_ptr_t nptr;
    559 	unsigned slot;
    560 
    561 	/*
    562 	 * Must pre-check first.  No ordering required because we will
    563 	 * check again before taking any actions, and start over if
    564 	 * this changes from null.
    565 	 */
    566 	if (atomic_load_relaxed(&thmap->root[i])) {
    567 		return EEXIST;
    568 	}
    569 
    570 	/*
    571 	 * Create an intermediate node.  Since there is no parent set,
    572 	 * it will be created unlocked and the CAS operation will
    573 	 * release it to readers.
    574 	 */
    575 	node = node_create(thmap, NULL);
    576 	if (__predict_false(node == NULL)) {
    577 		return ENOMEM;
    578 	}
    579 	slot = hashval_getl0slot(thmap, query, leaf);
    580 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
    581 	nptr = THMAP_GETOFF(thmap, node);
    582 again:
    583 	if (atomic_load_relaxed(&thmap->root[i])) {
    584 		gc_free(thmap, nptr, THMAP_INODE_LEN);
    585 		return EEXIST;
    586 	}
    587 	/* Release to subsequent consume in find_edge_node(). */
    588 	expected = THMAP_NULL;
    589 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
    590 	    nptr, memory_order_release, memory_order_relaxed)) {
    591 		goto again;
    592 	}
    593 	return 0;
    594 }
    595 
    596 /*
    597  * find_edge_node: given the hash, traverse the tree to find the edge node.
    598  *
    599  * => Returns an aligned (clean) pointer to the parent node.
    600  * => Returns the slot number and sets current level.
    601  */
    602 static thmap_inode_t *
    603 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
    604     const void * restrict key, size_t len, unsigned *slot)
    605 {
    606 	thmap_ptr_t root_slot;
    607 	thmap_inode_t *parent;
    608 	thmap_ptr_t node;
    609 	unsigned off;
    610 
    611 	ASSERT(query->level == 0);
    612 
    613 	/* Consume from prior release in root_try_put(). */
    614 	root_slot = atomic_load_consume(&thmap->root[query->rslot]);
    615 	parent = THMAP_NODE(thmap, root_slot);
    616 	if (!parent) {
    617 		return NULL;
    618 	}
    619 descend:
    620 	off = hashval_getslot(query, key, len);
    621 	/* Consume from prior release in thmap_put(). */
    622 	node = atomic_load_consume(&parent->slots[off]);
    623 
    624 	/* Descend the tree until we find a leaf or empty slot. */
    625 	if (node && THMAP_INODE_P(node)) {
    626 		parent = THMAP_NODE(thmap, node);
    627 		query->level++;
    628 		goto descend;
    629 	}
    630 	/*
    631 	 * NODE_DELETED does not become stale until GC runs, which
    632 	 * cannot happen while we are in the middle of an operation,
    633 	 * hence relaxed ordering.
    634 	 */
    635 	if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
    636 		return NULL;
    637 	}
    638 	*slot = off;
    639 	return parent;
    640 }
    641 
    642 /*
    643  * find_edge_node_locked: traverse the tree, like find_edge_node(),
    644  * but attempt to lock the edge node.
    645  *
    646  * => Returns NULL if the deleted node is found.  This indicates that
    647  *    the caller must re-try from the root, as the root slot might have
    648  *    changed too.
    649  */
    650 static thmap_inode_t *
    651 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
    652     const void * restrict key, size_t len, unsigned *slot)
    653 {
    654 	thmap_inode_t *node;
    655 	thmap_ptr_t target;
    656 retry:
    657 	/*
    658 	 * Find the edge node and lock it!  Re-check the state since
    659 	 * the tree might change by the time we acquire the lock.
    660 	 */
    661 	node = find_edge_node(thmap, query, key, len, slot);
    662 	if (!node) {
    663 		/* The root slot is empty -- let the caller decide. */
    664 		query->level = 0;
    665 		return NULL;
    666 	}
    667 	lock_node(node);
    668 	if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
    669 		/*
    670 		 * The node has been deleted.  The tree might have a new
    671 		 * shape now, therefore we must re-start from the root.
    672 		 */
    673 		unlock_node(node);
    674 		query->level = 0;
    675 		return NULL;
    676 	}
    677 	target = atomic_load_relaxed(&node->slots[*slot]);
    678 	if (__predict_false(target && THMAP_INODE_P(target))) {
    679 		/*
    680 		 * The target slot has been changed and it is now an
    681 		 * intermediate node.  Re-start from the top internode.
    682 		 */
    683 		unlock_node(node);
    684 		query->level = 0;
    685 		goto retry;
    686 	}
    687 	return node;
    688 }
    689 
    690 /*
    691  * thmap_get: lookup a value given the key.
    692  */
    693 void *
    694 thmap_get(thmap_t *thmap, const void *key, size_t len)
    695 {
    696 	thmap_query_t query;
    697 	thmap_inode_t *parent;
    698 	thmap_leaf_t *leaf;
    699 	unsigned slot;
    700 
    701 	hashval_init(&query, thmap->seed, key, len);
    702 	parent = find_edge_node(thmap, &query, key, len, &slot);
    703 	if (!parent) {
    704 		return NULL;
    705 	}
    706 	leaf = get_leaf(thmap, parent, slot);
    707 	if (!leaf) {
    708 		return NULL;
    709 	}
    710 	if (!key_cmp_p(thmap, leaf, key, len)) {
    711 		return NULL;
    712 	}
    713 	return leaf->val;
    714 }
    715 
    716 /*
    717  * thmap_put: insert a value given the key.
    718  *
    719  * => If the key is already present, return the associated value.
    720  * => Otherwise, on successful insert, return the given value.
    721  */
    722 void *
    723 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
    724 {
    725 	thmap_query_t query;
    726 	thmap_leaf_t *leaf, *other;
    727 	thmap_inode_t *parent, *child;
    728 	unsigned slot, other_slot;
    729 	thmap_ptr_t target;
    730 
    731 	/*
    732 	 * First, pre-allocate and initialize the leaf node.
    733 	 */
    734 	leaf = leaf_create(thmap, key, len, val);
    735 	if (__predict_false(!leaf)) {
    736 		return NULL;
    737 	}
    738 	hashval_init(&query, thmap->seed, key, len);
    739 retry:
    740 	/*
    741 	 * Try to insert into the root first, if its slot is empty.
    742 	 */
    743 	switch (root_try_put(thmap, &query, leaf)) {
    744 	case 0:
    745 		/* Success: the leaf was inserted; no locking involved. */
    746 		return val;
    747 	case EEXIST:
    748 		break;
    749 	case ENOMEM:
    750 		return NULL;
    751 	default:
    752 		__unreachable();
    753 	}
    754 
    755 	/*
    756 	 * Release node via store in node_insert (*) to subsequent
    757 	 * consume in get_leaf() or find_edge_node().
    758 	 */
    759 	atomic_thread_fence(memory_order_release);
    760 
    761 	/*
    762 	 * Find the edge node and the target slot.
    763 	 */
    764 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    765 	if (!parent) {
    766 		goto retry;
    767 	}
    768 	target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
    769 	if (THMAP_INODE_P(target)) {
    770 		/*
    771 		 * Empty slot: simply insert the new leaf.  The release
    772 		 * fence is already issued for us.
    773 		 */
    774 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    775 		node_insert(parent, slot, target); /* (*) */
    776 		goto out;
    777 	}
    778 
    779 	/*
    780 	 * Collision or duplicate.
    781 	 */
    782 	other = THMAP_NODE(thmap, target);
    783 	if (key_cmp_p(thmap, other, key, len)) {
    784 		/*
    785 		 * Duplicate.  Free the pre-allocated leaf and
    786 		 * return the present value.
    787 		 */
    788 		leaf_free(thmap, leaf);
    789 		val = other->val;
    790 		goto out;
    791 	}
    792 descend:
    793 	/*
    794 	 * Collision -- expand the tree.  Create an intermediate node
    795 	 * which will be locked (NODE_LOCKED) for us.  At this point,
    796 	 * we advance to the next level.
    797 	 */
    798 	child = node_create(thmap, parent);
    799 	if (__predict_false(!child)) {
    800 		leaf_free(thmap, leaf);
    801 		val = NULL;
    802 		goto out;
    803 	}
    804 	query.level++;
    805 
    806 	/*
    807 	 * Insert the other (colliding) leaf first.  The new child is
    808 	 * not yet published, so memory order is relaxed.
    809 	 */
    810 	other_slot = hashval_getleafslot(thmap, other, query.level);
    811 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
    812 	node_insert(child, other_slot, target);
    813 
    814 	/*
    815 	 * Insert the intermediate node into the parent node.
    816 	 * It becomes the new parent for the our new leaf.
    817 	 *
    818 	 * Ensure that stores to the child (and leaf) reach global
    819 	 * visibility before it gets inserted to the parent, as
    820 	 * consumed by get_leaf() or find_edge_node().
    821 	 */
    822 	atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));
    823 
    824 	unlock_node(parent);
    825 	ASSERT(node_locked_p(child));
    826 	parent = child;
    827 
    828 	/*
    829 	 * Get the new slot and check for another collision
    830 	 * at the next level.
    831 	 */
    832 	slot = hashval_getslot(&query, key, len);
    833 	if (slot == other_slot) {
    834 		/* Another collision -- descend and expand again. */
    835 		goto descend;
    836 	}
    837 
    838 	/*
    839 	 * Insert our new leaf once we expanded enough.  The release
    840 	 * fence is already issued for us.
    841 	 */
    842 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    843 	node_insert(parent, slot, target); /* (*) */
    844 out:
    845 	unlock_node(parent);
    846 	return val;
    847 }
    848 
    849 /*
    850  * thmap_del: remove the entry given the key.
    851  */
    852 void *
    853 thmap_del(thmap_t *thmap, const void *key, size_t len)
    854 {
    855 	thmap_query_t query;
    856 	thmap_leaf_t *leaf;
    857 	thmap_inode_t *parent;
    858 	unsigned slot;
    859 	void *val;
    860 
    861 	hashval_init(&query, thmap->seed, key, len);
    862 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    863 	if (!parent) {
    864 		/* Root slot empty: not found. */
    865 		return NULL;
    866 	}
    867 	leaf = get_leaf(thmap, parent, slot);
    868 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
    869 		/* Not found. */
    870 		unlock_node(parent);
    871 		return NULL;
    872 	}
    873 
    874 	/* Remove the leaf. */
    875 	ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
    876 	    == leaf);
    877 	node_remove(parent, slot);
    878 
    879 	/*
    880 	 * Collapse the levels if removing the last item.
    881 	 */
    882 	while (query.level &&
    883 	    NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
    884 		thmap_inode_t *node = parent;
    885 
    886 		ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);
    887 
    888 		/*
    889 		 * Ascend one level up.
    890 		 * => Mark our current parent as deleted.
    891 		 * => Lock the parent one level up.
    892 		 */
    893 		query.level--;
    894 		slot = hashval_getslot(&query, key, len);
    895 		parent = THMAP_NODE(thmap, node->parent);
    896 		ASSERT(parent != NULL);
    897 
    898 		lock_node(parent);
    899 		ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
    900 		    == 0);
    901 
    902 		/*
    903 		 * Lock is exclusive, so nobody else can be writing at
    904 		 * the same time, and no need for atomic R/M/W, but
    905 		 * readers may read without the lock and so need atomic
    906 		 * load/store.  No ordering here needed because the
    907 		 * entry itself stays valid until GC.
    908 		 */
    909 		atomic_store_relaxed(&node->state,
    910 		    atomic_load_relaxed(&node->state) | NODE_DELETED);
    911 		unlock_node(node); // memory_order_release
    912 
    913 		ASSERT(THMAP_NODE(thmap,
    914 		    atomic_load_relaxed(&parent->slots[slot])) == node);
    915 		node_remove(parent, slot);
    916 
    917 		/* Stage the removed node for G/C. */
    918 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
    919 	}
    920 
    921 	/*
    922 	 * If the top node is empty, then we need to remove it from the
    923 	 * root level.  Mark the node as deleted and clear the slot.
    924 	 *
    925 	 * Note: acquiring the lock on the top node effectively prevents
    926 	 * the root slot from changing.
    927 	 */
    928 	if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
    929 		const unsigned rslot = query.rslot;
    930 		const thmap_ptr_t nptr =
    931 		    atomic_load_relaxed(&thmap->root[rslot]);
    932 
    933 		ASSERT(query.level == 0);
    934 		ASSERT(parent->parent == THMAP_NULL);
    935 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
    936 
    937 		/* Mark as deleted and remove from the root-level slot. */
    938 		atomic_store_relaxed(&parent->state,
    939 		    atomic_load_relaxed(&parent->state) | NODE_DELETED);
    940 		atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);
    941 
    942 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
    943 	}
    944 	unlock_node(parent);
    945 
    946 	/*
    947 	 * Save the value and stage the leaf for G/C.
    948 	 */
    949 	val = leaf->val;
    950 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    951 		stage_mem_gc(thmap, leaf->key, leaf->len);
    952 	}
    953 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    954 	return val;
    955 }
    956 
    957 /*
    958  * G/C routines.
    959  */
    960 
    961 static void
    962 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
    963 {
    964 	char *const ptr = THMAP_GETPTR(thmap, addr);
    965 	thmap_gc_t *head, *gc;
    966 
    967 	gc = container_of(ptr, struct thmap_gc, data[0]);
    968 	KASSERTMSG(gc->len == len,
    969 	    "thmap=%p ops=%p ptr=%p len=%zu gc=%p gc->len=%zu",
    970 	    thmap, thmap->ops, (char *)addr, len, gc, gc->len);
    971 retry:
    972 	head = atomic_load_relaxed(&thmap->gc_list);
    973 	gc->next = head; // not yet published
    974 
    975 	/* Release to subsequent acquire in thmap_stage_gc(). */
    976 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
    977 	    memory_order_release, memory_order_relaxed)) {
    978 		goto retry;
    979 	}
    980 }
    981 
    982 void *
    983 thmap_stage_gc(thmap_t *thmap)
    984 {
    985 	/* Acquire from prior release in stage_mem_gc(). */
    986 	return atomic_exchange_explicit(&thmap->gc_list, NULL,
    987 	    memory_order_acquire);
    988 }
    989 
    990 void
    991 thmap_gc(thmap_t *thmap, void *ref)
    992 {
    993 	thmap_gc_t *gc = ref;
    994 
    995 	while (gc) {
    996 		thmap_gc_t *next = gc->next;
    997 		gc_free(thmap, THMAP_GETOFF(thmap, &gc->data[0]), gc->len);
    998 		gc = next;
    999 	}
   1000 }
   1001 
   1002 /*
   1003  * thmap_create: construct a new trie-hash map object.
   1004  */
   1005 thmap_t *
   1006 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
   1007 {
   1008 	thmap_t *thmap;
   1009 	uintptr_t root;
   1010 
   1011 	/*
   1012 	 * Setup the map object.
   1013 	 */
   1014 	if (!THMAP_ALIGNED_P(baseptr)) {
   1015 		return NULL;
   1016 	}
   1017 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
   1018 	thmap->baseptr = baseptr;
   1019 	thmap->ops = ops ? ops : &thmap_default_ops;
   1020 	thmap->flags = flags;
   1021 
   1022 	if ((thmap->flags & THMAP_SETROOT) == 0) {
   1023 		/* Allocate the root level. */
   1024 		root = gc_alloc(thmap, THMAP_ROOT_LEN);
   1025 		if (!root) {
   1026 			kmem_free(thmap, sizeof(thmap_t));
   1027 			return NULL;
   1028 		}
   1029 		thmap->root = THMAP_GETPTR(thmap, root);
   1030 		memset(thmap->root, 0, THMAP_ROOT_LEN);
   1031 	}
   1032 
   1033 	cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0);
   1034 
   1035 	return thmap;
   1036 }
   1037 
   1038 int
   1039 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
   1040 {
   1041 	if (thmap->root) {
   1042 		return -1;
   1043 	}
   1044 	thmap->root = THMAP_GETPTR(thmap, root_off);
   1045 	return 0;
   1046 }
   1047 
   1048 uintptr_t
   1049 thmap_getroot(const thmap_t *thmap)
   1050 {
   1051 	return THMAP_GETOFF(thmap, thmap->root);
   1052 }
   1053 
   1054 void
   1055 thmap_destroy(thmap_t *thmap)
   1056 {
   1057 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
   1058 	void *ref;
   1059 
   1060 	ref = thmap_stage_gc(thmap);
   1061 	thmap_gc(thmap, ref);
   1062 
   1063 	if ((thmap->flags & THMAP_SETROOT) == 0) {
   1064 		gc_free(thmap, root, THMAP_ROOT_LEN);
   1065 	}
   1066 	kmem_free(thmap, sizeof(thmap_t));
   1067 }
   1068