Home | History | Annotate | Line # | Download | only in ttm
      1 /*	$NetBSD: ttm_page_alloc.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) Red Hat Inc.
      5 
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sub license,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the
     14  * next paragraph) shall be included in all copies or substantial portions
     15  * of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     23  * DEALINGS IN THE SOFTWARE.
     24  *
     25  * Authors: Dave Airlie <airlied (at) redhat.com>
     26  *          Jerome Glisse <jglisse (at) redhat.com>
     27  *          Pauli Nieminen <suokkos (at) gmail.com>
     28  */
     29 
     30 /* simple list based uncached page pool
     31  * - Pool collects resently freed pages for reuse
     32  * - Use page->lru to keep a free list
     33  * - doesn't track currently in use pages
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: ttm_page_alloc.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $");
     38 
     39 #define pr_fmt(fmt) "[TTM] " fmt
     40 
     41 #include <linux/list.h>
     42 #include <linux/spinlock.h>
     43 #include <linux/highmem.h>
     44 #include <linux/mm_types.h>
     45 #include <linux/module.h>
     46 #include <linux/mm.h>
     47 #include <linux/seq_file.h> /* for seq_printf */
     48 #include <linux/slab.h>
     49 #include <linux/dma-mapping.h>
     50 
     51 #include <linux/atomic.h>
     52 
     53 #include <drm/ttm/ttm_bo_driver.h>
     54 #include <drm/ttm/ttm_page_alloc.h>
     55 #include <drm/ttm/ttm_set_memory.h>
     56 
     57 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
     58 #define SMALL_ALLOCATION		16
     59 #define FREE_ALL_PAGES			(~0U)
     60 /* times are in msecs */
     61 #define PAGE_FREE_INTERVAL		1000
     62 
     63 /**
     64  * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
     65  *
     66  * @lock: Protects the shared pool from concurrnet access. Must be used with
     67  * irqsave/irqrestore variants because pool allocator maybe called from
     68  * delayed work.
     69  * @fill_lock: Prevent concurrent calls to fill.
     70  * @list: Pool of free uc/wc pages for fast reuse.
     71  * @gfp_flags: Flags to pass for alloc_page.
     72  * @npages: Number of pages in pool.
     73  */
     74 struct ttm_page_pool {
     75 	spinlock_t		lock;
     76 	bool			fill_lock;
     77 	struct list_head	list;
     78 	gfp_t			gfp_flags;
     79 	unsigned		npages;
     80 	char			*name;
     81 	unsigned long		nfrees;
     82 	unsigned long		nrefills;
     83 	unsigned int		order;
     84 };
     85 
     86 /**
     87  * Limits for the pool. They are handled without locks because only place where
     88  * they may change is in sysfs store. They won't have immediate effect anyway
     89  * so forcing serialization to access them is pointless.
     90  */
     91 
     92 struct ttm_pool_opts {
     93 	unsigned	alloc_size;
     94 	unsigned	max_size;
     95 	unsigned	small;
     96 };
     97 
     98 #define NUM_POOLS 6
     99 
    100 /**
    101  * struct ttm_pool_manager - Holds memory pools for fst allocation
    102  *
    103  * Manager is read only object for pool code so it doesn't need locking.
    104  *
    105  * @free_interval: minimum number of jiffies between freeing pages from pool.
    106  * @page_alloc_inited: reference counting for pool allocation.
    107  * @work: Work that is used to shrink the pool. Work is only run when there is
    108  * some pages to free.
    109  * @small_allocation: Limit in number of pages what is small allocation.
    110  *
    111  * @pools: All pool objects in use.
    112  **/
    113 struct ttm_pool_manager {
    114 	struct kobject		kobj;
    115 	struct shrinker		mm_shrink;
    116 	struct ttm_pool_opts	options;
    117 
    118 	union {
    119 		struct ttm_page_pool	pools[NUM_POOLS];
    120 		struct {
    121 			struct ttm_page_pool	wc_pool;
    122 			struct ttm_page_pool	uc_pool;
    123 			struct ttm_page_pool	wc_pool_dma32;
    124 			struct ttm_page_pool	uc_pool_dma32;
    125 			struct ttm_page_pool	wc_pool_huge;
    126 			struct ttm_page_pool	uc_pool_huge;
    127 		} ;
    128 	};
    129 };
    130 
    131 static struct attribute ttm_page_pool_max = {
    132 	.name = "pool_max_size",
    133 	.mode = S_IRUGO | S_IWUSR
    134 };
    135 static struct attribute ttm_page_pool_small = {
    136 	.name = "pool_small_allocation",
    137 	.mode = S_IRUGO | S_IWUSR
    138 };
    139 static struct attribute ttm_page_pool_alloc_size = {
    140 	.name = "pool_allocation_size",
    141 	.mode = S_IRUGO | S_IWUSR
    142 };
    143 
    144 static struct attribute *ttm_pool_attrs[] = {
    145 	&ttm_page_pool_max,
    146 	&ttm_page_pool_small,
    147 	&ttm_page_pool_alloc_size,
    148 	NULL
    149 };
    150 
    151 static void ttm_pool_kobj_release(struct kobject *kobj)
    152 {
    153 	struct ttm_pool_manager *m =
    154 		container_of(kobj, struct ttm_pool_manager, kobj);
    155 	kfree(m);
    156 }
    157 
    158 static ssize_t ttm_pool_store(struct kobject *kobj,
    159 		struct attribute *attr, const char *buffer, size_t size)
    160 {
    161 	struct ttm_pool_manager *m =
    162 		container_of(kobj, struct ttm_pool_manager, kobj);
    163 	int chars;
    164 	unsigned val;
    165 	chars = sscanf(buffer, "%u", &val);
    166 	if (chars == 0)
    167 		return size;
    168 
    169 	/* Convert kb to number of pages */
    170 	val = val / (PAGE_SIZE >> 10);
    171 
    172 	if (attr == &ttm_page_pool_max)
    173 		m->options.max_size = val;
    174 	else if (attr == &ttm_page_pool_small)
    175 		m->options.small = val;
    176 	else if (attr == &ttm_page_pool_alloc_size) {
    177 		if (val > NUM_PAGES_TO_ALLOC*8) {
    178 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
    179 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
    180 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
    181 			return size;
    182 		} else if (val > NUM_PAGES_TO_ALLOC) {
    183 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
    184 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
    185 		}
    186 		m->options.alloc_size = val;
    187 	}
    188 
    189 	return size;
    190 }
    191 
    192 static ssize_t ttm_pool_show(struct kobject *kobj,
    193 		struct attribute *attr, char *buffer)
    194 {
    195 	struct ttm_pool_manager *m =
    196 		container_of(kobj, struct ttm_pool_manager, kobj);
    197 	unsigned val = 0;
    198 
    199 	if (attr == &ttm_page_pool_max)
    200 		val = m->options.max_size;
    201 	else if (attr == &ttm_page_pool_small)
    202 		val = m->options.small;
    203 	else if (attr == &ttm_page_pool_alloc_size)
    204 		val = m->options.alloc_size;
    205 
    206 	val = val * (PAGE_SIZE >> 10);
    207 
    208 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
    209 }
    210 
    211 static const struct sysfs_ops ttm_pool_sysfs_ops = {
    212 	.show = &ttm_pool_show,
    213 	.store = &ttm_pool_store,
    214 };
    215 
    216 static struct kobj_type ttm_pool_kobj_type = {
    217 	.release = &ttm_pool_kobj_release,
    218 	.sysfs_ops = &ttm_pool_sysfs_ops,
    219 	.default_attrs = ttm_pool_attrs,
    220 };
    221 
    222 static struct ttm_pool_manager *_manager;
    223 
    224 /**
    225  * Select the right pool or requested caching state and ttm flags. */
    226 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
    227 					  enum ttm_caching_state cstate)
    228 {
    229 	int pool_index;
    230 
    231 	if (cstate == tt_cached)
    232 		return NULL;
    233 
    234 	if (cstate == tt_wc)
    235 		pool_index = 0x0;
    236 	else
    237 		pool_index = 0x1;
    238 
    239 	if (flags & TTM_PAGE_FLAG_DMA32) {
    240 		if (huge)
    241 			return NULL;
    242 		pool_index |= 0x2;
    243 
    244 	} else if (huge) {
    245 		pool_index |= 0x4;
    246 	}
    247 
    248 	return &_manager->pools[pool_index];
    249 }
    250 
    251 /* set memory back to wb and free the pages. */
    252 static void ttm_pages_put(struct page *pages[], unsigned npages,
    253 		unsigned int order)
    254 {
    255 	unsigned int i, pages_nr = (1 << order);
    256 
    257 	if (order == 0) {
    258 		if (ttm_set_pages_array_wb(pages, npages))
    259 			pr_err("Failed to set %d pages to wb!\n", npages);
    260 	}
    261 
    262 	for (i = 0; i < npages; ++i) {
    263 		if (order > 0) {
    264 			if (ttm_set_pages_wb(pages[i], pages_nr))
    265 				pr_err("Failed to set %d pages to wb!\n", pages_nr);
    266 		}
    267 		__free_pages(pages[i], order);
    268 	}
    269 }
    270 
    271 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
    272 		unsigned freed_pages)
    273 {
    274 	pool->npages -= freed_pages;
    275 	pool->nfrees += freed_pages;
    276 }
    277 
    278 /**
    279  * Free pages from pool.
    280  *
    281  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
    282  * number of pages in one go.
    283  *
    284  * @pool: to free the pages from
    285  * @free_all: If set to true will free all pages in pool
    286  * @use_static: Safe to use static buffer
    287  **/
    288 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
    289 			      bool use_static)
    290 {
    291 	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
    292 	unsigned long irq_flags;
    293 	struct page *p;
    294 	struct page **pages_to_free;
    295 	unsigned freed_pages = 0,
    296 		 npages_to_free = nr_free;
    297 
    298 	if (NUM_PAGES_TO_ALLOC < nr_free)
    299 		npages_to_free = NUM_PAGES_TO_ALLOC;
    300 
    301 	if (use_static)
    302 		pages_to_free = static_buf;
    303 	else
    304 		pages_to_free = kmalloc_array(npages_to_free,
    305 					      sizeof(struct page *),
    306 					      GFP_KERNEL);
    307 	if (!pages_to_free) {
    308 		pr_debug("Failed to allocate memory for pool free operation\n");
    309 		return 0;
    310 	}
    311 
    312 restart:
    313 	spin_lock_irqsave(&pool->lock, irq_flags);
    314 
    315 	list_for_each_entry_reverse(p, &pool->list, lru) {
    316 		if (freed_pages >= npages_to_free)
    317 			break;
    318 
    319 		pages_to_free[freed_pages++] = p;
    320 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
    321 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
    322 			/* remove range of pages from the pool */
    323 			__list_del(p->lru.prev, &pool->list);
    324 
    325 			ttm_pool_update_free_locked(pool, freed_pages);
    326 			/**
    327 			 * Because changing page caching is costly
    328 			 * we unlock the pool to prevent stalling.
    329 			 */
    330 			spin_unlock_irqrestore(&pool->lock, irq_flags);
    331 
    332 			ttm_pages_put(pages_to_free, freed_pages, pool->order);
    333 			if (likely(nr_free != FREE_ALL_PAGES))
    334 				nr_free -= freed_pages;
    335 
    336 			if (NUM_PAGES_TO_ALLOC >= nr_free)
    337 				npages_to_free = nr_free;
    338 			else
    339 				npages_to_free = NUM_PAGES_TO_ALLOC;
    340 
    341 			freed_pages = 0;
    342 
    343 			/* free all so restart the processing */
    344 			if (nr_free)
    345 				goto restart;
    346 
    347 			/* Not allowed to fall through or break because
    348 			 * following context is inside spinlock while we are
    349 			 * outside here.
    350 			 */
    351 			goto out;
    352 
    353 		}
    354 	}
    355 
    356 	/* remove range of pages from the pool */
    357 	if (freed_pages) {
    358 		__list_del(&p->lru, &pool->list);
    359 
    360 		ttm_pool_update_free_locked(pool, freed_pages);
    361 		nr_free -= freed_pages;
    362 	}
    363 
    364 	spin_unlock_irqrestore(&pool->lock, irq_flags);
    365 
    366 	if (freed_pages)
    367 		ttm_pages_put(pages_to_free, freed_pages, pool->order);
    368 out:
    369 	if (pages_to_free != static_buf)
    370 		kfree(pages_to_free);
    371 	return nr_free;
    372 }
    373 
    374 /**
    375  * Callback for mm to request pool to reduce number of page held.
    376  *
    377  * XXX: (dchinner) Deadlock warning!
    378  *
    379  * This code is crying out for a shrinker per pool....
    380  */
    381 static unsigned long
    382 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
    383 {
    384 	static DEFINE_MUTEX(lock);
    385 	static unsigned start_pool;
    386 	unsigned i;
    387 	unsigned pool_offset;
    388 	struct ttm_page_pool *pool;
    389 	int shrink_pages = sc->nr_to_scan;
    390 	unsigned long freed = 0;
    391 	unsigned int nr_free_pool;
    392 
    393 	if (!mutex_trylock(&lock))
    394 		return SHRINK_STOP;
    395 	pool_offset = ++start_pool % NUM_POOLS;
    396 	/* select start pool in round robin fashion */
    397 	for (i = 0; i < NUM_POOLS; ++i) {
    398 		unsigned nr_free = shrink_pages;
    399 		unsigned page_nr;
    400 
    401 		if (shrink_pages == 0)
    402 			break;
    403 
    404 		pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
    405 		page_nr = (1 << pool->order);
    406 		/* OK to use static buffer since global mutex is held. */
    407 		nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
    408 		shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
    409 		freed += (nr_free_pool - shrink_pages) << pool->order;
    410 		if (freed >= sc->nr_to_scan)
    411 			break;
    412 		shrink_pages <<= pool->order;
    413 	}
    414 	mutex_unlock(&lock);
    415 	return freed;
    416 }
    417 
    418 
    419 static unsigned long
    420 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
    421 {
    422 	unsigned i;
    423 	unsigned long count = 0;
    424 	struct ttm_page_pool *pool;
    425 
    426 	for (i = 0; i < NUM_POOLS; ++i) {
    427 		pool = &_manager->pools[i];
    428 		count += (pool->npages << pool->order);
    429 	}
    430 
    431 	return count;
    432 }
    433 
    434 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
    435 {
    436 	manager->mm_shrink.count_objects = ttm_pool_shrink_count;
    437 	manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
    438 	manager->mm_shrink.seeks = 1;
    439 	return register_shrinker(&manager->mm_shrink);
    440 }
    441 
    442 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
    443 {
    444 	unregister_shrinker(&manager->mm_shrink);
    445 }
    446 
    447 static int ttm_set_pages_caching(struct page **pages,
    448 		enum ttm_caching_state cstate, unsigned cpages)
    449 {
    450 	int r = 0;
    451 	/* Set page caching */
    452 	switch (cstate) {
    453 	case tt_uncached:
    454 		r = ttm_set_pages_array_uc(pages, cpages);
    455 		if (r)
    456 			pr_err("Failed to set %d pages to uc!\n", cpages);
    457 		break;
    458 	case tt_wc:
    459 		r = ttm_set_pages_array_wc(pages, cpages);
    460 		if (r)
    461 			pr_err("Failed to set %d pages to wc!\n", cpages);
    462 		break;
    463 	default:
    464 		break;
    465 	}
    466 	return r;
    467 }
    468 
    469 /**
    470  * Free pages the pages that failed to change the caching state. If there is
    471  * any pages that have changed their caching state already put them to the
    472  * pool.
    473  */
    474 static void ttm_handle_caching_state_failure(struct list_head *pages,
    475 		int ttm_flags, enum ttm_caching_state cstate,
    476 		struct page **failed_pages, unsigned cpages)
    477 {
    478 	unsigned i;
    479 	/* Failed pages have to be freed */
    480 	for (i = 0; i < cpages; ++i) {
    481 		list_del(&failed_pages[i]->lru);
    482 		__free_page(failed_pages[i]);
    483 	}
    484 }
    485 
    486 /**
    487  * Allocate new pages with correct caching.
    488  *
    489  * This function is reentrant if caller updates count depending on number of
    490  * pages returned in pages array.
    491  */
    492 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
    493 			       int ttm_flags, enum ttm_caching_state cstate,
    494 			       unsigned count, unsigned order)
    495 {
    496 	struct page **caching_array;
    497 	struct page *p;
    498 	int r = 0;
    499 	unsigned i, j, cpages;
    500 	unsigned npages = 1 << order;
    501 	unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
    502 
    503 	/* allocate array for page caching change */
    504 	caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
    505 				      GFP_KERNEL);
    506 
    507 	if (!caching_array) {
    508 		pr_debug("Unable to allocate table for new pages\n");
    509 		return -ENOMEM;
    510 	}
    511 
    512 	for (i = 0, cpages = 0; i < count; ++i) {
    513 		p = alloc_pages(gfp_flags, order);
    514 
    515 		if (!p) {
    516 			pr_debug("Unable to get page %u\n", i);
    517 
    518 			/* store already allocated pages in the pool after
    519 			 * setting the caching state */
    520 			if (cpages) {
    521 				r = ttm_set_pages_caching(caching_array,
    522 							  cstate, cpages);
    523 				if (r)
    524 					ttm_handle_caching_state_failure(pages,
    525 						ttm_flags, cstate,
    526 						caching_array, cpages);
    527 			}
    528 			r = -ENOMEM;
    529 			goto out;
    530 		}
    531 
    532 		list_add(&p->lru, pages);
    533 
    534 #ifdef CONFIG_HIGHMEM
    535 		/* gfp flags of highmem page should never be dma32 so we
    536 		 * we should be fine in such case
    537 		 */
    538 		if (PageHighMem(p))
    539 			continue;
    540 
    541 #endif
    542 		for (j = 0; j < npages; ++j) {
    543 			caching_array[cpages++] = p++;
    544 			if (cpages == max_cpages) {
    545 
    546 				r = ttm_set_pages_caching(caching_array,
    547 						cstate, cpages);
    548 				if (r) {
    549 					ttm_handle_caching_state_failure(pages,
    550 						ttm_flags, cstate,
    551 						caching_array, cpages);
    552 					goto out;
    553 				}
    554 				cpages = 0;
    555 			}
    556 		}
    557 	}
    558 
    559 	if (cpages) {
    560 		r = ttm_set_pages_caching(caching_array, cstate, cpages);
    561 		if (r)
    562 			ttm_handle_caching_state_failure(pages,
    563 					ttm_flags, cstate,
    564 					caching_array, cpages);
    565 	}
    566 out:
    567 	kfree(caching_array);
    568 
    569 	return r;
    570 }
    571 
    572 /**
    573  * Fill the given pool if there aren't enough pages and the requested number of
    574  * pages is small.
    575  */
    576 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
    577 				      enum ttm_caching_state cstate,
    578 				      unsigned count, unsigned long *irq_flags)
    579 {
    580 	struct page *p;
    581 	int r;
    582 	unsigned cpages = 0;
    583 	/**
    584 	 * Only allow one pool fill operation at a time.
    585 	 * If pool doesn't have enough pages for the allocation new pages are
    586 	 * allocated from outside of pool.
    587 	 */
    588 	if (pool->fill_lock)
    589 		return;
    590 
    591 	pool->fill_lock = true;
    592 
    593 	/* If allocation request is small and there are not enough
    594 	 * pages in a pool we fill the pool up first. */
    595 	if (count < _manager->options.small
    596 		&& count > pool->npages) {
    597 		struct list_head new_pages;
    598 		unsigned alloc_size = _manager->options.alloc_size;
    599 
    600 		/**
    601 		 * Can't change page caching if in irqsave context. We have to
    602 		 * drop the pool->lock.
    603 		 */
    604 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
    605 
    606 		INIT_LIST_HEAD(&new_pages);
    607 		r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
    608 					cstate, alloc_size, 0);
    609 		spin_lock_irqsave(&pool->lock, *irq_flags);
    610 
    611 		if (!r) {
    612 			list_splice(&new_pages, &pool->list);
    613 			++pool->nrefills;
    614 			pool->npages += alloc_size;
    615 		} else {
    616 			pr_debug("Failed to fill pool (%p)\n", pool);
    617 			/* If we have any pages left put them to the pool. */
    618 			list_for_each_entry(p, &new_pages, lru) {
    619 				++cpages;
    620 			}
    621 			list_splice(&new_pages, &pool->list);
    622 			pool->npages += cpages;
    623 		}
    624 
    625 	}
    626 	pool->fill_lock = false;
    627 }
    628 
    629 /**
    630  * Allocate pages from the pool and put them on the return list.
    631  *
    632  * @return zero for success or negative error code.
    633  */
    634 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
    635 				   struct list_head *pages,
    636 				   int ttm_flags,
    637 				   enum ttm_caching_state cstate,
    638 				   unsigned count, unsigned order)
    639 {
    640 	unsigned long irq_flags;
    641 	struct list_head *p;
    642 	unsigned i;
    643 	int r = 0;
    644 
    645 	spin_lock_irqsave(&pool->lock, irq_flags);
    646 	if (!order)
    647 		ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
    648 					  &irq_flags);
    649 
    650 	if (count >= pool->npages) {
    651 		/* take all pages from the pool */
    652 		list_splice_init(&pool->list, pages);
    653 		count -= pool->npages;
    654 		pool->npages = 0;
    655 		goto out;
    656 	}
    657 	/* find the last pages to include for requested number of pages. Split
    658 	 * pool to begin and halve it to reduce search space. */
    659 	if (count <= pool->npages/2) {
    660 		i = 0;
    661 		list_for_each(p, &pool->list) {
    662 			if (++i == count)
    663 				break;
    664 		}
    665 	} else {
    666 		i = pool->npages + 1;
    667 		list_for_each_prev(p, &pool->list) {
    668 			if (--i == count)
    669 				break;
    670 		}
    671 	}
    672 	/* Cut 'count' number of pages from the pool */
    673 	list_cut_position(pages, &pool->list, p);
    674 	pool->npages -= count;
    675 	count = 0;
    676 out:
    677 	spin_unlock_irqrestore(&pool->lock, irq_flags);
    678 
    679 	/* clear the pages coming from the pool if requested */
    680 	if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
    681 		struct page *page;
    682 
    683 		list_for_each_entry(page, pages, lru) {
    684 			if (PageHighMem(page))
    685 				clear_highpage(page);
    686 			else
    687 				clear_page(page_address(page));
    688 		}
    689 	}
    690 
    691 	/* If pool didn't have enough pages allocate new one. */
    692 	if (count) {
    693 		gfp_t gfp_flags = pool->gfp_flags;
    694 
    695 		/* set zero flag for page allocation if required */
    696 		if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
    697 			gfp_flags |= __GFP_ZERO;
    698 
    699 		if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
    700 			gfp_flags |= __GFP_RETRY_MAYFAIL;
    701 
    702 		/* ttm_alloc_new_pages doesn't reference pool so we can run
    703 		 * multiple requests in parallel.
    704 		 **/
    705 		r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
    706 					count, order);
    707 	}
    708 
    709 	return r;
    710 }
    711 
    712 /* Put all pages in pages list to correct pool to wait for reuse */
    713 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
    714 			  enum ttm_caching_state cstate)
    715 {
    716 	struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
    717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    718 	struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
    719 #endif
    720 	unsigned long irq_flags;
    721 	unsigned i;
    722 
    723 	if (pool == NULL) {
    724 		/* No pool for this memory type so free the pages */
    725 		i = 0;
    726 		while (i < npages) {
    727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    728 			struct page *p = pages[i];
    729 #endif
    730 			unsigned order = 0, j;
    731 
    732 			if (!pages[i]) {
    733 				++i;
    734 				continue;
    735 			}
    736 
    737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    738 			if (!(flags & TTM_PAGE_FLAG_DMA32) &&
    739 			    (npages - i) >= HPAGE_PMD_NR) {
    740 				for (j = 1; j < HPAGE_PMD_NR; ++j)
    741 					if (++p != pages[i + j])
    742 					    break;
    743 
    744 				if (j == HPAGE_PMD_NR)
    745 					order = HPAGE_PMD_ORDER;
    746 			}
    747 #endif
    748 
    749 			if (page_count(pages[i]) != 1)
    750 				pr_err("Erroneous page count. Leaking pages.\n");
    751 			__free_pages(pages[i], order);
    752 
    753 			j = 1 << order;
    754 			while (j) {
    755 				pages[i++] = NULL;
    756 				--j;
    757 			}
    758 		}
    759 		return;
    760 	}
    761 
    762 	i = 0;
    763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    764 	if (huge) {
    765 		unsigned max_size, n2free;
    766 
    767 		spin_lock_irqsave(&huge->lock, irq_flags);
    768 		while ((npages - i) >= HPAGE_PMD_NR) {
    769 			struct page *p = pages[i];
    770 			unsigned j;
    771 
    772 			if (!p)
    773 				break;
    774 
    775 			for (j = 1; j < HPAGE_PMD_NR; ++j)
    776 				if (++p != pages[i + j])
    777 				    break;
    778 
    779 			if (j != HPAGE_PMD_NR)
    780 				break;
    781 
    782 			list_add_tail(&pages[i]->lru, &huge->list);
    783 
    784 			for (j = 0; j < HPAGE_PMD_NR; ++j)
    785 				pages[i++] = NULL;
    786 			huge->npages++;
    787 		}
    788 
    789 		/* Check that we don't go over the pool limit */
    790 		max_size = _manager->options.max_size;
    791 		max_size /= HPAGE_PMD_NR;
    792 		if (huge->npages > max_size)
    793 			n2free = huge->npages - max_size;
    794 		else
    795 			n2free = 0;
    796 		spin_unlock_irqrestore(&huge->lock, irq_flags);
    797 		if (n2free)
    798 			ttm_page_pool_free(huge, n2free, false);
    799 	}
    800 #endif
    801 
    802 	spin_lock_irqsave(&pool->lock, irq_flags);
    803 	while (i < npages) {
    804 		if (pages[i]) {
    805 			if (page_count(pages[i]) != 1)
    806 				pr_err("Erroneous page count. Leaking pages.\n");
    807 			list_add_tail(&pages[i]->lru, &pool->list);
    808 			pages[i] = NULL;
    809 			pool->npages++;
    810 		}
    811 		++i;
    812 	}
    813 	/* Check that we don't go over the pool limit */
    814 	npages = 0;
    815 	if (pool->npages > _manager->options.max_size) {
    816 		npages = pool->npages - _manager->options.max_size;
    817 		/* free at least NUM_PAGES_TO_ALLOC number of pages
    818 		 * to reduce calls to set_memory_wb */
    819 		if (npages < NUM_PAGES_TO_ALLOC)
    820 			npages = NUM_PAGES_TO_ALLOC;
    821 	}
    822 	spin_unlock_irqrestore(&pool->lock, irq_flags);
    823 	if (npages)
    824 		ttm_page_pool_free(pool, npages, false);
    825 }
    826 
    827 /*
    828  * On success pages list will hold count number of correctly
    829  * cached pages.
    830  */
    831 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
    832 			 enum ttm_caching_state cstate)
    833 {
    834 	struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
    835 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    836 	struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
    837 #endif
    838 	struct list_head plist;
    839 	struct page *p = NULL;
    840 	unsigned count, first;
    841 	int r;
    842 
    843 	/* No pool for cached pages */
    844 	if (pool == NULL) {
    845 		gfp_t gfp_flags = GFP_USER;
    846 		unsigned i;
    847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    848 		unsigned j;
    849 #endif
    850 
    851 		/* set zero flag for page allocation if required */
    852 		if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
    853 			gfp_flags |= __GFP_ZERO;
    854 
    855 		if (flags & TTM_PAGE_FLAG_NO_RETRY)
    856 			gfp_flags |= __GFP_RETRY_MAYFAIL;
    857 
    858 		if (flags & TTM_PAGE_FLAG_DMA32)
    859 			gfp_flags |= GFP_DMA32;
    860 		else
    861 			gfp_flags |= GFP_HIGHUSER;
    862 
    863 		i = 0;
    864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    865 		if (!(gfp_flags & GFP_DMA32)) {
    866 			while (npages >= HPAGE_PMD_NR) {
    867 				gfp_t huge_flags = gfp_flags;
    868 
    869 				huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
    870 					__GFP_KSWAPD_RECLAIM;
    871 				huge_flags &= ~__GFP_MOVABLE;
    872 				huge_flags &= ~__GFP_COMP;
    873 				p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
    874 				if (!p)
    875 					break;
    876 
    877 				for (j = 0; j < HPAGE_PMD_NR; ++j)
    878 					pages[i++] = p++;
    879 
    880 				npages -= HPAGE_PMD_NR;
    881 			}
    882 		}
    883 #endif
    884 
    885 		first = i;
    886 		while (npages) {
    887 			p = alloc_page(gfp_flags);
    888 			if (!p) {
    889 				pr_debug("Unable to allocate page\n");
    890 				return -ENOMEM;
    891 			}
    892 
    893 			/* Swap the pages if we detect consecutive order */
    894 			if (i > first && pages[i - 1] == p - 1)
    895 				swap(p, pages[i - 1]);
    896 
    897 			pages[i++] = p;
    898 			--npages;
    899 		}
    900 		return 0;
    901 	}
    902 
    903 	count = 0;
    904 
    905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    906 	if (huge && npages >= HPAGE_PMD_NR) {
    907 		INIT_LIST_HEAD(&plist);
    908 		ttm_page_pool_get_pages(huge, &plist, flags, cstate,
    909 					npages / HPAGE_PMD_NR,
    910 					HPAGE_PMD_ORDER);
    911 
    912 		list_for_each_entry(p, &plist, lru) {
    913 			unsigned j;
    914 
    915 			for (j = 0; j < HPAGE_PMD_NR; ++j)
    916 				pages[count++] = &p[j];
    917 		}
    918 	}
    919 #endif
    920 
    921 	INIT_LIST_HEAD(&plist);
    922 	r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
    923 				    npages - count, 0);
    924 
    925 	first = count;
    926 	list_for_each_entry(p, &plist, lru) {
    927 		struct page *tmp = p;
    928 
    929 		/* Swap the pages if we detect consecutive order */
    930 		if (count > first && pages[count - 1] == tmp - 1)
    931 			swap(tmp, pages[count - 1]);
    932 		pages[count++] = tmp;
    933 	}
    934 
    935 	if (r) {
    936 		/* If there is any pages in the list put them back to
    937 		 * the pool.
    938 		 */
    939 		pr_debug("Failed to allocate extra pages for large request\n");
    940 		ttm_put_pages(pages, count, flags, cstate);
    941 		return r;
    942 	}
    943 
    944 	return 0;
    945 }
    946 
    947 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
    948 		char *name, unsigned int order)
    949 {
    950 	spin_lock_init(&pool->lock);
    951 	pool->fill_lock = false;
    952 	INIT_LIST_HEAD(&pool->list);
    953 	pool->npages = pool->nfrees = 0;
    954 	pool->gfp_flags = flags;
    955 	pool->name = name;
    956 	pool->order = order;
    957 }
    958 
    959 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
    960 {
    961 	int ret;
    962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    963 	unsigned order = HPAGE_PMD_ORDER;
    964 #else
    965 	unsigned order = 0;
    966 #endif
    967 
    968 	WARN_ON(_manager);
    969 
    970 	pr_info("Initializing pool allocator\n");
    971 
    972 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
    973 	if (!_manager)
    974 		return -ENOMEM;
    975 
    976 	ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
    977 
    978 	ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
    979 
    980 	ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
    981 				  GFP_USER | GFP_DMA32, "wc dma", 0);
    982 
    983 	ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
    984 				  GFP_USER | GFP_DMA32, "uc dma", 0);
    985 
    986 	ttm_page_pool_init_locked(&_manager->wc_pool_huge,
    987 				  (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
    988 				   __GFP_KSWAPD_RECLAIM) &
    989 				  ~(__GFP_MOVABLE | __GFP_COMP),
    990 				  "wc huge", order);
    991 
    992 	ttm_page_pool_init_locked(&_manager->uc_pool_huge,
    993 				  (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
    994 				   __GFP_KSWAPD_RECLAIM) &
    995 				  ~(__GFP_MOVABLE | __GFP_COMP)
    996 				  , "uc huge", order);
    997 
    998 	_manager->options.max_size = max_pages;
    999 	_manager->options.small = SMALL_ALLOCATION;
   1000 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
   1001 
   1002 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
   1003 				   &glob->kobj, "pool");
   1004 	if (unlikely(ret != 0))
   1005 		goto error;
   1006 
   1007 	ret = ttm_pool_mm_shrink_init(_manager);
   1008 	if (unlikely(ret != 0))
   1009 		goto error;
   1010 	return 0;
   1011 
   1012 error:
   1013 	kobject_put(&_manager->kobj);
   1014 	_manager = NULL;
   1015 	return ret;
   1016 }
   1017 
   1018 void ttm_page_alloc_fini(void)
   1019 {
   1020 	int i;
   1021 
   1022 	pr_info("Finalizing pool allocator\n");
   1023 	ttm_pool_mm_shrink_fini(_manager);
   1024 
   1025 	/* OK to use static buffer since global mutex is no longer used. */
   1026 	for (i = 0; i < NUM_POOLS; ++i)
   1027 		ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
   1028 
   1029 	kobject_put(&_manager->kobj);
   1030 	_manager = NULL;
   1031 }
   1032 
   1033 static void
   1034 ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
   1035 {
   1036 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
   1037 	unsigned i;
   1038 
   1039 	if (mem_count_update == 0)
   1040 		goto put_pages;
   1041 
   1042 	for (i = 0; i < mem_count_update; ++i) {
   1043 		if (!ttm->pages[i])
   1044 			continue;
   1045 
   1046 		ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
   1047 	}
   1048 
   1049 put_pages:
   1050 	ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
   1051 		      ttm->caching_state);
   1052 	ttm->state = tt_unpopulated;
   1053 }
   1054 
   1055 int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
   1056 {
   1057 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
   1058 	unsigned i;
   1059 	int ret;
   1060 
   1061 	if (ttm->state != tt_unpopulated)
   1062 		return 0;
   1063 
   1064 	if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
   1065 		return -ENOMEM;
   1066 
   1067 	ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
   1068 			    ttm->caching_state);
   1069 	if (unlikely(ret != 0)) {
   1070 		ttm_pool_unpopulate_helper(ttm, 0);
   1071 		return ret;
   1072 	}
   1073 
   1074 	for (i = 0; i < ttm->num_pages; ++i) {
   1075 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
   1076 						PAGE_SIZE, ctx);
   1077 		if (unlikely(ret != 0)) {
   1078 			ttm_pool_unpopulate_helper(ttm, i);
   1079 			return -ENOMEM;
   1080 		}
   1081 	}
   1082 
   1083 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
   1084 		ret = ttm_tt_swapin(ttm);
   1085 		if (unlikely(ret != 0)) {
   1086 			ttm_pool_unpopulate(ttm);
   1087 			return ret;
   1088 		}
   1089 	}
   1090 
   1091 	ttm->state = tt_unbound;
   1092 	return 0;
   1093 }
   1094 EXPORT_SYMBOL(ttm_pool_populate);
   1095 
   1096 void ttm_pool_unpopulate(struct ttm_tt *ttm)
   1097 {
   1098 	ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
   1099 }
   1100 EXPORT_SYMBOL(ttm_pool_unpopulate);
   1101 
   1102 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
   1103 					struct ttm_operation_ctx *ctx)
   1104 {
   1105 	unsigned i, j;
   1106 	int r;
   1107 
   1108 	r = ttm_pool_populate(&tt->ttm, ctx);
   1109 	if (r)
   1110 		return r;
   1111 
   1112 	for (i = 0; i < tt->ttm.num_pages; ++i) {
   1113 		struct page *p = tt->ttm.pages[i];
   1114 		size_t num_pages = 1;
   1115 
   1116 		for (j = i + 1; j < tt->ttm.num_pages; ++j) {
   1117 			if (++p != tt->ttm.pages[j])
   1118 				break;
   1119 
   1120 			++num_pages;
   1121 		}
   1122 
   1123 		tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
   1124 						  0, num_pages * PAGE_SIZE,
   1125 						  DMA_BIDIRECTIONAL);
   1126 		if (dma_mapping_error(dev, tt->dma_address[i])) {
   1127 			while (i--) {
   1128 				dma_unmap_page(dev, tt->dma_address[i],
   1129 					       PAGE_SIZE, DMA_BIDIRECTIONAL);
   1130 				tt->dma_address[i] = 0;
   1131 			}
   1132 			ttm_pool_unpopulate(&tt->ttm);
   1133 			return -EFAULT;
   1134 		}
   1135 
   1136 		for (j = 1; j < num_pages; ++j) {
   1137 			tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
   1138 			++i;
   1139 		}
   1140 	}
   1141 	return 0;
   1142 }
   1143 EXPORT_SYMBOL(ttm_populate_and_map_pages);
   1144 
   1145 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
   1146 {
   1147 	unsigned i, j;
   1148 
   1149 	for (i = 0; i < tt->ttm.num_pages;) {
   1150 		struct page *p = tt->ttm.pages[i];
   1151 		size_t num_pages = 1;
   1152 
   1153 		if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
   1154 			++i;
   1155 			continue;
   1156 		}
   1157 
   1158 		for (j = i + 1; j < tt->ttm.num_pages; ++j) {
   1159 			if (++p != tt->ttm.pages[j])
   1160 				break;
   1161 
   1162 			++num_pages;
   1163 		}
   1164 
   1165 		dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
   1166 			       DMA_BIDIRECTIONAL);
   1167 
   1168 		i += num_pages;
   1169 	}
   1170 	ttm_pool_unpopulate(&tt->ttm);
   1171 }
   1172 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
   1173 
   1174 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
   1175 {
   1176 	struct ttm_page_pool *p;
   1177 	unsigned i;
   1178 	char *h[] = {"pool", "refills", "pages freed", "size"};
   1179 	if (!_manager) {
   1180 		seq_printf(m, "No pool allocator running.\n");
   1181 		return 0;
   1182 	}
   1183 	seq_printf(m, "%7s %12s %13s %8s\n",
   1184 			h[0], h[1], h[2], h[3]);
   1185 	for (i = 0; i < NUM_POOLS; ++i) {
   1186 		p = &_manager->pools[i];
   1187 
   1188 		seq_printf(m, "%7s %12ld %13ld %8d\n",
   1189 				p->name, p->nrefills,
   1190 				p->nfrees, p->npages);
   1191 	}
   1192 	return 0;
   1193 }
   1194 EXPORT_SYMBOL(ttm_page_alloc_debugfs);
   1195