1 /* $NetBSD: amdgpu_vega10_hwmgr.c,v 1.4 2021/12/19 12:37:54 riastradh Exp $ */ 2 3 /* 4 * Copyright 2016 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vega10_hwmgr.c,v 1.4 2021/12/19 12:37:54 riastradh Exp $"); 28 29 #include <linux/delay.h> 30 #include <linux/fb.h> 31 #include <linux/module.h> 32 #include <linux/pci.h> 33 #include <linux/slab.h> 34 35 #include "hwmgr.h" 36 #include "amd_powerplay.h" 37 #include "hardwaremanager.h" 38 #include "ppatomfwctrl.h" 39 #include "atomfirmware.h" 40 #include "cgs_common.h" 41 #include "vega10_powertune.h" 42 #include "smu9.h" 43 #include "smu9_driver_if.h" 44 #include "vega10_inc.h" 45 #include "soc15_common.h" 46 #include "pppcielanes.h" 47 #include "vega10_hwmgr.h" 48 #include "vega10_smumgr.h" 49 #include "vega10_processpptables.h" 50 #include "vega10_pptable.h" 51 #include "vega10_thermal.h" 52 #include "pp_debug.h" 53 #include "amd_pcie_helpers.h" 54 #include "ppinterrupt.h" 55 #include "pp_overdriver.h" 56 #include "pp_thermal.h" 57 #include "vega10_baco.h" 58 59 #include "smuio/smuio_9_0_offset.h" 60 #include "smuio/smuio_9_0_sh_mask.h" 61 62 #include <linux/nbsd-namespace.h> 63 64 #define HBM_MEMORY_CHANNEL_WIDTH 128 65 66 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; 67 68 #define mmDF_CS_AON0_DramBaseAddress0 0x0044 69 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 70 71 //DF_CS_AON0_DramBaseAddress0 72 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 73 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 74 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 75 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 76 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc 77 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L 78 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L 79 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L 80 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L 81 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L 82 83 typedef enum { 84 CLK_SMNCLK = 0, 85 CLK_SOCCLK, 86 CLK_MP0CLK, 87 CLK_MP1CLK, 88 CLK_LCLK, 89 CLK_DCEFCLK, 90 CLK_VCLK, 91 CLK_DCLK, 92 CLK_ECLK, 93 CLK_UCLK, 94 CLK_GFXCLK, 95 CLK_COUNT, 96 } CLOCK_ID_e; 97 98 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); 99 100 struct vega10_power_state *cast_phw_vega10_power_state( 101 struct pp_hw_power_state *hw_ps) 102 { 103 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 104 "Invalid Powerstate Type!", 105 return NULL;); 106 107 return (struct vega10_power_state *)hw_ps; 108 } 109 110 const struct vega10_power_state *cast_const_phw_vega10_power_state( 111 const struct pp_hw_power_state *hw_ps) 112 { 113 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 114 "Invalid Powerstate Type!", 115 return NULL;); 116 117 return (const struct vega10_power_state *)hw_ps; 118 } 119 120 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) 121 { 122 struct vega10_hwmgr *data = hwmgr->backend; 123 124 data->registry_data.sclk_dpm_key_disabled = 125 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 126 data->registry_data.socclk_dpm_key_disabled = 127 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; 128 data->registry_data.mclk_dpm_key_disabled = 129 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 130 data->registry_data.pcie_dpm_key_disabled = 131 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; 132 133 data->registry_data.dcefclk_dpm_key_disabled = 134 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; 135 136 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { 137 data->registry_data.power_containment_support = 1; 138 data->registry_data.enable_pkg_pwr_tracking_feature = 1; 139 data->registry_data.enable_tdc_limit_feature = 1; 140 } 141 142 data->registry_data.clock_stretcher_support = 143 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; 144 145 data->registry_data.ulv_support = 146 hwmgr->feature_mask & PP_ULV_MASK ? true : false; 147 148 data->registry_data.sclk_deep_sleep_support = 149 hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; 150 151 data->registry_data.disable_water_mark = 0; 152 153 data->registry_data.fan_control_support = 1; 154 data->registry_data.thermal_support = 1; 155 data->registry_data.fw_ctf_enabled = 1; 156 157 data->registry_data.avfs_support = 158 hwmgr->feature_mask & PP_AVFS_MASK ? true : false; 159 data->registry_data.led_dpm_enabled = 1; 160 161 data->registry_data.vr0hot_enabled = 1; 162 data->registry_data.vr1hot_enabled = 1; 163 data->registry_data.regulator_hot_gpio_support = 1; 164 165 data->registry_data.didt_support = 1; 166 if (data->registry_data.didt_support) { 167 data->registry_data.didt_mode = 6; 168 data->registry_data.sq_ramping_support = 1; 169 data->registry_data.db_ramping_support = 0; 170 data->registry_data.td_ramping_support = 0; 171 data->registry_data.tcp_ramping_support = 0; 172 data->registry_data.dbr_ramping_support = 0; 173 data->registry_data.edc_didt_support = 1; 174 data->registry_data.gc_didt_support = 0; 175 data->registry_data.psm_didt_support = 0; 176 } 177 178 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; 179 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 180 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 181 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 182 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 183 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 184 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 185 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 186 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 187 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 188 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 189 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 190 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 191 192 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; 193 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; 194 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; 195 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; 196 } 197 198 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) 199 { 200 struct vega10_hwmgr *data = hwmgr->backend; 201 struct phm_ppt_v2_information *table_info = 202 (struct phm_ppt_v2_information *)hwmgr->pptable; 203 struct amdgpu_device *adev = hwmgr->adev; 204 205 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 206 PHM_PlatformCaps_SclkDeepSleep); 207 208 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 209 PHM_PlatformCaps_DynamicPatchPowerState); 210 211 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) 212 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 213 PHM_PlatformCaps_ControlVDDCI); 214 215 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 216 PHM_PlatformCaps_EnableSMU7ThermalManagement); 217 218 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 219 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 220 PHM_PlatformCaps_UVDPowerGating); 221 222 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 223 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 224 PHM_PlatformCaps_VCEPowerGating); 225 226 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 227 PHM_PlatformCaps_UnTabledHardwareInterface); 228 229 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 230 PHM_PlatformCaps_FanSpeedInTableIsRPM); 231 232 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 233 PHM_PlatformCaps_ODFuzzyFanControlSupport); 234 235 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 236 PHM_PlatformCaps_DynamicPowerManagement); 237 238 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 239 PHM_PlatformCaps_SMC); 240 241 /* power tune caps */ 242 /* assume disabled */ 243 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 244 PHM_PlatformCaps_PowerContainment); 245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 246 PHM_PlatformCaps_DiDtSupport); 247 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 248 PHM_PlatformCaps_SQRamping); 249 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 250 PHM_PlatformCaps_DBRamping); 251 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 252 PHM_PlatformCaps_TDRamping); 253 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 254 PHM_PlatformCaps_TCPRamping); 255 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 256 PHM_PlatformCaps_DBRRamping); 257 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 258 PHM_PlatformCaps_DiDtEDCEnable); 259 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 260 PHM_PlatformCaps_GCEDC); 261 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 262 PHM_PlatformCaps_PSM); 263 264 if (data->registry_data.didt_support) { 265 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); 266 if (data->registry_data.sq_ramping_support) 267 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); 268 if (data->registry_data.db_ramping_support) 269 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); 270 if (data->registry_data.td_ramping_support) 271 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); 272 if (data->registry_data.tcp_ramping_support) 273 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); 274 if (data->registry_data.dbr_ramping_support) 275 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); 276 if (data->registry_data.edc_didt_support) 277 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); 278 if (data->registry_data.gc_didt_support) 279 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); 280 if (data->registry_data.psm_didt_support) 281 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); 282 } 283 284 if (data->registry_data.power_containment_support) 285 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 286 PHM_PlatformCaps_PowerContainment); 287 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 288 PHM_PlatformCaps_CAC); 289 290 if (table_info->tdp_table->usClockStretchAmount && 291 data->registry_data.clock_stretcher_support) 292 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 293 PHM_PlatformCaps_ClockStretcher); 294 295 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 296 PHM_PlatformCaps_RegulatorHot); 297 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 298 PHM_PlatformCaps_AutomaticDCTransition); 299 300 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 301 PHM_PlatformCaps_UVDDPM); 302 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 303 PHM_PlatformCaps_VCEDPM); 304 305 return 0; 306 } 307 308 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 309 { 310 struct vega10_hwmgr *data = hwmgr->backend; 311 struct phm_ppt_v2_information *table_info = 312 (struct phm_ppt_v2_information *)(hwmgr->pptable); 313 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 314 struct vega10_odn_vddc_lookup_table *od_lookup_table; 315 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 316 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; 317 struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; 318 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 319 uint32_t i; 320 int result; 321 322 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 323 if (!result) { 324 data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; 325 data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; 326 } 327 328 od_lookup_table = &odn_table->vddc_lookup_table; 329 vddc_lookup_table = table_info->vddc_lookup_table; 330 331 for (i = 0; i < vddc_lookup_table->count; i++) 332 od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; 333 334 od_lookup_table->count = vddc_lookup_table->count; 335 336 dep_table[0] = table_info->vdd_dep_on_sclk; 337 dep_table[1] = table_info->vdd_dep_on_mclk; 338 dep_table[2] = table_info->vdd_dep_on_socclk; 339 od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; 340 od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; 341 od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; 342 343 for (i = 0; i < 3; i++) 344 smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); 345 346 if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) 347 odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; 348 if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) 349 odn_table->min_vddc = dep_table[0]->entries[0].vddc; 350 351 i = od_table[2]->count - 1; 352 od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? 353 hwmgr->platform_descriptor.overdriveLimit.memoryClock : 354 od_table[2]->entries[i].clk; 355 od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? 356 odn_table->max_vddc : 357 od_table[2]->entries[i].vddc; 358 359 return 0; 360 } 361 362 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) 363 { 364 struct vega10_hwmgr *data = hwmgr->backend; 365 int i; 366 uint32_t sub_vendor_id, hw_revision; 367 uint32_t top32, bottom32; 368 struct amdgpu_device *adev = hwmgr->adev; 369 370 vega10_initialize_power_tune_defaults(hwmgr); 371 372 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 373 data->smu_features[i].smu_feature_id = 0xffff; 374 data->smu_features[i].smu_feature_bitmap = 1 << i; 375 data->smu_features[i].enabled = false; 376 data->smu_features[i].supported = false; 377 } 378 379 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = 380 FEATURE_DPM_PREFETCHER_BIT; 381 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = 382 FEATURE_DPM_GFXCLK_BIT; 383 data->smu_features[GNLD_DPM_UCLK].smu_feature_id = 384 FEATURE_DPM_UCLK_BIT; 385 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = 386 FEATURE_DPM_SOCCLK_BIT; 387 data->smu_features[GNLD_DPM_UVD].smu_feature_id = 388 FEATURE_DPM_UVD_BIT; 389 data->smu_features[GNLD_DPM_VCE].smu_feature_id = 390 FEATURE_DPM_VCE_BIT; 391 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = 392 FEATURE_DPM_MP0CLK_BIT; 393 data->smu_features[GNLD_DPM_LINK].smu_feature_id = 394 FEATURE_DPM_LINK_BIT; 395 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = 396 FEATURE_DPM_DCEFCLK_BIT; 397 data->smu_features[GNLD_ULV].smu_feature_id = 398 FEATURE_ULV_BIT; 399 data->smu_features[GNLD_AVFS].smu_feature_id = 400 FEATURE_AVFS_BIT; 401 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = 402 FEATURE_DS_GFXCLK_BIT; 403 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = 404 FEATURE_DS_SOCCLK_BIT; 405 data->smu_features[GNLD_DS_LCLK].smu_feature_id = 406 FEATURE_DS_LCLK_BIT; 407 data->smu_features[GNLD_PPT].smu_feature_id = 408 FEATURE_PPT_BIT; 409 data->smu_features[GNLD_TDC].smu_feature_id = 410 FEATURE_TDC_BIT; 411 data->smu_features[GNLD_THERMAL].smu_feature_id = 412 FEATURE_THERMAL_BIT; 413 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = 414 FEATURE_GFX_PER_CU_CG_BIT; 415 data->smu_features[GNLD_RM].smu_feature_id = 416 FEATURE_RM_BIT; 417 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = 418 FEATURE_DS_DCEFCLK_BIT; 419 data->smu_features[GNLD_ACDC].smu_feature_id = 420 FEATURE_ACDC_BIT; 421 data->smu_features[GNLD_VR0HOT].smu_feature_id = 422 FEATURE_VR0HOT_BIT; 423 data->smu_features[GNLD_VR1HOT].smu_feature_id = 424 FEATURE_VR1HOT_BIT; 425 data->smu_features[GNLD_FW_CTF].smu_feature_id = 426 FEATURE_FW_CTF_BIT; 427 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = 428 FEATURE_LED_DISPLAY_BIT; 429 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = 430 FEATURE_FAN_CONTROL_BIT; 431 data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; 432 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; 433 data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT; 434 435 if (!data->registry_data.prefetcher_dpm_key_disabled) 436 data->smu_features[GNLD_DPM_PREFETCHER].supported = true; 437 438 if (!data->registry_data.sclk_dpm_key_disabled) 439 data->smu_features[GNLD_DPM_GFXCLK].supported = true; 440 441 if (!data->registry_data.mclk_dpm_key_disabled) 442 data->smu_features[GNLD_DPM_UCLK].supported = true; 443 444 if (!data->registry_data.socclk_dpm_key_disabled) 445 data->smu_features[GNLD_DPM_SOCCLK].supported = true; 446 447 if (PP_CAP(PHM_PlatformCaps_UVDDPM)) 448 data->smu_features[GNLD_DPM_UVD].supported = true; 449 450 if (PP_CAP(PHM_PlatformCaps_VCEDPM)) 451 data->smu_features[GNLD_DPM_VCE].supported = true; 452 453 if (!data->registry_data.pcie_dpm_key_disabled) 454 data->smu_features[GNLD_DPM_LINK].supported = true; 455 456 if (!data->registry_data.dcefclk_dpm_key_disabled) 457 data->smu_features[GNLD_DPM_DCEFCLK].supported = true; 458 459 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && 460 data->registry_data.sclk_deep_sleep_support) { 461 data->smu_features[GNLD_DS_GFXCLK].supported = true; 462 data->smu_features[GNLD_DS_SOCCLK].supported = true; 463 data->smu_features[GNLD_DS_LCLK].supported = true; 464 data->smu_features[GNLD_DS_DCEFCLK].supported = true; 465 } 466 467 if (data->registry_data.enable_pkg_pwr_tracking_feature) 468 data->smu_features[GNLD_PPT].supported = true; 469 470 if (data->registry_data.enable_tdc_limit_feature) 471 data->smu_features[GNLD_TDC].supported = true; 472 473 if (data->registry_data.thermal_support) 474 data->smu_features[GNLD_THERMAL].supported = true; 475 476 if (data->registry_data.fan_control_support) 477 data->smu_features[GNLD_FAN_CONTROL].supported = true; 478 479 if (data->registry_data.fw_ctf_enabled) 480 data->smu_features[GNLD_FW_CTF].supported = true; 481 482 if (data->registry_data.avfs_support) 483 data->smu_features[GNLD_AVFS].supported = true; 484 485 if (data->registry_data.led_dpm_enabled) 486 data->smu_features[GNLD_LED_DISPLAY].supported = true; 487 488 if (data->registry_data.vr1hot_enabled) 489 data->smu_features[GNLD_VR1HOT].supported = true; 490 491 if (data->registry_data.vr0hot_enabled) 492 data->smu_features[GNLD_VR0HOT].supported = true; 493 494 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion); 495 hwmgr->smu_version = smum_get_argument(hwmgr); 496 /* ACG firmware has major version 5 */ 497 if ((hwmgr->smu_version & 0xff000000) == 0x5000000) 498 data->smu_features[GNLD_ACG].supported = true; 499 if (data->registry_data.didt_support) 500 data->smu_features[GNLD_DIDT].supported = true; 501 502 hw_revision = adev->pdev->revision; 503 sub_vendor_id = adev->pdev->subsystem_vendor; 504 505 if ((hwmgr->chip_id == 0x6862 || 506 hwmgr->chip_id == 0x6861 || 507 hwmgr->chip_id == 0x6868) && 508 (hw_revision == 0) && 509 (sub_vendor_id != 0x1002)) 510 data->smu_features[GNLD_PCC_LIMIT].supported = true; 511 512 /* Get the SN to turn into a Unique ID */ 513 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32); 514 top32 = smum_get_argument(hwmgr); 515 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32); 516 bottom32 = smum_get_argument(hwmgr); 517 518 adev->unique_id = ((uint64_t)bottom32 << 32) | top32; 519 } 520 521 #ifdef PPLIB_VEGA10_EVV_SUPPORT 522 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, 523 phm_ppt_v1_voltage_lookup_table *lookup_table, 524 uint16_t virtual_voltage_id, int32_t *socclk) 525 { 526 uint8_t entry_id; 527 uint8_t voltage_id; 528 struct phm_ppt_v2_information *table_info = 529 (struct phm_ppt_v2_information *)(hwmgr->pptable); 530 531 PP_ASSERT_WITH_CODE(lookup_table->count != 0, 532 "Lookup table is empty", 533 return -EINVAL); 534 535 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ 536 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { 537 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; 538 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) 539 break; 540 } 541 542 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, 543 "Can't find requested voltage id in vdd_dep_on_socclk table!", 544 return -EINVAL); 545 546 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; 547 548 return 0; 549 } 550 551 #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 552 /** 553 * Get Leakage VDDC based on leakage ID. 554 * 555 * @param hwmgr the address of the powerplay hardware manager. 556 * @return always 0. 557 */ 558 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) 559 { 560 struct vega10_hwmgr *data = hwmgr->backend; 561 uint16_t vv_id; 562 uint32_t vddc = 0; 563 uint16_t i, j; 564 uint32_t sclk = 0; 565 struct phm_ppt_v2_information *table_info = 566 (struct phm_ppt_v2_information *)hwmgr->pptable; 567 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = 568 table_info->vdd_dep_on_socclk; 569 int result; 570 571 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { 572 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 573 574 if (!vega10_get_socclk_for_voltage_evv(hwmgr, 575 table_info->vddc_lookup_table, vv_id, &sclk)) { 576 if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { 577 for (j = 1; j < socclk_table->count; j++) { 578 if (socclk_table->entries[j].clk == sclk && 579 socclk_table->entries[j].cks_enable == 0) { 580 sclk += 5000; 581 break; 582 } 583 } 584 } 585 586 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, 587 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), 588 "Error retrieving EVV voltage value!", 589 continue); 590 591 592 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ 593 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), 594 "Invalid VDDC value", result = -EINVAL;); 595 596 /* the voltage should not be zero nor equal to leakage ID */ 597 if (vddc != 0 && vddc != vv_id) { 598 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); 599 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 600 data->vddc_leakage.count++; 601 } 602 } 603 } 604 605 return 0; 606 } 607 608 /** 609 * Change virtual leakage voltage to actual value. 610 * 611 * @param hwmgr the address of the powerplay hardware manager. 612 * @param pointer to changing voltage 613 * @param pointer to leakage table 614 */ 615 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, 616 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) 617 { 618 uint32_t index; 619 620 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 621 for (index = 0; index < leakage_table->count; index++) { 622 /* if this voltage matches a leakage voltage ID */ 623 /* patch with actual leakage voltage */ 624 if (leakage_table->leakage_id[index] == *voltage) { 625 *voltage = leakage_table->actual_voltage[index]; 626 break; 627 } 628 } 629 630 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 631 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 632 } 633 634 /** 635 * Patch voltage lookup table by EVV leakages. 636 * 637 * @param hwmgr the address of the powerplay hardware manager. 638 * @param pointer to voltage lookup table 639 * @param pointer to leakage table 640 * @return always 0 641 */ 642 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 643 phm_ppt_v1_voltage_lookup_table *lookup_table, 644 struct vega10_leakage_voltage *leakage_table) 645 { 646 uint32_t i; 647 648 for (i = 0; i < lookup_table->count; i++) 649 vega10_patch_with_vdd_leakage(hwmgr, 650 &lookup_table->entries[i].us_vdd, leakage_table); 651 652 return 0; 653 } 654 655 static int vega10_patch_clock_voltage_limits_with_vddc_leakage( 656 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, 657 uint16_t *vddc) 658 { 659 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 660 661 return 0; 662 } 663 #endif 664 665 static int vega10_patch_voltage_dependency_tables_with_lookup_table( 666 struct pp_hwmgr *hwmgr) 667 { 668 uint8_t entry_id, voltage_id; 669 unsigned i; 670 struct phm_ppt_v2_information *table_info = 671 (struct phm_ppt_v2_information *)(hwmgr->pptable); 672 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 673 table_info->mm_dep_table; 674 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 675 table_info->vdd_dep_on_mclk; 676 677 for (i = 0; i < 6; i++) { 678 struct phm_ppt_v1_clock_voltage_dependency_table *vdt; 679 switch (i) { 680 case 0: vdt = table_info->vdd_dep_on_socclk; break; 681 case 1: vdt = table_info->vdd_dep_on_sclk; break; 682 case 2: vdt = table_info->vdd_dep_on_dcefclk; break; 683 case 3: vdt = table_info->vdd_dep_on_pixclk; break; 684 case 4: vdt = table_info->vdd_dep_on_dispclk; break; 685 case 5: vdt = table_info->vdd_dep_on_phyclk; break; 686 } 687 688 for (entry_id = 0; entry_id < vdt->count; entry_id++) { 689 voltage_id = vdt->entries[entry_id].vddInd; 690 vdt->entries[entry_id].vddc = 691 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 692 } 693 } 694 695 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 696 voltage_id = mm_table->entries[entry_id].vddcInd; 697 mm_table->entries[entry_id].vddc = 698 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 699 } 700 701 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 702 voltage_id = mclk_table->entries[entry_id].vddInd; 703 mclk_table->entries[entry_id].vddc = 704 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 705 voltage_id = mclk_table->entries[entry_id].vddciInd; 706 mclk_table->entries[entry_id].vddci = 707 table_info->vddci_lookup_table->entries[voltage_id].us_vdd; 708 voltage_id = mclk_table->entries[entry_id].mvddInd; 709 mclk_table->entries[entry_id].mvdd = 710 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; 711 } 712 713 714 return 0; 715 716 } 717 718 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, 719 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 720 { 721 uint32_t table_size, i, j; 722 723 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, 724 "Lookup table is empty", return -EINVAL); 725 726 table_size = lookup_table->count; 727 728 /* Sorting voltages */ 729 for (i = 0; i < table_size - 1; i++) { 730 for (j = i + 1; j > 0; j--) { 731 if (lookup_table->entries[j].us_vdd < 732 lookup_table->entries[j - 1].us_vdd) { 733 swap(lookup_table->entries[j - 1], 734 lookup_table->entries[j]); 735 } 736 } 737 } 738 739 return 0; 740 } 741 742 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) 743 { 744 int result = 0; 745 int tmp_result; 746 struct phm_ppt_v2_information *table_info = 747 (struct phm_ppt_v2_information *)(hwmgr->pptable); 748 #ifdef PPLIB_VEGA10_EVV_SUPPORT 749 struct vega10_hwmgr *data = hwmgr->backend; 750 751 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, 752 table_info->vddc_lookup_table, &(data->vddc_leakage)); 753 if (tmp_result) 754 result = tmp_result; 755 756 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 757 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 758 if (tmp_result) 759 result = tmp_result; 760 #endif 761 762 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 763 if (tmp_result) 764 result = tmp_result; 765 766 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 767 if (tmp_result) 768 result = tmp_result; 769 770 return result; 771 } 772 773 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) 774 { 775 struct phm_ppt_v2_information *table_info = 776 (struct phm_ppt_v2_information *)(hwmgr->pptable); 777 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 778 table_info->vdd_dep_on_socclk; 779 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 780 table_info->vdd_dep_on_mclk; 781 782 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, 783 "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL); 784 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 785 "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL); 786 787 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, 788 "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL); 789 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 790 "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL); 791 792 table_info->max_clock_voltage_on_ac.sclk = 793 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 794 table_info->max_clock_voltage_on_ac.mclk = 795 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 796 table_info->max_clock_voltage_on_ac.vddc = 797 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 798 table_info->max_clock_voltage_on_ac.vddci = 799 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 800 801 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 802 table_info->max_clock_voltage_on_ac.sclk; 803 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 804 table_info->max_clock_voltage_on_ac.mclk; 805 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 806 table_info->max_clock_voltage_on_ac.vddc; 807 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = 808 table_info->max_clock_voltage_on_ac.vddci; 809 810 return 0; 811 } 812 813 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 814 { 815 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 816 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 817 818 kfree(hwmgr->backend); 819 hwmgr->backend = NULL; 820 821 return 0; 822 } 823 824 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 825 { 826 int result = 0; 827 struct vega10_hwmgr *data; 828 uint32_t config_telemetry = 0; 829 struct pp_atomfwctrl_voltage_table vol_table; 830 struct amdgpu_device *adev = hwmgr->adev; 831 832 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); 833 if (data == NULL) 834 return -ENOMEM; 835 836 hwmgr->backend = data; 837 838 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; 839 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 840 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 841 842 vega10_set_default_registry_data(hwmgr); 843 data->disable_dpm_mask = 0xff; 844 845 /* need to set voltage control types before EVV patching */ 846 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; 847 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; 848 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; 849 850 /* VDDCR_SOC */ 851 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 852 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { 853 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 854 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, 855 &vol_table)) { 856 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | 857 (vol_table.telemetry_offset & 0xff); 858 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 859 } 860 } else { 861 kfree(hwmgr->backend); 862 hwmgr->backend = NULL; 863 PP_ASSERT_WITH_CODE(false, 864 "VDDCR_SOC is not SVID2!", 865 return -1); 866 } 867 868 /* MVDDC */ 869 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 870 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { 871 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 872 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, 873 &vol_table)) { 874 config_telemetry |= 875 ((vol_table.telemetry_slope << 24) & 0xff000000) | 876 ((vol_table.telemetry_offset << 16) & 0xff0000); 877 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 878 } 879 } 880 881 /* VDDCI_MEM */ 882 if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { 883 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 884 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 885 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; 886 } 887 888 data->config_telemetry = config_telemetry; 889 890 vega10_set_features_platform_caps(hwmgr); 891 892 vega10_init_dpm_defaults(hwmgr); 893 894 #ifdef PPLIB_VEGA10_EVV_SUPPORT 895 /* Get leakage voltage based on leakage ID. */ 896 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), 897 "Get EVV Voltage Failed. Abort Driver loading!", 898 return -1); 899 #endif 900 901 /* Patch our voltage dependency table with actual leakage voltage 902 * We need to perform leakage translation before it's used by other functions 903 */ 904 vega10_complete_dependency_tables(hwmgr); 905 906 /* Parse pptable data read from VBIOS */ 907 vega10_set_private_data_based_on_pptable(hwmgr); 908 909 data->is_tlu_enabled = false; 910 911 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 912 VEGA10_MAX_HARDWARE_POWERLEVELS; 913 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 914 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 915 916 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 917 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 918 hwmgr->platform_descriptor.clockStep.engineClock = 500; 919 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 920 921 data->total_active_cus = adev->gfx.cu_info.number; 922 if (!hwmgr->not_vf) 923 return result; 924 925 /* Setup default Overdrive Fan control settings */ 926 data->odn_fan_table.target_fan_speed = 927 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; 928 data->odn_fan_table.target_temperature = 929 hwmgr->thermal_controller. 930 advanceFanControlParameters.ucTargetTemperature; 931 data->odn_fan_table.min_performance_clock = 932 hwmgr->thermal_controller.advanceFanControlParameters. 933 ulMinFanSCLKAcousticLimit; 934 data->odn_fan_table.min_fan_limit = 935 hwmgr->thermal_controller. 936 advanceFanControlParameters.usFanPWMMinLimit * 937 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; 938 939 data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) & 940 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> 941 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; 942 PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number), 943 "Mem Channel Index Exceeded maximum!", 944 return -EINVAL); 945 946 return result; 947 } 948 949 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) 950 { 951 struct vega10_hwmgr *data = hwmgr->backend; 952 953 data->low_sclk_interrupt_threshold = 0; 954 955 return 0; 956 } 957 958 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) 959 { 960 struct vega10_hwmgr *data = hwmgr->backend; 961 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 962 963 struct pp_atomfwctrl_voltage_table table; 964 uint8_t i, j; 965 uint32_t mask = 0; 966 uint32_t tmp; 967 int32_t ret = 0; 968 969 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, 970 VOLTAGE_OBJ_GPIO_LUT, &table); 971 972 if (!ret) { 973 tmp = table.mask_low; 974 for (i = 0, j = 0; i < 32; i++) { 975 if (tmp & 1) { 976 mask |= (uint32_t)(i << (8 * j)); 977 if (++j >= 3) 978 break; 979 } 980 tmp >>= 1; 981 } 982 } 983 984 pp_table->LedPin0 = (uint8_t)(mask & 0xff); 985 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); 986 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); 987 return 0; 988 } 989 990 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) 991 { 992 if (!hwmgr->not_vf) 993 return 0; 994 995 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), 996 "Failed to init sclk threshold!", 997 return -EINVAL); 998 999 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), 1000 "Failed to set up led dpm config!", 1001 return -EINVAL); 1002 1003 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0); 1004 1005 return 0; 1006 } 1007 1008 /** 1009 * Remove repeated voltage values and create table with unique values. 1010 * 1011 * @param hwmgr the address of the powerplay hardware manager. 1012 * @param vol_table the pointer to changing voltage table 1013 * @return 0 in success 1014 */ 1015 1016 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, 1017 struct pp_atomfwctrl_voltage_table *vol_table) 1018 { 1019 uint32_t i, j; 1020 uint16_t vvalue; 1021 bool found = false; 1022 struct pp_atomfwctrl_voltage_table *table; 1023 1024 PP_ASSERT_WITH_CODE(vol_table, 1025 "Voltage Table empty.", return -EINVAL); 1026 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), 1027 GFP_KERNEL); 1028 1029 if (!table) 1030 return -ENOMEM; 1031 1032 table->mask_low = vol_table->mask_low; 1033 table->phase_delay = vol_table->phase_delay; 1034 1035 for (i = 0; i < vol_table->count; i++) { 1036 vvalue = vol_table->entries[i].value; 1037 found = false; 1038 1039 for (j = 0; j < table->count; j++) { 1040 if (vvalue == table->entries[j].value) { 1041 found = true; 1042 break; 1043 } 1044 } 1045 1046 if (!found) { 1047 table->entries[table->count].value = vvalue; 1048 table->entries[table->count].smio_low = 1049 vol_table->entries[i].smio_low; 1050 table->count++; 1051 } 1052 } 1053 1054 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); 1055 kfree(table); 1056 1057 return 0; 1058 } 1059 1060 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, 1061 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1062 struct pp_atomfwctrl_voltage_table *vol_table) 1063 { 1064 int i; 1065 1066 PP_ASSERT_WITH_CODE(dep_table->count, 1067 "Voltage Dependency Table empty.", 1068 return -EINVAL); 1069 1070 vol_table->mask_low = 0; 1071 vol_table->phase_delay = 0; 1072 vol_table->count = dep_table->count; 1073 1074 for (i = 0; i < vol_table->count; i++) { 1075 vol_table->entries[i].value = dep_table->entries[i].mvdd; 1076 vol_table->entries[i].smio_low = 0; 1077 } 1078 1079 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, 1080 vol_table), 1081 "Failed to trim MVDD Table!", 1082 return -1); 1083 1084 return 0; 1085 } 1086 1087 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, 1088 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1089 struct pp_atomfwctrl_voltage_table *vol_table) 1090 { 1091 uint32_t i; 1092 1093 PP_ASSERT_WITH_CODE(dep_table->count, 1094 "Voltage Dependency Table empty.", 1095 return -EINVAL); 1096 1097 vol_table->mask_low = 0; 1098 vol_table->phase_delay = 0; 1099 vol_table->count = dep_table->count; 1100 1101 for (i = 0; i < dep_table->count; i++) { 1102 vol_table->entries[i].value = dep_table->entries[i].vddci; 1103 vol_table->entries[i].smio_low = 0; 1104 } 1105 1106 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), 1107 "Failed to trim VDDCI table.", 1108 return -1); 1109 1110 return 0; 1111 } 1112 1113 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, 1114 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1115 struct pp_atomfwctrl_voltage_table *vol_table) 1116 { 1117 int i; 1118 1119 PP_ASSERT_WITH_CODE(dep_table->count, 1120 "Voltage Dependency Table empty.", 1121 return -EINVAL); 1122 1123 vol_table->mask_low = 0; 1124 vol_table->phase_delay = 0; 1125 vol_table->count = dep_table->count; 1126 1127 for (i = 0; i < vol_table->count; i++) { 1128 vol_table->entries[i].value = dep_table->entries[i].vddc; 1129 vol_table->entries[i].smio_low = 0; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* ---- Voltage Tables ---- 1136 * If the voltage table would be bigger than 1137 * what will fit into the state table on 1138 * the SMC keep only the higher entries. 1139 */ 1140 static void vega10_trim_voltage_table_to_fit_state_table( 1141 struct pp_hwmgr *hwmgr, 1142 uint32_t max_vol_steps, 1143 struct pp_atomfwctrl_voltage_table *vol_table) 1144 { 1145 unsigned int i, diff; 1146 1147 if (vol_table->count <= max_vol_steps) 1148 return; 1149 1150 diff = vol_table->count - max_vol_steps; 1151 1152 for (i = 0; i < max_vol_steps; i++) 1153 vol_table->entries[i] = vol_table->entries[i + diff]; 1154 1155 vol_table->count = max_vol_steps; 1156 } 1157 1158 /** 1159 * Create Voltage Tables. 1160 * 1161 * @param hwmgr the address of the powerplay hardware manager. 1162 * @return always 0 1163 */ 1164 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) 1165 { 1166 struct vega10_hwmgr *data = hwmgr->backend; 1167 struct phm_ppt_v2_information *table_info = 1168 (struct phm_ppt_v2_information *)hwmgr->pptable; 1169 int result; 1170 1171 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1172 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1173 result = vega10_get_mvdd_voltage_table(hwmgr, 1174 table_info->vdd_dep_on_mclk, 1175 &(data->mvdd_voltage_table)); 1176 PP_ASSERT_WITH_CODE(!result, 1177 "Failed to retrieve MVDDC table!", 1178 return result); 1179 } 1180 1181 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1182 result = vega10_get_vddci_voltage_table(hwmgr, 1183 table_info->vdd_dep_on_mclk, 1184 &(data->vddci_voltage_table)); 1185 PP_ASSERT_WITH_CODE(!result, 1186 "Failed to retrieve VDDCI_MEM table!", 1187 return result); 1188 } 1189 1190 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1191 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1192 result = vega10_get_vdd_voltage_table(hwmgr, 1193 table_info->vdd_dep_on_sclk, 1194 &(data->vddc_voltage_table)); 1195 PP_ASSERT_WITH_CODE(!result, 1196 "Failed to retrieve VDDCR_SOC table!", 1197 return result); 1198 } 1199 1200 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, 1201 "Too many voltage values for VDDC. Trimming to fit state table.", 1202 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1203 16, &(data->vddc_voltage_table))); 1204 1205 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, 1206 "Too many voltage values for VDDCI. Trimming to fit state table.", 1207 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1208 16, &(data->vddci_voltage_table))); 1209 1210 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, 1211 "Too many voltage values for MVDD. Trimming to fit state table.", 1212 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1213 16, &(data->mvdd_voltage_table))); 1214 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * @fn vega10_init_dpm_state 1221 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. 1222 * 1223 * @param dpm_state - the address of the DPM Table to initiailize. 1224 * @return None. 1225 */ 1226 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) 1227 { 1228 dpm_state->soft_min_level = 0xff; 1229 dpm_state->soft_max_level = 0xff; 1230 dpm_state->hard_min_level = 0xff; 1231 dpm_state->hard_max_level = 0xff; 1232 } 1233 1234 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, 1235 struct vega10_single_dpm_table *dpm_table, 1236 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) 1237 { 1238 int i; 1239 1240 dpm_table->count = 0; 1241 1242 for (i = 0; i < dep_table->count; i++) { 1243 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= 1244 dep_table->entries[i].clk) { 1245 dpm_table->dpm_levels[dpm_table->count].value = 1246 dep_table->entries[i].clk; 1247 dpm_table->dpm_levels[dpm_table->count].enabled = true; 1248 dpm_table->count++; 1249 } 1250 } 1251 } 1252 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 1253 { 1254 struct vega10_hwmgr *data = hwmgr->backend; 1255 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); 1256 struct phm_ppt_v2_information *table_info = 1257 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1258 struct phm_ppt_v1_pcie_table *bios_pcie_table = 1259 table_info->pcie_table; 1260 uint32_t i; 1261 1262 PP_ASSERT_WITH_CODE(bios_pcie_table->count, 1263 "Incorrect number of PCIE States from VBIOS!", 1264 return -1); 1265 1266 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1267 if (data->registry_data.pcieSpeedOverride) 1268 pcie_table->pcie_gen[i] = 1269 data->registry_data.pcieSpeedOverride; 1270 else 1271 pcie_table->pcie_gen[i] = 1272 bios_pcie_table->entries[i].gen_speed; 1273 1274 if (data->registry_data.pcieLaneOverride) 1275 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1276 data->registry_data.pcieLaneOverride); 1277 else 1278 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1279 bios_pcie_table->entries[i].lane_width); 1280 if (data->registry_data.pcieClockOverride) 1281 pcie_table->lclk[i] = 1282 data->registry_data.pcieClockOverride; 1283 else 1284 pcie_table->lclk[i] = 1285 bios_pcie_table->entries[i].pcie_sclk; 1286 } 1287 1288 pcie_table->count = NUM_LINK_LEVELS; 1289 1290 return 0; 1291 } 1292 1293 /* 1294 * This function is to initialize all DPM state tables 1295 * for SMU based on the dependency table. 1296 * Dynamic state patching function will then trim these 1297 * state tables to the allowed range based 1298 * on the power policy or external client requests, 1299 * such as UVD request, etc. 1300 */ 1301 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1302 { 1303 struct vega10_hwmgr *data = hwmgr->backend; 1304 struct phm_ppt_v2_information *table_info = 1305 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1306 struct vega10_single_dpm_table *dpm_table; 1307 uint32_t i; 1308 1309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = 1310 table_info->vdd_dep_on_socclk; 1311 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = 1312 table_info->vdd_dep_on_sclk; 1313 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 1314 table_info->vdd_dep_on_mclk; 1315 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = 1316 table_info->mm_dep_table; 1317 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = 1318 table_info->vdd_dep_on_dcefclk; 1319 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = 1320 table_info->vdd_dep_on_pixclk; 1321 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = 1322 table_info->vdd_dep_on_dispclk; 1323 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = 1324 table_info->vdd_dep_on_phyclk; 1325 1326 PP_ASSERT_WITH_CODE(dep_soc_table, 1327 "SOCCLK dependency table is missing. This table is mandatory", 1328 return -EINVAL); 1329 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, 1330 "SOCCLK dependency table is empty. This table is mandatory", 1331 return -EINVAL); 1332 1333 PP_ASSERT_WITH_CODE(dep_gfx_table, 1334 "GFXCLK dependency table is missing. This table is mandatory", 1335 return -EINVAL); 1336 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, 1337 "GFXCLK dependency table is empty. This table is mandatory", 1338 return -EINVAL); 1339 1340 PP_ASSERT_WITH_CODE(dep_mclk_table, 1341 "MCLK dependency table is missing. This table is mandatory", 1342 return -EINVAL); 1343 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 1344 "MCLK dependency table has to have is missing. This table is mandatory", 1345 return -EINVAL); 1346 1347 /* Initialize Sclk DPM table based on allow Sclk values */ 1348 dpm_table = &(data->dpm_table.soc_table); 1349 vega10_setup_default_single_dpm_table(hwmgr, 1350 dpm_table, 1351 dep_soc_table); 1352 1353 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1354 1355 dpm_table = &(data->dpm_table.gfx_table); 1356 vega10_setup_default_single_dpm_table(hwmgr, 1357 dpm_table, 1358 dep_gfx_table); 1359 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 1360 hwmgr->platform_descriptor.overdriveLimit.engineClock = 1361 dpm_table->dpm_levels[dpm_table->count-1].value; 1362 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1363 1364 /* Initialize Mclk DPM table based on allow Mclk values */ 1365 data->dpm_table.mem_table.count = 0; 1366 dpm_table = &(data->dpm_table.mem_table); 1367 vega10_setup_default_single_dpm_table(hwmgr, 1368 dpm_table, 1369 dep_mclk_table); 1370 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 1371 hwmgr->platform_descriptor.overdriveLimit.memoryClock = 1372 dpm_table->dpm_levels[dpm_table->count-1].value; 1373 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1374 1375 data->dpm_table.eclk_table.count = 0; 1376 dpm_table = &(data->dpm_table.eclk_table); 1377 for (i = 0; i < dep_mm_table->count; i++) { 1378 if (i == 0 || dpm_table->dpm_levels 1379 [dpm_table->count - 1].value <= 1380 dep_mm_table->entries[i].eclk) { 1381 dpm_table->dpm_levels[dpm_table->count].value = 1382 dep_mm_table->entries[i].eclk; 1383 dpm_table->dpm_levels[dpm_table->count].enabled = 1384 (i == 0) ? true : false; 1385 dpm_table->count++; 1386 } 1387 } 1388 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1389 1390 data->dpm_table.vclk_table.count = 0; 1391 data->dpm_table.dclk_table.count = 0; 1392 dpm_table = &(data->dpm_table.vclk_table); 1393 for (i = 0; i < dep_mm_table->count; i++) { 1394 if (i == 0 || dpm_table->dpm_levels 1395 [dpm_table->count - 1].value <= 1396 dep_mm_table->entries[i].vclk) { 1397 dpm_table->dpm_levels[dpm_table->count].value = 1398 dep_mm_table->entries[i].vclk; 1399 dpm_table->dpm_levels[dpm_table->count].enabled = 1400 (i == 0) ? true : false; 1401 dpm_table->count++; 1402 } 1403 } 1404 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1405 1406 dpm_table = &(data->dpm_table.dclk_table); 1407 for (i = 0; i < dep_mm_table->count; i++) { 1408 if (i == 0 || dpm_table->dpm_levels 1409 [dpm_table->count - 1].value <= 1410 dep_mm_table->entries[i].dclk) { 1411 dpm_table->dpm_levels[dpm_table->count].value = 1412 dep_mm_table->entries[i].dclk; 1413 dpm_table->dpm_levels[dpm_table->count].enabled = 1414 (i == 0) ? true : false; 1415 dpm_table->count++; 1416 } 1417 } 1418 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1419 1420 /* Assume there is no headless Vega10 for now */ 1421 dpm_table = &(data->dpm_table.dcef_table); 1422 vega10_setup_default_single_dpm_table(hwmgr, 1423 dpm_table, 1424 dep_dcef_table); 1425 1426 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1427 1428 dpm_table = &(data->dpm_table.pixel_table); 1429 vega10_setup_default_single_dpm_table(hwmgr, 1430 dpm_table, 1431 dep_pix_table); 1432 1433 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1434 1435 dpm_table = &(data->dpm_table.display_table); 1436 vega10_setup_default_single_dpm_table(hwmgr, 1437 dpm_table, 1438 dep_disp_table); 1439 1440 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1441 1442 dpm_table = &(data->dpm_table.phy_table); 1443 vega10_setup_default_single_dpm_table(hwmgr, 1444 dpm_table, 1445 dep_phy_table); 1446 1447 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1448 1449 vega10_setup_default_pcie_table(hwmgr); 1450 1451 /* Zero out the saved copy of the CUSTOM profile 1452 * This will be checked when trying to set the profile 1453 * and will require that new values be passed in 1454 */ 1455 data->custom_profile_mode[0] = 0; 1456 data->custom_profile_mode[1] = 0; 1457 data->custom_profile_mode[2] = 0; 1458 data->custom_profile_mode[3] = 0; 1459 1460 /* save a copy of the default DPM table */ 1461 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1462 sizeof(struct vega10_dpm_table)); 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * @fn vega10_populate_ulv_state 1469 * @brief Function to provide parameters for Utral Low Voltage state to SMC. 1470 * 1471 * @param hwmgr - the address of the hardware manager. 1472 * @return Always 0. 1473 */ 1474 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) 1475 { 1476 struct vega10_hwmgr *data = hwmgr->backend; 1477 struct phm_ppt_v2_information *table_info = 1478 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1479 1480 data->smc_state_table.pp_table.UlvOffsetVid = 1481 (uint8_t)table_info->us_ulv_voltage_offset; 1482 1483 data->smc_state_table.pp_table.UlvSmnclkDid = 1484 (uint8_t)(table_info->us_ulv_smnclk_did); 1485 data->smc_state_table.pp_table.UlvMp1clkDid = 1486 (uint8_t)(table_info->us_ulv_mp1clk_did); 1487 data->smc_state_table.pp_table.UlvGfxclkBypass = 1488 (uint8_t)(table_info->us_ulv_gfxclk_bypass); 1489 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = 1490 (uint8_t)(data->vddc_voltage_table.psi0_enable); 1491 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = 1492 (uint8_t)(data->vddc_voltage_table.psi1_enable); 1493 1494 return 0; 1495 } 1496 1497 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, 1498 uint32_t lclock, uint8_t *curr_lclk_did) 1499 { 1500 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1501 1502 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1503 hwmgr, 1504 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1505 lclock, ÷rs), 1506 "Failed to get LCLK clock settings from VBIOS!", 1507 return -1); 1508 1509 *curr_lclk_did = dividers.ulDid; 1510 1511 return 0; 1512 } 1513 1514 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) 1515 { 1516 int result = -1; 1517 struct vega10_hwmgr *data = hwmgr->backend; 1518 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1519 struct vega10_pcie_table *pcie_table = 1520 &(data->dpm_table.pcie_table); 1521 uint32_t i, j; 1522 1523 for (i = 0; i < pcie_table->count; i++) { 1524 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; 1525 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; 1526 1527 result = vega10_populate_single_lclk_level(hwmgr, 1528 pcie_table->lclk[i], &(pp_table->LclkDid[i])); 1529 if (result) { 1530 pr_info("Populate LClock Level %d Failed!\n", i); 1531 return result; 1532 } 1533 } 1534 1535 j = i - 1; 1536 while (i < NUM_LINK_LEVELS) { 1537 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; 1538 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; 1539 1540 result = vega10_populate_single_lclk_level(hwmgr, 1541 pcie_table->lclk[j], &(pp_table->LclkDid[i])); 1542 if (result) { 1543 pr_info("Populate LClock Level %d Failed!\n", i); 1544 return result; 1545 } 1546 i++; 1547 } 1548 1549 return result; 1550 } 1551 1552 /** 1553 * Populates single SMC GFXSCLK structure using the provided engine clock 1554 * 1555 * @param hwmgr the address of the hardware manager 1556 * @param gfx_clock the GFX clock to use to populate the structure. 1557 * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure. 1558 */ 1559 1560 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, 1561 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, 1562 uint32_t *acg_freq) 1563 { 1564 struct phm_ppt_v2_information *table_info = 1565 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1566 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; 1567 struct vega10_hwmgr *data = hwmgr->backend; 1568 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1569 uint32_t gfx_max_clock = 1570 hwmgr->platform_descriptor.overdriveLimit.engineClock; 1571 uint32_t i = 0; 1572 1573 if (hwmgr->od_enabled) 1574 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1575 &(data->odn_dpm_table.vdd_dep_on_sclk); 1576 else 1577 dep_on_sclk = table_info->vdd_dep_on_sclk; 1578 1579 PP_ASSERT_WITH_CODE(dep_on_sclk, 1580 "Invalid SOC_VDD-GFX_CLK Dependency Table!", 1581 return -EINVAL); 1582 1583 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) 1584 gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; 1585 else { 1586 for (i = 0; i < dep_on_sclk->count; i++) { 1587 if (dep_on_sclk->entries[i].clk == gfx_clock) 1588 break; 1589 } 1590 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, 1591 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", 1592 return -EINVAL); 1593 } 1594 1595 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1596 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, 1597 gfx_clock, ÷rs), 1598 "Failed to get GFX Clock settings from VBIOS!", 1599 return -EINVAL); 1600 1601 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ 1602 current_gfxclk_level->FbMult = 1603 cpu_to_le32(dividers.ulPll_fb_mult); 1604 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ 1605 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; 1606 current_gfxclk_level->SsFbMult = 1607 cpu_to_le32(dividers.ulPll_ss_fbsmult); 1608 current_gfxclk_level->SsSlewFrac = 1609 cpu_to_le16(dividers.usPll_ss_slew_frac); 1610 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); 1611 1612 *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ 1613 1614 return 0; 1615 } 1616 1617 /** 1618 * @brief Populates single SMC SOCCLK structure using the provided clock. 1619 * 1620 * @param hwmgr - the address of the hardware manager. 1621 * @param soc_clock - the SOC clock to use to populate the structure. 1622 * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure. 1623 * @return 0 on success.. 1624 */ 1625 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, 1626 uint32_t soc_clock, uint8_t *current_soc_did, 1627 uint8_t *current_vol_index) 1628 { 1629 struct vega10_hwmgr *data = hwmgr->backend; 1630 struct phm_ppt_v2_information *table_info = 1631 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1632 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; 1633 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1634 uint32_t i; 1635 1636 if (hwmgr->od_enabled) { 1637 dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1638 &data->odn_dpm_table.vdd_dep_on_socclk; 1639 for (i = 0; i < dep_on_soc->count; i++) { 1640 if (dep_on_soc->entries[i].clk >= soc_clock) 1641 break; 1642 } 1643 } else { 1644 dep_on_soc = table_info->vdd_dep_on_socclk; 1645 for (i = 0; i < dep_on_soc->count; i++) { 1646 if (dep_on_soc->entries[i].clk == soc_clock) 1647 break; 1648 } 1649 } 1650 1651 PP_ASSERT_WITH_CODE(dep_on_soc->count > i, 1652 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", 1653 return -EINVAL); 1654 1655 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1656 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1657 soc_clock, ÷rs), 1658 "Failed to get SOC Clock settings from VBIOS!", 1659 return -EINVAL); 1660 1661 *current_soc_did = (uint8_t)dividers.ulDid; 1662 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); 1663 return 0; 1664 } 1665 1666 /** 1667 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states 1668 * 1669 * @param hwmgr the address of the hardware manager 1670 */ 1671 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 1672 { 1673 struct vega10_hwmgr *data = hwmgr->backend; 1674 struct phm_ppt_v2_information *table_info = 1675 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1676 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1677 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); 1678 int result = 0; 1679 uint32_t i, j; 1680 1681 for (i = 0; i < dpm_table->count; i++) { 1682 result = vega10_populate_single_gfx_level(hwmgr, 1683 dpm_table->dpm_levels[i].value, 1684 &(pp_table->GfxclkLevel[i]), 1685 &(pp_table->AcgFreqTable[i])); 1686 if (result) 1687 return result; 1688 } 1689 1690 j = i - 1; 1691 while (i < NUM_GFXCLK_DPM_LEVELS) { 1692 result = vega10_populate_single_gfx_level(hwmgr, 1693 dpm_table->dpm_levels[j].value, 1694 &(pp_table->GfxclkLevel[i]), 1695 &(pp_table->AcgFreqTable[i])); 1696 if (result) 1697 return result; 1698 i++; 1699 } 1700 1701 pp_table->GfxclkSlewRate = 1702 cpu_to_le16(table_info->us_gfxclk_slew_rate); 1703 1704 dpm_table = &(data->dpm_table.soc_table); 1705 for (i = 0; i < dpm_table->count; i++) { 1706 result = vega10_populate_single_soc_level(hwmgr, 1707 dpm_table->dpm_levels[i].value, 1708 &(pp_table->SocclkDid[i]), 1709 &(pp_table->SocDpmVoltageIndex[i])); 1710 if (result) 1711 return result; 1712 } 1713 1714 j = i - 1; 1715 while (i < NUM_SOCCLK_DPM_LEVELS) { 1716 result = vega10_populate_single_soc_level(hwmgr, 1717 dpm_table->dpm_levels[j].value, 1718 &(pp_table->SocclkDid[i]), 1719 &(pp_table->SocDpmVoltageIndex[i])); 1720 if (result) 1721 return result; 1722 i++; 1723 } 1724 1725 return result; 1726 } 1727 1728 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) 1729 { 1730 struct vega10_hwmgr *data = hwmgr->backend; 1731 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1732 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 1733 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 1734 1735 uint8_t soc_vid = 0; 1736 uint32_t i, max_vddc_level; 1737 1738 if (hwmgr->od_enabled) 1739 vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; 1740 else 1741 vddc_lookup_table = table_info->vddc_lookup_table; 1742 1743 max_vddc_level = vddc_lookup_table->count; 1744 for (i = 0; i < max_vddc_level; i++) { 1745 soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); 1746 pp_table->SocVid[i] = soc_vid; 1747 } 1748 while (i < MAX_REGULAR_DPM_NUMBER) { 1749 pp_table->SocVid[i] = soc_vid; 1750 i++; 1751 } 1752 } 1753 1754 /** 1755 * @brief Populates single SMC GFXCLK structure using the provided clock. 1756 * 1757 * @param hwmgr - the address of the hardware manager. 1758 * @param mem_clock - the memory clock to use to populate the structure. 1759 * @return 0 on success.. 1760 */ 1761 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, 1762 uint32_t mem_clock, uint8_t *current_mem_vid, 1763 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) 1764 { 1765 struct vega10_hwmgr *data = hwmgr->backend; 1766 struct phm_ppt_v2_information *table_info = 1767 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1768 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; 1769 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1770 uint32_t mem_max_clock = 1771 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 1772 uint32_t i = 0; 1773 1774 if (hwmgr->od_enabled) 1775 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1776 &data->odn_dpm_table.vdd_dep_on_mclk; 1777 else 1778 dep_on_mclk = table_info->vdd_dep_on_mclk; 1779 1780 PP_ASSERT_WITH_CODE(dep_on_mclk, 1781 "Invalid SOC_VDD-UCLK Dependency Table!", 1782 return -EINVAL); 1783 1784 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 1785 mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; 1786 } else { 1787 for (i = 0; i < dep_on_mclk->count; i++) { 1788 if (dep_on_mclk->entries[i].clk == mem_clock) 1789 break; 1790 } 1791 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, 1792 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", 1793 return -EINVAL); 1794 } 1795 1796 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1797 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs), 1798 "Failed to get UCLK settings from VBIOS!", 1799 return -1); 1800 1801 *current_mem_vid = 1802 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); 1803 *current_mem_soc_vind = 1804 (uint8_t)(dep_on_mclk->entries[i].vddInd); 1805 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); 1806 current_memclk_level->Did = (uint8_t)(dividers.ulDid); 1807 1808 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, 1809 "Invalid Divider ID!", 1810 return -EINVAL); 1811 1812 return 0; 1813 } 1814 1815 /** 1816 * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states. 1817 * 1818 * @param pHwMgr - the address of the hardware manager. 1819 * @return PP_Result_OK on success. 1820 */ 1821 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1822 { 1823 struct vega10_hwmgr *data = hwmgr->backend; 1824 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1825 struct vega10_single_dpm_table *dpm_table = 1826 &(data->dpm_table.mem_table); 1827 int result = 0; 1828 uint32_t i, j; 1829 1830 for (i = 0; i < dpm_table->count; i++) { 1831 result = vega10_populate_single_memory_level(hwmgr, 1832 dpm_table->dpm_levels[i].value, 1833 &(pp_table->MemVid[i]), 1834 &(pp_table->UclkLevel[i]), 1835 &(pp_table->MemSocVoltageIndex[i])); 1836 if (result) 1837 return result; 1838 } 1839 1840 j = i - 1; 1841 while (i < NUM_UCLK_DPM_LEVELS) { 1842 result = vega10_populate_single_memory_level(hwmgr, 1843 dpm_table->dpm_levels[j].value, 1844 &(pp_table->MemVid[i]), 1845 &(pp_table->UclkLevel[i]), 1846 &(pp_table->MemSocVoltageIndex[i])); 1847 if (result) 1848 return result; 1849 i++; 1850 } 1851 1852 pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); 1853 pp_table->MemoryChannelWidth = 1854 (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH * 1855 channel_number[data->mem_channels]); 1856 1857 pp_table->LowestUclkReservedForUlv = 1858 (uint8_t)(data->lowest_uclk_reserved_for_ulv); 1859 1860 return result; 1861 } 1862 1863 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, 1864 DSPCLK_e disp_clock) 1865 { 1866 struct vega10_hwmgr *data = hwmgr->backend; 1867 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1868 struct phm_ppt_v2_information *table_info = 1869 (struct phm_ppt_v2_information *) 1870 (hwmgr->pptable); 1871 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 1872 uint32_t i; 1873 uint16_t clk = 0, vddc = 0; 1874 uint8_t vid = 0; 1875 1876 switch (disp_clock) { 1877 case DSPCLK_DCEFCLK: 1878 dep_table = table_info->vdd_dep_on_dcefclk; 1879 break; 1880 case DSPCLK_DISPCLK: 1881 dep_table = table_info->vdd_dep_on_dispclk; 1882 break; 1883 case DSPCLK_PIXCLK: 1884 dep_table = table_info->vdd_dep_on_pixclk; 1885 break; 1886 case DSPCLK_PHYCLK: 1887 dep_table = table_info->vdd_dep_on_phyclk; 1888 break; 1889 default: 1890 return -1; 1891 } 1892 1893 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, 1894 "Number Of Entries Exceeded maximum!", 1895 return -1); 1896 1897 for (i = 0; i < dep_table->count; i++) { 1898 clk = (uint16_t)(dep_table->entries[i].clk / 100); 1899 vddc = table_info->vddc_lookup_table-> 1900 entries[dep_table->entries[i].vddInd].us_vdd; 1901 vid = (uint8_t)convert_to_vid(vddc); 1902 pp_table->DisplayClockTable[disp_clock][i].Freq = 1903 cpu_to_le16(clk); 1904 pp_table->DisplayClockTable[disp_clock][i].Vid = 1905 cpu_to_le16(vid); 1906 } 1907 1908 while (i < NUM_DSPCLK_LEVELS) { 1909 pp_table->DisplayClockTable[disp_clock][i].Freq = 1910 cpu_to_le16(clk); 1911 pp_table->DisplayClockTable[disp_clock][i].Vid = 1912 cpu_to_le16(vid); 1913 i++; 1914 } 1915 1916 return 0; 1917 } 1918 1919 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) 1920 { 1921 uint32_t i; 1922 1923 for (i = 0; i < DSPCLK_COUNT; i++) { 1924 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), 1925 "Failed to populate Clock in DisplayClockTable!", 1926 return -1); 1927 } 1928 1929 return 0; 1930 } 1931 1932 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, 1933 uint32_t eclock, uint8_t *current_eclk_did, 1934 uint8_t *current_soc_vol) 1935 { 1936 struct phm_ppt_v2_information *table_info = 1937 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1938 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 1939 table_info->mm_dep_table; 1940 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1941 uint32_t i; 1942 1943 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1944 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1945 eclock, ÷rs), 1946 "Failed to get ECLK clock settings from VBIOS!", 1947 return -1); 1948 1949 *current_eclk_did = (uint8_t)dividers.ulDid; 1950 1951 for (i = 0; i < dep_table->count; i++) { 1952 if (dep_table->entries[i].eclk == eclock) 1953 *current_soc_vol = dep_table->entries[i].vddcInd; 1954 } 1955 1956 return 0; 1957 } 1958 1959 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) 1960 { 1961 struct vega10_hwmgr *data = hwmgr->backend; 1962 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1963 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); 1964 int result = -EINVAL; 1965 uint32_t i, j; 1966 1967 for (i = 0; i < dpm_table->count; i++) { 1968 result = vega10_populate_single_eclock_level(hwmgr, 1969 dpm_table->dpm_levels[i].value, 1970 &(pp_table->EclkDid[i]), 1971 &(pp_table->VceDpmVoltageIndex[i])); 1972 if (result) 1973 return result; 1974 } 1975 1976 j = i - 1; 1977 while (i < NUM_VCE_DPM_LEVELS) { 1978 result = vega10_populate_single_eclock_level(hwmgr, 1979 dpm_table->dpm_levels[j].value, 1980 &(pp_table->EclkDid[i]), 1981 &(pp_table->VceDpmVoltageIndex[i])); 1982 if (result) 1983 return result; 1984 i++; 1985 } 1986 1987 return result; 1988 } 1989 1990 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, 1991 uint32_t vclock, uint8_t *current_vclk_did) 1992 { 1993 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1994 1995 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1996 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1997 vclock, ÷rs), 1998 "Failed to get VCLK clock settings from VBIOS!", 1999 return -EINVAL); 2000 2001 *current_vclk_did = (uint8_t)dividers.ulDid; 2002 2003 return 0; 2004 } 2005 2006 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, 2007 uint32_t dclock, uint8_t *current_dclk_did) 2008 { 2009 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 2010 2011 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 2012 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 2013 dclock, ÷rs), 2014 "Failed to get DCLK clock settings from VBIOS!", 2015 return -EINVAL); 2016 2017 *current_dclk_did = (uint8_t)dividers.ulDid; 2018 2019 return 0; 2020 } 2021 2022 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) 2023 { 2024 struct vega10_hwmgr *data = hwmgr->backend; 2025 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2026 struct vega10_single_dpm_table *vclk_dpm_table = 2027 &(data->dpm_table.vclk_table); 2028 struct vega10_single_dpm_table *dclk_dpm_table = 2029 &(data->dpm_table.dclk_table); 2030 struct phm_ppt_v2_information *table_info = 2031 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2032 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 2033 table_info->mm_dep_table; 2034 int result = -EINVAL; 2035 uint32_t i, j; 2036 2037 for (i = 0; i < vclk_dpm_table->count; i++) { 2038 result = vega10_populate_single_vclock_level(hwmgr, 2039 vclk_dpm_table->dpm_levels[i].value, 2040 &(pp_table->VclkDid[i])); 2041 if (result) 2042 return result; 2043 } 2044 2045 j = i - 1; 2046 while (i < NUM_UVD_DPM_LEVELS) { 2047 result = vega10_populate_single_vclock_level(hwmgr, 2048 vclk_dpm_table->dpm_levels[j].value, 2049 &(pp_table->VclkDid[i])); 2050 if (result) 2051 return result; 2052 i++; 2053 } 2054 2055 for (i = 0; i < dclk_dpm_table->count; i++) { 2056 result = vega10_populate_single_dclock_level(hwmgr, 2057 dclk_dpm_table->dpm_levels[i].value, 2058 &(pp_table->DclkDid[i])); 2059 if (result) 2060 return result; 2061 } 2062 2063 j = i - 1; 2064 while (i < NUM_UVD_DPM_LEVELS) { 2065 result = vega10_populate_single_dclock_level(hwmgr, 2066 dclk_dpm_table->dpm_levels[j].value, 2067 &(pp_table->DclkDid[i])); 2068 if (result) 2069 return result; 2070 i++; 2071 } 2072 2073 for (i = 0; i < dep_table->count; i++) { 2074 if (dep_table->entries[i].vclk == 2075 vclk_dpm_table->dpm_levels[i].value && 2076 dep_table->entries[i].dclk == 2077 dclk_dpm_table->dpm_levels[i].value) 2078 pp_table->UvdDpmVoltageIndex[i] = 2079 dep_table->entries[i].vddcInd; 2080 else 2081 return -1; 2082 } 2083 2084 j = i - 1; 2085 while (i < NUM_UVD_DPM_LEVELS) { 2086 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; 2087 i++; 2088 } 2089 2090 return 0; 2091 } 2092 2093 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) 2094 { 2095 struct vega10_hwmgr *data = hwmgr->backend; 2096 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2097 struct phm_ppt_v2_information *table_info = 2098 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2099 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2100 table_info->vdd_dep_on_sclk; 2101 uint32_t i; 2102 2103 for (i = 0; i < dep_table->count; i++) { 2104 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; 2105 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset 2106 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 2107 } 2108 2109 return 0; 2110 } 2111 2112 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) 2113 { 2114 struct vega10_hwmgr *data = hwmgr->backend; 2115 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2116 struct phm_ppt_v2_information *table_info = 2117 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2118 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2119 table_info->vdd_dep_on_sclk; 2120 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 2121 int result = 0; 2122 uint32_t i; 2123 2124 pp_table->MinVoltageVid = (uint8_t)0xff; 2125 pp_table->MaxVoltageVid = (uint8_t)0; 2126 2127 if (data->smu_features[GNLD_AVFS].supported) { 2128 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 2129 if (!result) { 2130 pp_table->MinVoltageVid = (uint8_t) 2131 convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); 2132 pp_table->MaxVoltageVid = (uint8_t) 2133 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); 2134 2135 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); 2136 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); 2137 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); 2138 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2139 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); 2140 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2141 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); 2142 2143 pp_table->BtcGbVdroopTableCksOff.a0 = 2144 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); 2145 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; 2146 pp_table->BtcGbVdroopTableCksOff.a1 = 2147 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); 2148 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; 2149 pp_table->BtcGbVdroopTableCksOff.a2 = 2150 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); 2151 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; 2152 2153 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; 2154 pp_table->BtcGbVdroopTableCksOn.a0 = 2155 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); 2156 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; 2157 pp_table->BtcGbVdroopTableCksOn.a1 = 2158 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); 2159 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; 2160 pp_table->BtcGbVdroopTableCksOn.a2 = 2161 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); 2162 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; 2163 2164 pp_table->AvfsGbCksOn.m1 = 2165 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); 2166 pp_table->AvfsGbCksOn.m2 = 2167 cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); 2168 pp_table->AvfsGbCksOn.b = 2169 cpu_to_le32(avfs_params.ulGbFuseTableCksonB); 2170 pp_table->AvfsGbCksOn.m1_shift = 24; 2171 pp_table->AvfsGbCksOn.m2_shift = 12; 2172 pp_table->AvfsGbCksOn.b_shift = 0; 2173 2174 pp_table->OverrideAvfsGbCksOn = 2175 avfs_params.ucEnableGbFuseTableCkson; 2176 pp_table->AvfsGbCksOff.m1 = 2177 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); 2178 pp_table->AvfsGbCksOff.m2 = 2179 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); 2180 pp_table->AvfsGbCksOff.b = 2181 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); 2182 pp_table->AvfsGbCksOff.m1_shift = 24; 2183 pp_table->AvfsGbCksOff.m2_shift = 12; 2184 pp_table->AvfsGbCksOff.b_shift = 0; 2185 2186 for (i = 0; i < dep_table->count; i++) 2187 pp_table->StaticVoltageOffsetVid[i] = 2188 convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); 2189 2190 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2191 data->disp_clk_quad_eqn_a) && 2192 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2193 data->disp_clk_quad_eqn_b)) { 2194 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2195 (int32_t)data->disp_clk_quad_eqn_a; 2196 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2197 (int32_t)data->disp_clk_quad_eqn_b; 2198 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2199 (int32_t)data->disp_clk_quad_eqn_c; 2200 } else { 2201 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2202 (int32_t)avfs_params.ulDispclk2GfxclkM1; 2203 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2204 (int32_t)avfs_params.ulDispclk2GfxclkM2; 2205 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2206 (int32_t)avfs_params.ulDispclk2GfxclkB; 2207 } 2208 2209 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; 2210 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; 2211 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; 2212 2213 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2214 data->dcef_clk_quad_eqn_a) && 2215 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2216 data->dcef_clk_quad_eqn_b)) { 2217 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2218 (int32_t)data->dcef_clk_quad_eqn_a; 2219 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2220 (int32_t)data->dcef_clk_quad_eqn_b; 2221 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2222 (int32_t)data->dcef_clk_quad_eqn_c; 2223 } else { 2224 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2225 (int32_t)avfs_params.ulDcefclk2GfxclkM1; 2226 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2227 (int32_t)avfs_params.ulDcefclk2GfxclkM2; 2228 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2229 (int32_t)avfs_params.ulDcefclk2GfxclkB; 2230 } 2231 2232 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; 2233 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; 2234 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; 2235 2236 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2237 data->pixel_clk_quad_eqn_a) && 2238 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2239 data->pixel_clk_quad_eqn_b)) { 2240 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2241 (int32_t)data->pixel_clk_quad_eqn_a; 2242 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2243 (int32_t)data->pixel_clk_quad_eqn_b; 2244 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2245 (int32_t)data->pixel_clk_quad_eqn_c; 2246 } else { 2247 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2248 (int32_t)avfs_params.ulPixelclk2GfxclkM1; 2249 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2250 (int32_t)avfs_params.ulPixelclk2GfxclkM2; 2251 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2252 (int32_t)avfs_params.ulPixelclk2GfxclkB; 2253 } 2254 2255 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; 2256 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; 2257 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; 2258 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2259 data->phy_clk_quad_eqn_a) && 2260 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2261 data->phy_clk_quad_eqn_b)) { 2262 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2263 (int32_t)data->phy_clk_quad_eqn_a; 2264 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2265 (int32_t)data->phy_clk_quad_eqn_b; 2266 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2267 (int32_t)data->phy_clk_quad_eqn_c; 2268 } else { 2269 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2270 (int32_t)avfs_params.ulPhyclk2GfxclkM1; 2271 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2272 (int32_t)avfs_params.ulPhyclk2GfxclkM2; 2273 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2274 (int32_t)avfs_params.ulPhyclk2GfxclkB; 2275 } 2276 2277 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; 2278 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; 2279 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; 2280 2281 pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; 2282 pp_table->AcgBtcGbVdroopTable.a0_shift = 20; 2283 pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; 2284 pp_table->AcgBtcGbVdroopTable.a1_shift = 20; 2285 pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; 2286 pp_table->AcgBtcGbVdroopTable.a2_shift = 20; 2287 2288 pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; 2289 pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; 2290 pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; 2291 pp_table->AcgAvfsGb.m1_shift = 24; 2292 pp_table->AcgAvfsGb.m2_shift = 12; 2293 pp_table->AcgAvfsGb.b_shift = 0; 2294 2295 } else { 2296 data->smu_features[GNLD_AVFS].supported = false; 2297 } 2298 } 2299 2300 return 0; 2301 } 2302 2303 static int vega10_acg_enable(struct pp_hwmgr *hwmgr) 2304 { 2305 struct vega10_hwmgr *data = hwmgr->backend; 2306 uint32_t agc_btc_response; 2307 2308 if (data->smu_features[GNLD_ACG].supported) { 2309 if (0 == vega10_enable_smc_features(hwmgr, true, 2310 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) 2311 data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; 2312 2313 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg); 2314 2315 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc); 2316 agc_btc_response = smum_get_argument(hwmgr); 2317 2318 if (1 == agc_btc_response) { 2319 if (1 == data->acg_loop_state) 2320 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop); 2321 else if (2 == data->acg_loop_state) 2322 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop); 2323 if (0 == vega10_enable_smc_features(hwmgr, true, 2324 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2325 data->smu_features[GNLD_ACG].enabled = true; 2326 } else { 2327 pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); 2328 data->smu_features[GNLD_ACG].enabled = false; 2329 } 2330 } 2331 2332 return 0; 2333 } 2334 2335 static int vega10_acg_disable(struct pp_hwmgr *hwmgr) 2336 { 2337 struct vega10_hwmgr *data = hwmgr->backend; 2338 2339 if (data->smu_features[GNLD_ACG].supported && 2340 data->smu_features[GNLD_ACG].enabled) 2341 if (!vega10_enable_smc_features(hwmgr, false, 2342 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2343 data->smu_features[GNLD_ACG].enabled = false; 2344 2345 return 0; 2346 } 2347 2348 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) 2349 { 2350 struct vega10_hwmgr *data = hwmgr->backend; 2351 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2352 struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; 2353 int result; 2354 2355 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); 2356 if (!result) { 2357 if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && 2358 data->registry_data.regulator_hot_gpio_support) { 2359 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; 2360 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; 2361 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; 2362 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; 2363 } else { 2364 pp_table->VR0HotGpio = 0; 2365 pp_table->VR0HotPolarity = 0; 2366 pp_table->VR1HotGpio = 0; 2367 pp_table->VR1HotPolarity = 0; 2368 } 2369 2370 if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && 2371 data->registry_data.ac_dc_switch_gpio_support) { 2372 pp_table->AcDcGpio = gpio_params.ucAcDcGpio; 2373 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; 2374 } else { 2375 pp_table->AcDcGpio = 0; 2376 pp_table->AcDcPolarity = 0; 2377 } 2378 } 2379 2380 return result; 2381 } 2382 2383 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) 2384 { 2385 struct vega10_hwmgr *data = hwmgr->backend; 2386 2387 if (data->smu_features[GNLD_AVFS].supported) { 2388 /* Already enabled or disabled */ 2389 if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) 2390 return 0; 2391 2392 if (enable) { 2393 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2394 true, 2395 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2396 "[avfs_control] Attempt to Enable AVFS feature Failed!", 2397 return -1); 2398 data->smu_features[GNLD_AVFS].enabled = true; 2399 } else { 2400 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2401 false, 2402 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2403 "[avfs_control] Attempt to Disable AVFS feature Failed!", 2404 return -1); 2405 data->smu_features[GNLD_AVFS].enabled = false; 2406 } 2407 } 2408 2409 return 0; 2410 } 2411 2412 static int vega10_update_avfs(struct pp_hwmgr *hwmgr) 2413 { 2414 struct vega10_hwmgr *data = hwmgr->backend; 2415 2416 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 2417 vega10_avfs_enable(hwmgr, false); 2418 } else if (data->need_update_dpm_table) { 2419 vega10_avfs_enable(hwmgr, false); 2420 vega10_avfs_enable(hwmgr, true); 2421 } else { 2422 vega10_avfs_enable(hwmgr, true); 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) 2429 { 2430 int result = 0; 2431 2432 uint64_t serial_number = 0; 2433 uint32_t top32, bottom32; 2434 struct phm_fuses_default fuse; 2435 2436 struct vega10_hwmgr *data = hwmgr->backend; 2437 AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); 2438 2439 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32); 2440 top32 = smum_get_argument(hwmgr); 2441 2442 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32); 2443 bottom32 = smum_get_argument(hwmgr); 2444 2445 serial_number = ((uint64_t)bottom32 << 32) | top32; 2446 2447 if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { 2448 avfs_fuse_table->VFT0_b = fuse.VFT0_b; 2449 avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; 2450 avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; 2451 avfs_fuse_table->VFT1_b = fuse.VFT1_b; 2452 avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; 2453 avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; 2454 avfs_fuse_table->VFT2_b = fuse.VFT2_b; 2455 avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; 2456 avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; 2457 result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, 2458 AVFSFUSETABLE, false); 2459 PP_ASSERT_WITH_CODE(!result, 2460 "Failed to upload FuseOVerride!", 2461 ); 2462 } 2463 2464 return result; 2465 } 2466 2467 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 2468 { 2469 struct vega10_hwmgr *data = hwmgr->backend; 2470 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2471 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 2472 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 2473 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 2474 uint32_t i; 2475 2476 dep_table = table_info->vdd_dep_on_mclk; 2477 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); 2478 2479 for (i = 0; i < dep_table->count; i++) { 2480 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2481 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 2482 return; 2483 } 2484 } 2485 2486 dep_table = table_info->vdd_dep_on_sclk; 2487 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); 2488 for (i = 0; i < dep_table->count; i++) { 2489 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2490 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 2491 return; 2492 } 2493 } 2494 } 2495 2496 /** 2497 * Initializes the SMC table and uploads it 2498 * 2499 * @param hwmgr the address of the powerplay hardware manager. 2500 * @param pInput the pointer to input data (PowerState) 2501 * @return always 0 2502 */ 2503 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) 2504 { 2505 int result; 2506 struct vega10_hwmgr *data = hwmgr->backend; 2507 struct phm_ppt_v2_information *table_info = 2508 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2509 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2510 struct pp_atomfwctrl_voltage_table voltage_table; 2511 struct pp_atomfwctrl_bios_boot_up_values boot_up_values; 2512 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2513 2514 result = vega10_setup_default_dpm_tables(hwmgr); 2515 PP_ASSERT_WITH_CODE(!result, 2516 "Failed to setup default DPM tables!", 2517 return result); 2518 2519 if (!hwmgr->not_vf) 2520 return 0; 2521 2522 /* initialize ODN table */ 2523 if (hwmgr->od_enabled) { 2524 if (odn_table->max_vddc) { 2525 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 2526 vega10_check_dpm_table_updated(hwmgr); 2527 } else { 2528 vega10_odn_initial_default_setting(hwmgr); 2529 } 2530 } 2531 2532 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, 2533 VOLTAGE_OBJ_SVID2, &voltage_table); 2534 pp_table->MaxVidStep = voltage_table.max_vid_step; 2535 2536 pp_table->GfxDpmVoltageMode = 2537 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); 2538 pp_table->SocDpmVoltageMode = 2539 (uint8_t)(table_info->uc_soc_dpm_voltage_mode); 2540 pp_table->UclkDpmVoltageMode = 2541 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); 2542 pp_table->UvdDpmVoltageMode = 2543 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); 2544 pp_table->VceDpmVoltageMode = 2545 (uint8_t)(table_info->uc_vce_dpm_voltage_mode); 2546 pp_table->Mp0DpmVoltageMode = 2547 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); 2548 2549 pp_table->DisplayDpmVoltageMode = 2550 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); 2551 2552 data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; 2553 data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; 2554 2555 if (data->registry_data.ulv_support && 2556 table_info->us_ulv_voltage_offset) { 2557 result = vega10_populate_ulv_state(hwmgr); 2558 PP_ASSERT_WITH_CODE(!result, 2559 "Failed to initialize ULV state!", 2560 return result); 2561 } 2562 2563 result = vega10_populate_smc_link_levels(hwmgr); 2564 PP_ASSERT_WITH_CODE(!result, 2565 "Failed to initialize Link Level!", 2566 return result); 2567 2568 result = vega10_populate_all_graphic_levels(hwmgr); 2569 PP_ASSERT_WITH_CODE(!result, 2570 "Failed to initialize Graphics Level!", 2571 return result); 2572 2573 result = vega10_populate_all_memory_levels(hwmgr); 2574 PP_ASSERT_WITH_CODE(!result, 2575 "Failed to initialize Memory Level!", 2576 return result); 2577 2578 vega10_populate_vddc_soc_levels(hwmgr); 2579 2580 result = vega10_populate_all_display_clock_levels(hwmgr); 2581 PP_ASSERT_WITH_CODE(!result, 2582 "Failed to initialize Display Level!", 2583 return result); 2584 2585 result = vega10_populate_smc_vce_levels(hwmgr); 2586 PP_ASSERT_WITH_CODE(!result, 2587 "Failed to initialize VCE Level!", 2588 return result); 2589 2590 result = vega10_populate_smc_uvd_levels(hwmgr); 2591 PP_ASSERT_WITH_CODE(!result, 2592 "Failed to initialize UVD Level!", 2593 return result); 2594 2595 if (data->registry_data.clock_stretcher_support) { 2596 result = vega10_populate_clock_stretcher_table(hwmgr); 2597 PP_ASSERT_WITH_CODE(!result, 2598 "Failed to populate Clock Stretcher Table!", 2599 return result); 2600 } 2601 2602 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); 2603 if (!result) { 2604 data->vbios_boot_state.vddc = boot_up_values.usVddc; 2605 data->vbios_boot_state.vddci = boot_up_values.usVddci; 2606 data->vbios_boot_state.mvddc = boot_up_values.usMvddc; 2607 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; 2608 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; 2609 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2610 SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); 2611 2612 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2613 SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); 2614 2615 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; 2616 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; 2617 if (0 != boot_up_values.usVddc) { 2618 smum_send_msg_to_smc_with_parameter(hwmgr, 2619 PPSMC_MSG_SetFloorSocVoltage, 2620 (boot_up_values.usVddc * 4)); 2621 data->vbios_boot_state.bsoc_vddc_lock = true; 2622 } else { 2623 data->vbios_boot_state.bsoc_vddc_lock = false; 2624 } 2625 smum_send_msg_to_smc_with_parameter(hwmgr, 2626 PPSMC_MSG_SetMinDeepSleepDcefclk, 2627 (uint32_t)(data->vbios_boot_state.dcef_clock / 100)); 2628 } 2629 2630 result = vega10_populate_avfs_parameters(hwmgr); 2631 PP_ASSERT_WITH_CODE(!result, 2632 "Failed to initialize AVFS Parameters!", 2633 return result); 2634 2635 result = vega10_populate_gpio_parameters(hwmgr); 2636 PP_ASSERT_WITH_CODE(!result, 2637 "Failed to initialize GPIO Parameters!", 2638 return result); 2639 2640 pp_table->GfxclkAverageAlpha = (uint8_t) 2641 (data->gfxclk_average_alpha); 2642 pp_table->SocclkAverageAlpha = (uint8_t) 2643 (data->socclk_average_alpha); 2644 pp_table->UclkAverageAlpha = (uint8_t) 2645 (data->uclk_average_alpha); 2646 pp_table->GfxActivityAverageAlpha = (uint8_t) 2647 (data->gfx_activity_average_alpha); 2648 2649 vega10_populate_and_upload_avfs_fuse_override(hwmgr); 2650 2651 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 2652 2653 PP_ASSERT_WITH_CODE(!result, 2654 "Failed to upload PPtable!", return result); 2655 2656 result = vega10_avfs_enable(hwmgr, true); 2657 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", 2658 return result); 2659 vega10_acg_enable(hwmgr); 2660 2661 return 0; 2662 } 2663 2664 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) 2665 { 2666 struct vega10_hwmgr *data = hwmgr->backend; 2667 2668 if (data->smu_features[GNLD_THERMAL].supported) { 2669 if (data->smu_features[GNLD_THERMAL].enabled) 2670 pr_info("THERMAL Feature Already enabled!"); 2671 2672 PP_ASSERT_WITH_CODE( 2673 !vega10_enable_smc_features(hwmgr, 2674 true, 2675 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2676 "Enable THERMAL Feature Failed!", 2677 return -1); 2678 data->smu_features[GNLD_THERMAL].enabled = true; 2679 } 2680 2681 return 0; 2682 } 2683 2684 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) 2685 { 2686 struct vega10_hwmgr *data = hwmgr->backend; 2687 2688 if (data->smu_features[GNLD_THERMAL].supported) { 2689 if (!data->smu_features[GNLD_THERMAL].enabled) 2690 pr_info("THERMAL Feature Already disabled!"); 2691 2692 PP_ASSERT_WITH_CODE( 2693 !vega10_enable_smc_features(hwmgr, 2694 false, 2695 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2696 "disable THERMAL Feature Failed!", 2697 return -1); 2698 data->smu_features[GNLD_THERMAL].enabled = false; 2699 } 2700 2701 return 0; 2702 } 2703 2704 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) 2705 { 2706 struct vega10_hwmgr *data = hwmgr->backend; 2707 2708 if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { 2709 if (data->smu_features[GNLD_VR0HOT].supported) { 2710 PP_ASSERT_WITH_CODE( 2711 !vega10_enable_smc_features(hwmgr, 2712 true, 2713 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), 2714 "Attempt to Enable VR0 Hot feature Failed!", 2715 return -1); 2716 data->smu_features[GNLD_VR0HOT].enabled = true; 2717 } else { 2718 if (data->smu_features[GNLD_VR1HOT].supported) { 2719 PP_ASSERT_WITH_CODE( 2720 !vega10_enable_smc_features(hwmgr, 2721 true, 2722 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), 2723 "Attempt to Enable VR0 Hot feature Failed!", 2724 return -1); 2725 data->smu_features[GNLD_VR1HOT].enabled = true; 2726 } 2727 } 2728 } 2729 return 0; 2730 } 2731 2732 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) 2733 { 2734 struct vega10_hwmgr *data = hwmgr->backend; 2735 2736 if (data->registry_data.ulv_support) { 2737 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2738 true, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2739 "Enable ULV Feature Failed!", 2740 return -1); 2741 data->smu_features[GNLD_ULV].enabled = true; 2742 } 2743 2744 return 0; 2745 } 2746 2747 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) 2748 { 2749 struct vega10_hwmgr *data = hwmgr->backend; 2750 2751 if (data->registry_data.ulv_support) { 2752 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2753 false, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2754 "disable ULV Feature Failed!", 2755 return -EINVAL); 2756 data->smu_features[GNLD_ULV].enabled = false; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2763 { 2764 struct vega10_hwmgr *data = hwmgr->backend; 2765 2766 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2767 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2768 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2769 "Attempt to Enable DS_GFXCLK Feature Failed!", 2770 return -EINVAL); 2771 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 2772 } 2773 2774 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2775 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2776 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2777 "Attempt to Enable DS_SOCCLK Feature Failed!", 2778 return -EINVAL); 2779 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 2780 } 2781 2782 if (data->smu_features[GNLD_DS_LCLK].supported) { 2783 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2784 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2785 "Attempt to Enable DS_LCLK Feature Failed!", 2786 return -EINVAL); 2787 data->smu_features[GNLD_DS_LCLK].enabled = true; 2788 } 2789 2790 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2791 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2792 true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2793 "Attempt to Enable DS_DCEFCLK Feature Failed!", 2794 return -EINVAL); 2795 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 2796 } 2797 2798 return 0; 2799 } 2800 2801 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2802 { 2803 struct vega10_hwmgr *data = hwmgr->backend; 2804 2805 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2806 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2807 false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2808 "Attempt to disable DS_GFXCLK Feature Failed!", 2809 return -EINVAL); 2810 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 2811 } 2812 2813 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2814 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2815 false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2816 "Attempt to disable DS_ Feature Failed!", 2817 return -EINVAL); 2818 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 2819 } 2820 2821 if (data->smu_features[GNLD_DS_LCLK].supported) { 2822 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2823 false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2824 "Attempt to disable DS_LCLK Feature Failed!", 2825 return -EINVAL); 2826 data->smu_features[GNLD_DS_LCLK].enabled = false; 2827 } 2828 2829 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2830 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2831 false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2832 "Attempt to disable DS_DCEFCLK Feature Failed!", 2833 return -EINVAL); 2834 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 2835 } 2836 2837 return 0; 2838 } 2839 2840 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2841 { 2842 struct vega10_hwmgr *data = hwmgr->backend; 2843 uint32_t i, feature_mask = 0; 2844 2845 if (!hwmgr->not_vf) 2846 return 0; 2847 2848 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2849 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2850 false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2851 "Attempt to disable LED DPM feature failed!", return -EINVAL); 2852 data->smu_features[GNLD_LED_DISPLAY].enabled = false; 2853 } 2854 2855 for (i = 0; i < GNLD_DPM_MAX; i++) { 2856 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2857 if (data->smu_features[i].supported) { 2858 if (data->smu_features[i].enabled) { 2859 feature_mask |= data->smu_features[i]. 2860 smu_feature_bitmap; 2861 data->smu_features[i].enabled = false; 2862 } 2863 } 2864 } 2865 } 2866 2867 vega10_enable_smc_features(hwmgr, false, feature_mask); 2868 2869 return 0; 2870 } 2871 2872 /** 2873 * @brief Tell SMC to enabled the supported DPMs. 2874 * 2875 * @param hwmgr - the address of the powerplay hardware manager. 2876 * @Param bitmap - bitmap for the features to enabled. 2877 * @return 0 on at least one DPM is successfully enabled. 2878 */ 2879 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2880 { 2881 struct vega10_hwmgr *data = hwmgr->backend; 2882 uint32_t i, feature_mask = 0; 2883 2884 for (i = 0; i < GNLD_DPM_MAX; i++) { 2885 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2886 if (data->smu_features[i].supported) { 2887 if (!data->smu_features[i].enabled) { 2888 feature_mask |= data->smu_features[i]. 2889 smu_feature_bitmap; 2890 data->smu_features[i].enabled = true; 2891 } 2892 } 2893 } 2894 } 2895 2896 if (vega10_enable_smc_features(hwmgr, 2897 true, feature_mask)) { 2898 for (i = 0; i < GNLD_DPM_MAX; i++) { 2899 if (data->smu_features[i].smu_feature_bitmap & 2900 feature_mask) 2901 data->smu_features[i].enabled = false; 2902 } 2903 } 2904 2905 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2906 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2907 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2908 "Attempt to Enable LED DPM feature Failed!", return -EINVAL); 2909 data->smu_features[GNLD_LED_DISPLAY].enabled = true; 2910 } 2911 2912 if (data->vbios_boot_state.bsoc_vddc_lock) { 2913 smum_send_msg_to_smc_with_parameter(hwmgr, 2914 PPSMC_MSG_SetFloorSocVoltage, 0); 2915 data->vbios_boot_state.bsoc_vddc_lock = false; 2916 } 2917 2918 if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { 2919 if (data->smu_features[GNLD_ACDC].supported) { 2920 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2921 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), 2922 "Attempt to Enable DS_GFXCLK Feature Failed!", 2923 return -1); 2924 data->smu_features[GNLD_ACDC].enabled = true; 2925 } 2926 } 2927 2928 return 0; 2929 } 2930 2931 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable) 2932 { 2933 struct vega10_hwmgr *data = hwmgr->backend; 2934 2935 if (data->smu_features[GNLD_PCC_LIMIT].supported) { 2936 if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) 2937 pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled"); 2938 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2939 enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap), 2940 "Attempt to Enable PCC Limit feature Failed!", 2941 return -EINVAL); 2942 data->smu_features[GNLD_PCC_LIMIT].enabled = enable; 2943 } 2944 2945 return 0; 2946 } 2947 2948 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 2949 { 2950 struct vega10_hwmgr *data = hwmgr->backend; 2951 int tmp_result, result = 0; 2952 2953 if (hwmgr->not_vf) { 2954 vega10_enable_disable_PCC_limit_feature(hwmgr, true); 2955 2956 smum_send_msg_to_smc_with_parameter(hwmgr, 2957 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry); 2958 2959 tmp_result = vega10_construct_voltage_tables(hwmgr); 2960 PP_ASSERT_WITH_CODE(!tmp_result, 2961 "Failed to construct voltage tables!", 2962 result = tmp_result); 2963 } 2964 2965 if (hwmgr->not_vf || hwmgr->pp_one_vf) { 2966 tmp_result = vega10_init_smc_table(hwmgr); 2967 PP_ASSERT_WITH_CODE(!tmp_result, 2968 "Failed to initialize SMC table!", 2969 result = tmp_result); 2970 } 2971 2972 if (hwmgr->not_vf) { 2973 if (PP_CAP(PHM_PlatformCaps_ThermalController)) { 2974 tmp_result = vega10_enable_thermal_protection(hwmgr); 2975 PP_ASSERT_WITH_CODE(!tmp_result, 2976 "Failed to enable thermal protection!", 2977 result = tmp_result); 2978 } 2979 2980 tmp_result = vega10_enable_vrhot_feature(hwmgr); 2981 PP_ASSERT_WITH_CODE(!tmp_result, 2982 "Failed to enable VR hot feature!", 2983 result = tmp_result); 2984 2985 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); 2986 PP_ASSERT_WITH_CODE(!tmp_result, 2987 "Failed to enable deep sleep master switch!", 2988 result = tmp_result); 2989 } 2990 2991 if (hwmgr->not_vf) { 2992 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); 2993 PP_ASSERT_WITH_CODE(!tmp_result, 2994 "Failed to start DPM!", result = tmp_result); 2995 } 2996 2997 if (hwmgr->not_vf) { 2998 /* enable didt, do not abort if failed didt */ 2999 tmp_result = vega10_enable_didt_config(hwmgr); 3000 PP_ASSERT(!tmp_result, 3001 "Failed to enable didt config!"); 3002 } 3003 3004 tmp_result = vega10_enable_power_containment(hwmgr); 3005 PP_ASSERT_WITH_CODE(!tmp_result, 3006 "Failed to enable power containment!", 3007 result = tmp_result); 3008 3009 if (hwmgr->not_vf) { 3010 tmp_result = vega10_power_control_set_level(hwmgr); 3011 PP_ASSERT_WITH_CODE(!tmp_result, 3012 "Failed to power control set level!", 3013 result = tmp_result); 3014 3015 tmp_result = vega10_enable_ulv(hwmgr); 3016 PP_ASSERT_WITH_CODE(!tmp_result, 3017 "Failed to enable ULV!", 3018 result = tmp_result); 3019 } 3020 3021 return result; 3022 } 3023 3024 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) 3025 { 3026 return sizeof(struct vega10_power_state); 3027 } 3028 3029 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, 3030 void *state, struct pp_power_state *power_state, 3031 void *pp_table, uint32_t classification_flag) 3032 { 3033 ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; 3034 struct vega10_power_state *vega10_power_state = 3035 cast_phw_vega10_power_state(&(power_state->hardware)); 3036 struct vega10_performance_level *performance_level; 3037 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; 3038 ATOM_Vega10_POWERPLAYTABLE *powerplay_table = 3039 (ATOM_Vega10_POWERPLAYTABLE *)pp_table; 3040 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = 3041 (ATOM_Vega10_SOCCLK_Dependency_Table *) 3042 (((unsigned long)powerplay_table) + 3043 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); 3044 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = 3045 (ATOM_Vega10_GFXCLK_Dependency_Table *) 3046 (((unsigned long)powerplay_table) + 3047 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); 3048 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = 3049 (ATOM_Vega10_MCLK_Dependency_Table *) 3050 (((unsigned long)powerplay_table) + 3051 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3052 3053 3054 /* The following fields are not initialized here: 3055 * id orderedList allStatesList 3056 */ 3057 power_state->classification.ui_label = 3058 (le16_to_cpu(state_entry->usClassification) & 3059 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3060 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3061 power_state->classification.flags = classification_flag; 3062 /* NOTE: There is a classification2 flag in BIOS 3063 * that is not being used right now 3064 */ 3065 power_state->classification.temporary_state = false; 3066 power_state->classification.to_be_deleted = false; 3067 3068 power_state->validation.disallowOnDC = 3069 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3070 ATOM_Vega10_DISALLOW_ON_DC) != 0); 3071 3072 power_state->display.disableFrameModulation = false; 3073 power_state->display.limitRefreshrate = false; 3074 power_state->display.enableVariBright = 3075 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3076 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); 3077 3078 power_state->validation.supportedPowerLevels = 0; 3079 power_state->uvd_clocks.VCLK = 0; 3080 power_state->uvd_clocks.DCLK = 0; 3081 power_state->temperatures.min = 0; 3082 power_state->temperatures.max = 0; 3083 3084 performance_level = &(vega10_power_state->performance_levels 3085 [vega10_power_state->performance_level_count++]); 3086 3087 PP_ASSERT_WITH_CODE( 3088 (vega10_power_state->performance_level_count < 3089 NUM_GFXCLK_DPM_LEVELS), 3090 "Performance levels exceeds SMC limit!", 3091 return -1); 3092 3093 PP_ASSERT_WITH_CODE( 3094 (vega10_power_state->performance_level_count <= 3095 hwmgr->platform_descriptor. 3096 hardwareActivityPerformanceLevels), 3097 "Performance levels exceeds Driver limit!", 3098 return -1); 3099 3100 /* Performance levels are arranged from low to high. */ 3101 performance_level->soc_clock = socclk_dep_table->entries 3102 [state_entry->ucSocClockIndexLow].ulClk; 3103 performance_level->gfx_clock = gfxclk_dep_table->entries 3104 [state_entry->ucGfxClockIndexLow].ulClk; 3105 performance_level->mem_clock = mclk_dep_table->entries 3106 [state_entry->ucMemClockIndexLow].ulMemClk; 3107 3108 performance_level = &(vega10_power_state->performance_levels 3109 [vega10_power_state->performance_level_count++]); 3110 performance_level->soc_clock = socclk_dep_table->entries 3111 [state_entry->ucSocClockIndexHigh].ulClk; 3112 if (gfxclk_dep_table->ucRevId == 0) { 3113 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 3114 * to level-4 due to the limited 110w-power 3115 */ 3116 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3117 performance_level->gfx_clock = 3118 gfxclk_dep_table->entries[4].ulClk; 3119 else 3120 performance_level->gfx_clock = gfxclk_dep_table->entries 3121 [state_entry->ucGfxClockIndexHigh].ulClk; 3122 } else if (gfxclk_dep_table->ucRevId == 1) { 3123 patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; 3124 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3125 performance_level->gfx_clock = patom_record_V2[4].ulClk; 3126 else 3127 performance_level->gfx_clock = 3128 patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; 3129 } 3130 3131 performance_level->mem_clock = mclk_dep_table->entries 3132 [state_entry->ucMemClockIndexHigh].ulMemClk; 3133 return 0; 3134 } 3135 3136 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3137 unsigned long entry_index, struct pp_power_state *state) 3138 { 3139 int result __unused; 3140 struct vega10_power_state *ps; 3141 3142 state->hardware.magic = PhwVega10_Magic; 3143 3144 ps = cast_phw_vega10_power_state(&state->hardware); 3145 3146 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, 3147 vega10_get_pp_table_entry_callback_func); 3148 3149 /* 3150 * This is the earliest time we have all the dependency table 3151 * and the VBIOS boot state 3152 */ 3153 /* set DC compatible flag if this state supports DC */ 3154 if (!state->validation.disallowOnDC) 3155 ps->dc_compatible = true; 3156 3157 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3158 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3159 3160 return 0; 3161 } 3162 3163 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, 3164 struct pp_hw_power_state *hw_ps) 3165 { 3166 return 0; 3167 } 3168 3169 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3170 struct pp_power_state *request_ps, 3171 const struct pp_power_state *current_ps) 3172 { 3173 struct amdgpu_device *adev = hwmgr->adev; 3174 struct vega10_power_state *vega10_ps = 3175 cast_phw_vega10_power_state(&request_ps->hardware); 3176 uint32_t sclk; 3177 uint32_t mclk; 3178 struct PP_Clocks minimum_clocks = {0}; 3179 bool disable_mclk_switching; 3180 bool disable_mclk_switching_for_frame_lock; 3181 bool disable_mclk_switching_for_vr; 3182 bool force_mclk_high; 3183 const struct phm_clock_and_voltage_limits *max_limits; 3184 uint32_t i; 3185 struct vega10_hwmgr *data = hwmgr->backend; 3186 struct phm_ppt_v2_information *table_info = 3187 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3188 int32_t count; 3189 uint32_t stable_pstate_sclk_dpm_percentage; 3190 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3191 uint32_t latency; 3192 3193 data->battery_state = (PP_StateUILabel_Battery == 3194 request_ps->classification.ui_label); 3195 3196 if (vega10_ps->performance_level_count != 2) 3197 pr_info("VI should always have 2 performance levels"); 3198 3199 max_limits = adev->pm.ac_power ? 3200 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3201 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3202 3203 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3204 if (!adev->pm.ac_power) { 3205 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3206 if (vega10_ps->performance_levels[i].mem_clock > 3207 max_limits->mclk) 3208 vega10_ps->performance_levels[i].mem_clock = 3209 max_limits->mclk; 3210 if (vega10_ps->performance_levels[i].gfx_clock > 3211 max_limits->sclk) 3212 vega10_ps->performance_levels[i].gfx_clock = 3213 max_limits->sclk; 3214 } 3215 } 3216 3217 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ 3218 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3219 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3220 3221 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3222 stable_pstate_sclk_dpm_percentage = 3223 data->registry_data.stable_pstate_sclk_dpm_percentage; 3224 PP_ASSERT_WITH_CODE( 3225 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && 3226 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, 3227 "percent sclk value must range from 1% to 100%, setting default value", 3228 stable_pstate_sclk_dpm_percentage = 75); 3229 3230 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3231 stable_pstate_sclk = (max_limits->sclk * 3232 stable_pstate_sclk_dpm_percentage) / 100; 3233 3234 for (count = table_info->vdd_dep_on_sclk->count - 1; 3235 count >= 0; count--) { 3236 if (stable_pstate_sclk >= 3237 table_info->vdd_dep_on_sclk->entries[count].clk) { 3238 stable_pstate_sclk = 3239 table_info->vdd_dep_on_sclk->entries[count].clk; 3240 break; 3241 } 3242 } 3243 3244 if (count < 0) 3245 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3246 3247 stable_pstate_mclk = max_limits->mclk; 3248 3249 minimum_clocks.engineClock = stable_pstate_sclk; 3250 minimum_clocks.memoryClock = stable_pstate_mclk; 3251 } 3252 3253 disable_mclk_switching_for_frame_lock = 3254 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3255 disable_mclk_switching_for_vr = 3256 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); 3257 force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); 3258 3259 if (hwmgr->display_config->num_display == 0) 3260 disable_mclk_switching = false; 3261 else 3262 disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && 3263 !hwmgr->display_config->multi_monitor_in_sync) || 3264 disable_mclk_switching_for_frame_lock || 3265 disable_mclk_switching_for_vr || 3266 force_mclk_high; 3267 3268 sclk = vega10_ps->performance_levels[0].gfx_clock; 3269 mclk = vega10_ps->performance_levels[0].mem_clock; 3270 3271 if (sclk < minimum_clocks.engineClock) 3272 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3273 max_limits->sclk : minimum_clocks.engineClock; 3274 3275 if (mclk < minimum_clocks.memoryClock) 3276 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3277 max_limits->mclk : minimum_clocks.memoryClock; 3278 3279 vega10_ps->performance_levels[0].gfx_clock = sclk; 3280 vega10_ps->performance_levels[0].mem_clock = mclk; 3281 3282 if (vega10_ps->performance_levels[1].gfx_clock < 3283 vega10_ps->performance_levels[0].gfx_clock) 3284 vega10_ps->performance_levels[0].gfx_clock = 3285 vega10_ps->performance_levels[1].gfx_clock; 3286 3287 if (disable_mclk_switching) { 3288 /* Set Mclk the max of level 0 and level 1 */ 3289 if (mclk < vega10_ps->performance_levels[1].mem_clock) 3290 mclk = vega10_ps->performance_levels[1].mem_clock; 3291 3292 /* Find the lowest MCLK frequency that is within 3293 * the tolerable latency defined in DAL 3294 */ 3295 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3296 for (i = 0; i < data->mclk_latency_table.count; i++) { 3297 if ((data->mclk_latency_table.entries[i].latency <= latency) && 3298 (data->mclk_latency_table.entries[i].frequency >= 3299 vega10_ps->performance_levels[0].mem_clock) && 3300 (data->mclk_latency_table.entries[i].frequency <= 3301 vega10_ps->performance_levels[1].mem_clock)) 3302 mclk = data->mclk_latency_table.entries[i].frequency; 3303 } 3304 vega10_ps->performance_levels[0].mem_clock = mclk; 3305 } else { 3306 if (vega10_ps->performance_levels[1].mem_clock < 3307 vega10_ps->performance_levels[0].mem_clock) 3308 vega10_ps->performance_levels[0].mem_clock = 3309 vega10_ps->performance_levels[1].mem_clock; 3310 } 3311 3312 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3313 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3314 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; 3315 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; 3316 } 3317 } 3318 3319 return 0; 3320 } 3321 3322 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 3323 { 3324 struct vega10_hwmgr *data = hwmgr->backend; 3325 const struct phm_set_power_state_input *states = 3326 (const struct phm_set_power_state_input *)input; 3327 const struct vega10_power_state *vega10_ps = 3328 cast_const_phw_vega10_power_state(states->pnew_state); 3329 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 3330 uint32_t sclk = vega10_ps->performance_levels 3331 [vega10_ps->performance_level_count - 1].gfx_clock; 3332 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 3333 uint32_t mclk = vega10_ps->performance_levels 3334 [vega10_ps->performance_level_count - 1].mem_clock; 3335 uint32_t i; 3336 3337 for (i = 0; i < sclk_table->count; i++) { 3338 if (sclk == sclk_table->dpm_levels[i].value) 3339 break; 3340 } 3341 3342 if (i >= sclk_table->count) { 3343 if (sclk > sclk_table->dpm_levels[i-1].value) { 3344 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 3345 sclk_table->dpm_levels[i-1].value = sclk; 3346 } 3347 } 3348 3349 for (i = 0; i < mclk_table->count; i++) { 3350 if (mclk == mclk_table->dpm_levels[i].value) 3351 break; 3352 } 3353 3354 if (i >= mclk_table->count) { 3355 if (mclk > mclk_table->dpm_levels[i-1].value) { 3356 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 3357 mclk_table->dpm_levels[i-1].value = mclk; 3358 } 3359 } 3360 3361 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 3362 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; 3363 3364 return 0; 3365 } 3366 3367 static int vega10_populate_and_upload_sclk_mclk_dpm_levels( 3368 struct pp_hwmgr *hwmgr, const void *input) 3369 { 3370 int result = 0; 3371 struct vega10_hwmgr *data = hwmgr->backend; 3372 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3373 struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; 3374 struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; 3375 int count; 3376 3377 if (!data->need_update_dpm_table) 3378 return 0; 3379 3380 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 3381 for (count = 0; count < dpm_table->gfx_table.count; count++) 3382 dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3383 } 3384 3385 odn_clk_table = &odn_table->vdd_dep_on_mclk; 3386 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 3387 for (count = 0; count < dpm_table->mem_table.count; count++) 3388 dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3389 } 3390 3391 if (data->need_update_dpm_table & 3392 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK + DPMTABLE_UPDATE_SOCCLK)) { 3393 result = vega10_populate_all_graphic_levels(hwmgr); 3394 PP_ASSERT_WITH_CODE((0 == result), 3395 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 3396 return result); 3397 } 3398 3399 if (data->need_update_dpm_table & 3400 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { 3401 result = vega10_populate_all_memory_levels(hwmgr); 3402 PP_ASSERT_WITH_CODE((0 == result), 3403 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 3404 return result); 3405 } 3406 3407 vega10_populate_vddc_soc_levels(hwmgr); 3408 3409 return result; 3410 } 3411 3412 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 3413 struct vega10_single_dpm_table *dpm_table, 3414 uint32_t low_limit, uint32_t high_limit) 3415 { 3416 uint32_t i; 3417 3418 for (i = 0; i < dpm_table->count; i++) { 3419 if ((dpm_table->dpm_levels[i].value < low_limit) || 3420 (dpm_table->dpm_levels[i].value > high_limit)) 3421 dpm_table->dpm_levels[i].enabled = false; 3422 else 3423 dpm_table->dpm_levels[i].enabled = true; 3424 } 3425 return 0; 3426 } 3427 3428 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, 3429 struct vega10_single_dpm_table *dpm_table, 3430 uint32_t low_limit, uint32_t high_limit, 3431 uint32_t disable_dpm_mask) 3432 { 3433 uint32_t i; 3434 3435 for (i = 0; i < dpm_table->count; i++) { 3436 if ((dpm_table->dpm_levels[i].value < low_limit) || 3437 (dpm_table->dpm_levels[i].value > high_limit)) 3438 dpm_table->dpm_levels[i].enabled = false; 3439 else if (!((1 << i) & disable_dpm_mask)) 3440 dpm_table->dpm_levels[i].enabled = false; 3441 else 3442 dpm_table->dpm_levels[i].enabled = true; 3443 } 3444 return 0; 3445 } 3446 3447 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, 3448 const struct vega10_power_state *vega10_ps) 3449 { 3450 struct vega10_hwmgr *data = hwmgr->backend; 3451 uint32_t high_limit_count; 3452 3453 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), 3454 "power state did not have any performance level", 3455 return -1); 3456 3457 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; 3458 3459 vega10_trim_single_dpm_states(hwmgr, 3460 &(data->dpm_table.soc_table), 3461 vega10_ps->performance_levels[0].soc_clock, 3462 vega10_ps->performance_levels[high_limit_count].soc_clock); 3463 3464 vega10_trim_single_dpm_states_with_mask(hwmgr, 3465 &(data->dpm_table.gfx_table), 3466 vega10_ps->performance_levels[0].gfx_clock, 3467 vega10_ps->performance_levels[high_limit_count].gfx_clock, 3468 data->disable_dpm_mask); 3469 3470 vega10_trim_single_dpm_states(hwmgr, 3471 &(data->dpm_table.mem_table), 3472 vega10_ps->performance_levels[0].mem_clock, 3473 vega10_ps->performance_levels[high_limit_count].mem_clock); 3474 3475 return 0; 3476 } 3477 3478 static uint32_t vega10_find_lowest_dpm_level( 3479 struct vega10_single_dpm_table *table) 3480 { 3481 uint32_t i; 3482 3483 for (i = 0; i < table->count; i++) { 3484 if (table->dpm_levels[i].enabled) 3485 break; 3486 } 3487 3488 return i; 3489 } 3490 3491 static uint32_t vega10_find_highest_dpm_level( 3492 struct vega10_single_dpm_table *table) 3493 { 3494 uint32_t i = 0; 3495 3496 if (table->count <= MAX_REGULAR_DPM_NUMBER) { 3497 for (i = table->count; i > 0; i--) { 3498 if (table->dpm_levels[i - 1].enabled) 3499 return i - 1; 3500 } 3501 } else { 3502 pr_info("DPM Table Has Too Many Entries!"); 3503 return MAX_REGULAR_DPM_NUMBER - 1; 3504 } 3505 3506 return i; 3507 } 3508 3509 static void vega10_apply_dal_minimum_voltage_request( 3510 struct pp_hwmgr *hwmgr) 3511 { 3512 return; 3513 } 3514 3515 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) 3516 { 3517 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; 3518 struct phm_ppt_v2_information *table_info = 3519 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3520 3521 vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; 3522 3523 return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; 3524 } 3525 3526 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) 3527 { 3528 struct vega10_hwmgr *data = hwmgr->backend; 3529 uint32_t socclk_idx; 3530 3531 vega10_apply_dal_minimum_voltage_request(hwmgr); 3532 3533 if (!data->registry_data.sclk_dpm_key_disabled) { 3534 if (data->smc_state_table.gfx_boot_level != 3535 data->dpm_table.gfx_table.dpm_state.soft_min_level) { 3536 smum_send_msg_to_smc_with_parameter(hwmgr, 3537 PPSMC_MSG_SetSoftMinGfxclkByIndex, 3538 data->smc_state_table.gfx_boot_level); 3539 3540 data->dpm_table.gfx_table.dpm_state.soft_min_level = 3541 data->smc_state_table.gfx_boot_level; 3542 } 3543 } 3544 3545 if (!data->registry_data.mclk_dpm_key_disabled) { 3546 if (data->smc_state_table.mem_boot_level != 3547 data->dpm_table.mem_table.dpm_state.soft_min_level) { 3548 if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) 3549 && hwmgr->not_vf) { 3550 socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); 3551 smum_send_msg_to_smc_with_parameter(hwmgr, 3552 PPSMC_MSG_SetSoftMinSocclkByIndex, 3553 socclk_idx); 3554 } else { 3555 smum_send_msg_to_smc_with_parameter(hwmgr, 3556 PPSMC_MSG_SetSoftMinUclkByIndex, 3557 data->smc_state_table.mem_boot_level); 3558 } 3559 data->dpm_table.mem_table.dpm_state.soft_min_level = 3560 data->smc_state_table.mem_boot_level; 3561 } 3562 } 3563 3564 if (!hwmgr->not_vf) 3565 return 0; 3566 3567 if (!data->registry_data.socclk_dpm_key_disabled) { 3568 if (data->smc_state_table.soc_boot_level != 3569 data->dpm_table.soc_table.dpm_state.soft_min_level) { 3570 smum_send_msg_to_smc_with_parameter(hwmgr, 3571 PPSMC_MSG_SetSoftMinSocclkByIndex, 3572 data->smc_state_table.soc_boot_level); 3573 data->dpm_table.soc_table.dpm_state.soft_min_level = 3574 data->smc_state_table.soc_boot_level; 3575 } 3576 } 3577 3578 return 0; 3579 } 3580 3581 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) 3582 { 3583 struct vega10_hwmgr *data = hwmgr->backend; 3584 3585 vega10_apply_dal_minimum_voltage_request(hwmgr); 3586 3587 if (!data->registry_data.sclk_dpm_key_disabled) { 3588 if (data->smc_state_table.gfx_max_level != 3589 data->dpm_table.gfx_table.dpm_state.soft_max_level) { 3590 smum_send_msg_to_smc_with_parameter(hwmgr, 3591 PPSMC_MSG_SetSoftMaxGfxclkByIndex, 3592 data->smc_state_table.gfx_max_level); 3593 data->dpm_table.gfx_table.dpm_state.soft_max_level = 3594 data->smc_state_table.gfx_max_level; 3595 } 3596 } 3597 3598 if (!data->registry_data.mclk_dpm_key_disabled) { 3599 if (data->smc_state_table.mem_max_level != 3600 data->dpm_table.mem_table.dpm_state.soft_max_level) { 3601 smum_send_msg_to_smc_with_parameter(hwmgr, 3602 PPSMC_MSG_SetSoftMaxUclkByIndex, 3603 data->smc_state_table.mem_max_level); 3604 data->dpm_table.mem_table.dpm_state.soft_max_level = 3605 data->smc_state_table.mem_max_level; 3606 } 3607 } 3608 3609 if (!hwmgr->not_vf) 3610 return 0; 3611 3612 if (!data->registry_data.socclk_dpm_key_disabled) { 3613 if (data->smc_state_table.soc_max_level != 3614 data->dpm_table.soc_table.dpm_state.soft_max_level) { 3615 smum_send_msg_to_smc_with_parameter(hwmgr, 3616 PPSMC_MSG_SetSoftMaxSocclkByIndex, 3617 data->smc_state_table.soc_max_level); 3618 data->dpm_table.soc_table.dpm_state.soft_max_level = 3619 data->smc_state_table.soc_max_level; 3620 } 3621 } 3622 3623 return 0; 3624 } 3625 3626 static int vega10_generate_dpm_level_enable_mask( 3627 struct pp_hwmgr *hwmgr, const void *input) 3628 { 3629 struct vega10_hwmgr *data = hwmgr->backend; 3630 const struct phm_set_power_state_input *states = 3631 (const struct phm_set_power_state_input *)input; 3632 const struct vega10_power_state *vega10_ps = 3633 cast_const_phw_vega10_power_state(states->pnew_state); 3634 int i; 3635 3636 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), 3637 "Attempt to Trim DPM States Failed!", 3638 return -1); 3639 3640 data->smc_state_table.gfx_boot_level = 3641 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 3642 data->smc_state_table.gfx_max_level = 3643 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 3644 data->smc_state_table.mem_boot_level = 3645 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 3646 data->smc_state_table.mem_max_level = 3647 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 3648 data->smc_state_table.soc_boot_level = 3649 vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); 3650 data->smc_state_table.soc_max_level = 3651 vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); 3652 3653 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 3654 "Attempt to upload DPM Bootup Levels Failed!", 3655 return -1); 3656 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 3657 "Attempt to upload DPM Max Levels Failed!", 3658 return -1); 3659 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) 3660 data->dpm_table.gfx_table.dpm_levels[i].enabled = true; 3661 3662 3663 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) 3664 data->dpm_table.mem_table.dpm_levels[i].enabled = true; 3665 3666 for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) 3667 data->dpm_table.soc_table.dpm_levels[i].enabled = true; 3668 3669 return 0; 3670 } 3671 3672 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) 3673 { 3674 struct vega10_hwmgr *data = hwmgr->backend; 3675 3676 if (data->smu_features[GNLD_DPM_VCE].supported) { 3677 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 3678 enable, 3679 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), 3680 "Attempt to Enable/Disable DPM VCE Failed!", 3681 return -1); 3682 data->smu_features[GNLD_DPM_VCE].enabled = enable; 3683 } 3684 3685 return 0; 3686 } 3687 3688 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) 3689 { 3690 struct vega10_hwmgr *data = hwmgr->backend; 3691 uint32_t low_sclk_interrupt_threshold = 0; 3692 3693 if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && 3694 (data->low_sclk_interrupt_threshold != 0)) { 3695 low_sclk_interrupt_threshold = 3696 data->low_sclk_interrupt_threshold; 3697 3698 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = 3699 cpu_to_le32(low_sclk_interrupt_threshold); 3700 3701 /* This message will also enable SmcToHost Interrupt */ 3702 smum_send_msg_to_smc_with_parameter(hwmgr, 3703 PPSMC_MSG_SetLowGfxclkInterruptThreshold, 3704 (uint32_t)low_sclk_interrupt_threshold); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, 3711 const void *input) 3712 { 3713 int tmp_result, result = 0; 3714 struct vega10_hwmgr *data = hwmgr->backend; 3715 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 3716 3717 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 3718 PP_ASSERT_WITH_CODE(!tmp_result, 3719 "Failed to find DPM states clocks in DPM table!", 3720 result = tmp_result); 3721 3722 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 3723 PP_ASSERT_WITH_CODE(!tmp_result, 3724 "Failed to populate and upload SCLK MCLK DPM levels!", 3725 result = tmp_result); 3726 3727 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); 3728 PP_ASSERT_WITH_CODE(!tmp_result, 3729 "Failed to generate DPM level enabled mask!", 3730 result = tmp_result); 3731 3732 tmp_result = vega10_update_sclk_threshold(hwmgr); 3733 PP_ASSERT_WITH_CODE(!tmp_result, 3734 "Failed to update SCLK threshold!", 3735 result = tmp_result); 3736 3737 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 3738 PP_ASSERT_WITH_CODE(!result, 3739 "Failed to upload PPtable!", return result); 3740 3741 /* 3742 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 3743 * That effectively disables AVFS feature. 3744 */ 3745 if(hwmgr->hardcode_pp_table != NULL) 3746 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 3747 3748 vega10_update_avfs(hwmgr); 3749 3750 /* 3751 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. 3752 * That will help to keep AVFS disabled. 3753 */ 3754 data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 3755 3756 return 0; 3757 } 3758 3759 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3760 { 3761 struct pp_power_state *ps; 3762 struct vega10_power_state *vega10_ps; 3763 3764 if (hwmgr == NULL) 3765 return -EINVAL; 3766 3767 ps = hwmgr->request_ps; 3768 3769 if (ps == NULL) 3770 return -EINVAL; 3771 3772 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3773 3774 if (low) 3775 return vega10_ps->performance_levels[0].gfx_clock; 3776 else 3777 return vega10_ps->performance_levels 3778 [vega10_ps->performance_level_count - 1].gfx_clock; 3779 } 3780 3781 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3782 { 3783 struct pp_power_state *ps; 3784 struct vega10_power_state *vega10_ps; 3785 3786 if (hwmgr == NULL) 3787 return -EINVAL; 3788 3789 ps = hwmgr->request_ps; 3790 3791 if (ps == NULL) 3792 return -EINVAL; 3793 3794 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3795 3796 if (low) 3797 return vega10_ps->performance_levels[0].mem_clock; 3798 else 3799 return vega10_ps->performance_levels 3800 [vega10_ps->performance_level_count-1].mem_clock; 3801 } 3802 3803 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, 3804 uint32_t *query) 3805 { 3806 uint32_t value; 3807 3808 if (!query) 3809 return -EINVAL; 3810 3811 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr); 3812 value = smum_get_argument(hwmgr); 3813 3814 /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ 3815 *query = value << 8; 3816 3817 return 0; 3818 } 3819 3820 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3821 void *value, int *size) 3822 { 3823 struct amdgpu_device *adev = hwmgr->adev; 3824 uint32_t sclk_mhz, mclk_idx, activity_percent = 0; 3825 struct vega10_hwmgr *data = hwmgr->backend; 3826 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3827 int ret = 0; 3828 uint32_t val_vid; 3829 3830 switch (idx) { 3831 case AMDGPU_PP_SENSOR_GFX_SCLK: 3832 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency); 3833 sclk_mhz = smum_get_argument(hwmgr); 3834 *((uint32_t *)value) = sclk_mhz * 100; 3835 break; 3836 case AMDGPU_PP_SENSOR_GFX_MCLK: 3837 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex); 3838 mclk_idx = smum_get_argument(hwmgr); 3839 if (mclk_idx < dpm_table->mem_table.count) { 3840 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; 3841 *size = 4; 3842 } else { 3843 ret = -EINVAL; 3844 } 3845 break; 3846 case AMDGPU_PP_SENSOR_GPU_LOAD: 3847 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0); 3848 activity_percent = smum_get_argument(hwmgr); 3849 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 3850 *size = 4; 3851 break; 3852 case AMDGPU_PP_SENSOR_GPU_TEMP: 3853 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); 3854 *size = 4; 3855 break; 3856 case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: 3857 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot); 3858 *((uint32_t *)value) = smum_get_argument(hwmgr) * 3859 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3860 *size = 4; 3861 break; 3862 case AMDGPU_PP_SENSOR_MEM_TEMP: 3863 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM); 3864 *((uint32_t *)value) = smum_get_argument(hwmgr) * 3865 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3866 *size = 4; 3867 break; 3868 case AMDGPU_PP_SENSOR_UVD_POWER: 3869 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 3870 *size = 4; 3871 break; 3872 case AMDGPU_PP_SENSOR_VCE_POWER: 3873 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 3874 *size = 4; 3875 break; 3876 case AMDGPU_PP_SENSOR_GPU_POWER: 3877 ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); 3878 break; 3879 case AMDGPU_PP_SENSOR_VDDGFX: 3880 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) & 3881 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >> 3882 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT; 3883 *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); 3884 return 0; 3885 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: 3886 ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); 3887 if (!ret) 3888 *size = 8; 3889 break; 3890 default: 3891 ret = -EINVAL; 3892 break; 3893 } 3894 3895 return ret; 3896 } 3897 3898 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, 3899 bool has_disp) 3900 { 3901 smum_send_msg_to_smc_with_parameter(hwmgr, 3902 PPSMC_MSG_SetUclkFastSwitch, 3903 has_disp ? 1 : 0); 3904 } 3905 3906 int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, 3907 struct pp_display_clock_request *clock_req) 3908 { 3909 int result = 0; 3910 enum amd_pp_clock_type clk_type = clock_req->clock_type; 3911 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; 3912 DSPCLK_e clk_select = 0; 3913 uint32_t clk_request = 0; 3914 3915 switch (clk_type) { 3916 case amd_pp_dcef_clock: 3917 clk_select = DSPCLK_DCEFCLK; 3918 break; 3919 case amd_pp_disp_clock: 3920 clk_select = DSPCLK_DISPCLK; 3921 break; 3922 case amd_pp_pixel_clock: 3923 clk_select = DSPCLK_PIXCLK; 3924 break; 3925 case amd_pp_phy_clock: 3926 clk_select = DSPCLK_PHYCLK; 3927 break; 3928 default: 3929 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); 3930 result = -1; 3931 break; 3932 } 3933 3934 if (!result) { 3935 clk_request = (clk_freq << 16) | clk_select; 3936 smum_send_msg_to_smc_with_parameter(hwmgr, 3937 PPSMC_MSG_RequestDisplayClockByFreq, 3938 clk_request); 3939 } 3940 3941 return result; 3942 } 3943 3944 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, 3945 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, 3946 uint32_t frequency) 3947 { 3948 uint8_t count; 3949 uint8_t i; 3950 3951 if (mclk_table == NULL || mclk_table->count == 0) 3952 return 0; 3953 3954 count = (uint8_t)(mclk_table->count); 3955 3956 for(i = 0; i < count; i++) { 3957 if(mclk_table->entries[i].clk >= frequency) 3958 return i; 3959 } 3960 3961 return i-1; 3962 } 3963 3964 static int vega10_notify_smc_display_config_after_ps_adjustment( 3965 struct pp_hwmgr *hwmgr) 3966 { 3967 struct vega10_hwmgr *data = hwmgr->backend; 3968 struct vega10_single_dpm_table *dpm_table = 3969 &data->dpm_table.dcef_table; 3970 struct phm_ppt_v2_information *table_info = 3971 (struct phm_ppt_v2_information *)hwmgr->pptable; 3972 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; 3973 uint32_t idx; 3974 struct PP_Clocks min_clocks = {0}; 3975 uint32_t i; 3976 struct pp_display_clock_request clock_req; 3977 3978 if ((hwmgr->display_config->num_display > 1) && 3979 !hwmgr->display_config->multi_monitor_in_sync && 3980 !hwmgr->display_config->nb_pstate_switch_disable) 3981 vega10_notify_smc_display_change(hwmgr, false); 3982 else 3983 vega10_notify_smc_display_change(hwmgr, true); 3984 3985 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; 3986 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; 3987 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3988 3989 for (i = 0; i < dpm_table->count; i++) { 3990 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) 3991 break; 3992 } 3993 3994 if (i < dpm_table->count) { 3995 clock_req.clock_type = amd_pp_dcef_clock; 3996 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; 3997 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { 3998 smum_send_msg_to_smc_with_parameter( 3999 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, 4000 min_clocks.dcefClockInSR / 100); 4001 } else { 4002 pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); 4003 } 4004 } else { 4005 pr_debug("Cannot find requested DCEFCLK!"); 4006 } 4007 4008 if (min_clocks.memoryClock != 0) { 4009 idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); 4010 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx); 4011 data->dpm_table.mem_table.dpm_state.soft_min_level= idx; 4012 } 4013 4014 return 0; 4015 } 4016 4017 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) 4018 { 4019 struct vega10_hwmgr *data = hwmgr->backend; 4020 4021 data->smc_state_table.gfx_boot_level = 4022 data->smc_state_table.gfx_max_level = 4023 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4024 data->smc_state_table.mem_boot_level = 4025 data->smc_state_table.mem_max_level = 4026 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4027 4028 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4029 "Failed to upload boot level to highest!", 4030 return -1); 4031 4032 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4033 "Failed to upload dpm max level to highest!", 4034 return -1); 4035 4036 return 0; 4037 } 4038 4039 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) 4040 { 4041 struct vega10_hwmgr *data = hwmgr->backend; 4042 4043 data->smc_state_table.gfx_boot_level = 4044 data->smc_state_table.gfx_max_level = 4045 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4046 data->smc_state_table.mem_boot_level = 4047 data->smc_state_table.mem_max_level = 4048 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4049 4050 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4051 "Failed to upload boot level to highest!", 4052 return -1); 4053 4054 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4055 "Failed to upload dpm max level to highest!", 4056 return -1); 4057 4058 return 0; 4059 4060 } 4061 4062 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 4063 { 4064 struct vega10_hwmgr *data = hwmgr->backend; 4065 4066 data->smc_state_table.gfx_boot_level = 4067 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4068 data->smc_state_table.gfx_max_level = 4069 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4070 data->smc_state_table.mem_boot_level = 4071 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4072 data->smc_state_table.mem_max_level = 4073 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4074 4075 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4076 "Failed to upload DPM Bootup Levels!", 4077 return -1); 4078 4079 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4080 "Failed to upload DPM Max Levels!", 4081 return -1); 4082 return 0; 4083 } 4084 4085 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 4086 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) 4087 { 4088 struct phm_ppt_v2_information *table_info = 4089 (struct phm_ppt_v2_information *)(hwmgr->pptable); 4090 4091 if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && 4092 table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && 4093 table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { 4094 *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; 4095 *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; 4096 *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; 4097 hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk; 4098 hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk; 4099 } 4100 4101 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 4102 *sclk_mask = 0; 4103 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { 4104 *mclk_mask = 0; 4105 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 4106 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 4107 * to level-4 due to the limited power 4108 */ 4109 if (hwmgr->pp_one_vf) 4110 *sclk_mask = 4; 4111 else 4112 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 4113 *soc_mask = table_info->vdd_dep_on_socclk->count - 1; 4114 *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; 4115 } 4116 4117 return 0; 4118 } 4119 4120 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 4121 { 4122 if (!hwmgr->not_vf) 4123 return; 4124 4125 switch (mode) { 4126 case AMD_FAN_CTRL_NONE: 4127 vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 4128 break; 4129 case AMD_FAN_CTRL_MANUAL: 4130 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4131 vega10_fan_ctrl_stop_smc_fan_control(hwmgr); 4132 break; 4133 case AMD_FAN_CTRL_AUTO: 4134 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4135 vega10_fan_ctrl_start_smc_fan_control(hwmgr); 4136 break; 4137 default: 4138 break; 4139 } 4140 } 4141 4142 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, 4143 enum pp_clock_type type, uint32_t mask) 4144 { 4145 struct vega10_hwmgr *data = hwmgr->backend; 4146 4147 switch (type) { 4148 case PP_SCLK: 4149 data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; 4150 data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; 4151 4152 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4153 "Failed to upload boot level to lowest!", 4154 return -EINVAL); 4155 4156 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4157 "Failed to upload dpm max level to highest!", 4158 return -EINVAL); 4159 break; 4160 4161 case PP_MCLK: 4162 data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; 4163 data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; 4164 4165 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4166 "Failed to upload boot level to lowest!", 4167 return -EINVAL); 4168 4169 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4170 "Failed to upload dpm max level to highest!", 4171 return -EINVAL); 4172 4173 break; 4174 4175 case PP_SOCCLK: 4176 data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; 4177 data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; 4178 4179 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4180 "Failed to upload boot level to lowest!", 4181 return -EINVAL); 4182 4183 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4184 "Failed to upload dpm max level to highest!", 4185 return -EINVAL); 4186 4187 break; 4188 4189 case PP_DCEFCLK: 4190 pr_info("Setting DCEFCLK min/max dpm level is not supported!\n"); 4191 break; 4192 4193 case PP_PCIE: 4194 default: 4195 break; 4196 } 4197 4198 return 0; 4199 } 4200 4201 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, 4202 enum amd_dpm_forced_level level) 4203 { 4204 int ret = 0; 4205 uint32_t sclk_mask = 0; 4206 uint32_t mclk_mask = 0; 4207 uint32_t soc_mask = 0; 4208 4209 if (hwmgr->pstate_sclk == 0) 4210 vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4211 4212 switch (level) { 4213 case AMD_DPM_FORCED_LEVEL_HIGH: 4214 ret = vega10_force_dpm_highest(hwmgr); 4215 break; 4216 case AMD_DPM_FORCED_LEVEL_LOW: 4217 ret = vega10_force_dpm_lowest(hwmgr); 4218 break; 4219 case AMD_DPM_FORCED_LEVEL_AUTO: 4220 ret = vega10_unforce_dpm_levels(hwmgr); 4221 break; 4222 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 4223 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 4224 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 4225 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 4226 ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4227 if (ret) 4228 return ret; 4229 vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 4230 vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 4231 break; 4232 case AMD_DPM_FORCED_LEVEL_MANUAL: 4233 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 4234 default: 4235 break; 4236 } 4237 4238 if (!hwmgr->not_vf) 4239 return ret; 4240 4241 if (!ret) { 4242 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4243 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); 4244 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4245 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); 4246 } 4247 4248 return ret; 4249 } 4250 4251 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) 4252 { 4253 struct vega10_hwmgr *data = hwmgr->backend; 4254 4255 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) 4256 return AMD_FAN_CTRL_MANUAL; 4257 else 4258 return AMD_FAN_CTRL_AUTO; 4259 } 4260 4261 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, 4262 struct amd_pp_simple_clock_info *info) 4263 { 4264 struct phm_ppt_v2_information *table_info = 4265 (struct phm_ppt_v2_information *)hwmgr->pptable; 4266 struct phm_clock_and_voltage_limits *max_limits = 4267 &table_info->max_clock_voltage_on_ac; 4268 4269 info->engine_max_clock = max_limits->sclk; 4270 info->memory_max_clock = max_limits->mclk; 4271 4272 return 0; 4273 } 4274 4275 static void vega10_get_sclks(struct pp_hwmgr *hwmgr, 4276 struct pp_clock_levels_with_latency *clocks) 4277 { 4278 struct phm_ppt_v2_information *table_info = 4279 (struct phm_ppt_v2_information *)hwmgr->pptable; 4280 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4281 table_info->vdd_dep_on_sclk; 4282 uint32_t i; 4283 4284 clocks->num_levels = 0; 4285 for (i = 0; i < dep_table->count; i++) { 4286 if (dep_table->entries[i].clk) { 4287 clocks->data[clocks->num_levels].clocks_in_khz = 4288 dep_table->entries[i].clk * 10; 4289 clocks->num_levels++; 4290 } 4291 } 4292 4293 } 4294 4295 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, 4296 struct pp_clock_levels_with_latency *clocks) 4297 { 4298 struct phm_ppt_v2_information *table_info = 4299 (struct phm_ppt_v2_information *)hwmgr->pptable; 4300 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4301 table_info->vdd_dep_on_mclk; 4302 struct vega10_hwmgr *data = hwmgr->backend; 4303 uint32_t j = 0; 4304 uint32_t i; 4305 4306 for (i = 0; i < dep_table->count; i++) { 4307 if (dep_table->entries[i].clk) { 4308 4309 clocks->data[j].clocks_in_khz = 4310 dep_table->entries[i].clk * 10; 4311 data->mclk_latency_table.entries[j].frequency = 4312 dep_table->entries[i].clk; 4313 clocks->data[j].latency_in_us = 4314 data->mclk_latency_table.entries[j].latency = 25; 4315 j++; 4316 } 4317 } 4318 clocks->num_levels = data->mclk_latency_table.count = j; 4319 } 4320 4321 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, 4322 struct pp_clock_levels_with_latency *clocks) 4323 { 4324 struct phm_ppt_v2_information *table_info = 4325 (struct phm_ppt_v2_information *)hwmgr->pptable; 4326 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4327 table_info->vdd_dep_on_dcefclk; 4328 uint32_t i; 4329 4330 for (i = 0; i < dep_table->count; i++) { 4331 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4332 clocks->data[i].latency_in_us = 0; 4333 clocks->num_levels++; 4334 } 4335 } 4336 4337 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, 4338 struct pp_clock_levels_with_latency *clocks) 4339 { 4340 struct phm_ppt_v2_information *table_info = 4341 (struct phm_ppt_v2_information *)hwmgr->pptable; 4342 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4343 table_info->vdd_dep_on_socclk; 4344 uint32_t i; 4345 4346 for (i = 0; i < dep_table->count; i++) { 4347 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4348 clocks->data[i].latency_in_us = 0; 4349 clocks->num_levels++; 4350 } 4351 } 4352 4353 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 4354 enum amd_pp_clock_type type, 4355 struct pp_clock_levels_with_latency *clocks) 4356 { 4357 switch (type) { 4358 case amd_pp_sys_clock: 4359 vega10_get_sclks(hwmgr, clocks); 4360 break; 4361 case amd_pp_mem_clock: 4362 vega10_get_memclocks(hwmgr, clocks); 4363 break; 4364 case amd_pp_dcef_clock: 4365 vega10_get_dcefclocks(hwmgr, clocks); 4366 break; 4367 case amd_pp_soc_clock: 4368 vega10_get_socclocks(hwmgr, clocks); 4369 break; 4370 default: 4371 return -1; 4372 } 4373 4374 return 0; 4375 } 4376 4377 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, 4378 enum amd_pp_clock_type type, 4379 struct pp_clock_levels_with_voltage *clocks) 4380 { 4381 struct phm_ppt_v2_information *table_info = 4382 (struct phm_ppt_v2_information *)hwmgr->pptable; 4383 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 4384 uint32_t i; 4385 4386 switch (type) { 4387 case amd_pp_mem_clock: 4388 dep_table = table_info->vdd_dep_on_mclk; 4389 break; 4390 case amd_pp_dcef_clock: 4391 dep_table = table_info->vdd_dep_on_dcefclk; 4392 break; 4393 case amd_pp_disp_clock: 4394 dep_table = table_info->vdd_dep_on_dispclk; 4395 break; 4396 case amd_pp_pixel_clock: 4397 dep_table = table_info->vdd_dep_on_pixclk; 4398 break; 4399 case amd_pp_phy_clock: 4400 dep_table = table_info->vdd_dep_on_phyclk; 4401 break; 4402 default: 4403 return -1; 4404 } 4405 4406 for (i = 0; i < dep_table->count; i++) { 4407 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4408 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> 4409 entries[dep_table->entries[i].vddInd].us_vdd); 4410 clocks->num_levels++; 4411 } 4412 4413 if (i < dep_table->count) 4414 return -1; 4415 4416 return 0; 4417 } 4418 4419 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 4420 void *clock_range) 4421 { 4422 struct vega10_hwmgr *data = hwmgr->backend; 4423 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; 4424 Watermarks_t *table = &(data->smc_state_table.water_marks_table); 4425 4426 if (!data->registry_data.disable_water_mark) { 4427 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); 4428 data->water_marks_bitmap = WaterMarksExist; 4429 } 4430 4431 return 0; 4432 } 4433 4434 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) 4435 { 4436 static const char *ppfeature_name[] = { 4437 "DPM_PREFETCHER", 4438 "GFXCLK_DPM", 4439 "UCLK_DPM", 4440 "SOCCLK_DPM", 4441 "UVD_DPM", 4442 "VCE_DPM", 4443 "ULV", 4444 "MP0CLK_DPM", 4445 "LINK_DPM", 4446 "DCEFCLK_DPM", 4447 "AVFS", 4448 "GFXCLK_DS", 4449 "SOCCLK_DS", 4450 "LCLK_DS", 4451 "PPT", 4452 "TDC", 4453 "THERMAL", 4454 "GFX_PER_CU_CG", 4455 "RM", 4456 "DCEFCLK_DS", 4457 "ACDC", 4458 "VR0HOT", 4459 "VR1HOT", 4460 "FW_CTF", 4461 "LED_DISPLAY", 4462 "FAN_CONTROL", 4463 "FAST_PPT", 4464 "DIDT", 4465 "ACG", 4466 "PCC_LIMIT"}; 4467 static const char *output_title[] = { 4468 "FEATURES", 4469 "BITMASK", 4470 "ENABLEMENT"}; 4471 uint64_t features_enabled; 4472 int i; 4473 int ret = 0; 4474 int size = 0; 4475 4476 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4477 PP_ASSERT_WITH_CODE(!ret, 4478 "[EnableAllSmuFeatures] Failed to get enabled smc features!", 4479 return ret); 4480 4481 size += sprintf(buf + size, "Current ppfeatures: 0x%016"PRIx64"\n", features_enabled); 4482 size += sprintf(buf + size, "%-19s %-22s %s\n", 4483 output_title[0], 4484 output_title[1], 4485 output_title[2]); 4486 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 4487 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", 4488 ppfeature_name[i], 4489 1ULL << i, 4490 (features_enabled & (1ULL << i)) ? "Y" : "N"); 4491 } 4492 4493 return size; 4494 } 4495 4496 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) 4497 { 4498 uint64_t features_enabled; 4499 uint64_t features_to_enable; 4500 uint64_t features_to_disable; 4501 int ret = 0; 4502 4503 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) 4504 return -EINVAL; 4505 4506 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4507 if (ret) 4508 return ret; 4509 4510 features_to_disable = 4511 features_enabled & ~new_ppfeature_masks; 4512 features_to_enable = 4513 ~features_enabled & new_ppfeature_masks; 4514 4515 pr_debug("features_to_disable 0x%"PRIx64"\n", features_to_disable); 4516 pr_debug("features_to_enable 0x%"PRIx64"\n", features_to_enable); 4517 4518 if (features_to_disable) { 4519 ret = vega10_enable_smc_features(hwmgr, false, features_to_disable); 4520 if (ret) 4521 return ret; 4522 } 4523 4524 if (features_to_enable) { 4525 ret = vega10_enable_smc_features(hwmgr, true, features_to_enable); 4526 if (ret) 4527 return ret; 4528 } 4529 4530 return 0; 4531 } 4532 4533 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, 4534 enum pp_clock_type type, char *buf) 4535 { 4536 struct vega10_hwmgr *data = hwmgr->backend; 4537 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4538 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4539 struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); 4540 struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); 4541 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); 4542 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; 4543 4544 int i, now, size = 0, count = 0; 4545 4546 switch (type) { 4547 case PP_SCLK: 4548 if (data->registry_data.sclk_dpm_key_disabled) 4549 break; 4550 4551 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex); 4552 now = smum_get_argument(hwmgr); 4553 4554 if (hwmgr->pp_one_vf && 4555 (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) 4556 count = 5; 4557 else 4558 count = sclk_table->count; 4559 for (i = 0; i < count; i++) 4560 size += sprintf(buf + size, "%d: %uMhz %s\n", 4561 i, sclk_table->dpm_levels[i].value / 100, 4562 (i == now) ? "*" : ""); 4563 break; 4564 case PP_MCLK: 4565 if (data->registry_data.mclk_dpm_key_disabled) 4566 break; 4567 4568 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex); 4569 now = smum_get_argument(hwmgr); 4570 4571 for (i = 0; i < mclk_table->count; i++) 4572 size += sprintf(buf + size, "%d: %uMhz %s\n", 4573 i, mclk_table->dpm_levels[i].value / 100, 4574 (i == now) ? "*" : ""); 4575 break; 4576 case PP_SOCCLK: 4577 if (data->registry_data.socclk_dpm_key_disabled) 4578 break; 4579 4580 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex); 4581 now = smum_get_argument(hwmgr); 4582 4583 for (i = 0; i < soc_table->count; i++) 4584 size += sprintf(buf + size, "%d: %uMhz %s\n", 4585 i, soc_table->dpm_levels[i].value / 100, 4586 (i == now) ? "*" : ""); 4587 break; 4588 case PP_DCEFCLK: 4589 if (data->registry_data.dcefclk_dpm_key_disabled) 4590 break; 4591 4592 smum_send_msg_to_smc_with_parameter(hwmgr, 4593 PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK); 4594 now = smum_get_argument(hwmgr); 4595 4596 for (i = 0; i < dcef_table->count; i++) 4597 size += sprintf(buf + size, "%d: %uMhz %s\n", 4598 i, dcef_table->dpm_levels[i].value / 100, 4599 (dcef_table->dpm_levels[i].value / 100 == now) ? 4600 "*" : ""); 4601 break; 4602 case PP_PCIE: 4603 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex); 4604 now = smum_get_argument(hwmgr); 4605 4606 for (i = 0; i < pcie_table->count; i++) 4607 size += sprintf(buf + size, "%d: %s %s\n", i, 4608 (pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" : 4609 (pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" : 4610 (pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "", 4611 (i == now) ? "*" : ""); 4612 break; 4613 case OD_SCLK: 4614 if (hwmgr->od_enabled) { 4615 size = sprintf(buf, "%s:\n", "OD_SCLK"); 4616 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 4617 for (i = 0; i < podn_vdd_dep->count; i++) 4618 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4619 i, podn_vdd_dep->entries[i].clk / 100, 4620 podn_vdd_dep->entries[i].vddc); 4621 } 4622 break; 4623 case OD_MCLK: 4624 if (hwmgr->od_enabled) { 4625 size = sprintf(buf, "%s:\n", "OD_MCLK"); 4626 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 4627 for (i = 0; i < podn_vdd_dep->count; i++) 4628 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4629 i, podn_vdd_dep->entries[i].clk/100, 4630 podn_vdd_dep->entries[i].vddc); 4631 } 4632 break; 4633 case OD_RANGE: 4634 if (hwmgr->od_enabled) { 4635 size = sprintf(buf, "%s:\n", "OD_RANGE"); 4636 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 4637 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, 4638 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 4639 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 4640 data->golden_dpm_table.mem_table.dpm_levels[0].value/100, 4641 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 4642 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 4643 data->odn_dpm_table.min_vddc, 4644 data->odn_dpm_table.max_vddc); 4645 } 4646 break; 4647 default: 4648 break; 4649 } 4650 return size; 4651 } 4652 4653 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4654 { 4655 struct vega10_hwmgr *data = hwmgr->backend; 4656 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); 4657 int result = 0; 4658 4659 if ((data->water_marks_bitmap & WaterMarksExist) && 4660 !(data->water_marks_bitmap & WaterMarksLoaded)) { 4661 result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false); 4662 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL); 4663 data->water_marks_bitmap |= WaterMarksLoaded; 4664 } 4665 4666 if (data->water_marks_bitmap & WaterMarksLoaded) { 4667 smum_send_msg_to_smc_with_parameter(hwmgr, 4668 PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display); 4669 } 4670 4671 return result; 4672 } 4673 4674 int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) 4675 { 4676 struct vega10_hwmgr *data = hwmgr->backend; 4677 4678 if (data->smu_features[GNLD_DPM_UVD].supported) { 4679 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 4680 enable, 4681 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), 4682 "Attempt to Enable/Disable DPM UVD Failed!", 4683 return -1); 4684 data->smu_features[GNLD_DPM_UVD].enabled = enable; 4685 } 4686 return 0; 4687 } 4688 4689 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) 4690 { 4691 struct vega10_hwmgr *data = hwmgr->backend; 4692 4693 data->vce_power_gated = bgate; 4694 vega10_enable_disable_vce_dpm(hwmgr, !bgate); 4695 } 4696 4697 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) 4698 { 4699 struct vega10_hwmgr *data = hwmgr->backend; 4700 4701 data->uvd_power_gated = bgate; 4702 vega10_enable_disable_uvd_dpm(hwmgr, !bgate); 4703 } 4704 4705 static inline bool vega10_are_power_levels_equal( 4706 const struct vega10_performance_level *pl1, 4707 const struct vega10_performance_level *pl2) 4708 { 4709 return ((pl1->soc_clock == pl2->soc_clock) && 4710 (pl1->gfx_clock == pl2->gfx_clock) && 4711 (pl1->mem_clock == pl2->mem_clock)); 4712 } 4713 4714 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, 4715 const struct pp_hw_power_state *pstate1, 4716 const struct pp_hw_power_state *pstate2, bool *equal) 4717 { 4718 const struct vega10_power_state *psa; 4719 const struct vega10_power_state *psb; 4720 int i; 4721 4722 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4723 return -EINVAL; 4724 4725 psa = cast_const_phw_vega10_power_state(pstate1); 4726 psb = cast_const_phw_vega10_power_state(pstate2); 4727 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4728 if (psa->performance_level_count != psb->performance_level_count) { 4729 *equal = false; 4730 return 0; 4731 } 4732 4733 for (i = 0; i < psa->performance_level_count; i++) { 4734 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4735 /* If we have found even one performance level pair that is different the states are different. */ 4736 *equal = false; 4737 return 0; 4738 } 4739 } 4740 4741 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4742 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4743 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4744 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4745 4746 return 0; 4747 } 4748 4749 static bool 4750 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4751 { 4752 struct vega10_hwmgr *data = hwmgr->backend; 4753 bool is_update_required = false; 4754 4755 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4756 is_update_required = true; 4757 4758 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { 4759 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) 4760 is_update_required = true; 4761 } 4762 4763 return is_update_required; 4764 } 4765 4766 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 4767 { 4768 int tmp_result, result = 0; 4769 4770 if (!hwmgr->not_vf) 4771 return 0; 4772 4773 if (PP_CAP(PHM_PlatformCaps_ThermalController)) 4774 vega10_disable_thermal_protection(hwmgr); 4775 4776 tmp_result = vega10_disable_power_containment(hwmgr); 4777 PP_ASSERT_WITH_CODE((tmp_result == 0), 4778 "Failed to disable power containment!", result = tmp_result); 4779 4780 tmp_result = vega10_disable_didt_config(hwmgr); 4781 PP_ASSERT_WITH_CODE((tmp_result == 0), 4782 "Failed to disable didt config!", result = tmp_result); 4783 4784 tmp_result = vega10_avfs_enable(hwmgr, false); 4785 PP_ASSERT_WITH_CODE((tmp_result == 0), 4786 "Failed to disable AVFS!", result = tmp_result); 4787 4788 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); 4789 PP_ASSERT_WITH_CODE((tmp_result == 0), 4790 "Failed to stop DPM!", result = tmp_result); 4791 4792 tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); 4793 PP_ASSERT_WITH_CODE((tmp_result == 0), 4794 "Failed to disable deep sleep!", result = tmp_result); 4795 4796 tmp_result = vega10_disable_ulv(hwmgr); 4797 PP_ASSERT_WITH_CODE((tmp_result == 0), 4798 "Failed to disable ulv!", result = tmp_result); 4799 4800 tmp_result = vega10_acg_disable(hwmgr); 4801 PP_ASSERT_WITH_CODE((tmp_result == 0), 4802 "Failed to disable acg!", result = tmp_result); 4803 4804 vega10_enable_disable_PCC_limit_feature(hwmgr, false); 4805 return result; 4806 } 4807 4808 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) 4809 { 4810 struct vega10_hwmgr *data = hwmgr->backend; 4811 int result; 4812 4813 result = vega10_disable_dpm_tasks(hwmgr); 4814 PP_ASSERT_WITH_CODE((0 == result), 4815 "[disable_dpm_tasks] Failed to disable DPM!", 4816 ); 4817 data->water_marks_bitmap &= ~(WaterMarksLoaded); 4818 4819 return result; 4820 } 4821 4822 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) 4823 { 4824 struct vega10_hwmgr *data = hwmgr->backend; 4825 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4826 struct vega10_single_dpm_table *golden_sclk_table = 4827 &(data->golden_dpm_table.gfx_table); 4828 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 4829 int golden_value = golden_sclk_table->dpm_levels 4830 [golden_sclk_table->count - 1].value; 4831 4832 value -= golden_value; 4833 value = DIV_ROUND_UP(value * 100, golden_value); 4834 4835 return value; 4836 } 4837 4838 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4839 { 4840 struct vega10_hwmgr *data = hwmgr->backend; 4841 struct vega10_single_dpm_table *golden_sclk_table = 4842 &(data->golden_dpm_table.gfx_table); 4843 struct pp_power_state *ps; 4844 struct vega10_power_state *vega10_ps; 4845 4846 ps = hwmgr->request_ps; 4847 4848 if (ps == NULL) 4849 return -EINVAL; 4850 4851 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 4852 4853 vega10_ps->performance_levels 4854 [vega10_ps->performance_level_count - 1].gfx_clock = 4855 golden_sclk_table->dpm_levels 4856 [golden_sclk_table->count - 1].value * 4857 value / 100 + 4858 golden_sclk_table->dpm_levels 4859 [golden_sclk_table->count - 1].value; 4860 4861 if (vega10_ps->performance_levels 4862 [vega10_ps->performance_level_count - 1].gfx_clock > 4863 hwmgr->platform_descriptor.overdriveLimit.engineClock) { 4864 vega10_ps->performance_levels 4865 [vega10_ps->performance_level_count - 1].gfx_clock = 4866 hwmgr->platform_descriptor.overdriveLimit.engineClock; 4867 pr_warn("max sclk supported by vbios is %d\n", 4868 hwmgr->platform_descriptor.overdriveLimit.engineClock); 4869 } 4870 return 0; 4871 } 4872 4873 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) 4874 { 4875 struct vega10_hwmgr *data = hwmgr->backend; 4876 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4877 struct vega10_single_dpm_table *golden_mclk_table = 4878 &(data->golden_dpm_table.mem_table); 4879 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 4880 int golden_value = golden_mclk_table->dpm_levels 4881 [golden_mclk_table->count - 1].value; 4882 4883 value -= golden_value; 4884 value = DIV_ROUND_UP(value * 100, golden_value); 4885 4886 return value; 4887 } 4888 4889 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4890 { 4891 struct vega10_hwmgr *data = hwmgr->backend; 4892 struct vega10_single_dpm_table *golden_mclk_table = 4893 &(data->golden_dpm_table.mem_table); 4894 struct pp_power_state *ps; 4895 struct vega10_power_state *vega10_ps; 4896 4897 ps = hwmgr->request_ps; 4898 4899 if (ps == NULL) 4900 return -EINVAL; 4901 4902 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 4903 4904 vega10_ps->performance_levels 4905 [vega10_ps->performance_level_count - 1].mem_clock = 4906 golden_mclk_table->dpm_levels 4907 [golden_mclk_table->count - 1].value * 4908 value / 100 + 4909 golden_mclk_table->dpm_levels 4910 [golden_mclk_table->count - 1].value; 4911 4912 if (vega10_ps->performance_levels 4913 [vega10_ps->performance_level_count - 1].mem_clock > 4914 hwmgr->platform_descriptor.overdriveLimit.memoryClock) { 4915 vega10_ps->performance_levels 4916 [vega10_ps->performance_level_count - 1].mem_clock = 4917 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 4918 pr_warn("max mclk supported by vbios is %d\n", 4919 hwmgr->platform_descriptor.overdriveLimit.memoryClock); 4920 } 4921 4922 return 0; 4923 } 4924 4925 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 4926 uint32_t virtual_addr_low, 4927 uint32_t virtual_addr_hi, 4928 uint32_t mc_addr_low, 4929 uint32_t mc_addr_hi, 4930 uint32_t size) 4931 { 4932 smum_send_msg_to_smc_with_parameter(hwmgr, 4933 PPSMC_MSG_SetSystemVirtualDramAddrHigh, 4934 virtual_addr_hi); 4935 smum_send_msg_to_smc_with_parameter(hwmgr, 4936 PPSMC_MSG_SetSystemVirtualDramAddrLow, 4937 virtual_addr_low); 4938 smum_send_msg_to_smc_with_parameter(hwmgr, 4939 PPSMC_MSG_DramLogSetDramAddrHigh, 4940 mc_addr_hi); 4941 4942 smum_send_msg_to_smc_with_parameter(hwmgr, 4943 PPSMC_MSG_DramLogSetDramAddrLow, 4944 mc_addr_low); 4945 4946 smum_send_msg_to_smc_with_parameter(hwmgr, 4947 PPSMC_MSG_DramLogSetDramSize, 4948 size); 4949 return 0; 4950 } 4951 4952 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 4953 struct PP_TemperatureRange *thermal_data) 4954 { 4955 struct vega10_hwmgr *data = hwmgr->backend; 4956 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 4957 4958 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); 4959 4960 thermal_data->max = pp_table->TedgeLimit * 4961 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4962 thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * 4963 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4964 thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * 4965 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4966 thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * 4967 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4968 thermal_data->mem_crit_max = pp_table->ThbmLimit * 4969 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4970 thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* 4971 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4972 4973 return 0; 4974 } 4975 4976 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 4977 { 4978 struct vega10_hwmgr *data = hwmgr->backend; 4979 uint32_t i, size = 0; 4980 static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, 4981 {70, 60, 1, 3,}, 4982 {90, 60, 0, 0,}, 4983 {70, 60, 0, 0,}, 4984 {70, 90, 0, 0,}, 4985 {30, 60, 0, 6,}, 4986 }; 4987 static const char *profile_name[7] = {"BOOTUP_DEFAULT", 4988 "3D_FULL_SCREEN", 4989 "POWER_SAVING", 4990 "VIDEO", 4991 "VR", 4992 "COMPUTE", 4993 "CUSTOM"}; 4994 static const char *title[6] = {"NUM", 4995 "MODE_NAME", 4996 "BUSY_SET_POINT", 4997 "FPS", 4998 "USE_RLC_BUSY", 4999 "MIN_ACTIVE_LEVEL"}; 5000 5001 if (!buf) 5002 return -EINVAL; 5003 5004 size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0], 5005 title[1], title[2], title[3], title[4], title[5]); 5006 5007 for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) 5008 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", 5009 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5010 profile_mode_setting[i][0], profile_mode_setting[i][1], 5011 profile_mode_setting[i][2], profile_mode_setting[i][3]); 5012 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i, 5013 profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5014 data->custom_profile_mode[0], data->custom_profile_mode[1], 5015 data->custom_profile_mode[2], data->custom_profile_mode[3]); 5016 return size; 5017 } 5018 5019 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5020 { 5021 struct vega10_hwmgr *data = hwmgr->backend; 5022 uint8_t busy_set_point; 5023 uint8_t FPS; 5024 uint8_t use_rlc_busy; 5025 uint8_t min_active_level; 5026 uint32_t power_profile_mode = input[size]; 5027 5028 if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { 5029 if (size != 0 && size != 4) 5030 return -EINVAL; 5031 5032 /* If size = 0 and the CUSTOM profile has been set already 5033 * then just apply the profile. The copy stored in the hwmgr 5034 * is zeroed out on init 5035 */ 5036 if (size == 0) { 5037 if (data->custom_profile_mode[0] != 0) 5038 goto out; 5039 else 5040 return -EINVAL; 5041 } 5042 5043 data->custom_profile_mode[0] = busy_set_point = input[0]; 5044 data->custom_profile_mode[1] = FPS = input[1]; 5045 data->custom_profile_mode[2] = use_rlc_busy = input[2]; 5046 data->custom_profile_mode[3] = min_active_level = input[3]; 5047 smum_send_msg_to_smc_with_parameter(hwmgr, 5048 PPSMC_MSG_SetCustomGfxDpmParameters, 5049 busy_set_point | FPS<<8 | 5050 use_rlc_busy << 16 | min_active_level<<24); 5051 } 5052 5053 out: 5054 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 5055 1 << power_profile_mode); 5056 hwmgr->power_profile_mode = power_profile_mode; 5057 5058 return 0; 5059 } 5060 5061 5062 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5063 enum PP_OD_DPM_TABLE_COMMAND type, 5064 uint32_t clk, 5065 uint32_t voltage) 5066 { 5067 struct vega10_hwmgr *data = hwmgr->backend; 5068 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 5069 struct vega10_single_dpm_table *golden_table; 5070 5071 if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { 5072 pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc); 5073 return false; 5074 } 5075 5076 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5077 golden_table = &(data->golden_dpm_table.gfx_table); 5078 if (golden_table->dpm_levels[0].value > clk || 5079 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5080 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5081 golden_table->dpm_levels[0].value/100, 5082 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5083 return false; 5084 } 5085 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5086 golden_table = &(data->golden_dpm_table.mem_table); 5087 if (golden_table->dpm_levels[0].value > clk || 5088 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5089 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5090 golden_table->dpm_levels[0].value/100, 5091 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5092 return false; 5093 } 5094 } else { 5095 return false; 5096 } 5097 5098 return true; 5099 } 5100 5101 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) 5102 { 5103 struct vega10_hwmgr *data = hwmgr->backend; 5104 struct pp_power_state *ps = hwmgr->request_ps; 5105 struct vega10_power_state *vega10_ps; 5106 struct vega10_single_dpm_table *gfx_dpm_table = 5107 &data->dpm_table.gfx_table; 5108 struct vega10_single_dpm_table *soc_dpm_table = 5109 &data->dpm_table.soc_table; 5110 struct vega10_single_dpm_table *mem_dpm_table = 5111 &data->dpm_table.mem_table; 5112 int max_level; 5113 5114 if (!ps) 5115 return; 5116 5117 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5118 max_level = vega10_ps->performance_level_count - 1; 5119 5120 if (vega10_ps->performance_levels[max_level].gfx_clock != 5121 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5122 vega10_ps->performance_levels[max_level].gfx_clock = 5123 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5124 5125 if (vega10_ps->performance_levels[max_level].soc_clock != 5126 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5127 vega10_ps->performance_levels[max_level].soc_clock = 5128 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5129 5130 if (vega10_ps->performance_levels[max_level].mem_clock != 5131 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5132 vega10_ps->performance_levels[max_level].mem_clock = 5133 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5134 5135 if (!hwmgr->ps) 5136 return; 5137 5138 ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); 5139 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5140 max_level = vega10_ps->performance_level_count - 1; 5141 5142 if (vega10_ps->performance_levels[max_level].gfx_clock != 5143 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5144 vega10_ps->performance_levels[max_level].gfx_clock = 5145 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5146 5147 if (vega10_ps->performance_levels[max_level].soc_clock != 5148 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5149 vega10_ps->performance_levels[max_level].soc_clock = 5150 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5151 5152 if (vega10_ps->performance_levels[max_level].mem_clock != 5153 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5154 vega10_ps->performance_levels[max_level].mem_clock = 5155 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5156 } 5157 5158 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, 5159 enum PP_OD_DPM_TABLE_COMMAND type) 5160 { 5161 struct vega10_hwmgr *data = hwmgr->backend; 5162 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 5163 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; 5164 struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; 5165 5166 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = 5167 &data->odn_dpm_table.vdd_dep_on_socclk; 5168 struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; 5169 5170 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; 5171 uint8_t i, j; 5172 5173 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5174 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 5175 for (i = 0; i < podn_vdd_dep->count; i++) 5176 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; 5177 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5178 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 5179 for (i = 0; i < dpm_table->count; i++) { 5180 for (j = 0; j < od_vddc_lookup_table->count; j++) { 5181 if (od_vddc_lookup_table->entries[j].us_vdd > 5182 podn_vdd_dep->entries[i].vddc) 5183 break; 5184 } 5185 if (j == od_vddc_lookup_table->count) { 5186 j = od_vddc_lookup_table->count - 1; 5187 od_vddc_lookup_table->entries[j].us_vdd = 5188 podn_vdd_dep->entries[i].vddc; 5189 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 5190 } 5191 podn_vdd_dep->entries[i].vddInd = j; 5192 } 5193 dpm_table = &data->dpm_table.soc_table; 5194 for (i = 0; i < dep_table->count; i++) { 5195 if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && 5196 dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { 5197 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5198 for (; (i < dep_table->count) && 5199 (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { 5200 podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; 5201 dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; 5202 } 5203 break; 5204 } else { 5205 dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; 5206 podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; 5207 podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; 5208 podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; 5209 } 5210 } 5211 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < 5212 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { 5213 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5214 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = 5215 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5216 dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = 5217 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5218 } 5219 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < 5220 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { 5221 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5222 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = 5223 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; 5224 } 5225 } 5226 vega10_odn_update_power_state(hwmgr); 5227 } 5228 5229 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5230 enum PP_OD_DPM_TABLE_COMMAND type, 5231 long *input, uint32_t size) 5232 { 5233 struct vega10_hwmgr *data = hwmgr->backend; 5234 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; 5235 struct vega10_single_dpm_table *dpm_table; 5236 5237 uint32_t input_clk; 5238 uint32_t input_vol; 5239 uint32_t input_level; 5240 uint32_t i; 5241 5242 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5243 return -EINVAL); 5244 5245 if (!hwmgr->od_enabled) { 5246 pr_info("OverDrive feature not enabled\n"); 5247 return -EINVAL; 5248 } 5249 5250 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5251 dpm_table = &data->dpm_table.gfx_table; 5252 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; 5253 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 5254 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5255 dpm_table = &data->dpm_table.mem_table; 5256 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; 5257 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 5258 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5259 memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table)); 5260 vega10_odn_initial_default_setting(hwmgr); 5261 vega10_odn_update_power_state(hwmgr); 5262 /* force to update all clock tables */ 5263 data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK | 5264 DPMTABLE_UPDATE_MCLK | 5265 DPMTABLE_UPDATE_SOCCLK; 5266 return 0; 5267 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5268 vega10_check_dpm_table_updated(hwmgr); 5269 return 0; 5270 } else { 5271 return -EINVAL; 5272 } 5273 5274 for (i = 0; i < size; i += 3) { 5275 if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { 5276 pr_info("invalid clock voltage input\n"); 5277 return 0; 5278 } 5279 input_level = input[i]; 5280 input_clk = input[i+1] * 100; 5281 input_vol = input[i+2]; 5282 5283 if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5284 dpm_table->dpm_levels[input_level].value = input_clk; 5285 podn_vdd_dep_table->entries[input_level].clk = input_clk; 5286 podn_vdd_dep_table->entries[input_level].vddc = input_vol; 5287 } else { 5288 return -EINVAL; 5289 } 5290 } 5291 vega10_odn_update_soc_table(hwmgr, type); 5292 return 0; 5293 } 5294 5295 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, 5296 enum pp_mp1_state mp1_state) 5297 { 5298 uint16_t msg; 5299 int ret; 5300 5301 switch (mp1_state) { 5302 case PP_MP1_STATE_UNLOAD: 5303 msg = PPSMC_MSG_PrepareMp1ForUnload; 5304 break; 5305 case PP_MP1_STATE_SHUTDOWN: 5306 case PP_MP1_STATE_RESET: 5307 case PP_MP1_STATE_NONE: 5308 default: 5309 return 0; 5310 } 5311 5312 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg)) == 0, 5313 "[PrepareMp1] Failed!", 5314 return ret); 5315 5316 return 0; 5317 } 5318 5319 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5320 PHM_PerformanceLevelDesignation designation, uint32_t index, 5321 PHM_PerformanceLevel *level) 5322 { 5323 const struct vega10_power_state *ps; 5324 uint32_t i; 5325 5326 if (level == NULL || hwmgr == NULL || state == NULL) 5327 return -EINVAL; 5328 5329 ps = cast_const_phw_vega10_power_state(state); 5330 5331 i = index > ps->performance_level_count - 1 ? 5332 ps->performance_level_count - 1 : index; 5333 5334 level->coreClock = ps->performance_levels[i].gfx_clock; 5335 level->memory_clock = ps->performance_levels[i].mem_clock; 5336 5337 return 0; 5338 } 5339 5340 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable) 5341 { 5342 struct vega10_hwmgr *data = hwmgr->backend; 5343 uint32_t feature_mask = 0; 5344 5345 if (disable) { 5346 feature_mask |= data->smu_features[GNLD_ULV].enabled ? 5347 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5348 feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? 5349 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5350 feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? 5351 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5352 feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? 5353 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5354 feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? 5355 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5356 } else { 5357 feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? 5358 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5359 feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? 5360 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5361 feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? 5362 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5363 feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? 5364 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5365 feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? 5366 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5367 } 5368 5369 if (feature_mask) 5370 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 5371 !disable, feature_mask), 5372 "enable/disable power features for compute performance Failed!", 5373 return -EINVAL); 5374 5375 if (disable) { 5376 data->smu_features[GNLD_ULV].enabled = false; 5377 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 5378 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 5379 data->smu_features[GNLD_DS_LCLK].enabled = false; 5380 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 5381 } else { 5382 data->smu_features[GNLD_ULV].enabled = true; 5383 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 5384 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 5385 data->smu_features[GNLD_DS_LCLK].enabled = true; 5386 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 5387 } 5388 5389 return 0; 5390 5391 } 5392 5393 static const struct pp_hwmgr_func vega10_hwmgr_funcs = { 5394 .backend_init = vega10_hwmgr_backend_init, 5395 .backend_fini = vega10_hwmgr_backend_fini, 5396 .asic_setup = vega10_setup_asic_task, 5397 .dynamic_state_management_enable = vega10_enable_dpm_tasks, 5398 .dynamic_state_management_disable = vega10_disable_dpm_tasks, 5399 .get_num_of_pp_table_entries = 5400 vega10_get_number_of_powerplay_table_entries, 5401 .get_power_state_size = vega10_get_power_state_size, 5402 .get_pp_table_entry = vega10_get_pp_table_entry, 5403 .patch_boot_state = vega10_patch_boot_state, 5404 .apply_state_adjust_rules = vega10_apply_state_adjust_rules, 5405 .power_state_set = vega10_set_power_state_tasks, 5406 .get_sclk = vega10_dpm_get_sclk, 5407 .get_mclk = vega10_dpm_get_mclk, 5408 .notify_smc_display_config_after_ps_adjustment = 5409 vega10_notify_smc_display_config_after_ps_adjustment, 5410 .force_dpm_level = vega10_dpm_force_dpm_level, 5411 .stop_thermal_controller = vega10_thermal_stop_thermal_controller, 5412 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, 5413 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, 5414 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, 5415 .reset_fan_speed_to_default = 5416 vega10_fan_ctrl_reset_fan_speed_to_default, 5417 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, 5418 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, 5419 .uninitialize_thermal_controller = 5420 vega10_thermal_ctrl_uninitialize_thermal_controller, 5421 .set_fan_control_mode = vega10_set_fan_control_mode, 5422 .get_fan_control_mode = vega10_get_fan_control_mode, 5423 .read_sensor = vega10_read_sensor, 5424 .get_dal_power_level = vega10_get_dal_power_level, 5425 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, 5426 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, 5427 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, 5428 .display_clock_voltage_request = vega10_display_clock_voltage_request, 5429 .force_clock_level = vega10_force_clock_level, 5430 .print_clock_levels = vega10_print_clock_levels, 5431 .display_config_changed = vega10_display_configuration_changed_task, 5432 .powergate_uvd = vega10_power_gate_uvd, 5433 .powergate_vce = vega10_power_gate_vce, 5434 .check_states_equal = vega10_check_states_equal, 5435 .check_smc_update_required_for_display_configuration = 5436 vega10_check_smc_update_required_for_display_configuration, 5437 .power_off_asic = vega10_power_off_asic, 5438 .disable_smc_firmware_ctf = vega10_thermal_disable_alert, 5439 .get_sclk_od = vega10_get_sclk_od, 5440 .set_sclk_od = vega10_set_sclk_od, 5441 .get_mclk_od = vega10_get_mclk_od, 5442 .set_mclk_od = vega10_set_mclk_od, 5443 .avfs_control = vega10_avfs_enable, 5444 .notify_cac_buffer_info = vega10_notify_cac_buffer_info, 5445 .get_thermal_temperature_range = vega10_get_thermal_temperature_range, 5446 .register_irq_handlers = smu9_register_irq_handlers, 5447 .start_thermal_controller = vega10_start_thermal_controller, 5448 .get_power_profile_mode = vega10_get_power_profile_mode, 5449 .set_power_profile_mode = vega10_set_power_profile_mode, 5450 .set_power_limit = vega10_set_power_limit, 5451 .odn_edit_dpm_table = vega10_odn_edit_dpm_table, 5452 .get_performance_level = vega10_get_performance_level, 5453 .get_asic_baco_capability = smu9_baco_get_capability, 5454 .get_asic_baco_state = smu9_baco_get_state, 5455 .set_asic_baco_state = vega10_baco_set_state, 5456 .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, 5457 .get_ppfeature_status = vega10_get_ppfeature_status, 5458 .set_ppfeature_status = vega10_set_ppfeature_status, 5459 .set_mp1_state = vega10_set_mp1_state, 5460 .disable_power_features_for_compute_performance = 5461 vega10_disable_power_features_for_compute_performance, 5462 }; 5463 5464 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) 5465 { 5466 struct amdgpu_device *adev = hwmgr->adev; 5467 5468 hwmgr->hwmgr_func = &vega10_hwmgr_funcs; 5469 hwmgr->pptable_func = &vega10_pptable_funcs; 5470 if (amdgpu_passthrough(adev)) 5471 return vega10_baco_set_cap(hwmgr); 5472 5473 return 0; 5474 } 5475