1 /* $NetBSD: amdgpu_vega20_hwmgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $ */ 2 3 /* 4 * Copyright 2018 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vega20_hwmgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $"); 28 29 #include <linux/delay.h> 30 #include <linux/fb.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 34 #include "hwmgr.h" 35 #include "amd_powerplay.h" 36 #include "vega20_smumgr.h" 37 #include "hardwaremanager.h" 38 #include "ppatomfwctrl.h" 39 #include "atomfirmware.h" 40 #include "cgs_common.h" 41 #include "vega20_powertune.h" 42 #include "vega20_inc.h" 43 #include "pppcielanes.h" 44 #include "vega20_hwmgr.h" 45 #include "vega20_processpptables.h" 46 #include "vega20_pptable.h" 47 #include "vega20_thermal.h" 48 #include "vega20_ppsmc.h" 49 #include "pp_debug.h" 50 #include "amd_pcie_helpers.h" 51 #include "ppinterrupt.h" 52 #include "pp_overdriver.h" 53 #include "pp_thermal.h" 54 #include "soc15_common.h" 55 #include "vega20_baco.h" 56 #include "smuio/smuio_9_0_offset.h" 57 #include "smuio/smuio_9_0_sh_mask.h" 58 #include "nbio/nbio_7_4_sh_mask.h" 59 60 #include <linux/nbsd-namespace.h> 61 62 #define smnPCIE_LC_SPEED_CNTL 0x11140290 63 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 64 65 static void vega20_set_default_registry_data(struct pp_hwmgr *hwmgr) 66 { 67 struct vega20_hwmgr *data = 68 (struct vega20_hwmgr *)(hwmgr->backend); 69 70 data->gfxclk_average_alpha = PPVEGA20_VEGA20GFXCLKAVERAGEALPHA_DFLT; 71 data->socclk_average_alpha = PPVEGA20_VEGA20SOCCLKAVERAGEALPHA_DFLT; 72 data->uclk_average_alpha = PPVEGA20_VEGA20UCLKCLKAVERAGEALPHA_DFLT; 73 data->gfx_activity_average_alpha = PPVEGA20_VEGA20GFXACTIVITYAVERAGEALPHA_DFLT; 74 data->lowest_uclk_reserved_for_ulv = PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT; 75 76 data->display_voltage_mode = PPVEGA20_VEGA20DISPLAYVOLTAGEMODE_DFLT; 77 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 78 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 79 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 80 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 81 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 82 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 83 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 84 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 85 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 86 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 87 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 88 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; 89 90 /* 91 * Disable the following features for now: 92 * GFXCLK DS 93 * SOCLK DS 94 * LCLK DS 95 * DCEFCLK DS 96 * FCLK DS 97 * MP1CLK DS 98 * MP0CLK DS 99 */ 100 data->registry_data.disallowed_features = 0xE0041C00; 101 /* ECC feature should be disabled on old SMUs */ 102 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion); 103 hwmgr->smu_version = smum_get_argument(hwmgr); 104 if (hwmgr->smu_version < 0x282100) 105 data->registry_data.disallowed_features |= FEATURE_ECC_MASK; 106 107 if (!(hwmgr->feature_mask & PP_PCIE_DPM_MASK)) 108 data->registry_data.disallowed_features |= FEATURE_DPM_LINK_MASK; 109 110 if (!(hwmgr->feature_mask & PP_SCLK_DPM_MASK)) 111 data->registry_data.disallowed_features |= FEATURE_DPM_GFXCLK_MASK; 112 113 if (!(hwmgr->feature_mask & PP_SOCCLK_DPM_MASK)) 114 data->registry_data.disallowed_features |= FEATURE_DPM_SOCCLK_MASK; 115 116 if (!(hwmgr->feature_mask & PP_MCLK_DPM_MASK)) 117 data->registry_data.disallowed_features |= FEATURE_DPM_UCLK_MASK; 118 119 if (!(hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK)) 120 data->registry_data.disallowed_features |= FEATURE_DPM_DCEFCLK_MASK; 121 122 if (!(hwmgr->feature_mask & PP_ULV_MASK)) 123 data->registry_data.disallowed_features |= FEATURE_ULV_MASK; 124 125 if (!(hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK)) 126 data->registry_data.disallowed_features |= FEATURE_DS_GFXCLK_MASK; 127 128 data->registry_data.od_state_in_dc_support = 0; 129 data->registry_data.thermal_support = 1; 130 data->registry_data.skip_baco_hardware = 0; 131 132 data->registry_data.log_avfs_param = 0; 133 data->registry_data.sclk_throttle_low_notification = 1; 134 data->registry_data.force_dpm_high = 0; 135 data->registry_data.stable_pstate_sclk_dpm_percentage = 75; 136 137 data->registry_data.didt_support = 0; 138 if (data->registry_data.didt_support) { 139 data->registry_data.didt_mode = 6; 140 data->registry_data.sq_ramping_support = 1; 141 data->registry_data.db_ramping_support = 0; 142 data->registry_data.td_ramping_support = 0; 143 data->registry_data.tcp_ramping_support = 0; 144 data->registry_data.dbr_ramping_support = 0; 145 data->registry_data.edc_didt_support = 1; 146 data->registry_data.gc_didt_support = 0; 147 data->registry_data.psm_didt_support = 0; 148 } 149 150 data->registry_data.pcie_lane_override = 0xff; 151 data->registry_data.pcie_speed_override = 0xff; 152 data->registry_data.pcie_clock_override = 0xffffffff; 153 data->registry_data.regulator_hot_gpio_support = 1; 154 data->registry_data.ac_dc_switch_gpio_support = 0; 155 data->registry_data.quick_transition_support = 0; 156 data->registry_data.zrpm_start_temp = 0xffff; 157 data->registry_data.zrpm_stop_temp = 0xffff; 158 data->registry_data.od8_feature_enable = 1; 159 data->registry_data.disable_water_mark = 0; 160 data->registry_data.disable_pp_tuning = 0; 161 data->registry_data.disable_xlpp_tuning = 0; 162 data->registry_data.disable_workload_policy = 0; 163 data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F; 164 data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919; 165 data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A; 166 data->registry_data.force_workload_policy_mask = 0; 167 data->registry_data.disable_3d_fs_detection = 0; 168 data->registry_data.fps_support = 1; 169 data->registry_data.disable_auto_wattman = 1; 170 data->registry_data.auto_wattman_debug = 0; 171 data->registry_data.auto_wattman_sample_period = 100; 172 data->registry_data.fclk_gfxclk_ratio = 0; 173 data->registry_data.auto_wattman_threshold = 50; 174 data->registry_data.gfxoff_controlled_by_driver = 1; 175 data->gfxoff_allowed = false; 176 data->counter_gfxoff = 0; 177 } 178 179 static int vega20_set_features_platform_caps(struct pp_hwmgr *hwmgr) 180 { 181 struct vega20_hwmgr *data = 182 (struct vega20_hwmgr *)(hwmgr->backend); 183 struct amdgpu_device *adev = hwmgr->adev; 184 185 if (data->vddci_control == VEGA20_VOLTAGE_CONTROL_NONE) 186 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 187 PHM_PlatformCaps_ControlVDDCI); 188 189 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 190 PHM_PlatformCaps_TablelessHardwareInterface); 191 192 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 193 PHM_PlatformCaps_BACO); 194 195 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 196 PHM_PlatformCaps_EnableSMU7ThermalManagement); 197 198 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 199 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 200 PHM_PlatformCaps_UVDPowerGating); 201 202 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 203 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 204 PHM_PlatformCaps_VCEPowerGating); 205 206 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 207 PHM_PlatformCaps_UnTabledHardwareInterface); 208 209 if (data->registry_data.od8_feature_enable) 210 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 211 PHM_PlatformCaps_OD8inACSupport); 212 213 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 214 PHM_PlatformCaps_ActivityReporting); 215 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 216 PHM_PlatformCaps_FanSpeedInTableIsRPM); 217 218 if (data->registry_data.od_state_in_dc_support) { 219 if (data->registry_data.od8_feature_enable) 220 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 221 PHM_PlatformCaps_OD8inDCSupport); 222 } 223 224 if (data->registry_data.thermal_support && 225 data->registry_data.fuzzy_fan_control_support && 226 hwmgr->thermal_controller.advanceFanControlParameters.usTMax) 227 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 228 PHM_PlatformCaps_ODFuzzyFanControlSupport); 229 230 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 231 PHM_PlatformCaps_DynamicPowerManagement); 232 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 233 PHM_PlatformCaps_SMC); 234 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 235 PHM_PlatformCaps_ThermalPolicyDelay); 236 237 if (data->registry_data.force_dpm_high) 238 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 239 PHM_PlatformCaps_ExclusiveModeAlwaysHigh); 240 241 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 242 PHM_PlatformCaps_DynamicUVDState); 243 244 if (data->registry_data.sclk_throttle_low_notification) 245 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 246 PHM_PlatformCaps_SclkThrottleLowNotification); 247 248 /* power tune caps */ 249 /* assume disabled */ 250 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 251 PHM_PlatformCaps_PowerContainment); 252 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 253 PHM_PlatformCaps_DiDtSupport); 254 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 255 PHM_PlatformCaps_SQRamping); 256 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 257 PHM_PlatformCaps_DBRamping); 258 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 259 PHM_PlatformCaps_TDRamping); 260 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 261 PHM_PlatformCaps_TCPRamping); 262 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 263 PHM_PlatformCaps_DBRRamping); 264 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 265 PHM_PlatformCaps_DiDtEDCEnable); 266 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 267 PHM_PlatformCaps_GCEDC); 268 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 269 PHM_PlatformCaps_PSM); 270 271 if (data->registry_data.didt_support) { 272 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 273 PHM_PlatformCaps_DiDtSupport); 274 if (data->registry_data.sq_ramping_support) 275 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 276 PHM_PlatformCaps_SQRamping); 277 if (data->registry_data.db_ramping_support) 278 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 279 PHM_PlatformCaps_DBRamping); 280 if (data->registry_data.td_ramping_support) 281 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 282 PHM_PlatformCaps_TDRamping); 283 if (data->registry_data.tcp_ramping_support) 284 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 285 PHM_PlatformCaps_TCPRamping); 286 if (data->registry_data.dbr_ramping_support) 287 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 288 PHM_PlatformCaps_DBRRamping); 289 if (data->registry_data.edc_didt_support) 290 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 291 PHM_PlatformCaps_DiDtEDCEnable); 292 if (data->registry_data.gc_didt_support) 293 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 294 PHM_PlatformCaps_GCEDC); 295 if (data->registry_data.psm_didt_support) 296 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 297 PHM_PlatformCaps_PSM); 298 } 299 300 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 301 PHM_PlatformCaps_RegulatorHot); 302 303 if (data->registry_data.ac_dc_switch_gpio_support) { 304 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 305 PHM_PlatformCaps_AutomaticDCTransition); 306 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 307 PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); 308 } 309 310 if (data->registry_data.quick_transition_support) { 311 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 312 PHM_PlatformCaps_AutomaticDCTransition); 313 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 314 PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); 315 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 316 PHM_PlatformCaps_Falcon_QuickTransition); 317 } 318 319 if (data->lowest_uclk_reserved_for_ulv != PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT) { 320 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 321 PHM_PlatformCaps_LowestUclkReservedForUlv); 322 if (data->lowest_uclk_reserved_for_ulv == 1) 323 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 324 PHM_PlatformCaps_LowestUclkReservedForUlv); 325 } 326 327 if (data->registry_data.custom_fan_support) 328 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 329 PHM_PlatformCaps_CustomFanControlSupport); 330 331 return 0; 332 } 333 334 static void vega20_init_dpm_defaults(struct pp_hwmgr *hwmgr) 335 { 336 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 337 struct amdgpu_device *adev = hwmgr->adev; 338 uint32_t top32, bottom32; 339 int i; 340 341 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = 342 FEATURE_DPM_PREFETCHER_BIT; 343 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = 344 FEATURE_DPM_GFXCLK_BIT; 345 data->smu_features[GNLD_DPM_UCLK].smu_feature_id = 346 FEATURE_DPM_UCLK_BIT; 347 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = 348 FEATURE_DPM_SOCCLK_BIT; 349 data->smu_features[GNLD_DPM_UVD].smu_feature_id = 350 FEATURE_DPM_UVD_BIT; 351 data->smu_features[GNLD_DPM_VCE].smu_feature_id = 352 FEATURE_DPM_VCE_BIT; 353 data->smu_features[GNLD_ULV].smu_feature_id = 354 FEATURE_ULV_BIT; 355 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = 356 FEATURE_DPM_MP0CLK_BIT; 357 data->smu_features[GNLD_DPM_LINK].smu_feature_id = 358 FEATURE_DPM_LINK_BIT; 359 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = 360 FEATURE_DPM_DCEFCLK_BIT; 361 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = 362 FEATURE_DS_GFXCLK_BIT; 363 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = 364 FEATURE_DS_SOCCLK_BIT; 365 data->smu_features[GNLD_DS_LCLK].smu_feature_id = 366 FEATURE_DS_LCLK_BIT; 367 data->smu_features[GNLD_PPT].smu_feature_id = 368 FEATURE_PPT_BIT; 369 data->smu_features[GNLD_TDC].smu_feature_id = 370 FEATURE_TDC_BIT; 371 data->smu_features[GNLD_THERMAL].smu_feature_id = 372 FEATURE_THERMAL_BIT; 373 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = 374 FEATURE_GFX_PER_CU_CG_BIT; 375 data->smu_features[GNLD_RM].smu_feature_id = 376 FEATURE_RM_BIT; 377 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = 378 FEATURE_DS_DCEFCLK_BIT; 379 data->smu_features[GNLD_ACDC].smu_feature_id = 380 FEATURE_ACDC_BIT; 381 data->smu_features[GNLD_VR0HOT].smu_feature_id = 382 FEATURE_VR0HOT_BIT; 383 data->smu_features[GNLD_VR1HOT].smu_feature_id = 384 FEATURE_VR1HOT_BIT; 385 data->smu_features[GNLD_FW_CTF].smu_feature_id = 386 FEATURE_FW_CTF_BIT; 387 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = 388 FEATURE_LED_DISPLAY_BIT; 389 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = 390 FEATURE_FAN_CONTROL_BIT; 391 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; 392 data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT; 393 data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT; 394 data->smu_features[GNLD_DPM_FCLK].smu_feature_id = FEATURE_DPM_FCLK_BIT; 395 data->smu_features[GNLD_DS_FCLK].smu_feature_id = FEATURE_DS_FCLK_BIT; 396 data->smu_features[GNLD_DS_MP1CLK].smu_feature_id = FEATURE_DS_MP1CLK_BIT; 397 data->smu_features[GNLD_DS_MP0CLK].smu_feature_id = FEATURE_DS_MP0CLK_BIT; 398 data->smu_features[GNLD_XGMI].smu_feature_id = FEATURE_XGMI_BIT; 399 data->smu_features[GNLD_ECC].smu_feature_id = FEATURE_ECC_BIT; 400 401 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 402 data->smu_features[i].smu_feature_bitmap = 403 (uint64_t)(1ULL << data->smu_features[i].smu_feature_id); 404 data->smu_features[i].allowed = 405 ((data->registry_data.disallowed_features >> i) & 1) ? 406 false : true; 407 } 408 409 /* Get the SN to turn into a Unique ID */ 410 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32); 411 top32 = smum_get_argument(hwmgr); 412 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32); 413 bottom32 = smum_get_argument(hwmgr); 414 415 adev->unique_id = ((uint64_t)bottom32 << 32) | top32; 416 } 417 418 static int vega20_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) 419 { 420 return 0; 421 } 422 423 static int vega20_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 424 { 425 kfree(hwmgr->backend); 426 hwmgr->backend = NULL; 427 428 return 0; 429 } 430 431 static int vega20_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 432 { 433 struct vega20_hwmgr *data; 434 struct amdgpu_device *adev = hwmgr->adev; 435 436 data = kzalloc(sizeof(struct vega20_hwmgr), GFP_KERNEL); 437 if (data == NULL) 438 return -ENOMEM; 439 440 hwmgr->backend = data; 441 442 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; 443 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 444 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 445 446 vega20_set_default_registry_data(hwmgr); 447 448 data->disable_dpm_mask = 0xff; 449 450 /* need to set voltage control types before EVV patching */ 451 data->vddc_control = VEGA20_VOLTAGE_CONTROL_NONE; 452 data->mvdd_control = VEGA20_VOLTAGE_CONTROL_NONE; 453 data->vddci_control = VEGA20_VOLTAGE_CONTROL_NONE; 454 455 data->water_marks_bitmap = 0; 456 data->avfs_exist = false; 457 458 vega20_set_features_platform_caps(hwmgr); 459 460 vega20_init_dpm_defaults(hwmgr); 461 462 /* Parse pptable data read from VBIOS */ 463 vega20_set_private_data_based_on_pptable(hwmgr); 464 465 data->is_tlu_enabled = false; 466 467 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 468 VEGA20_MAX_HARDWARE_POWERLEVELS; 469 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 470 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 471 472 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 473 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 474 hwmgr->platform_descriptor.clockStep.engineClock = 500; 475 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 476 477 data->total_active_cus = adev->gfx.cu_info.number; 478 data->is_custom_profile_set = false; 479 480 return 0; 481 } 482 483 static int vega20_init_sclk_threshold(struct pp_hwmgr *hwmgr) 484 { 485 struct vega20_hwmgr *data = 486 (struct vega20_hwmgr *)(hwmgr->backend); 487 488 data->low_sclk_interrupt_threshold = 0; 489 490 return 0; 491 } 492 493 static int vega20_setup_asic_task(struct pp_hwmgr *hwmgr) 494 { 495 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 496 int ret = 0; 497 498 ret = vega20_init_sclk_threshold(hwmgr); 499 PP_ASSERT_WITH_CODE(!ret, 500 "Failed to init sclk threshold!", 501 return ret); 502 503 if (adev->in_gpu_reset && 504 (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) { 505 506 ret = vega20_baco_apply_vdci_flush_workaround(hwmgr); 507 if (ret) 508 pr_err("Failed to apply vega20 baco workaround!\n"); 509 } 510 511 return ret; 512 } 513 514 /* 515 * @fn vega20_init_dpm_state 516 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. 517 * 518 * @param dpm_state - the address of the DPM Table to initiailize. 519 * @return None. 520 */ 521 static void vega20_init_dpm_state(struct vega20_dpm_state *dpm_state) 522 { 523 dpm_state->soft_min_level = 0x0; 524 dpm_state->soft_max_level = VG20_CLOCK_MAX_DEFAULT; 525 dpm_state->hard_min_level = 0x0; 526 dpm_state->hard_max_level = VG20_CLOCK_MAX_DEFAULT; 527 } 528 529 static int vega20_get_number_of_dpm_level(struct pp_hwmgr *hwmgr, 530 PPCLK_e clk_id, uint32_t *num_of_levels) 531 { 532 int ret = 0; 533 534 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 535 PPSMC_MSG_GetDpmFreqByIndex, 536 (clk_id << 16 | 0xFF)); 537 PP_ASSERT_WITH_CODE(!ret, 538 "[GetNumOfDpmLevel] failed to get dpm levels!", 539 return ret); 540 541 *num_of_levels = smum_get_argument(hwmgr); 542 PP_ASSERT_WITH_CODE(*num_of_levels > 0, 543 "[GetNumOfDpmLevel] number of clk levels is invalid!", 544 return -EINVAL); 545 546 return ret; 547 } 548 549 static int vega20_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr, 550 PPCLK_e clk_id, uint32_t index, uint32_t *clk) 551 { 552 int ret = 0; 553 554 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 555 PPSMC_MSG_GetDpmFreqByIndex, 556 (clk_id << 16 | index)); 557 PP_ASSERT_WITH_CODE(!ret, 558 "[GetDpmFreqByIndex] failed to get dpm freq by index!", 559 return ret); 560 561 *clk = smum_get_argument(hwmgr); 562 PP_ASSERT_WITH_CODE(*clk, 563 "[GetDpmFreqByIndex] clk value is invalid!", 564 return -EINVAL); 565 566 return ret; 567 } 568 569 static int vega20_setup_single_dpm_table(struct pp_hwmgr *hwmgr, 570 struct vega20_single_dpm_table *dpm_table, PPCLK_e clk_id) 571 { 572 int ret = 0; 573 uint32_t i, num_of_levels, clk; 574 575 ret = vega20_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels); 576 PP_ASSERT_WITH_CODE(!ret, 577 "[SetupSingleDpmTable] failed to get clk levels!", 578 return ret); 579 580 dpm_table->count = num_of_levels; 581 582 for (i = 0; i < num_of_levels; i++) { 583 ret = vega20_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk); 584 PP_ASSERT_WITH_CODE(!ret, 585 "[SetupSingleDpmTable] failed to get clk of specific level!", 586 return ret); 587 dpm_table->dpm_levels[i].value = clk; 588 dpm_table->dpm_levels[i].enabled = true; 589 } 590 591 return ret; 592 } 593 594 static int vega20_setup_gfxclk_dpm_table(struct pp_hwmgr *hwmgr) 595 { 596 struct vega20_hwmgr *data = 597 (struct vega20_hwmgr *)(hwmgr->backend); 598 struct vega20_single_dpm_table *dpm_table; 599 int ret = 0; 600 601 dpm_table = &(data->dpm_table.gfx_table); 602 if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { 603 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK); 604 PP_ASSERT_WITH_CODE(!ret, 605 "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!", 606 return ret); 607 } else { 608 dpm_table->count = 1; 609 dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100; 610 } 611 612 return ret; 613 } 614 615 static int vega20_setup_memclk_dpm_table(struct pp_hwmgr *hwmgr) 616 { 617 struct vega20_hwmgr *data = 618 (struct vega20_hwmgr *)(hwmgr->backend); 619 struct vega20_single_dpm_table *dpm_table; 620 int ret = 0; 621 622 dpm_table = &(data->dpm_table.mem_table); 623 if (data->smu_features[GNLD_DPM_UCLK].enabled) { 624 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK); 625 PP_ASSERT_WITH_CODE(!ret, 626 "[SetupDefaultDpmTable] failed to get memclk dpm levels!", 627 return ret); 628 } else { 629 dpm_table->count = 1; 630 dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100; 631 } 632 633 return ret; 634 } 635 636 /* 637 * This function is to initialize all DPM state tables 638 * for SMU based on the dependency table. 639 * Dynamic state patching function will then trim these 640 * state tables to the allowed range based 641 * on the power policy or external client requests, 642 * such as UVD request, etc. 643 */ 644 static int vega20_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 645 { 646 struct vega20_hwmgr *data = 647 (struct vega20_hwmgr *)(hwmgr->backend); 648 struct vega20_single_dpm_table *dpm_table; 649 int ret = 0; 650 651 memset(&data->dpm_table, 0, sizeof(data->dpm_table)); 652 653 /* socclk */ 654 dpm_table = &(data->dpm_table.soc_table); 655 if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { 656 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK); 657 PP_ASSERT_WITH_CODE(!ret, 658 "[SetupDefaultDpmTable] failed to get socclk dpm levels!", 659 return ret); 660 } else { 661 dpm_table->count = 1; 662 dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100; 663 } 664 vega20_init_dpm_state(&(dpm_table->dpm_state)); 665 666 /* gfxclk */ 667 dpm_table = &(data->dpm_table.gfx_table); 668 ret = vega20_setup_gfxclk_dpm_table(hwmgr); 669 if (ret) 670 return ret; 671 vega20_init_dpm_state(&(dpm_table->dpm_state)); 672 673 /* memclk */ 674 dpm_table = &(data->dpm_table.mem_table); 675 ret = vega20_setup_memclk_dpm_table(hwmgr); 676 if (ret) 677 return ret; 678 vega20_init_dpm_state(&(dpm_table->dpm_state)); 679 680 /* eclk */ 681 dpm_table = &(data->dpm_table.eclk_table); 682 if (data->smu_features[GNLD_DPM_VCE].enabled) { 683 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK); 684 PP_ASSERT_WITH_CODE(!ret, 685 "[SetupDefaultDpmTable] failed to get eclk dpm levels!", 686 return ret); 687 } else { 688 dpm_table->count = 1; 689 dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100; 690 } 691 vega20_init_dpm_state(&(dpm_table->dpm_state)); 692 693 /* vclk */ 694 dpm_table = &(data->dpm_table.vclk_table); 695 if (data->smu_features[GNLD_DPM_UVD].enabled) { 696 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK); 697 PP_ASSERT_WITH_CODE(!ret, 698 "[SetupDefaultDpmTable] failed to get vclk dpm levels!", 699 return ret); 700 } else { 701 dpm_table->count = 1; 702 dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100; 703 } 704 vega20_init_dpm_state(&(dpm_table->dpm_state)); 705 706 /* dclk */ 707 dpm_table = &(data->dpm_table.dclk_table); 708 if (data->smu_features[GNLD_DPM_UVD].enabled) { 709 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK); 710 PP_ASSERT_WITH_CODE(!ret, 711 "[SetupDefaultDpmTable] failed to get dclk dpm levels!", 712 return ret); 713 } else { 714 dpm_table->count = 1; 715 dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100; 716 } 717 vega20_init_dpm_state(&(dpm_table->dpm_state)); 718 719 /* dcefclk */ 720 dpm_table = &(data->dpm_table.dcef_table); 721 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 722 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK); 723 PP_ASSERT_WITH_CODE(!ret, 724 "[SetupDefaultDpmTable] failed to get dcefclk dpm levels!", 725 return ret); 726 } else { 727 dpm_table->count = 1; 728 dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100; 729 } 730 vega20_init_dpm_state(&(dpm_table->dpm_state)); 731 732 /* pixclk */ 733 dpm_table = &(data->dpm_table.pixel_table); 734 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 735 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK); 736 PP_ASSERT_WITH_CODE(!ret, 737 "[SetupDefaultDpmTable] failed to get pixclk dpm levels!", 738 return ret); 739 } else 740 dpm_table->count = 0; 741 vega20_init_dpm_state(&(dpm_table->dpm_state)); 742 743 /* dispclk */ 744 dpm_table = &(data->dpm_table.display_table); 745 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 746 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK); 747 PP_ASSERT_WITH_CODE(!ret, 748 "[SetupDefaultDpmTable] failed to get dispclk dpm levels!", 749 return ret); 750 } else 751 dpm_table->count = 0; 752 vega20_init_dpm_state(&(dpm_table->dpm_state)); 753 754 /* phyclk */ 755 dpm_table = &(data->dpm_table.phy_table); 756 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 757 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK); 758 PP_ASSERT_WITH_CODE(!ret, 759 "[SetupDefaultDpmTable] failed to get phyclk dpm levels!", 760 return ret); 761 } else 762 dpm_table->count = 0; 763 vega20_init_dpm_state(&(dpm_table->dpm_state)); 764 765 /* fclk */ 766 dpm_table = &(data->dpm_table.fclk_table); 767 if (data->smu_features[GNLD_DPM_FCLK].enabled) { 768 ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_FCLK); 769 PP_ASSERT_WITH_CODE(!ret, 770 "[SetupDefaultDpmTable] failed to get fclk dpm levels!", 771 return ret); 772 } else { 773 dpm_table->count = 1; 774 dpm_table->dpm_levels[0].value = data->vbios_boot_state.fclock / 100; 775 } 776 vega20_init_dpm_state(&(dpm_table->dpm_state)); 777 778 /* save a copy of the default DPM table */ 779 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 780 sizeof(struct vega20_dpm_table)); 781 782 return 0; 783 } 784 785 /** 786 * Initializes the SMC table and uploads it 787 * 788 * @param hwmgr the address of the powerplay hardware manager. 789 * @param pInput the pointer to input data (PowerState) 790 * @return always 0 791 */ 792 static int vega20_init_smc_table(struct pp_hwmgr *hwmgr) 793 { 794 int result; 795 struct vega20_hwmgr *data = 796 (struct vega20_hwmgr *)(hwmgr->backend); 797 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 798 struct pp_atomfwctrl_bios_boot_up_values boot_up_values; 799 struct phm_ppt_v3_information *pptable_information = 800 (struct phm_ppt_v3_information *)hwmgr->pptable; 801 802 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); 803 PP_ASSERT_WITH_CODE(!result, 804 "[InitSMCTable] Failed to get vbios bootup values!", 805 return result); 806 807 data->vbios_boot_state.vddc = boot_up_values.usVddc; 808 data->vbios_boot_state.vddci = boot_up_values.usVddci; 809 data->vbios_boot_state.mvddc = boot_up_values.usMvddc; 810 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; 811 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; 812 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; 813 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; 814 data->vbios_boot_state.eclock = boot_up_values.ulEClk; 815 data->vbios_boot_state.vclock = boot_up_values.ulVClk; 816 data->vbios_boot_state.dclock = boot_up_values.ulDClk; 817 data->vbios_boot_state.fclock = boot_up_values.ulFClk; 818 data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID; 819 820 smum_send_msg_to_smc_with_parameter(hwmgr, 821 PPSMC_MSG_SetMinDeepSleepDcefclk, 822 (uint32_t)(data->vbios_boot_state.dcef_clock / 100)); 823 824 memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t)); 825 826 result = smum_smc_table_manager(hwmgr, 827 (uint8_t *)pp_table, TABLE_PPTABLE, false); 828 PP_ASSERT_WITH_CODE(!result, 829 "[InitSMCTable] Failed to upload PPtable!", 830 return result); 831 832 return 0; 833 } 834 835 /* 836 * Override PCIe link speed and link width for DPM Level 1. PPTable entries 837 * reflect the ASIC capabilities and not the system capabilities. For e.g. 838 * Vega20 board in a PCI Gen3 system. In this case, when SMU's tries to switch 839 * to DPM1, it fails as system doesn't support Gen4. 840 */ 841 static int vega20_override_pcie_parameters(struct pp_hwmgr *hwmgr) 842 { 843 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 844 struct vega20_hwmgr *data = 845 (struct vega20_hwmgr *)(hwmgr->backend); 846 uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg; 847 int ret; 848 849 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) 850 pcie_gen = 3; 851 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 852 pcie_gen = 2; 853 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) 854 pcie_gen = 1; 855 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) 856 pcie_gen = 0; 857 858 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) 859 pcie_width = 6; 860 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) 861 pcie_width = 5; 862 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) 863 pcie_width = 4; 864 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) 865 pcie_width = 3; 866 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) 867 pcie_width = 2; 868 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) 869 pcie_width = 1; 870 871 /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 872 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 873 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 874 */ 875 smu_pcie_arg = (1 << 16) | (pcie_gen << 8) | pcie_width; 876 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 877 PPSMC_MSG_OverridePcieParameters, smu_pcie_arg); 878 PP_ASSERT_WITH_CODE(!ret, 879 "[OverridePcieParameters] Attempt to override pcie params failed!", 880 return ret); 881 882 data->pcie_parameters_override = true; 883 data->pcie_gen_level1 = pcie_gen; 884 data->pcie_width_level1 = pcie_width; 885 886 return 0; 887 } 888 889 static int vega20_set_allowed_featuresmask(struct pp_hwmgr *hwmgr) 890 { 891 struct vega20_hwmgr *data = 892 (struct vega20_hwmgr *)(hwmgr->backend); 893 uint32_t allowed_features_low = 0, allowed_features_high = 0; 894 int i; 895 int ret = 0; 896 897 for (i = 0; i < GNLD_FEATURES_MAX; i++) 898 if (data->smu_features[i].allowed) 899 data->smu_features[i].smu_feature_id > 31 ? 900 (allowed_features_high |= 901 ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) 902 & 0xFFFFFFFF)) : 903 (allowed_features_low |= 904 ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) 905 & 0xFFFFFFFF)); 906 907 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 908 PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high); 909 PP_ASSERT_WITH_CODE(!ret, 910 "[SetAllowedFeaturesMask] Attempt to set allowed features mask(high) failed!", 911 return ret); 912 913 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 914 PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low); 915 PP_ASSERT_WITH_CODE(!ret, 916 "[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!", 917 return ret); 918 919 return 0; 920 } 921 922 static int vega20_run_btc(struct pp_hwmgr *hwmgr) 923 { 924 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunBtc); 925 } 926 927 static int vega20_run_btc_afll(struct pp_hwmgr *hwmgr) 928 { 929 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAfllBtc); 930 } 931 932 static int vega20_enable_all_smu_features(struct pp_hwmgr *hwmgr) 933 { 934 struct vega20_hwmgr *data = 935 (struct vega20_hwmgr *)(hwmgr->backend); 936 uint64_t features_enabled; 937 int i; 938 bool enabled; 939 int ret = 0; 940 941 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, 942 PPSMC_MSG_EnableAllSmuFeatures)) == 0, 943 "[EnableAllSMUFeatures] Failed to enable all smu features!", 944 return ret); 945 946 ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); 947 PP_ASSERT_WITH_CODE(!ret, 948 "[EnableAllSmuFeatures] Failed to get enabled smc features!", 949 return ret); 950 951 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 952 enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? 953 true : false; 954 data->smu_features[i].enabled = enabled; 955 data->smu_features[i].supported = enabled; 956 957 #if 0 958 if (data->smu_features[i].allowed && !enabled) 959 pr_info("[EnableAllSMUFeatures] feature %d is expected enabled!", i); 960 else if (!data->smu_features[i].allowed && enabled) 961 pr_info("[EnableAllSMUFeatures] feature %d is expected disabled!", i); 962 #endif 963 } 964 965 return 0; 966 } 967 968 static int vega20_notify_smc_display_change(struct pp_hwmgr *hwmgr) 969 { 970 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 971 972 if (data->smu_features[GNLD_DPM_UCLK].enabled) 973 return smum_send_msg_to_smc_with_parameter(hwmgr, 974 PPSMC_MSG_SetUclkFastSwitch, 975 1); 976 977 return 0; 978 } 979 980 static int vega20_send_clock_ratio(struct pp_hwmgr *hwmgr) 981 { 982 struct vega20_hwmgr *data = 983 (struct vega20_hwmgr *)(hwmgr->backend); 984 985 return smum_send_msg_to_smc_with_parameter(hwmgr, 986 PPSMC_MSG_SetFclkGfxClkRatio, 987 data->registry_data.fclk_gfxclk_ratio); 988 } 989 990 static int vega20_disable_all_smu_features(struct pp_hwmgr *hwmgr) 991 { 992 struct vega20_hwmgr *data = 993 (struct vega20_hwmgr *)(hwmgr->backend); 994 uint64_t features_enabled; 995 int i; 996 bool enabled; 997 int ret = 0; 998 999 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, 1000 PPSMC_MSG_DisableAllSmuFeatures)) == 0, 1001 "[DisableAllSMUFeatures] Failed to disable all smu features!", 1002 return ret); 1003 1004 ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); 1005 PP_ASSERT_WITH_CODE(!ret, 1006 "[DisableAllSMUFeatures] Failed to get enabled smc features!", 1007 return ret); 1008 1009 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 1010 enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? 1011 true : false; 1012 data->smu_features[i].enabled = enabled; 1013 data->smu_features[i].supported = enabled; 1014 } 1015 1016 return 0; 1017 } 1018 1019 static int vega20_od8_set_feature_capabilities( 1020 struct pp_hwmgr *hwmgr) 1021 { 1022 struct phm_ppt_v3_information *pptable_information = 1023 (struct phm_ppt_v3_information *)hwmgr->pptable; 1024 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 1025 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1026 struct vega20_od8_settings *od_settings = &(data->od8_settings); 1027 1028 od_settings->overdrive8_capabilities = 0; 1029 1030 if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { 1031 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] && 1032 pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 && 1033 pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 && 1034 (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >= 1035 pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) 1036 od_settings->overdrive8_capabilities |= OD8_GFXCLK_LIMITS; 1037 1038 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] && 1039 (pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >= 1040 pp_table->MinVoltageGfx / VOLTAGE_SCALE) && 1041 (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <= 1042 pp_table->MaxVoltageGfx / VOLTAGE_SCALE) && 1043 (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] >= 1044 pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1])) 1045 od_settings->overdrive8_capabilities |= OD8_GFXCLK_CURVE; 1046 } 1047 1048 if (data->smu_features[GNLD_DPM_UCLK].enabled) { 1049 pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] = 1050 data->dpm_table.mem_table.dpm_levels[data->dpm_table.mem_table.count - 2].value; 1051 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] && 1052 pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 && 1053 pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 && 1054 (pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] >= 1055 pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX])) 1056 od_settings->overdrive8_capabilities |= OD8_UCLK_MAX; 1057 } 1058 1059 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] && 1060 pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 && 1061 pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100 && 1062 pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 && 1063 pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100) 1064 od_settings->overdrive8_capabilities |= OD8_POWER_LIMIT; 1065 1066 if (data->smu_features[GNLD_FAN_CONTROL].enabled) { 1067 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] && 1068 pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && 1069 pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && 1070 (pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >= 1071 pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) 1072 od_settings->overdrive8_capabilities |= OD8_ACOUSTIC_LIMIT_SCLK; 1073 1074 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] && 1075 (pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] >= 1076 (pp_table->FanPwmMin * pp_table->FanMaximumRpm / 100)) && 1077 pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 && 1078 (pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >= 1079 pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) 1080 od_settings->overdrive8_capabilities |= OD8_FAN_SPEED_MIN; 1081 } 1082 1083 if (data->smu_features[GNLD_THERMAL].enabled) { 1084 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] && 1085 pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 && 1086 pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 && 1087 (pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >= 1088 pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) 1089 od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_FAN; 1090 1091 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] && 1092 pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && 1093 pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && 1094 (pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >= 1095 pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) 1096 od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_SYSTEM; 1097 } 1098 1099 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_MEMORY_TIMING_TUNE]) 1100 od_settings->overdrive8_capabilities |= OD8_MEMORY_TIMING_TUNE; 1101 1102 if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ZERO_RPM_CONTROL] && 1103 pp_table->FanZeroRpmEnable) 1104 od_settings->overdrive8_capabilities |= OD8_FAN_ZERO_RPM_CONTROL; 1105 1106 if (!od_settings->overdrive8_capabilities) 1107 hwmgr->od_enabled = false; 1108 1109 return 0; 1110 } 1111 1112 static int vega20_od8_set_feature_id( 1113 struct pp_hwmgr *hwmgr) 1114 { 1115 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 1116 struct vega20_od8_settings *od_settings = &(data->od8_settings); 1117 1118 if (od_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { 1119 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = 1120 OD8_GFXCLK_LIMITS; 1121 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = 1122 OD8_GFXCLK_LIMITS; 1123 } else { 1124 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = 1125 0; 1126 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = 1127 0; 1128 } 1129 1130 if (od_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { 1131 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = 1132 OD8_GFXCLK_CURVE; 1133 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = 1134 OD8_GFXCLK_CURVE; 1135 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = 1136 OD8_GFXCLK_CURVE; 1137 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = 1138 OD8_GFXCLK_CURVE; 1139 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = 1140 OD8_GFXCLK_CURVE; 1141 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = 1142 OD8_GFXCLK_CURVE; 1143 } else { 1144 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = 1145 0; 1146 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = 1147 0; 1148 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = 1149 0; 1150 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = 1151 0; 1152 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = 1153 0; 1154 od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = 1155 0; 1156 } 1157 1158 if (od_settings->overdrive8_capabilities & OD8_UCLK_MAX) 1159 od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX; 1160 else 1161 od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = 0; 1162 1163 if (od_settings->overdrive8_capabilities & OD8_POWER_LIMIT) 1164 od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT; 1165 else 1166 od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = 0; 1167 1168 if (od_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) 1169 od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = 1170 OD8_ACOUSTIC_LIMIT_SCLK; 1171 else 1172 od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = 1173 0; 1174 1175 if (od_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) 1176 od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = 1177 OD8_FAN_SPEED_MIN; 1178 else 1179 od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = 1180 0; 1181 1182 if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) 1183 od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = 1184 OD8_TEMPERATURE_FAN; 1185 else 1186 od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = 1187 0; 1188 1189 if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) 1190 od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = 1191 OD8_TEMPERATURE_SYSTEM; 1192 else 1193 od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = 1194 0; 1195 1196 return 0; 1197 } 1198 1199 static int vega20_od8_get_gfx_clock_base_voltage( 1200 struct pp_hwmgr *hwmgr, 1201 uint32_t *voltage, 1202 uint32_t freq) 1203 { 1204 int ret = 0; 1205 1206 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 1207 PPSMC_MSG_GetAVFSVoltageByDpm, 1208 ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq)); 1209 PP_ASSERT_WITH_CODE(!ret, 1210 "[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!", 1211 return ret); 1212 1213 *voltage = smum_get_argument(hwmgr); 1214 *voltage = *voltage / VOLTAGE_SCALE; 1215 1216 return 0; 1217 } 1218 1219 static int vega20_od8_initialize_default_settings( 1220 struct pp_hwmgr *hwmgr) 1221 { 1222 struct phm_ppt_v3_information *pptable_information = 1223 (struct phm_ppt_v3_information *)hwmgr->pptable; 1224 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 1225 struct vega20_od8_settings *od8_settings = &(data->od8_settings); 1226 OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table); 1227 int i, ret = 0; 1228 1229 /* Set Feature Capabilities */ 1230 vega20_od8_set_feature_capabilities(hwmgr); 1231 1232 /* Map FeatureID to individual settings */ 1233 vega20_od8_set_feature_id(hwmgr); 1234 1235 /* Set default values */ 1236 ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, true); 1237 PP_ASSERT_WITH_CODE(!ret, 1238 "Failed to export over drive table!", 1239 return ret); 1240 1241 if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { 1242 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = 1243 od_table->GfxclkFmin; 1244 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = 1245 od_table->GfxclkFmax; 1246 } else { 1247 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = 1248 0; 1249 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = 1250 0; 1251 } 1252 1253 if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { 1254 od_table->GfxclkFreq1 = od_table->GfxclkFmin; 1255 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = 1256 od_table->GfxclkFreq1; 1257 1258 od_table->GfxclkFreq3 = od_table->GfxclkFmax; 1259 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = 1260 od_table->GfxclkFreq3; 1261 1262 od_table->GfxclkFreq2 = (od_table->GfxclkFreq1 + od_table->GfxclkFreq3) / 2; 1263 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = 1264 od_table->GfxclkFreq2; 1265 1266 PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, 1267 &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value), 1268 od_table->GfxclkFreq1), 1269 "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", 1270 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0); 1271 od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value 1272 * VOLTAGE_SCALE; 1273 1274 PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, 1275 &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value), 1276 od_table->GfxclkFreq2), 1277 "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", 1278 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0); 1279 od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value 1280 * VOLTAGE_SCALE; 1281 1282 PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, 1283 &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value), 1284 od_table->GfxclkFreq3), 1285 "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", 1286 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0); 1287 od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value 1288 * VOLTAGE_SCALE; 1289 } else { 1290 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = 1291 0; 1292 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 1293 0; 1294 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = 1295 0; 1296 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 1297 0; 1298 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = 1299 0; 1300 od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 1301 0; 1302 } 1303 1304 if (od8_settings->overdrive8_capabilities & OD8_UCLK_MAX) 1305 od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = 1306 od_table->UclkFmax; 1307 else 1308 od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = 1309 0; 1310 1311 if (od8_settings->overdrive8_capabilities & OD8_POWER_LIMIT) 1312 od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = 1313 od_table->OverDrivePct; 1314 else 1315 od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = 1316 0; 1317 1318 if (od8_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) 1319 od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = 1320 od_table->FanMaximumRpm; 1321 else 1322 od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = 1323 0; 1324 1325 if (od8_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) 1326 od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = 1327 od_table->FanMinimumPwm * data->smc_state_table.pp_table.FanMaximumRpm / 100; 1328 else 1329 od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = 1330 0; 1331 1332 if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) 1333 od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = 1334 od_table->FanTargetTemperature; 1335 else 1336 od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = 1337 0; 1338 1339 if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) 1340 od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = 1341 od_table->MaxOpTemp; 1342 else 1343 od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = 1344 0; 1345 1346 for (i = 0; i < OD8_SETTING_COUNT; i++) { 1347 if (od8_settings->od8_settings_array[i].feature_id) { 1348 od8_settings->od8_settings_array[i].min_value = 1349 pptable_information->od_settings_min[i]; 1350 od8_settings->od8_settings_array[i].max_value = 1351 pptable_information->od_settings_max[i]; 1352 od8_settings->od8_settings_array[i].current_value = 1353 od8_settings->od8_settings_array[i].default_value; 1354 } else { 1355 od8_settings->od8_settings_array[i].min_value = 1356 0; 1357 od8_settings->od8_settings_array[i].max_value = 1358 0; 1359 od8_settings->od8_settings_array[i].current_value = 1360 0; 1361 } 1362 } 1363 1364 ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, false); 1365 PP_ASSERT_WITH_CODE(!ret, 1366 "Failed to import over drive table!", 1367 return ret); 1368 1369 return 0; 1370 } 1371 1372 static int vega20_od8_set_settings( 1373 struct pp_hwmgr *hwmgr, 1374 uint32_t index, 1375 uint32_t value) 1376 { 1377 OverDriveTable_t od_table; 1378 int ret = 0; 1379 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 1380 struct vega20_od8_single_setting *od8_settings = 1381 data->od8_settings.od8_settings_array; 1382 1383 ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, true); 1384 PP_ASSERT_WITH_CODE(!ret, 1385 "Failed to export over drive table!", 1386 return ret); 1387 1388 switch(index) { 1389 case OD8_SETTING_GFXCLK_FMIN: 1390 od_table.GfxclkFmin = (uint16_t)value; 1391 break; 1392 case OD8_SETTING_GFXCLK_FMAX: 1393 if (value < od8_settings[OD8_SETTING_GFXCLK_FMAX].min_value || 1394 value > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) 1395 return -EINVAL; 1396 1397 od_table.GfxclkFmax = (uint16_t)value; 1398 break; 1399 case OD8_SETTING_GFXCLK_FREQ1: 1400 od_table.GfxclkFreq1 = (uint16_t)value; 1401 break; 1402 case OD8_SETTING_GFXCLK_VOLTAGE1: 1403 od_table.GfxclkVolt1 = (uint16_t)value; 1404 break; 1405 case OD8_SETTING_GFXCLK_FREQ2: 1406 od_table.GfxclkFreq2 = (uint16_t)value; 1407 break; 1408 case OD8_SETTING_GFXCLK_VOLTAGE2: 1409 od_table.GfxclkVolt2 = (uint16_t)value; 1410 break; 1411 case OD8_SETTING_GFXCLK_FREQ3: 1412 od_table.GfxclkFreq3 = (uint16_t)value; 1413 break; 1414 case OD8_SETTING_GFXCLK_VOLTAGE3: 1415 od_table.GfxclkVolt3 = (uint16_t)value; 1416 break; 1417 case OD8_SETTING_UCLK_FMAX: 1418 if (value < od8_settings[OD8_SETTING_UCLK_FMAX].min_value || 1419 value > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) 1420 return -EINVAL; 1421 od_table.UclkFmax = (uint16_t)value; 1422 break; 1423 case OD8_SETTING_POWER_PERCENTAGE: 1424 od_table.OverDrivePct = (int16_t)value; 1425 break; 1426 case OD8_SETTING_FAN_ACOUSTIC_LIMIT: 1427 od_table.FanMaximumRpm = (uint16_t)value; 1428 break; 1429 case OD8_SETTING_FAN_MIN_SPEED: 1430 od_table.FanMinimumPwm = (uint16_t)value; 1431 break; 1432 case OD8_SETTING_FAN_TARGET_TEMP: 1433 od_table.FanTargetTemperature = (uint16_t)value; 1434 break; 1435 case OD8_SETTING_OPERATING_TEMP_MAX: 1436 od_table.MaxOpTemp = (uint16_t)value; 1437 break; 1438 } 1439 1440 ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, false); 1441 PP_ASSERT_WITH_CODE(!ret, 1442 "Failed to import over drive table!", 1443 return ret); 1444 1445 return 0; 1446 } 1447 1448 static int vega20_get_sclk_od( 1449 struct pp_hwmgr *hwmgr) 1450 { 1451 struct vega20_hwmgr *data = hwmgr->backend; 1452 struct vega20_single_dpm_table *sclk_table = 1453 &(data->dpm_table.gfx_table); 1454 struct vega20_single_dpm_table *golden_sclk_table = 1455 &(data->golden_dpm_table.gfx_table); 1456 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 1457 int golden_value = golden_sclk_table->dpm_levels 1458 [golden_sclk_table->count - 1].value; 1459 1460 /* od percentage */ 1461 value -= golden_value; 1462 value = DIV_ROUND_UP(value * 100, golden_value); 1463 1464 return value; 1465 } 1466 1467 static int vega20_set_sclk_od( 1468 struct pp_hwmgr *hwmgr, uint32_t value) 1469 { 1470 struct vega20_hwmgr *data = hwmgr->backend; 1471 struct vega20_single_dpm_table *golden_sclk_table = 1472 &(data->golden_dpm_table.gfx_table); 1473 uint32_t od_sclk; 1474 int ret = 0; 1475 1476 od_sclk = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value; 1477 od_sclk /= 100; 1478 od_sclk += golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; 1479 1480 ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_GFXCLK_FMAX, od_sclk); 1481 PP_ASSERT_WITH_CODE(!ret, 1482 "[SetSclkOD] failed to set od gfxclk!", 1483 return ret); 1484 1485 /* retrieve updated gfxclk table */ 1486 ret = vega20_setup_gfxclk_dpm_table(hwmgr); 1487 PP_ASSERT_WITH_CODE(!ret, 1488 "[SetSclkOD] failed to refresh gfxclk table!", 1489 return ret); 1490 1491 return 0; 1492 } 1493 1494 static int vega20_get_mclk_od( 1495 struct pp_hwmgr *hwmgr) 1496 { 1497 struct vega20_hwmgr *data = hwmgr->backend; 1498 struct vega20_single_dpm_table *mclk_table = 1499 &(data->dpm_table.mem_table); 1500 struct vega20_single_dpm_table *golden_mclk_table = 1501 &(data->golden_dpm_table.mem_table); 1502 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 1503 int golden_value = golden_mclk_table->dpm_levels 1504 [golden_mclk_table->count - 1].value; 1505 1506 /* od percentage */ 1507 value -= golden_value; 1508 value = DIV_ROUND_UP(value * 100, golden_value); 1509 1510 return value; 1511 } 1512 1513 static int vega20_set_mclk_od( 1514 struct pp_hwmgr *hwmgr, uint32_t value) 1515 { 1516 struct vega20_hwmgr *data = hwmgr->backend; 1517 struct vega20_single_dpm_table *golden_mclk_table = 1518 &(data->golden_dpm_table.mem_table); 1519 uint32_t od_mclk; 1520 int ret = 0; 1521 1522 od_mclk = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value; 1523 od_mclk /= 100; 1524 od_mclk += golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; 1525 1526 ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_UCLK_FMAX, od_mclk); 1527 PP_ASSERT_WITH_CODE(!ret, 1528 "[SetMclkOD] failed to set od memclk!", 1529 return ret); 1530 1531 /* retrieve updated memclk table */ 1532 ret = vega20_setup_memclk_dpm_table(hwmgr); 1533 PP_ASSERT_WITH_CODE(!ret, 1534 "[SetMclkOD] failed to refresh memclk table!", 1535 return ret); 1536 1537 return 0; 1538 } 1539 1540 static int vega20_populate_umdpstate_clocks( 1541 struct pp_hwmgr *hwmgr) 1542 { 1543 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 1544 struct vega20_single_dpm_table *gfx_table = &(data->dpm_table.gfx_table); 1545 struct vega20_single_dpm_table *mem_table = &(data->dpm_table.mem_table); 1546 1547 hwmgr->pstate_sclk = gfx_table->dpm_levels[0].value; 1548 hwmgr->pstate_mclk = mem_table->dpm_levels[0].value; 1549 1550 if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && 1551 mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) { 1552 hwmgr->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; 1553 hwmgr->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; 1554 } 1555 1556 hwmgr->pstate_sclk = hwmgr->pstate_sclk * 100; 1557 hwmgr->pstate_mclk = hwmgr->pstate_mclk * 100; 1558 1559 return 0; 1560 } 1561 1562 static int vega20_get_max_sustainable_clock(struct pp_hwmgr *hwmgr, 1563 PP_Clock *clock, PPCLK_e clock_select) 1564 { 1565 int ret = 0; 1566 1567 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, 1568 PPSMC_MSG_GetDcModeMaxDpmFreq, 1569 (clock_select << 16))) == 0, 1570 "[GetMaxSustainableClock] Failed to get max DC clock from SMC!", 1571 return ret); 1572 *clock = smum_get_argument(hwmgr); 1573 1574 /* if DC limit is zero, return AC limit */ 1575 if (*clock == 0) { 1576 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, 1577 PPSMC_MSG_GetMaxDpmFreq, 1578 (clock_select << 16))) == 0, 1579 "[GetMaxSustainableClock] failed to get max AC clock from SMC!", 1580 return ret); 1581 *clock = smum_get_argument(hwmgr); 1582 } 1583 1584 return 0; 1585 } 1586 1587 static int vega20_init_max_sustainable_clocks(struct pp_hwmgr *hwmgr) 1588 { 1589 struct vega20_hwmgr *data = 1590 (struct vega20_hwmgr *)(hwmgr->backend); 1591 struct vega20_max_sustainable_clocks *max_sustainable_clocks = 1592 &(data->max_sustainable_clocks); 1593 int ret = 0; 1594 1595 max_sustainable_clocks->uclock = data->vbios_boot_state.mem_clock / 100; 1596 max_sustainable_clocks->soc_clock = data->vbios_boot_state.soc_clock / 100; 1597 max_sustainable_clocks->dcef_clock = data->vbios_boot_state.dcef_clock / 100; 1598 max_sustainable_clocks->display_clock = 0xFFFFFFFF; 1599 max_sustainable_clocks->phy_clock = 0xFFFFFFFF; 1600 max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; 1601 1602 if (data->smu_features[GNLD_DPM_UCLK].enabled) 1603 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1604 &(max_sustainable_clocks->uclock), 1605 PPCLK_UCLK)) == 0, 1606 "[InitMaxSustainableClocks] failed to get max UCLK from SMC!", 1607 return ret); 1608 1609 if (data->smu_features[GNLD_DPM_SOCCLK].enabled) 1610 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1611 &(max_sustainable_clocks->soc_clock), 1612 PPCLK_SOCCLK)) == 0, 1613 "[InitMaxSustainableClocks] failed to get max SOCCLK from SMC!", 1614 return ret); 1615 1616 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 1617 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1618 &(max_sustainable_clocks->dcef_clock), 1619 PPCLK_DCEFCLK)) == 0, 1620 "[InitMaxSustainableClocks] failed to get max DCEFCLK from SMC!", 1621 return ret); 1622 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1623 &(max_sustainable_clocks->display_clock), 1624 PPCLK_DISPCLK)) == 0, 1625 "[InitMaxSustainableClocks] failed to get max DISPCLK from SMC!", 1626 return ret); 1627 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1628 &(max_sustainable_clocks->phy_clock), 1629 PPCLK_PHYCLK)) == 0, 1630 "[InitMaxSustainableClocks] failed to get max PHYCLK from SMC!", 1631 return ret); 1632 PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, 1633 &(max_sustainable_clocks->pixel_clock), 1634 PPCLK_PIXCLK)) == 0, 1635 "[InitMaxSustainableClocks] failed to get max PIXCLK from SMC!", 1636 return ret); 1637 } 1638 1639 if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) 1640 max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; 1641 1642 return 0; 1643 } 1644 1645 static int vega20_enable_mgpu_fan_boost(struct pp_hwmgr *hwmgr) 1646 { 1647 int result; 1648 1649 result = smum_send_msg_to_smc(hwmgr, 1650 PPSMC_MSG_SetMGpuFanBoostLimitRpm); 1651 PP_ASSERT_WITH_CODE(!result, 1652 "[EnableMgpuFan] Failed to enable mgpu fan boost!", 1653 return result); 1654 1655 return 0; 1656 } 1657 1658 static void vega20_init_powergate_state(struct pp_hwmgr *hwmgr) 1659 { 1660 struct vega20_hwmgr *data = 1661 (struct vega20_hwmgr *)(hwmgr->backend); 1662 1663 data->uvd_power_gated = true; 1664 data->vce_power_gated = true; 1665 1666 if (data->smu_features[GNLD_DPM_UVD].enabled) 1667 data->uvd_power_gated = false; 1668 1669 if (data->smu_features[GNLD_DPM_VCE].enabled) 1670 data->vce_power_gated = false; 1671 } 1672 1673 static int vega20_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 1674 { 1675 int result = 0; 1676 1677 smum_send_msg_to_smc_with_parameter(hwmgr, 1678 PPSMC_MSG_NumOfDisplays, 0); 1679 1680 result = vega20_set_allowed_featuresmask(hwmgr); 1681 PP_ASSERT_WITH_CODE(!result, 1682 "[EnableDPMTasks] Failed to set allowed featuresmask!\n", 1683 return result); 1684 1685 result = vega20_init_smc_table(hwmgr); 1686 PP_ASSERT_WITH_CODE(!result, 1687 "[EnableDPMTasks] Failed to initialize SMC table!", 1688 return result); 1689 1690 result = vega20_run_btc(hwmgr); 1691 PP_ASSERT_WITH_CODE(!result, 1692 "[EnableDPMTasks] Failed to run btc!", 1693 return result); 1694 1695 result = vega20_run_btc_afll(hwmgr); 1696 PP_ASSERT_WITH_CODE(!result, 1697 "[EnableDPMTasks] Failed to run btc afll!", 1698 return result); 1699 1700 result = vega20_enable_all_smu_features(hwmgr); 1701 PP_ASSERT_WITH_CODE(!result, 1702 "[EnableDPMTasks] Failed to enable all smu features!", 1703 return result); 1704 1705 result = vega20_override_pcie_parameters(hwmgr); 1706 PP_ASSERT_WITH_CODE(!result, 1707 "[EnableDPMTasks] Failed to override pcie parameters!", 1708 return result); 1709 1710 result = vega20_notify_smc_display_change(hwmgr); 1711 PP_ASSERT_WITH_CODE(!result, 1712 "[EnableDPMTasks] Failed to notify smc display change!", 1713 return result); 1714 1715 result = vega20_send_clock_ratio(hwmgr); 1716 PP_ASSERT_WITH_CODE(!result, 1717 "[EnableDPMTasks] Failed to send clock ratio!", 1718 return result); 1719 1720 /* Initialize UVD/VCE powergating state */ 1721 vega20_init_powergate_state(hwmgr); 1722 1723 result = vega20_setup_default_dpm_tables(hwmgr); 1724 PP_ASSERT_WITH_CODE(!result, 1725 "[EnableDPMTasks] Failed to setup default DPM tables!", 1726 return result); 1727 1728 result = vega20_init_max_sustainable_clocks(hwmgr); 1729 PP_ASSERT_WITH_CODE(!result, 1730 "[EnableDPMTasks] Failed to get maximum sustainable clocks!", 1731 return result); 1732 1733 result = vega20_power_control_set_level(hwmgr); 1734 PP_ASSERT_WITH_CODE(!result, 1735 "[EnableDPMTasks] Failed to power control set level!", 1736 return result); 1737 1738 result = vega20_od8_initialize_default_settings(hwmgr); 1739 PP_ASSERT_WITH_CODE(!result, 1740 "[EnableDPMTasks] Failed to initialize odn settings!", 1741 return result); 1742 1743 result = vega20_populate_umdpstate_clocks(hwmgr); 1744 PP_ASSERT_WITH_CODE(!result, 1745 "[EnableDPMTasks] Failed to populate umdpstate clocks!", 1746 return result); 1747 1748 result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetPptLimit, 1749 POWER_SOURCE_AC << 16); 1750 PP_ASSERT_WITH_CODE(!result, 1751 "[GetPptLimit] get default PPT limit failed!", 1752 return result); 1753 hwmgr->power_limit = 1754 hwmgr->default_power_limit = smum_get_argument(hwmgr); 1755 1756 return 0; 1757 } 1758 1759 static uint32_t vega20_find_lowest_dpm_level( 1760 struct vega20_single_dpm_table *table) 1761 { 1762 uint32_t i; 1763 1764 for (i = 0; i < table->count; i++) { 1765 if (table->dpm_levels[i].enabled) 1766 break; 1767 } 1768 if (i >= table->count) { 1769 i = 0; 1770 table->dpm_levels[i].enabled = true; 1771 } 1772 1773 return i; 1774 } 1775 1776 static uint32_t vega20_find_highest_dpm_level( 1777 struct vega20_single_dpm_table *table) 1778 { 1779 int i = 0; 1780 1781 PP_ASSERT_WITH_CODE(table != NULL, 1782 "[FindHighestDPMLevel] DPM Table does not exist!", 1783 return 0); 1784 PP_ASSERT_WITH_CODE(table->count > 0, 1785 "[FindHighestDPMLevel] DPM Table has no entry!", 1786 return 0); 1787 PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER, 1788 "[FindHighestDPMLevel] DPM Table has too many entries!", 1789 return MAX_REGULAR_DPM_NUMBER - 1); 1790 1791 for (i = table->count - 1; i >= 0; i--) { 1792 if (table->dpm_levels[i].enabled) 1793 break; 1794 } 1795 if (i < 0) { 1796 i = 0; 1797 table->dpm_levels[i].enabled = true; 1798 } 1799 1800 return i; 1801 } 1802 1803 static int vega20_upload_dpm_min_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask) 1804 { 1805 struct vega20_hwmgr *data = 1806 (struct vega20_hwmgr *)(hwmgr->backend); 1807 uint32_t min_freq; 1808 int ret = 0; 1809 1810 if (data->smu_features[GNLD_DPM_GFXCLK].enabled && 1811 (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { 1812 min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level; 1813 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1814 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1815 (PPCLK_GFXCLK << 16) | (min_freq & 0xffff))), 1816 "Failed to set soft min gfxclk !", 1817 return ret); 1818 } 1819 1820 if (data->smu_features[GNLD_DPM_UCLK].enabled && 1821 (feature_mask & FEATURE_DPM_UCLK_MASK)) { 1822 min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level; 1823 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1824 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1825 (PPCLK_UCLK << 16) | (min_freq & 0xffff))), 1826 "Failed to set soft min memclk !", 1827 return ret); 1828 } 1829 1830 if (data->smu_features[GNLD_DPM_UVD].enabled && 1831 (feature_mask & FEATURE_DPM_UVD_MASK)) { 1832 min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level; 1833 1834 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1835 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1836 (PPCLK_VCLK << 16) | (min_freq & 0xffff))), 1837 "Failed to set soft min vclk!", 1838 return ret); 1839 1840 min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level; 1841 1842 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1843 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1844 (PPCLK_DCLK << 16) | (min_freq & 0xffff))), 1845 "Failed to set soft min dclk!", 1846 return ret); 1847 } 1848 1849 if (data->smu_features[GNLD_DPM_VCE].enabled && 1850 (feature_mask & FEATURE_DPM_VCE_MASK)) { 1851 min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level; 1852 1853 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1854 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1855 (PPCLK_ECLK << 16) | (min_freq & 0xffff))), 1856 "Failed to set soft min eclk!", 1857 return ret); 1858 } 1859 1860 if (data->smu_features[GNLD_DPM_SOCCLK].enabled && 1861 (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { 1862 min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level; 1863 1864 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1865 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1866 (PPCLK_SOCCLK << 16) | (min_freq & 0xffff))), 1867 "Failed to set soft min socclk!", 1868 return ret); 1869 } 1870 1871 if (data->smu_features[GNLD_DPM_FCLK].enabled && 1872 (feature_mask & FEATURE_DPM_FCLK_MASK)) { 1873 min_freq = data->dpm_table.fclk_table.dpm_state.soft_min_level; 1874 1875 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1876 hwmgr, PPSMC_MSG_SetSoftMinByFreq, 1877 (PPCLK_FCLK << 16) | (min_freq & 0xffff))), 1878 "Failed to set soft min fclk!", 1879 return ret); 1880 } 1881 1882 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled && 1883 (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) { 1884 min_freq = data->dpm_table.dcef_table.dpm_state.hard_min_level; 1885 1886 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1887 hwmgr, PPSMC_MSG_SetHardMinByFreq, 1888 (PPCLK_DCEFCLK << 16) | (min_freq & 0xffff))), 1889 "Failed to set hard min dcefclk!", 1890 return ret); 1891 } 1892 1893 return ret; 1894 } 1895 1896 static int vega20_upload_dpm_max_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask) 1897 { 1898 struct vega20_hwmgr *data = 1899 (struct vega20_hwmgr *)(hwmgr->backend); 1900 uint32_t max_freq; 1901 int ret = 0; 1902 1903 if (data->smu_features[GNLD_DPM_GFXCLK].enabled && 1904 (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { 1905 max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level; 1906 1907 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1908 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1909 (PPCLK_GFXCLK << 16) | (max_freq & 0xffff))), 1910 "Failed to set soft max gfxclk!", 1911 return ret); 1912 } 1913 1914 if (data->smu_features[GNLD_DPM_UCLK].enabled && 1915 (feature_mask & FEATURE_DPM_UCLK_MASK)) { 1916 max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level; 1917 1918 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1919 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1920 (PPCLK_UCLK << 16) | (max_freq & 0xffff))), 1921 "Failed to set soft max memclk!", 1922 return ret); 1923 } 1924 1925 if (data->smu_features[GNLD_DPM_UVD].enabled && 1926 (feature_mask & FEATURE_DPM_UVD_MASK)) { 1927 max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level; 1928 1929 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1930 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1931 (PPCLK_VCLK << 16) | (max_freq & 0xffff))), 1932 "Failed to set soft max vclk!", 1933 return ret); 1934 1935 max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level; 1936 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1937 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1938 (PPCLK_DCLK << 16) | (max_freq & 0xffff))), 1939 "Failed to set soft max dclk!", 1940 return ret); 1941 } 1942 1943 if (data->smu_features[GNLD_DPM_VCE].enabled && 1944 (feature_mask & FEATURE_DPM_VCE_MASK)) { 1945 max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level; 1946 1947 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1948 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1949 (PPCLK_ECLK << 16) | (max_freq & 0xffff))), 1950 "Failed to set soft max eclk!", 1951 return ret); 1952 } 1953 1954 if (data->smu_features[GNLD_DPM_SOCCLK].enabled && 1955 (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { 1956 max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level; 1957 1958 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1959 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1960 (PPCLK_SOCCLK << 16) | (max_freq & 0xffff))), 1961 "Failed to set soft max socclk!", 1962 return ret); 1963 } 1964 1965 if (data->smu_features[GNLD_DPM_FCLK].enabled && 1966 (feature_mask & FEATURE_DPM_FCLK_MASK)) { 1967 max_freq = data->dpm_table.fclk_table.dpm_state.soft_max_level; 1968 1969 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( 1970 hwmgr, PPSMC_MSG_SetSoftMaxByFreq, 1971 (PPCLK_FCLK << 16) | (max_freq & 0xffff))), 1972 "Failed to set soft max fclk!", 1973 return ret); 1974 } 1975 1976 return ret; 1977 } 1978 1979 int vega20_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) 1980 { 1981 struct vega20_hwmgr *data = 1982 (struct vega20_hwmgr *)(hwmgr->backend); 1983 int ret = 0; 1984 1985 if (data->smu_features[GNLD_DPM_VCE].supported) { 1986 if (data->smu_features[GNLD_DPM_VCE].enabled == enable) { 1987 if (enable) 1988 PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already enabled!\n"); 1989 else 1990 PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already disabled!\n"); 1991 } 1992 1993 ret = vega20_enable_smc_features(hwmgr, 1994 enable, 1995 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap); 1996 PP_ASSERT_WITH_CODE(!ret, 1997 "Attempt to Enable/Disable DPM VCE Failed!", 1998 return ret); 1999 data->smu_features[GNLD_DPM_VCE].enabled = enable; 2000 } 2001 2002 return 0; 2003 } 2004 2005 static int vega20_get_clock_ranges(struct pp_hwmgr *hwmgr, 2006 uint32_t *clock, 2007 PPCLK_e clock_select, 2008 bool max) 2009 { 2010 int ret; 2011 *clock = 0; 2012 2013 if (max) { 2014 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, 2015 PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16))) == 0, 2016 "[GetClockRanges] Failed to get max clock from SMC!", 2017 return ret); 2018 *clock = smum_get_argument(hwmgr); 2019 } else { 2020 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, 2021 PPSMC_MSG_GetMinDpmFreq, 2022 (clock_select << 16))) == 0, 2023 "[GetClockRanges] Failed to get min clock from SMC!", 2024 return ret); 2025 *clock = smum_get_argument(hwmgr); 2026 } 2027 2028 return 0; 2029 } 2030 2031 static uint32_t vega20_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 2032 { 2033 struct vega20_hwmgr *data = 2034 (struct vega20_hwmgr *)(hwmgr->backend); 2035 uint32_t gfx_clk; 2036 int ret = 0; 2037 2038 PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled, 2039 "[GetSclks]: gfxclk dpm not enabled!\n", 2040 return -EPERM); 2041 2042 if (low) { 2043 ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false); 2044 PP_ASSERT_WITH_CODE(!ret, 2045 "[GetSclks]: fail to get min PPCLK_GFXCLK\n", 2046 return ret); 2047 } else { 2048 ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true); 2049 PP_ASSERT_WITH_CODE(!ret, 2050 "[GetSclks]: fail to get max PPCLK_GFXCLK\n", 2051 return ret); 2052 } 2053 2054 return (gfx_clk * 100); 2055 } 2056 2057 static uint32_t vega20_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 2058 { 2059 struct vega20_hwmgr *data = 2060 (struct vega20_hwmgr *)(hwmgr->backend); 2061 uint32_t mem_clk; 2062 int ret = 0; 2063 2064 PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled, 2065 "[MemMclks]: memclk dpm not enabled!\n", 2066 return -EPERM); 2067 2068 if (low) { 2069 ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false); 2070 PP_ASSERT_WITH_CODE(!ret, 2071 "[GetMclks]: fail to get min PPCLK_UCLK\n", 2072 return ret); 2073 } else { 2074 ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true); 2075 PP_ASSERT_WITH_CODE(!ret, 2076 "[GetMclks]: fail to get max PPCLK_UCLK\n", 2077 return ret); 2078 } 2079 2080 return (mem_clk * 100); 2081 } 2082 2083 static int vega20_get_metrics_table(struct pp_hwmgr *hwmgr, SmuMetrics_t *metrics_table) 2084 { 2085 struct vega20_hwmgr *data = 2086 (struct vega20_hwmgr *)(hwmgr->backend); 2087 int ret = 0; 2088 2089 if (!data->metrics_time || time_after(jiffies, data->metrics_time + HZ / 2)) { 2090 ret = smum_smc_table_manager(hwmgr, (uint8_t *)metrics_table, 2091 TABLE_SMU_METRICS, true); 2092 if (ret) { 2093 pr_info("Failed to export SMU metrics table!\n"); 2094 return ret; 2095 } 2096 memcpy(&data->metrics_table, metrics_table, sizeof(SmuMetrics_t)); 2097 data->metrics_time = jiffies; 2098 } else 2099 memcpy(metrics_table, &data->metrics_table, sizeof(SmuMetrics_t)); 2100 2101 return ret; 2102 } 2103 2104 static int vega20_get_gpu_power(struct pp_hwmgr *hwmgr, 2105 uint32_t *query) 2106 { 2107 int ret = 0; 2108 SmuMetrics_t metrics_table; 2109 2110 ret = vega20_get_metrics_table(hwmgr, &metrics_table); 2111 if (ret) 2112 return ret; 2113 2114 /* For the 40.46 release, they changed the value name */ 2115 if (hwmgr->smu_version == 0x282e00) 2116 *query = metrics_table.AverageSocketPower << 8; 2117 else 2118 *query = metrics_table.CurrSocketPower << 8; 2119 2120 return ret; 2121 } 2122 2123 static int vega20_get_current_clk_freq(struct pp_hwmgr *hwmgr, 2124 PPCLK_e clk_id, uint32_t *clk_freq) 2125 { 2126 int ret = 0; 2127 2128 *clk_freq = 0; 2129 2130 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, 2131 PPSMC_MSG_GetDpmClockFreq, (clk_id << 16))) == 0, 2132 "[GetCurrentClkFreq] Attempt to get Current Frequency Failed!", 2133 return ret); 2134 *clk_freq = smum_get_argument(hwmgr); 2135 2136 *clk_freq = *clk_freq * 100; 2137 2138 return 0; 2139 } 2140 2141 static int vega20_get_current_activity_percent(struct pp_hwmgr *hwmgr, 2142 int idx, 2143 uint32_t *activity_percent) 2144 { 2145 int ret = 0; 2146 SmuMetrics_t metrics_table; 2147 2148 ret = vega20_get_metrics_table(hwmgr, &metrics_table); 2149 if (ret) 2150 return ret; 2151 2152 switch (idx) { 2153 case AMDGPU_PP_SENSOR_GPU_LOAD: 2154 *activity_percent = metrics_table.AverageGfxActivity; 2155 break; 2156 case AMDGPU_PP_SENSOR_MEM_LOAD: 2157 *activity_percent = metrics_table.AverageUclkActivity; 2158 break; 2159 default: 2160 pr_err("Invalid index for retrieving clock activity\n"); 2161 return -EINVAL; 2162 } 2163 2164 return ret; 2165 } 2166 2167 static int vega20_read_sensor(struct pp_hwmgr *hwmgr, int idx, 2168 void *value, int *size) 2169 { 2170 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2171 struct amdgpu_device *adev = hwmgr->adev; 2172 SmuMetrics_t metrics_table; 2173 uint32_t val_vid; 2174 int ret = 0; 2175 2176 switch (idx) { 2177 case AMDGPU_PP_SENSOR_GFX_SCLK: 2178 ret = vega20_get_metrics_table(hwmgr, &metrics_table); 2179 if (ret) 2180 return ret; 2181 2182 *((uint32_t *)value) = metrics_table.AverageGfxclkFrequency * 100; 2183 *size = 4; 2184 break; 2185 case AMDGPU_PP_SENSOR_GFX_MCLK: 2186 ret = vega20_get_current_clk_freq(hwmgr, 2187 PPCLK_UCLK, 2188 (uint32_t *)value); 2189 if (!ret) 2190 *size = 4; 2191 break; 2192 case AMDGPU_PP_SENSOR_GPU_LOAD: 2193 case AMDGPU_PP_SENSOR_MEM_LOAD: 2194 ret = vega20_get_current_activity_percent(hwmgr, idx, (uint32_t *)value); 2195 if (!ret) 2196 *size = 4; 2197 break; 2198 case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: 2199 *((uint32_t *)value) = vega20_thermal_get_temperature(hwmgr); 2200 *size = 4; 2201 break; 2202 case AMDGPU_PP_SENSOR_EDGE_TEMP: 2203 ret = vega20_get_metrics_table(hwmgr, &metrics_table); 2204 if (ret) 2205 return ret; 2206 2207 *((uint32_t *)value) = metrics_table.TemperatureEdge * 2208 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2209 *size = 4; 2210 break; 2211 case AMDGPU_PP_SENSOR_MEM_TEMP: 2212 ret = vega20_get_metrics_table(hwmgr, &metrics_table); 2213 if (ret) 2214 return ret; 2215 2216 *((uint32_t *)value) = metrics_table.TemperatureHBM * 2217 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2218 *size = 4; 2219 break; 2220 case AMDGPU_PP_SENSOR_UVD_POWER: 2221 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 2222 *size = 4; 2223 break; 2224 case AMDGPU_PP_SENSOR_VCE_POWER: 2225 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 2226 *size = 4; 2227 break; 2228 case AMDGPU_PP_SENSOR_GPU_POWER: 2229 *size = 16; 2230 ret = vega20_get_gpu_power(hwmgr, (uint32_t *)value); 2231 break; 2232 case AMDGPU_PP_SENSOR_VDDGFX: 2233 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) & 2234 SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> 2235 SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; 2236 *((uint32_t *)value) = 2237 (uint32_t)convert_to_vddc((uint8_t)val_vid); 2238 break; 2239 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: 2240 ret = vega20_get_enabled_smc_features(hwmgr, (uint64_t *)value); 2241 if (!ret) 2242 *size = 8; 2243 break; 2244 default: 2245 ret = -EINVAL; 2246 break; 2247 } 2248 return ret; 2249 } 2250 2251 int vega20_display_clock_voltage_request(struct pp_hwmgr *hwmgr, 2252 struct pp_display_clock_request *clock_req) 2253 { 2254 int result = 0; 2255 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2256 enum amd_pp_clock_type clk_type = clock_req->clock_type; 2257 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; 2258 PPCLK_e clk_select = 0; 2259 uint32_t clk_request = 0; 2260 2261 if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { 2262 switch (clk_type) { 2263 case amd_pp_dcef_clock: 2264 clk_select = PPCLK_DCEFCLK; 2265 break; 2266 case amd_pp_disp_clock: 2267 clk_select = PPCLK_DISPCLK; 2268 break; 2269 case amd_pp_pixel_clock: 2270 clk_select = PPCLK_PIXCLK; 2271 break; 2272 case amd_pp_phy_clock: 2273 clk_select = PPCLK_PHYCLK; 2274 break; 2275 default: 2276 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); 2277 result = -EINVAL; 2278 break; 2279 } 2280 2281 if (!result) { 2282 clk_request = (clk_select << 16) | clk_freq; 2283 result = smum_send_msg_to_smc_with_parameter(hwmgr, 2284 PPSMC_MSG_SetHardMinByFreq, 2285 clk_request); 2286 } 2287 } 2288 2289 return result; 2290 } 2291 2292 static int vega20_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 2293 PHM_PerformanceLevelDesignation designation, uint32_t index, 2294 PHM_PerformanceLevel *level) 2295 { 2296 return 0; 2297 } 2298 2299 static int vega20_notify_smc_display_config_after_ps_adjustment( 2300 struct pp_hwmgr *hwmgr) 2301 { 2302 struct vega20_hwmgr *data = 2303 (struct vega20_hwmgr *)(hwmgr->backend); 2304 struct vega20_single_dpm_table *dpm_table = 2305 &data->dpm_table.mem_table; 2306 struct PP_Clocks min_clocks = {0}; 2307 struct pp_display_clock_request clock_req; 2308 int ret = 0; 2309 2310 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; 2311 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; 2312 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 2313 2314 if (data->smu_features[GNLD_DPM_DCEFCLK].supported) { 2315 clock_req.clock_type = amd_pp_dcef_clock; 2316 clock_req.clock_freq_in_khz = min_clocks.dcefClock * 10; 2317 if (!vega20_display_clock_voltage_request(hwmgr, &clock_req)) { 2318 if (data->smu_features[GNLD_DS_DCEFCLK].supported) 2319 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter( 2320 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, 2321 min_clocks.dcefClockInSR / 100)) == 0, 2322 "Attempt to set divider for DCEFCLK Failed!", 2323 return ret); 2324 } else { 2325 pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); 2326 } 2327 } 2328 2329 if (data->smu_features[GNLD_DPM_UCLK].enabled) { 2330 dpm_table->dpm_state.hard_min_level = min_clocks.memoryClock / 100; 2331 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, 2332 PPSMC_MSG_SetHardMinByFreq, 2333 (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)), 2334 "[SetHardMinFreq] Set hard min uclk failed!", 2335 return ret); 2336 } 2337 2338 return 0; 2339 } 2340 2341 static int vega20_force_dpm_highest(struct pp_hwmgr *hwmgr) 2342 { 2343 struct vega20_hwmgr *data = 2344 (struct vega20_hwmgr *)(hwmgr->backend); 2345 uint32_t soft_level; 2346 int ret = 0; 2347 2348 soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 2349 2350 data->dpm_table.gfx_table.dpm_state.soft_min_level = 2351 data->dpm_table.gfx_table.dpm_state.soft_max_level = 2352 data->dpm_table.gfx_table.dpm_levels[soft_level].value; 2353 2354 soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table)); 2355 2356 data->dpm_table.mem_table.dpm_state.soft_min_level = 2357 data->dpm_table.mem_table.dpm_state.soft_max_level = 2358 data->dpm_table.mem_table.dpm_levels[soft_level].value; 2359 2360 soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.soc_table)); 2361 2362 data->dpm_table.soc_table.dpm_state.soft_min_level = 2363 data->dpm_table.soc_table.dpm_state.soft_max_level = 2364 data->dpm_table.soc_table.dpm_levels[soft_level].value; 2365 2366 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2367 FEATURE_DPM_UCLK_MASK | 2368 FEATURE_DPM_SOCCLK_MASK); 2369 PP_ASSERT_WITH_CODE(!ret, 2370 "Failed to upload boot level to highest!", 2371 return ret); 2372 2373 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2374 FEATURE_DPM_UCLK_MASK | 2375 FEATURE_DPM_SOCCLK_MASK); 2376 PP_ASSERT_WITH_CODE(!ret, 2377 "Failed to upload dpm max level to highest!", 2378 return ret); 2379 2380 return 0; 2381 } 2382 2383 static int vega20_force_dpm_lowest(struct pp_hwmgr *hwmgr) 2384 { 2385 struct vega20_hwmgr *data = 2386 (struct vega20_hwmgr *)(hwmgr->backend); 2387 uint32_t soft_level; 2388 int ret = 0; 2389 2390 soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 2391 2392 data->dpm_table.gfx_table.dpm_state.soft_min_level = 2393 data->dpm_table.gfx_table.dpm_state.soft_max_level = 2394 data->dpm_table.gfx_table.dpm_levels[soft_level].value; 2395 2396 soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 2397 2398 data->dpm_table.mem_table.dpm_state.soft_min_level = 2399 data->dpm_table.mem_table.dpm_state.soft_max_level = 2400 data->dpm_table.mem_table.dpm_levels[soft_level].value; 2401 2402 soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table)); 2403 2404 data->dpm_table.soc_table.dpm_state.soft_min_level = 2405 data->dpm_table.soc_table.dpm_state.soft_max_level = 2406 data->dpm_table.soc_table.dpm_levels[soft_level].value; 2407 2408 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2409 FEATURE_DPM_UCLK_MASK | 2410 FEATURE_DPM_SOCCLK_MASK); 2411 PP_ASSERT_WITH_CODE(!ret, 2412 "Failed to upload boot level to highest!", 2413 return ret); 2414 2415 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2416 FEATURE_DPM_UCLK_MASK | 2417 FEATURE_DPM_SOCCLK_MASK); 2418 PP_ASSERT_WITH_CODE(!ret, 2419 "Failed to upload dpm max level to highest!", 2420 return ret); 2421 2422 return 0; 2423 2424 } 2425 2426 static int vega20_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 2427 { 2428 struct vega20_hwmgr *data = 2429 (struct vega20_hwmgr *)(hwmgr->backend); 2430 uint32_t soft_min_level, soft_max_level; 2431 int ret = 0; 2432 2433 /* gfxclk soft min/max settings */ 2434 soft_min_level = 2435 vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 2436 soft_max_level = 2437 vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 2438 2439 data->dpm_table.gfx_table.dpm_state.soft_min_level = 2440 data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; 2441 data->dpm_table.gfx_table.dpm_state.soft_max_level = 2442 data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; 2443 2444 /* uclk soft min/max settings */ 2445 soft_min_level = 2446 vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 2447 soft_max_level = 2448 vega20_find_highest_dpm_level(&(data->dpm_table.mem_table)); 2449 2450 data->dpm_table.mem_table.dpm_state.soft_min_level = 2451 data->dpm_table.mem_table.dpm_levels[soft_min_level].value; 2452 data->dpm_table.mem_table.dpm_state.soft_max_level = 2453 data->dpm_table.mem_table.dpm_levels[soft_max_level].value; 2454 2455 /* socclk soft min/max settings */ 2456 soft_min_level = 2457 vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table)); 2458 soft_max_level = 2459 vega20_find_highest_dpm_level(&(data->dpm_table.soc_table)); 2460 2461 data->dpm_table.soc_table.dpm_state.soft_min_level = 2462 data->dpm_table.soc_table.dpm_levels[soft_min_level].value; 2463 data->dpm_table.soc_table.dpm_state.soft_max_level = 2464 data->dpm_table.soc_table.dpm_levels[soft_max_level].value; 2465 2466 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2467 FEATURE_DPM_UCLK_MASK | 2468 FEATURE_DPM_SOCCLK_MASK); 2469 PP_ASSERT_WITH_CODE(!ret, 2470 "Failed to upload DPM Bootup Levels!", 2471 return ret); 2472 2473 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK | 2474 FEATURE_DPM_UCLK_MASK | 2475 FEATURE_DPM_SOCCLK_MASK); 2476 PP_ASSERT_WITH_CODE(!ret, 2477 "Failed to upload DPM Max Levels!", 2478 return ret); 2479 2480 return 0; 2481 } 2482 2483 static int vega20_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 2484 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) 2485 { 2486 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2487 struct vega20_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); 2488 struct vega20_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); 2489 struct vega20_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table); 2490 2491 *sclk_mask = 0; 2492 *mclk_mask = 0; 2493 *soc_mask = 0; 2494 2495 if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && 2496 mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL && 2497 soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) { 2498 *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL; 2499 *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL; 2500 *soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL; 2501 } 2502 2503 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 2504 *sclk_mask = 0; 2505 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { 2506 *mclk_mask = 0; 2507 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 2508 *sclk_mask = gfx_dpm_table->count - 1; 2509 *mclk_mask = mem_dpm_table->count - 1; 2510 *soc_mask = soc_dpm_table->count - 1; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static int vega20_force_clock_level(struct pp_hwmgr *hwmgr, 2517 enum pp_clock_type type, uint32_t mask) 2518 { 2519 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2520 uint32_t soft_min_level, soft_max_level, hard_min_level; 2521 int ret = 0; 2522 2523 switch (type) { 2524 case PP_SCLK: 2525 soft_min_level = mask ? (ffs(mask) - 1) : 0; 2526 soft_max_level = mask ? (fls(mask) - 1) : 0; 2527 2528 if (soft_max_level >= data->dpm_table.gfx_table.count) { 2529 pr_err("Clock level specified %d is over max allowed %d\n", 2530 soft_max_level, 2531 data->dpm_table.gfx_table.count - 1); 2532 return -EINVAL; 2533 } 2534 2535 data->dpm_table.gfx_table.dpm_state.soft_min_level = 2536 data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; 2537 data->dpm_table.gfx_table.dpm_state.soft_max_level = 2538 data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; 2539 2540 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK); 2541 PP_ASSERT_WITH_CODE(!ret, 2542 "Failed to upload boot level to lowest!", 2543 return ret); 2544 2545 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK); 2546 PP_ASSERT_WITH_CODE(!ret, 2547 "Failed to upload dpm max level to highest!", 2548 return ret); 2549 break; 2550 2551 case PP_MCLK: 2552 soft_min_level = mask ? (ffs(mask) - 1) : 0; 2553 soft_max_level = mask ? (fls(mask) - 1) : 0; 2554 2555 if (soft_max_level >= data->dpm_table.mem_table.count) { 2556 pr_err("Clock level specified %d is over max allowed %d\n", 2557 soft_max_level, 2558 data->dpm_table.mem_table.count - 1); 2559 return -EINVAL; 2560 } 2561 2562 data->dpm_table.mem_table.dpm_state.soft_min_level = 2563 data->dpm_table.mem_table.dpm_levels[soft_min_level].value; 2564 data->dpm_table.mem_table.dpm_state.soft_max_level = 2565 data->dpm_table.mem_table.dpm_levels[soft_max_level].value; 2566 2567 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_UCLK_MASK); 2568 PP_ASSERT_WITH_CODE(!ret, 2569 "Failed to upload boot level to lowest!", 2570 return ret); 2571 2572 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_UCLK_MASK); 2573 PP_ASSERT_WITH_CODE(!ret, 2574 "Failed to upload dpm max level to highest!", 2575 return ret); 2576 2577 break; 2578 2579 case PP_SOCCLK: 2580 soft_min_level = mask ? (ffs(mask) - 1) : 0; 2581 soft_max_level = mask ? (fls(mask) - 1) : 0; 2582 2583 if (soft_max_level >= data->dpm_table.soc_table.count) { 2584 pr_err("Clock level specified %d is over max allowed %d\n", 2585 soft_max_level, 2586 data->dpm_table.soc_table.count - 1); 2587 return -EINVAL; 2588 } 2589 2590 data->dpm_table.soc_table.dpm_state.soft_min_level = 2591 data->dpm_table.soc_table.dpm_levels[soft_min_level].value; 2592 data->dpm_table.soc_table.dpm_state.soft_max_level = 2593 data->dpm_table.soc_table.dpm_levels[soft_max_level].value; 2594 2595 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_SOCCLK_MASK); 2596 PP_ASSERT_WITH_CODE(!ret, 2597 "Failed to upload boot level to lowest!", 2598 return ret); 2599 2600 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_SOCCLK_MASK); 2601 PP_ASSERT_WITH_CODE(!ret, 2602 "Failed to upload dpm max level to highest!", 2603 return ret); 2604 2605 break; 2606 2607 case PP_FCLK: 2608 soft_min_level = mask ? (ffs(mask) - 1) : 0; 2609 soft_max_level = mask ? (fls(mask) - 1) : 0; 2610 2611 if (soft_max_level >= data->dpm_table.fclk_table.count) { 2612 pr_err("Clock level specified %d is over max allowed %d\n", 2613 soft_max_level, 2614 data->dpm_table.fclk_table.count - 1); 2615 return -EINVAL; 2616 } 2617 2618 data->dpm_table.fclk_table.dpm_state.soft_min_level = 2619 data->dpm_table.fclk_table.dpm_levels[soft_min_level].value; 2620 data->dpm_table.fclk_table.dpm_state.soft_max_level = 2621 data->dpm_table.fclk_table.dpm_levels[soft_max_level].value; 2622 2623 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_FCLK_MASK); 2624 PP_ASSERT_WITH_CODE(!ret, 2625 "Failed to upload boot level to lowest!", 2626 return ret); 2627 2628 ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_FCLK_MASK); 2629 PP_ASSERT_WITH_CODE(!ret, 2630 "Failed to upload dpm max level to highest!", 2631 return ret); 2632 2633 break; 2634 2635 case PP_DCEFCLK: 2636 hard_min_level = mask ? (ffs(mask) - 1) : 0; 2637 2638 if (hard_min_level >= data->dpm_table.dcef_table.count) { 2639 pr_err("Clock level specified %d is over max allowed %d\n", 2640 hard_min_level, 2641 data->dpm_table.dcef_table.count - 1); 2642 return -EINVAL; 2643 } 2644 2645 data->dpm_table.dcef_table.dpm_state.hard_min_level = 2646 data->dpm_table.dcef_table.dpm_levels[hard_min_level].value; 2647 2648 ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_DCEFCLK_MASK); 2649 PP_ASSERT_WITH_CODE(!ret, 2650 "Failed to upload boot level to lowest!", 2651 return ret); 2652 2653 //TODO: Setting DCEFCLK max dpm level is not supported 2654 2655 break; 2656 2657 case PP_PCIE: 2658 soft_min_level = mask ? (ffs(mask) - 1) : 0; 2659 soft_max_level = mask ? (fls(mask) - 1) : 0; 2660 if (soft_min_level >= NUM_LINK_LEVELS || 2661 soft_max_level >= NUM_LINK_LEVELS) 2662 return -EINVAL; 2663 2664 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 2665 PPSMC_MSG_SetMinLinkDpmByIndex, soft_min_level); 2666 PP_ASSERT_WITH_CODE(!ret, 2667 "Failed to set min link dpm level!", 2668 return ret); 2669 2670 break; 2671 2672 default: 2673 break; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int vega20_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, 2680 enum amd_dpm_forced_level level) 2681 { 2682 int ret = 0; 2683 uint32_t sclk_mask, mclk_mask, soc_mask; 2684 2685 switch (level) { 2686 case AMD_DPM_FORCED_LEVEL_HIGH: 2687 ret = vega20_force_dpm_highest(hwmgr); 2688 break; 2689 2690 case AMD_DPM_FORCED_LEVEL_LOW: 2691 ret = vega20_force_dpm_lowest(hwmgr); 2692 break; 2693 2694 case AMD_DPM_FORCED_LEVEL_AUTO: 2695 ret = vega20_unforce_dpm_levels(hwmgr); 2696 break; 2697 2698 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 2699 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 2700 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 2701 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 2702 ret = vega20_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 2703 if (ret) 2704 return ret; 2705 vega20_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask); 2706 vega20_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask); 2707 vega20_force_clock_level(hwmgr, PP_SOCCLK, 1 << soc_mask); 2708 break; 2709 2710 case AMD_DPM_FORCED_LEVEL_MANUAL: 2711 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 2712 default: 2713 break; 2714 } 2715 2716 return ret; 2717 } 2718 2719 static uint32_t vega20_get_fan_control_mode(struct pp_hwmgr *hwmgr) 2720 { 2721 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2722 2723 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) 2724 return AMD_FAN_CTRL_MANUAL; 2725 else 2726 return AMD_FAN_CTRL_AUTO; 2727 } 2728 2729 static void vega20_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 2730 { 2731 switch (mode) { 2732 case AMD_FAN_CTRL_NONE: 2733 vega20_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 2734 break; 2735 case AMD_FAN_CTRL_MANUAL: 2736 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 2737 vega20_fan_ctrl_stop_smc_fan_control(hwmgr); 2738 break; 2739 case AMD_FAN_CTRL_AUTO: 2740 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 2741 vega20_fan_ctrl_start_smc_fan_control(hwmgr); 2742 break; 2743 default: 2744 break; 2745 } 2746 } 2747 2748 static int vega20_get_dal_power_level(struct pp_hwmgr *hwmgr, 2749 struct amd_pp_simple_clock_info *info) 2750 { 2751 #if 0 2752 struct phm_ppt_v2_information *table_info = 2753 (struct phm_ppt_v2_information *)hwmgr->pptable; 2754 struct phm_clock_and_voltage_limits *max_limits = 2755 &table_info->max_clock_voltage_on_ac; 2756 2757 info->engine_max_clock = max_limits->sclk; 2758 info->memory_max_clock = max_limits->mclk; 2759 #endif 2760 return 0; 2761 } 2762 2763 2764 static int vega20_get_sclks(struct pp_hwmgr *hwmgr, 2765 struct pp_clock_levels_with_latency *clocks) 2766 { 2767 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2768 struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); 2769 int i, count; 2770 2771 if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) 2772 return -1; 2773 2774 count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; 2775 clocks->num_levels = count; 2776 2777 for (i = 0; i < count; i++) { 2778 clocks->data[i].clocks_in_khz = 2779 dpm_table->dpm_levels[i].value * 1000; 2780 clocks->data[i].latency_in_us = 0; 2781 } 2782 2783 return 0; 2784 } 2785 2786 static uint32_t vega20_get_mem_latency(struct pp_hwmgr *hwmgr, 2787 uint32_t clock) 2788 { 2789 return 25; 2790 } 2791 2792 static int vega20_get_memclocks(struct pp_hwmgr *hwmgr, 2793 struct pp_clock_levels_with_latency *clocks) 2794 { 2795 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2796 struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.mem_table); 2797 int i, count; 2798 2799 if (!data->smu_features[GNLD_DPM_UCLK].enabled) 2800 return -1; 2801 2802 count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; 2803 clocks->num_levels = data->mclk_latency_table.count = count; 2804 2805 for (i = 0; i < count; i++) { 2806 clocks->data[i].clocks_in_khz = 2807 data->mclk_latency_table.entries[i].frequency = 2808 dpm_table->dpm_levels[i].value * 1000; 2809 clocks->data[i].latency_in_us = 2810 data->mclk_latency_table.entries[i].latency = 2811 vega20_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value); 2812 } 2813 2814 return 0; 2815 } 2816 2817 static int vega20_get_dcefclocks(struct pp_hwmgr *hwmgr, 2818 struct pp_clock_levels_with_latency *clocks) 2819 { 2820 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2821 struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.dcef_table); 2822 int i, count; 2823 2824 if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled) 2825 return -1; 2826 2827 count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; 2828 clocks->num_levels = count; 2829 2830 for (i = 0; i < count; i++) { 2831 clocks->data[i].clocks_in_khz = 2832 dpm_table->dpm_levels[i].value * 1000; 2833 clocks->data[i].latency_in_us = 0; 2834 } 2835 2836 return 0; 2837 } 2838 2839 static int vega20_get_socclocks(struct pp_hwmgr *hwmgr, 2840 struct pp_clock_levels_with_latency *clocks) 2841 { 2842 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2843 struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.soc_table); 2844 int i, count; 2845 2846 if (!data->smu_features[GNLD_DPM_SOCCLK].enabled) 2847 return -1; 2848 2849 count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; 2850 clocks->num_levels = count; 2851 2852 for (i = 0; i < count; i++) { 2853 clocks->data[i].clocks_in_khz = 2854 dpm_table->dpm_levels[i].value * 1000; 2855 clocks->data[i].latency_in_us = 0; 2856 } 2857 2858 return 0; 2859 2860 } 2861 2862 static int vega20_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 2863 enum amd_pp_clock_type type, 2864 struct pp_clock_levels_with_latency *clocks) 2865 { 2866 int ret; 2867 2868 switch (type) { 2869 case amd_pp_sys_clock: 2870 ret = vega20_get_sclks(hwmgr, clocks); 2871 break; 2872 case amd_pp_mem_clock: 2873 ret = vega20_get_memclocks(hwmgr, clocks); 2874 break; 2875 case amd_pp_dcef_clock: 2876 ret = vega20_get_dcefclocks(hwmgr, clocks); 2877 break; 2878 case amd_pp_soc_clock: 2879 ret = vega20_get_socclocks(hwmgr, clocks); 2880 break; 2881 default: 2882 return -EINVAL; 2883 } 2884 2885 return ret; 2886 } 2887 2888 static int vega20_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, 2889 enum amd_pp_clock_type type, 2890 struct pp_clock_levels_with_voltage *clocks) 2891 { 2892 clocks->num_levels = 0; 2893 2894 return 0; 2895 } 2896 2897 static int vega20_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 2898 void *clock_ranges) 2899 { 2900 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 2901 Watermarks_t *table = &(data->smc_state_table.water_marks_table); 2902 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; 2903 2904 if (!data->registry_data.disable_water_mark && 2905 data->smu_features[GNLD_DPM_DCEFCLK].supported && 2906 data->smu_features[GNLD_DPM_SOCCLK].supported) { 2907 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); 2908 data->water_marks_bitmap |= WaterMarksExist; 2909 data->water_marks_bitmap &= ~WaterMarksLoaded; 2910 } 2911 2912 return 0; 2913 } 2914 2915 static int vega20_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 2916 enum PP_OD_DPM_TABLE_COMMAND type, 2917 long *input, uint32_t size) 2918 { 2919 struct vega20_hwmgr *data = 2920 (struct vega20_hwmgr *)(hwmgr->backend); 2921 struct vega20_od8_single_setting *od8_settings = 2922 data->od8_settings.od8_settings_array; 2923 OverDriveTable_t *od_table = 2924 &(data->smc_state_table.overdrive_table); 2925 int32_t input_index, input_clk, input_vol, i; 2926 int od8_id; 2927 int ret; 2928 2929 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 2930 return -EINVAL); 2931 2932 switch (type) { 2933 case PP_OD_EDIT_SCLK_VDDC_TABLE: 2934 if (!(od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && 2935 od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id)) { 2936 pr_info("Sclk min/max frequency overdrive not supported\n"); 2937 return -EOPNOTSUPP; 2938 } 2939 2940 for (i = 0; i < size; i += 2) { 2941 if (i + 2 > size) { 2942 pr_info("invalid number of input parameters %d\n", 2943 size); 2944 return -EINVAL; 2945 } 2946 2947 input_index = input[i]; 2948 input_clk = input[i + 1]; 2949 2950 if (input_index != 0 && input_index != 1) { 2951 pr_info("Invalid index %d\n", input_index); 2952 pr_info("Support min/max sclk frequency setting only which index by 0/1\n"); 2953 return -EINVAL; 2954 } 2955 2956 if (input_clk < od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value || 2957 input_clk > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) { 2958 pr_info("clock freq %d is not within allowed range [%d - %d]\n", 2959 input_clk, 2960 od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, 2961 od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); 2962 return -EINVAL; 2963 } 2964 2965 if ((input_index == 0 && od_table->GfxclkFmin != input_clk) || 2966 (input_index == 1 && od_table->GfxclkFmax != input_clk)) 2967 data->gfxclk_overdrive = true; 2968 2969 if (input_index == 0) 2970 od_table->GfxclkFmin = input_clk; 2971 else 2972 od_table->GfxclkFmax = input_clk; 2973 } 2974 2975 break; 2976 2977 case PP_OD_EDIT_MCLK_VDDC_TABLE: 2978 if (!od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { 2979 pr_info("Mclk max frequency overdrive not supported\n"); 2980 return -EOPNOTSUPP; 2981 } 2982 2983 for (i = 0; i < size; i += 2) { 2984 if (i + 2 > size) { 2985 pr_info("invalid number of input parameters %d\n", 2986 size); 2987 return -EINVAL; 2988 } 2989 2990 input_index = input[i]; 2991 input_clk = input[i + 1]; 2992 2993 if (input_index != 1) { 2994 pr_info("Invalid index %d\n", input_index); 2995 pr_info("Support max Mclk frequency setting only which index by 1\n"); 2996 return -EINVAL; 2997 } 2998 2999 if (input_clk < od8_settings[OD8_SETTING_UCLK_FMAX].min_value || 3000 input_clk > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) { 3001 pr_info("clock freq %d is not within allowed range [%d - %d]\n", 3002 input_clk, 3003 od8_settings[OD8_SETTING_UCLK_FMAX].min_value, 3004 od8_settings[OD8_SETTING_UCLK_FMAX].max_value); 3005 return -EINVAL; 3006 } 3007 3008 if (input_index == 1 && od_table->UclkFmax != input_clk) 3009 data->memclk_overdrive = true; 3010 3011 od_table->UclkFmax = input_clk; 3012 } 3013 3014 break; 3015 3016 case PP_OD_EDIT_VDDC_CURVE: 3017 if (!(od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && 3018 od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && 3019 od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && 3020 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && 3021 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && 3022 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) { 3023 pr_info("Voltage curve calibrate not supported\n"); 3024 return -EOPNOTSUPP; 3025 } 3026 3027 for (i = 0; i < size; i += 3) { 3028 if (i + 3 > size) { 3029 pr_info("invalid number of input parameters %d\n", 3030 size); 3031 return -EINVAL; 3032 } 3033 3034 input_index = input[i]; 3035 input_clk = input[i + 1]; 3036 input_vol = input[i + 2]; 3037 3038 if (input_index > 2) { 3039 pr_info("Setting for point %d is not supported\n", 3040 input_index + 1); 3041 pr_info("Three supported points index by 0, 1, 2\n"); 3042 return -EINVAL; 3043 } 3044 3045 od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index; 3046 if (input_clk < od8_settings[od8_id].min_value || 3047 input_clk > od8_settings[od8_id].max_value) { 3048 pr_info("clock freq %d is not within allowed range [%d - %d]\n", 3049 input_clk, 3050 od8_settings[od8_id].min_value, 3051 od8_settings[od8_id].max_value); 3052 return -EINVAL; 3053 } 3054 3055 od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index; 3056 if (input_vol < od8_settings[od8_id].min_value || 3057 input_vol > od8_settings[od8_id].max_value) { 3058 pr_info("clock voltage %d is not within allowed range [%d - %d]\n", 3059 input_vol, 3060 od8_settings[od8_id].min_value, 3061 od8_settings[od8_id].max_value); 3062 return -EINVAL; 3063 } 3064 3065 switch (input_index) { 3066 case 0: 3067 od_table->GfxclkFreq1 = input_clk; 3068 od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE; 3069 break; 3070 case 1: 3071 od_table->GfxclkFreq2 = input_clk; 3072 od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE; 3073 break; 3074 case 2: 3075 od_table->GfxclkFreq3 = input_clk; 3076 od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE; 3077 break; 3078 } 3079 } 3080 break; 3081 3082 case PP_OD_RESTORE_DEFAULT_TABLE: 3083 data->gfxclk_overdrive = false; 3084 data->memclk_overdrive = false; 3085 3086 ret = smum_smc_table_manager(hwmgr, 3087 (uint8_t *)od_table, 3088 TABLE_OVERDRIVE, true); 3089 PP_ASSERT_WITH_CODE(!ret, 3090 "Failed to export overdrive table!", 3091 return ret); 3092 break; 3093 3094 case PP_OD_COMMIT_DPM_TABLE: 3095 ret = smum_smc_table_manager(hwmgr, 3096 (uint8_t *)od_table, 3097 TABLE_OVERDRIVE, false); 3098 PP_ASSERT_WITH_CODE(!ret, 3099 "Failed to import overdrive table!", 3100 return ret); 3101 3102 /* retrieve updated gfxclk table */ 3103 if (data->gfxclk_overdrive) { 3104 data->gfxclk_overdrive = false; 3105 3106 ret = vega20_setup_gfxclk_dpm_table(hwmgr); 3107 if (ret) 3108 return ret; 3109 } 3110 3111 /* retrieve updated memclk table */ 3112 if (data->memclk_overdrive) { 3113 data->memclk_overdrive = false; 3114 3115 ret = vega20_setup_memclk_dpm_table(hwmgr); 3116 if (ret) 3117 return ret; 3118 } 3119 break; 3120 3121 default: 3122 return -EINVAL; 3123 } 3124 3125 return 0; 3126 } 3127 3128 static int vega20_set_mp1_state(struct pp_hwmgr *hwmgr, 3129 enum pp_mp1_state mp1_state) 3130 { 3131 uint16_t msg; 3132 int ret; 3133 3134 switch (mp1_state) { 3135 case PP_MP1_STATE_SHUTDOWN: 3136 msg = PPSMC_MSG_PrepareMp1ForShutdown; 3137 break; 3138 case PP_MP1_STATE_UNLOAD: 3139 msg = PPSMC_MSG_PrepareMp1ForUnload; 3140 break; 3141 case PP_MP1_STATE_RESET: 3142 msg = PPSMC_MSG_PrepareMp1ForReset; 3143 break; 3144 case PP_MP1_STATE_NONE: 3145 default: 3146 return 0; 3147 } 3148 3149 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg)) == 0, 3150 "[PrepareMp1] Failed!", 3151 return ret); 3152 3153 return 0; 3154 } 3155 3156 static int vega20_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) 3157 { 3158 static const char *ppfeature_name[] = { 3159 "DPM_PREFETCHER", 3160 "GFXCLK_DPM", 3161 "UCLK_DPM", 3162 "SOCCLK_DPM", 3163 "UVD_DPM", 3164 "VCE_DPM", 3165 "ULV", 3166 "MP0CLK_DPM", 3167 "LINK_DPM", 3168 "DCEFCLK_DPM", 3169 "GFXCLK_DS", 3170 "SOCCLK_DS", 3171 "LCLK_DS", 3172 "PPT", 3173 "TDC", 3174 "THERMAL", 3175 "GFX_PER_CU_CG", 3176 "RM", 3177 "DCEFCLK_DS", 3178 "ACDC", 3179 "VR0HOT", 3180 "VR1HOT", 3181 "FW_CTF", 3182 "LED_DISPLAY", 3183 "FAN_CONTROL", 3184 "GFX_EDC", 3185 "GFXOFF", 3186 "CG", 3187 "FCLK_DPM", 3188 "FCLK_DS", 3189 "MP1CLK_DS", 3190 "MP0CLK_DS", 3191 "XGMI", 3192 "ECC"}; 3193 static const char *output_title[] = { 3194 "FEATURES", 3195 "BITMASK", 3196 "ENABLEMENT"}; 3197 uint64_t features_enabled; 3198 int i; 3199 int ret = 0; 3200 int size = 0; 3201 3202 ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); 3203 PP_ASSERT_WITH_CODE(!ret, 3204 "[EnableAllSmuFeatures] Failed to get enabled smc features!", 3205 return ret); 3206 3207 size += sprintf(buf + size, "Current ppfeatures: 0x%016"PRIx64"\n", features_enabled); 3208 size += sprintf(buf + size, "%-19s %-22s %s\n", 3209 output_title[0], 3210 output_title[1], 3211 output_title[2]); 3212 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 3213 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", 3214 ppfeature_name[i], 3215 1ULL << i, 3216 (features_enabled & (1ULL << i)) ? "Y" : "N"); 3217 } 3218 3219 return size; 3220 } 3221 3222 static int vega20_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) 3223 { 3224 uint64_t features_enabled; 3225 uint64_t features_to_enable; 3226 uint64_t features_to_disable; 3227 int ret = 0; 3228 3229 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) 3230 return -EINVAL; 3231 3232 ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); 3233 if (ret) 3234 return ret; 3235 3236 features_to_disable = 3237 features_enabled & ~new_ppfeature_masks; 3238 features_to_enable = 3239 ~features_enabled & new_ppfeature_masks; 3240 3241 pr_debug("features_to_disable 0x%"PRIx64"\n", features_to_disable); 3242 pr_debug("features_to_enable 0x%"PRIx64"\n", features_to_enable); 3243 3244 if (features_to_disable) { 3245 ret = vega20_enable_smc_features(hwmgr, false, features_to_disable); 3246 if (ret) 3247 return ret; 3248 } 3249 3250 if (features_to_enable) { 3251 ret = vega20_enable_smc_features(hwmgr, true, features_to_enable); 3252 if (ret) 3253 return ret; 3254 } 3255 3256 return 0; 3257 } 3258 3259 static int vega20_print_clock_levels(struct pp_hwmgr *hwmgr, 3260 enum pp_clock_type type, char *buf) 3261 { 3262 struct vega20_hwmgr *data = 3263 (struct vega20_hwmgr *)(hwmgr->backend); 3264 struct vega20_od8_single_setting *od8_settings = 3265 data->od8_settings.od8_settings_array; 3266 OverDriveTable_t *od_table = 3267 &(data->smc_state_table.overdrive_table); 3268 struct phm_ppt_v3_information *pptable_information = 3269 (struct phm_ppt_v3_information *)hwmgr->pptable; 3270 PPTable_t *pptable = (PPTable_t *)pptable_information->smc_pptable; 3271 struct amdgpu_device *adev = hwmgr->adev; 3272 struct pp_clock_levels_with_latency clocks; 3273 struct vega20_single_dpm_table *fclk_dpm_table = 3274 &(data->dpm_table.fclk_table); 3275 int i, now, size = 0; 3276 int ret = 0; 3277 uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; 3278 3279 switch (type) { 3280 case PP_SCLK: 3281 ret = vega20_get_current_clk_freq(hwmgr, PPCLK_GFXCLK, &now); 3282 PP_ASSERT_WITH_CODE(!ret, 3283 "Attempt to get current gfx clk Failed!", 3284 return ret); 3285 3286 if (vega20_get_sclks(hwmgr, &clocks)) { 3287 size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", 3288 now / 100); 3289 break; 3290 } 3291 3292 for (i = 0; i < clocks.num_levels; i++) 3293 size += sprintf(buf + size, "%d: %uMhz %s\n", 3294 i, clocks.data[i].clocks_in_khz / 1000, 3295 (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); 3296 break; 3297 3298 case PP_MCLK: 3299 ret = vega20_get_current_clk_freq(hwmgr, PPCLK_UCLK, &now); 3300 PP_ASSERT_WITH_CODE(!ret, 3301 "Attempt to get current mclk freq Failed!", 3302 return ret); 3303 3304 if (vega20_get_memclocks(hwmgr, &clocks)) { 3305 size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", 3306 now / 100); 3307 break; 3308 } 3309 3310 for (i = 0; i < clocks.num_levels; i++) 3311 size += sprintf(buf + size, "%d: %uMhz %s\n", 3312 i, clocks.data[i].clocks_in_khz / 1000, 3313 (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); 3314 break; 3315 3316 case PP_SOCCLK: 3317 ret = vega20_get_current_clk_freq(hwmgr, PPCLK_SOCCLK, &now); 3318 PP_ASSERT_WITH_CODE(!ret, 3319 "Attempt to get current socclk freq Failed!", 3320 return ret); 3321 3322 if (vega20_get_socclocks(hwmgr, &clocks)) { 3323 size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", 3324 now / 100); 3325 break; 3326 } 3327 3328 for (i = 0; i < clocks.num_levels; i++) 3329 size += sprintf(buf + size, "%d: %uMhz %s\n", 3330 i, clocks.data[i].clocks_in_khz / 1000, 3331 (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); 3332 break; 3333 3334 case PP_FCLK: 3335 ret = vega20_get_current_clk_freq(hwmgr, PPCLK_FCLK, &now); 3336 PP_ASSERT_WITH_CODE(!ret, 3337 "Attempt to get current fclk freq Failed!", 3338 return ret); 3339 3340 for (i = 0; i < fclk_dpm_table->count; i++) 3341 size += sprintf(buf + size, "%d: %uMhz %s\n", 3342 i, fclk_dpm_table->dpm_levels[i].value, 3343 fclk_dpm_table->dpm_levels[i].value == (now / 100) ? "*" : ""); 3344 break; 3345 3346 case PP_DCEFCLK: 3347 ret = vega20_get_current_clk_freq(hwmgr, PPCLK_DCEFCLK, &now); 3348 PP_ASSERT_WITH_CODE(!ret, 3349 "Attempt to get current dcefclk freq Failed!", 3350 return ret); 3351 3352 if (vega20_get_dcefclocks(hwmgr, &clocks)) { 3353 size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n", 3354 now / 100); 3355 break; 3356 } 3357 3358 for (i = 0; i < clocks.num_levels; i++) 3359 size += sprintf(buf + size, "%d: %uMhz %s\n", 3360 i, clocks.data[i].clocks_in_khz / 1000, 3361 (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); 3362 break; 3363 3364 case PP_PCIE: 3365 current_gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & 3366 PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) 3367 >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; 3368 current_lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & 3369 PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) 3370 >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; 3371 for (i = 0; i < NUM_LINK_LEVELS; i++) { 3372 if (i == 1 && data->pcie_parameters_override) { 3373 gen_speed = data->pcie_gen_level1; 3374 lane_width = data->pcie_width_level1; 3375 } else { 3376 gen_speed = pptable->PcieGenSpeed[i]; 3377 lane_width = pptable->PcieLaneCount[i]; 3378 } 3379 size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i, 3380 (gen_speed == 0) ? "2.5GT/s," : 3381 (gen_speed == 1) ? "5.0GT/s," : 3382 (gen_speed == 2) ? "8.0GT/s," : 3383 (gen_speed == 3) ? "16.0GT/s," : "", 3384 (lane_width == 1) ? "x1" : 3385 (lane_width == 2) ? "x2" : 3386 (lane_width == 3) ? "x4" : 3387 (lane_width == 4) ? "x8" : 3388 (lane_width == 5) ? "x12" : 3389 (lane_width == 6) ? "x16" : "", 3390 pptable->LclkFreq[i], 3391 (current_gen_speed == gen_speed) && 3392 (current_lane_width == lane_width) ? 3393 "*" : ""); 3394 } 3395 break; 3396 3397 case OD_SCLK: 3398 if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && 3399 od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { 3400 size = sprintf(buf, "%s:\n", "OD_SCLK"); 3401 size += sprintf(buf + size, "0: %10uMhz\n", 3402 od_table->GfxclkFmin); 3403 size += sprintf(buf + size, "1: %10uMhz\n", 3404 od_table->GfxclkFmax); 3405 } 3406 break; 3407 3408 case OD_MCLK: 3409 if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { 3410 size = sprintf(buf, "%s:\n", "OD_MCLK"); 3411 size += sprintf(buf + size, "1: %10uMhz\n", 3412 od_table->UclkFmax); 3413 } 3414 3415 break; 3416 3417 case OD_VDDC_CURVE: 3418 if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && 3419 od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && 3420 od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && 3421 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && 3422 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && 3423 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { 3424 size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE"); 3425 size += sprintf(buf + size, "0: %10uMhz %10dmV\n", 3426 od_table->GfxclkFreq1, 3427 od_table->GfxclkVolt1 / VOLTAGE_SCALE); 3428 size += sprintf(buf + size, "1: %10uMhz %10dmV\n", 3429 od_table->GfxclkFreq2, 3430 od_table->GfxclkVolt2 / VOLTAGE_SCALE); 3431 size += sprintf(buf + size, "2: %10uMhz %10dmV\n", 3432 od_table->GfxclkFreq3, 3433 od_table->GfxclkVolt3 / VOLTAGE_SCALE); 3434 } 3435 3436 break; 3437 3438 case OD_RANGE: 3439 size = sprintf(buf, "%s:\n", "OD_RANGE"); 3440 3441 if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && 3442 od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { 3443 size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n", 3444 od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, 3445 od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); 3446 } 3447 3448 if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { 3449 size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n", 3450 od8_settings[OD8_SETTING_UCLK_FMAX].min_value, 3451 od8_settings[OD8_SETTING_UCLK_FMAX].max_value); 3452 } 3453 3454 if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && 3455 od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && 3456 od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && 3457 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && 3458 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && 3459 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { 3460 size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", 3461 od8_settings[OD8_SETTING_GFXCLK_FREQ1].min_value, 3462 od8_settings[OD8_SETTING_GFXCLK_FREQ1].max_value); 3463 size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", 3464 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].min_value, 3465 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].max_value); 3466 size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", 3467 od8_settings[OD8_SETTING_GFXCLK_FREQ2].min_value, 3468 od8_settings[OD8_SETTING_GFXCLK_FREQ2].max_value); 3469 size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", 3470 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].min_value, 3471 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].max_value); 3472 size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", 3473 od8_settings[OD8_SETTING_GFXCLK_FREQ3].min_value, 3474 od8_settings[OD8_SETTING_GFXCLK_FREQ3].max_value); 3475 size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", 3476 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].min_value, 3477 od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].max_value); 3478 } 3479 3480 break; 3481 default: 3482 break; 3483 } 3484 return size; 3485 } 3486 3487 static int vega20_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr, 3488 struct vega20_single_dpm_table *dpm_table) 3489 { 3490 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3491 int ret = 0; 3492 3493 if (data->smu_features[GNLD_DPM_UCLK].enabled) { 3494 PP_ASSERT_WITH_CODE(dpm_table->count > 0, 3495 "[SetUclkToHightestDpmLevel] Dpm table has no entry!", 3496 return -EINVAL); 3497 PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS, 3498 "[SetUclkToHightestDpmLevel] Dpm table has too many entries!", 3499 return -EINVAL); 3500 3501 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3502 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, 3503 PPSMC_MSG_SetHardMinByFreq, 3504 (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)), 3505 "[SetUclkToHightestDpmLevel] Set hard min uclk failed!", 3506 return ret); 3507 } 3508 3509 return ret; 3510 } 3511 3512 static int vega20_set_fclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr) 3513 { 3514 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3515 struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.fclk_table); 3516 int ret = 0; 3517 3518 if (data->smu_features[GNLD_DPM_FCLK].enabled) { 3519 PP_ASSERT_WITH_CODE(dpm_table->count > 0, 3520 "[SetFclkToHightestDpmLevel] Dpm table has no entry!", 3521 return -EINVAL); 3522 PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_FCLK_DPM_LEVELS, 3523 "[SetFclkToHightestDpmLevel] Dpm table has too many entries!", 3524 return -EINVAL); 3525 3526 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3527 PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, 3528 PPSMC_MSG_SetSoftMinByFreq, 3529 (PPCLK_FCLK << 16 ) | dpm_table->dpm_state.soft_min_level)), 3530 "[SetFclkToHightestDpmLevel] Set soft min fclk failed!", 3531 return ret); 3532 } 3533 3534 return ret; 3535 } 3536 3537 static int vega20_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 3538 { 3539 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3540 int ret = 0; 3541 3542 smum_send_msg_to_smc_with_parameter(hwmgr, 3543 PPSMC_MSG_NumOfDisplays, 0); 3544 3545 ret = vega20_set_uclk_to_highest_dpm_level(hwmgr, 3546 &data->dpm_table.mem_table); 3547 if (ret) 3548 return ret; 3549 3550 return vega20_set_fclk_to_highest_dpm_level(hwmgr); 3551 } 3552 3553 static int vega20_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 3554 { 3555 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3556 int result = 0; 3557 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); 3558 3559 if ((data->water_marks_bitmap & WaterMarksExist) && 3560 !(data->water_marks_bitmap & WaterMarksLoaded)) { 3561 result = smum_smc_table_manager(hwmgr, 3562 (uint8_t *)wm_table, TABLE_WATERMARKS, false); 3563 PP_ASSERT_WITH_CODE(!result, 3564 "Failed to update WMTABLE!", 3565 return result); 3566 data->water_marks_bitmap |= WaterMarksLoaded; 3567 } 3568 3569 if ((data->water_marks_bitmap & WaterMarksExist) && 3570 data->smu_features[GNLD_DPM_DCEFCLK].supported && 3571 data->smu_features[GNLD_DPM_SOCCLK].supported) { 3572 result = smum_send_msg_to_smc_with_parameter(hwmgr, 3573 PPSMC_MSG_NumOfDisplays, 3574 hwmgr->display_config->num_display); 3575 } 3576 3577 return result; 3578 } 3579 3580 int vega20_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) 3581 { 3582 struct vega20_hwmgr *data = 3583 (struct vega20_hwmgr *)(hwmgr->backend); 3584 int ret = 0; 3585 3586 if (data->smu_features[GNLD_DPM_UVD].supported) { 3587 if (data->smu_features[GNLD_DPM_UVD].enabled == enable) { 3588 if (enable) 3589 PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already enabled!\n"); 3590 else 3591 PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already disabled!\n"); 3592 } 3593 3594 ret = vega20_enable_smc_features(hwmgr, 3595 enable, 3596 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap); 3597 PP_ASSERT_WITH_CODE(!ret, 3598 "[EnableDisableUVDDPM] Attempt to Enable/Disable DPM UVD Failed!", 3599 return ret); 3600 data->smu_features[GNLD_DPM_UVD].enabled = enable; 3601 } 3602 3603 return 0; 3604 } 3605 3606 static void vega20_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) 3607 { 3608 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3609 3610 if (data->vce_power_gated == bgate) 3611 return ; 3612 3613 data->vce_power_gated = bgate; 3614 if (bgate) { 3615 vega20_enable_disable_vce_dpm(hwmgr, !bgate); 3616 amdgpu_device_ip_set_powergating_state(hwmgr->adev, 3617 AMD_IP_BLOCK_TYPE_VCE, 3618 AMD_PG_STATE_GATE); 3619 } else { 3620 amdgpu_device_ip_set_powergating_state(hwmgr->adev, 3621 AMD_IP_BLOCK_TYPE_VCE, 3622 AMD_PG_STATE_UNGATE); 3623 vega20_enable_disable_vce_dpm(hwmgr, !bgate); 3624 } 3625 3626 } 3627 3628 static void vega20_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) 3629 { 3630 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3631 3632 if (data->uvd_power_gated == bgate) 3633 return ; 3634 3635 data->uvd_power_gated = bgate; 3636 vega20_enable_disable_uvd_dpm(hwmgr, !bgate); 3637 } 3638 3639 static int vega20_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr) 3640 { 3641 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3642 struct vega20_single_dpm_table *dpm_table; 3643 bool vblank_too_short = false; 3644 bool disable_mclk_switching; 3645 bool disable_fclk_switching; 3646 uint32_t i, latency; 3647 3648 disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && 3649 !hwmgr->display_config->multi_monitor_in_sync) || 3650 vblank_too_short; 3651 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3652 3653 /* gfxclk */ 3654 dpm_table = &(data->dpm_table.gfx_table); 3655 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3656 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3657 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3658 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3659 3660 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3661 if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { 3662 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; 3663 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; 3664 } 3665 3666 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 3667 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3668 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; 3669 } 3670 3671 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3672 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3673 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3674 } 3675 } 3676 3677 /* memclk */ 3678 dpm_table = &(data->dpm_table.mem_table); 3679 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3680 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3681 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3682 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3683 3684 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3685 if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { 3686 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; 3687 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; 3688 } 3689 3690 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { 3691 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3692 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; 3693 } 3694 3695 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3696 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3697 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3698 } 3699 } 3700 3701 /* honour DAL's UCLK Hardmin */ 3702 if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100)) 3703 dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100; 3704 3705 /* Hardmin is dependent on displayconfig */ 3706 if (disable_mclk_switching) { 3707 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3708 for (i = 0; i < data->mclk_latency_table.count - 1; i++) { 3709 if (data->mclk_latency_table.entries[i].latency <= latency) { 3710 if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) { 3711 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; 3712 break; 3713 } 3714 } 3715 } 3716 } 3717 3718 if (hwmgr->display_config->nb_pstate_switch_disable) 3719 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3720 3721 if ((disable_mclk_switching && 3722 (dpm_table->dpm_state.hard_min_level == dpm_table->dpm_levels[dpm_table->count - 1].value)) || 3723 hwmgr->display_config->min_mem_set_clock / 100 >= dpm_table->dpm_levels[dpm_table->count - 1].value) 3724 disable_fclk_switching = true; 3725 else 3726 disable_fclk_switching = false; 3727 3728 /* fclk */ 3729 dpm_table = &(data->dpm_table.fclk_table); 3730 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3731 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3732 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3733 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3734 if (hwmgr->display_config->nb_pstate_switch_disable || disable_fclk_switching) 3735 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3736 3737 /* vclk */ 3738 dpm_table = &(data->dpm_table.vclk_table); 3739 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3740 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3741 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3742 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3743 3744 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3745 if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { 3746 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; 3747 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; 3748 } 3749 3750 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3751 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3752 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3753 } 3754 } 3755 3756 /* dclk */ 3757 dpm_table = &(data->dpm_table.dclk_table); 3758 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3759 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3760 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3761 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3762 3763 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3764 if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { 3765 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; 3766 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; 3767 } 3768 3769 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3770 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3771 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3772 } 3773 } 3774 3775 /* socclk */ 3776 dpm_table = &(data->dpm_table.soc_table); 3777 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3778 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3779 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3780 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3781 3782 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3783 if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { 3784 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; 3785 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; 3786 } 3787 3788 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3789 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3790 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3791 } 3792 } 3793 3794 /* eclk */ 3795 dpm_table = &(data->dpm_table.eclk_table); 3796 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; 3797 dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT; 3798 dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; 3799 dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT; 3800 3801 if (PP_CAP(PHM_PlatformCaps_UMDPState)) { 3802 if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { 3803 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; 3804 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; 3805 } 3806 3807 if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 3808 dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3809 dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; 3810 } 3811 } 3812 3813 return 0; 3814 } 3815 3816 static bool 3817 vega20_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 3818 { 3819 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3820 bool is_update_required = false; 3821 3822 if (data->display_timing.num_existing_displays != 3823 hwmgr->display_config->num_display) 3824 is_update_required = true; 3825 3826 if (data->registry_data.gfx_clk_deep_sleep_support && 3827 (data->display_timing.min_clock_in_sr != 3828 hwmgr->display_config->min_core_set_clock_in_sr)) 3829 is_update_required = true; 3830 3831 return is_update_required; 3832 } 3833 3834 static int vega20_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 3835 { 3836 int ret = 0; 3837 3838 ret = vega20_disable_all_smu_features(hwmgr); 3839 PP_ASSERT_WITH_CODE(!ret, 3840 "[DisableDpmTasks] Failed to disable all smu features!", 3841 return ret); 3842 3843 return 0; 3844 } 3845 3846 static int vega20_power_off_asic(struct pp_hwmgr *hwmgr) 3847 { 3848 struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); 3849 int result; 3850 3851 result = vega20_disable_dpm_tasks(hwmgr); 3852 PP_ASSERT_WITH_CODE((0 == result), 3853 "[PowerOffAsic] Failed to disable DPM!", 3854 ); 3855 data->water_marks_bitmap &= ~(WaterMarksLoaded); 3856 3857 return result; 3858 } 3859 3860 static int conv_power_profile_to_pplib_workload(int power_profile) 3861 { 3862 int pplib_workload = 0; 3863 3864 switch (power_profile) { 3865 case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT: 3866 pplib_workload = WORKLOAD_DEFAULT_BIT; 3867 break; 3868 case PP_SMC_POWER_PROFILE_FULLSCREEN3D: 3869 pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; 3870 break; 3871 case PP_SMC_POWER_PROFILE_POWERSAVING: 3872 pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT; 3873 break; 3874 case PP_SMC_POWER_PROFILE_VIDEO: 3875 pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; 3876 break; 3877 case PP_SMC_POWER_PROFILE_VR: 3878 pplib_workload = WORKLOAD_PPLIB_VR_BIT; 3879 break; 3880 case PP_SMC_POWER_PROFILE_COMPUTE: 3881 pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; 3882 break; 3883 case PP_SMC_POWER_PROFILE_CUSTOM: 3884 pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT; 3885 break; 3886 } 3887 3888 return pplib_workload; 3889 } 3890 3891 static int vega20_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 3892 { 3893 DpmActivityMonitorCoeffInt_t activity_monitor; 3894 uint32_t i, size = 0; 3895 uint16_t workload_type = 0; 3896 static const char *profile_name[] = { 3897 "BOOTUP_DEFAULT", 3898 "3D_FULL_SCREEN", 3899 "POWER_SAVING", 3900 "VIDEO", 3901 "VR", 3902 "COMPUTE", 3903 "CUSTOM"}; 3904 static const char *title[] = { 3905 "PROFILE_INDEX(NAME)", 3906 "CLOCK_TYPE(NAME)", 3907 "FPS", 3908 "UseRlcBusy", 3909 "MinActiveFreqType", 3910 "MinActiveFreq", 3911 "BoosterFreqType", 3912 "BoosterFreq", 3913 "PD_Data_limit_c", 3914 "PD_Data_error_coeff", 3915 "PD_Data_error_rate_coeff"}; 3916 int result = 0; 3917 3918 if (!buf) 3919 return -EINVAL; 3920 3921 size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", 3922 title[0], title[1], title[2], title[3], title[4], title[5], 3923 title[6], title[7], title[8], title[9], title[10]); 3924 3925 for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { 3926 /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ 3927 workload_type = conv_power_profile_to_pplib_workload(i); 3928 result = vega20_get_activity_monitor_coeff(hwmgr, 3929 (uint8_t *)(&activity_monitor), workload_type); 3930 PP_ASSERT_WITH_CODE(!result, 3931 "[GetPowerProfile] Failed to get activity monitor!", 3932 return result); 3933 3934 size += sprintf(buf + size, "%2d %14s%s:\n", 3935 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " "); 3936 3937 size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", 3938 " ", 3939 0, 3940 "GFXCLK", 3941 activity_monitor.Gfx_FPS, 3942 activity_monitor.Gfx_UseRlcBusy, 3943 activity_monitor.Gfx_MinActiveFreqType, 3944 activity_monitor.Gfx_MinActiveFreq, 3945 activity_monitor.Gfx_BoosterFreqType, 3946 activity_monitor.Gfx_BoosterFreq, 3947 activity_monitor.Gfx_PD_Data_limit_c, 3948 activity_monitor.Gfx_PD_Data_error_coeff, 3949 activity_monitor.Gfx_PD_Data_error_rate_coeff); 3950 3951 size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", 3952 " ", 3953 1, 3954 "SOCCLK", 3955 activity_monitor.Soc_FPS, 3956 activity_monitor.Soc_UseRlcBusy, 3957 activity_monitor.Soc_MinActiveFreqType, 3958 activity_monitor.Soc_MinActiveFreq, 3959 activity_monitor.Soc_BoosterFreqType, 3960 activity_monitor.Soc_BoosterFreq, 3961 activity_monitor.Soc_PD_Data_limit_c, 3962 activity_monitor.Soc_PD_Data_error_coeff, 3963 activity_monitor.Soc_PD_Data_error_rate_coeff); 3964 3965 size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", 3966 " ", 3967 2, 3968 "UCLK", 3969 activity_monitor.Mem_FPS, 3970 activity_monitor.Mem_UseRlcBusy, 3971 activity_monitor.Mem_MinActiveFreqType, 3972 activity_monitor.Mem_MinActiveFreq, 3973 activity_monitor.Mem_BoosterFreqType, 3974 activity_monitor.Mem_BoosterFreq, 3975 activity_monitor.Mem_PD_Data_limit_c, 3976 activity_monitor.Mem_PD_Data_error_coeff, 3977 activity_monitor.Mem_PD_Data_error_rate_coeff); 3978 3979 size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", 3980 " ", 3981 3, 3982 "FCLK", 3983 activity_monitor.Fclk_FPS, 3984 activity_monitor.Fclk_UseRlcBusy, 3985 activity_monitor.Fclk_MinActiveFreqType, 3986 activity_monitor.Fclk_MinActiveFreq, 3987 activity_monitor.Fclk_BoosterFreqType, 3988 activity_monitor.Fclk_BoosterFreq, 3989 activity_monitor.Fclk_PD_Data_limit_c, 3990 activity_monitor.Fclk_PD_Data_error_coeff, 3991 activity_monitor.Fclk_PD_Data_error_rate_coeff); 3992 } 3993 3994 return size; 3995 } 3996 3997 static int vega20_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 3998 { 3999 DpmActivityMonitorCoeffInt_t activity_monitor; 4000 int workload_type, result = 0; 4001 uint32_t power_profile_mode = input[size]; 4002 4003 if (power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { 4004 pr_err("Invalid power profile mode %d\n", power_profile_mode); 4005 return -EINVAL; 4006 } 4007 4008 if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { 4009 struct vega20_hwmgr *data = 4010 (struct vega20_hwmgr *)(hwmgr->backend); 4011 if (size == 0 && !data->is_custom_profile_set) 4012 return -EINVAL; 4013 if (size < 10 && size != 0) 4014 return -EINVAL; 4015 4016 result = vega20_get_activity_monitor_coeff(hwmgr, 4017 (uint8_t *)(&activity_monitor), 4018 WORKLOAD_PPLIB_CUSTOM_BIT); 4019 PP_ASSERT_WITH_CODE(!result, 4020 "[SetPowerProfile] Failed to get activity monitor!", 4021 return result); 4022 4023 /* If size==0, then we want to apply the already-configured 4024 * CUSTOM profile again. Just apply it, since we checked its 4025 * validity above 4026 */ 4027 if (size == 0) 4028 goto out; 4029 4030 switch (input[0]) { 4031 case 0: /* Gfxclk */ 4032 activity_monitor.Gfx_FPS = input[1]; 4033 activity_monitor.Gfx_UseRlcBusy = input[2]; 4034 activity_monitor.Gfx_MinActiveFreqType = input[3]; 4035 activity_monitor.Gfx_MinActiveFreq = input[4]; 4036 activity_monitor.Gfx_BoosterFreqType = input[5]; 4037 activity_monitor.Gfx_BoosterFreq = input[6]; 4038 activity_monitor.Gfx_PD_Data_limit_c = input[7]; 4039 activity_monitor.Gfx_PD_Data_error_coeff = input[8]; 4040 activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; 4041 break; 4042 case 1: /* Socclk */ 4043 activity_monitor.Soc_FPS = input[1]; 4044 activity_monitor.Soc_UseRlcBusy = input[2]; 4045 activity_monitor.Soc_MinActiveFreqType = input[3]; 4046 activity_monitor.Soc_MinActiveFreq = input[4]; 4047 activity_monitor.Soc_BoosterFreqType = input[5]; 4048 activity_monitor.Soc_BoosterFreq = input[6]; 4049 activity_monitor.Soc_PD_Data_limit_c = input[7]; 4050 activity_monitor.Soc_PD_Data_error_coeff = input[8]; 4051 activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; 4052 break; 4053 case 2: /* Uclk */ 4054 activity_monitor.Mem_FPS = input[1]; 4055 activity_monitor.Mem_UseRlcBusy = input[2]; 4056 activity_monitor.Mem_MinActiveFreqType = input[3]; 4057 activity_monitor.Mem_MinActiveFreq = input[4]; 4058 activity_monitor.Mem_BoosterFreqType = input[5]; 4059 activity_monitor.Mem_BoosterFreq = input[6]; 4060 activity_monitor.Mem_PD_Data_limit_c = input[7]; 4061 activity_monitor.Mem_PD_Data_error_coeff = input[8]; 4062 activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; 4063 break; 4064 case 3: /* Fclk */ 4065 activity_monitor.Fclk_FPS = input[1]; 4066 activity_monitor.Fclk_UseRlcBusy = input[2]; 4067 activity_monitor.Fclk_MinActiveFreqType = input[3]; 4068 activity_monitor.Fclk_MinActiveFreq = input[4]; 4069 activity_monitor.Fclk_BoosterFreqType = input[5]; 4070 activity_monitor.Fclk_BoosterFreq = input[6]; 4071 activity_monitor.Fclk_PD_Data_limit_c = input[7]; 4072 activity_monitor.Fclk_PD_Data_error_coeff = input[8]; 4073 activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; 4074 break; 4075 } 4076 4077 result = vega20_set_activity_monitor_coeff(hwmgr, 4078 (uint8_t *)(&activity_monitor), 4079 WORKLOAD_PPLIB_CUSTOM_BIT); 4080 data->is_custom_profile_set = true; 4081 PP_ASSERT_WITH_CODE(!result, 4082 "[SetPowerProfile] Failed to set activity monitor!", 4083 return result); 4084 } 4085 4086 out: 4087 /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ 4088 workload_type = 4089 conv_power_profile_to_pplib_workload(power_profile_mode); 4090 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 4091 1 << workload_type); 4092 4093 hwmgr->power_profile_mode = power_profile_mode; 4094 4095 return 0; 4096 } 4097 4098 static int vega20_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 4099 uint32_t virtual_addr_low, 4100 uint32_t virtual_addr_hi, 4101 uint32_t mc_addr_low, 4102 uint32_t mc_addr_hi, 4103 uint32_t size) 4104 { 4105 smum_send_msg_to_smc_with_parameter(hwmgr, 4106 PPSMC_MSG_SetSystemVirtualDramAddrHigh, 4107 virtual_addr_hi); 4108 smum_send_msg_to_smc_with_parameter(hwmgr, 4109 PPSMC_MSG_SetSystemVirtualDramAddrLow, 4110 virtual_addr_low); 4111 smum_send_msg_to_smc_with_parameter(hwmgr, 4112 PPSMC_MSG_DramLogSetDramAddrHigh, 4113 mc_addr_hi); 4114 4115 smum_send_msg_to_smc_with_parameter(hwmgr, 4116 PPSMC_MSG_DramLogSetDramAddrLow, 4117 mc_addr_low); 4118 4119 smum_send_msg_to_smc_with_parameter(hwmgr, 4120 PPSMC_MSG_DramLogSetDramSize, 4121 size); 4122 return 0; 4123 } 4124 4125 static int vega20_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 4126 struct PP_TemperatureRange *thermal_data) 4127 { 4128 struct vega20_hwmgr *data = 4129 (struct vega20_hwmgr *)(hwmgr->backend); 4130 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 4131 4132 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); 4133 4134 thermal_data->max = pp_table->TedgeLimit * 4135 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4136 thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * 4137 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4138 thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * 4139 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4140 thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * 4141 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4142 thermal_data->mem_crit_max = pp_table->ThbmLimit * 4143 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4144 thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* 4145 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 4146 4147 return 0; 4148 } 4149 4150 static int vega20_smu_i2c_bus_access(struct pp_hwmgr *hwmgr, bool acquire) 4151 { 4152 int res; 4153 4154 /* I2C bus access can happen very early, when SMU not loaded yet */ 4155 if (!vega20_is_smc_ram_running(hwmgr)) 4156 return 0; 4157 4158 res = smum_send_msg_to_smc_with_parameter(hwmgr, 4159 (acquire ? 4160 PPSMC_MSG_RequestI2CBus : 4161 PPSMC_MSG_ReleaseI2CBus), 4162 0); 4163 4164 PP_ASSERT_WITH_CODE(!res, "[SmuI2CAccessBus] Failed to access bus!", return res); 4165 return res; 4166 } 4167 4168 static int vega20_set_df_cstate(struct pp_hwmgr *hwmgr, 4169 enum pp_df_cstate state) 4170 { 4171 int ret; 4172 4173 /* PPSMC_MSG_DFCstateControl is supported with 40.50 and later fws */ 4174 if (hwmgr->smu_version < 0x283200) { 4175 pr_err("Df cstate control is supported with 40.50 and later SMC fw!\n"); 4176 return -EINVAL; 4177 } 4178 4179 ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DFCstateControl, state); 4180 if (ret) 4181 pr_err("SetDfCstate failed!\n"); 4182 4183 return ret; 4184 } 4185 4186 static int vega20_set_xgmi_pstate(struct pp_hwmgr *hwmgr, 4187 uint32_t pstate) 4188 { 4189 int ret; 4190 4191 ret = smum_send_msg_to_smc_with_parameter(hwmgr, 4192 PPSMC_MSG_SetXgmiMode, 4193 pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3); 4194 if (ret) 4195 pr_err("SetXgmiPstate failed!\n"); 4196 4197 return ret; 4198 } 4199 4200 static const struct pp_hwmgr_func vega20_hwmgr_funcs = { 4201 /* init/fini related */ 4202 .backend_init = vega20_hwmgr_backend_init, 4203 .backend_fini = vega20_hwmgr_backend_fini, 4204 .asic_setup = vega20_setup_asic_task, 4205 .power_off_asic = vega20_power_off_asic, 4206 .dynamic_state_management_enable = vega20_enable_dpm_tasks, 4207 .dynamic_state_management_disable = vega20_disable_dpm_tasks, 4208 /* power state related */ 4209 .apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules, 4210 .pre_display_config_changed = vega20_pre_display_configuration_changed_task, 4211 .display_config_changed = vega20_display_configuration_changed_task, 4212 .check_smc_update_required_for_display_configuration = 4213 vega20_check_smc_update_required_for_display_configuration, 4214 .notify_smc_display_config_after_ps_adjustment = 4215 vega20_notify_smc_display_config_after_ps_adjustment, 4216 /* export to DAL */ 4217 .get_sclk = vega20_dpm_get_sclk, 4218 .get_mclk = vega20_dpm_get_mclk, 4219 .get_dal_power_level = vega20_get_dal_power_level, 4220 .get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency, 4221 .get_clock_by_type_with_voltage = vega20_get_clock_by_type_with_voltage, 4222 .set_watermarks_for_clocks_ranges = vega20_set_watermarks_for_clocks_ranges, 4223 .display_clock_voltage_request = vega20_display_clock_voltage_request, 4224 .get_performance_level = vega20_get_performance_level, 4225 /* UMD pstate, profile related */ 4226 .force_dpm_level = vega20_dpm_force_dpm_level, 4227 .get_power_profile_mode = vega20_get_power_profile_mode, 4228 .set_power_profile_mode = vega20_set_power_profile_mode, 4229 /* od related */ 4230 .set_power_limit = vega20_set_power_limit, 4231 .get_sclk_od = vega20_get_sclk_od, 4232 .set_sclk_od = vega20_set_sclk_od, 4233 .get_mclk_od = vega20_get_mclk_od, 4234 .set_mclk_od = vega20_set_mclk_od, 4235 .odn_edit_dpm_table = vega20_odn_edit_dpm_table, 4236 /* for sysfs to retrive/set gfxclk/memclk */ 4237 .force_clock_level = vega20_force_clock_level, 4238 .print_clock_levels = vega20_print_clock_levels, 4239 .read_sensor = vega20_read_sensor, 4240 .get_ppfeature_status = vega20_get_ppfeature_status, 4241 .set_ppfeature_status = vega20_set_ppfeature_status, 4242 /* powergate related */ 4243 .powergate_uvd = vega20_power_gate_uvd, 4244 .powergate_vce = vega20_power_gate_vce, 4245 /* thermal related */ 4246 .start_thermal_controller = vega20_start_thermal_controller, 4247 .stop_thermal_controller = vega20_thermal_stop_thermal_controller, 4248 .get_thermal_temperature_range = vega20_get_thermal_temperature_range, 4249 .register_irq_handlers = smu9_register_irq_handlers, 4250 .disable_smc_firmware_ctf = vega20_thermal_disable_alert, 4251 /* fan control related */ 4252 .get_fan_speed_percent = vega20_fan_ctrl_get_fan_speed_percent, 4253 .set_fan_speed_percent = vega20_fan_ctrl_set_fan_speed_percent, 4254 .get_fan_speed_info = vega20_fan_ctrl_get_fan_speed_info, 4255 .get_fan_speed_rpm = vega20_fan_ctrl_get_fan_speed_rpm, 4256 .set_fan_speed_rpm = vega20_fan_ctrl_set_fan_speed_rpm, 4257 .get_fan_control_mode = vega20_get_fan_control_mode, 4258 .set_fan_control_mode = vega20_set_fan_control_mode, 4259 /* smu memory related */ 4260 .notify_cac_buffer_info = vega20_notify_cac_buffer_info, 4261 .enable_mgpu_fan_boost = vega20_enable_mgpu_fan_boost, 4262 /* BACO related */ 4263 .get_asic_baco_capability = vega20_baco_get_capability, 4264 .get_asic_baco_state = vega20_baco_get_state, 4265 .set_asic_baco_state = vega20_baco_set_state, 4266 .set_mp1_state = vega20_set_mp1_state, 4267 .smu_i2c_bus_access = vega20_smu_i2c_bus_access, 4268 .set_df_cstate = vega20_set_df_cstate, 4269 .set_xgmi_pstate = vega20_set_xgmi_pstate, 4270 }; 4271 4272 int vega20_hwmgr_init(struct pp_hwmgr *hwmgr) 4273 { 4274 hwmgr->hwmgr_func = &vega20_hwmgr_funcs; 4275 hwmgr->pptable_func = &vega20_pptable_funcs; 4276 4277 return 0; 4278 } 4279