Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright 1998 Massachusetts Institute of Technology
     34  *
     35  * Permission to use, copy, modify, and distribute this software and
     36  * its documentation for any purpose and without fee is hereby
     37  * granted, provided that both the above copyright notice and this
     38  * permission notice appear in all copies, that both the above
     39  * copyright notice and this permission notice appear in all
     40  * supporting documentation, and that the name of M.I.T. not be used
     41  * in advertising or publicity pertaining to distribution of the
     42  * software without specific, written prior permission.  M.I.T. makes
     43  * no representations about the suitability of this software for any
     44  * purpose.  It is provided "as is" without express or implied
     45  * warranty.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
     48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
     51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
     61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
     62  */
     63 
     64 /*
     65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
     66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
     67  * sort of sneaky in the implementation, since we need to pretend to be
     68  * enough of an Ethernet implementation to make ARP work.  The way we do
     69  * this is by telling everyone that we are an Ethernet interface, and then
     70  * catch the packets that ether_output() left on our output queue when it
     71  * calls if_start(), rewrite them for use by the real outgoing interface,
     72  * and ask it to send them.
     73  *
     74  * TODO:
     75  *
     76  *	- Need some way to notify vlan interfaces when the parent
     77  *	  interface changes MTU.
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_inet.h"
     85 #include "opt_net_mpsafe.h"
     86 #endif
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/kernel.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/queue.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/systm.h>
     96 #include <sys/proc.h>
     97 #include <sys/kauth.h>
     98 #include <sys/mutex.h>
     99 #include <sys/kmem.h>
    100 #include <sys/cprng.h>
    101 #include <sys/cpu.h>
    102 #include <sys/pserialize.h>
    103 #include <sys/psref.h>
    104 #include <sys/pslist.h>
    105 #include <sys/atomic.h>
    106 #include <sys/device.h>
    107 #include <sys/module.h>
    108 
    109 #include <net/bpf.h>
    110 #include <net/if.h>
    111 #include <net/if_dl.h>
    112 #include <net/if_types.h>
    113 #include <net/if_ether.h>
    114 #include <net/if_vlanvar.h>
    115 
    116 #ifdef INET
    117 #include <netinet/in.h>
    118 #include <netinet/if_inarp.h>
    119 #endif
    120 #ifdef INET6
    121 #include <netinet6/in6_ifattach.h>
    122 #include <netinet6/in6_var.h>
    123 #include <netinet6/nd6.h>
    124 #endif
    125 
    126 #include "ioconf.h"
    127 
    128 struct vlan_mc_entry {
    129 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
    130 	/*
    131 	 * A key to identify this entry.  The mc_addr below can't be
    132 	 * used since multiple sockaddr may mapped into the same
    133 	 * ether_multi (e.g., AF_UNSPEC).
    134 	 */
    135 	struct ether_multi	*mc_enm;
    136 	struct sockaddr_storage		mc_addr;
    137 };
    138 
    139 struct ifvlan_linkmib {
    140 	struct ifvlan *ifvm_ifvlan;
    141 	const struct vlan_multisw *ifvm_msw;
    142 	int	ifvm_mtufudge;	/* MTU fudged by this much */
    143 	int	ifvm_mintu;	/* min transmission unit */
    144 	uint16_t ifvm_proto;	/* encapsulation ethertype */
    145 	uint16_t ifvm_tag;	/* tag to apply on packets */
    146 	struct ifnet *ifvm_p;	/* parent interface of this vlan */
    147 
    148 	struct psref_target ifvm_psref;
    149 };
    150 
    151 struct ifvlan {
    152 	struct ethercom ifv_ec;
    153 	uint8_t ifv_lladdr[ETHER_ADDR_LEN];
    154 	struct ifvlan_linkmib *ifv_mib;	/*
    155 					 * reader must use vlan_getref_linkmib()
    156 					 * instead of direct dereference
    157 					 */
    158 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
    159 	pserialize_t ifv_psz;
    160 	void *ifv_linkstate_hook;
    161 	void *ifv_ifdetach_hook;
    162 
    163 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
    164 	struct pslist_entry ifv_hash;
    165 	int ifv_flags;
    166 	bool ifv_stopping;
    167 };
    168 
    169 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
    170 
    171 #define	ifv_if		ifv_ec.ec_if
    172 
    173 #define	ifv_msw		ifv_mib.ifvm_msw
    174 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
    175 #define	ifv_mintu	ifv_mib.ifvm_mintu
    176 #define	ifv_tag		ifv_mib.ifvm_tag
    177 
    178 struct vlan_multisw {
    179 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
    180 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
    181 	void	(*vmsw_purgemulti)(struct ifvlan *);
    182 };
    183 
    184 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
    185 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
    186 static void	vlan_ether_purgemulti(struct ifvlan *);
    187 
    188 const struct vlan_multisw vlan_ether_multisw = {
    189 	.vmsw_addmulti = vlan_ether_addmulti,
    190 	.vmsw_delmulti = vlan_ether_delmulti,
    191 	.vmsw_purgemulti = vlan_ether_purgemulti,
    192 };
    193 
    194 static void	vlan_multi_nothing(struct ifvlan *);
    195 static int	vlan_multi_nothing_ifreq(struct ifvlan *, struct ifreq *);
    196 
    197 const struct vlan_multisw vlan_nothing_multisw = {
    198 	.vmsw_addmulti = vlan_multi_nothing_ifreq,
    199 	.vmsw_delmulti = vlan_multi_nothing_ifreq,
    200 	.vmsw_purgemulti = vlan_multi_nothing,
    201 };
    202 
    203 static int	vlan_clone_create(struct if_clone *, int);
    204 static int	vlan_clone_destroy(struct ifnet *);
    205 static int	vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
    206 static int	vlan_ioctl(struct ifnet *, u_long, void *);
    207 static void	vlan_start(struct ifnet *);
    208 static int	vlan_transmit(struct ifnet *, struct mbuf *);
    209 static void	vlan_link_state_changed(void *);
    210 static void	vlan_ifdetach(void *);
    211 static void	vlan_unconfig(struct ifnet *);
    212 static int	vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
    213 static void	vlan_hash_init(void);
    214 static int	vlan_hash_fini(void);
    215 static int	vlan_tag_hash(uint16_t, u_long);
    216 static struct ifvlan_linkmib*
    217 		vlan_getref_linkmib(struct ifvlan *, struct psref *);
    218 static void	vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
    219 static void	vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
    220 static struct ifvlan_linkmib*
    221 		vlan_lookup_tag_psref(struct ifnet *, uint16_t,
    222 		    struct psref *);
    223 
    224 #if !defined(VLAN_TAG_HASH_SIZE)
    225 #define VLAN_TAG_HASH_SIZE 32
    226 #endif
    227 static struct {
    228 	kmutex_t lock;
    229 	struct pslist_head *lists;
    230 	u_long mask;
    231 } ifv_hash __cacheline_aligned = {
    232 	.lists = NULL,
    233 	.mask = 0,
    234 };
    235 
    236 pserialize_t vlan_psz __read_mostly;
    237 static struct psref_class *ifvm_psref_class __read_mostly;
    238 
    239 struct if_clone vlan_cloner =
    240     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
    241 
    242 static uint32_t nvlanifs;
    243 
    244 static inline int
    245 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
    246 {
    247 	int e;
    248 
    249 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    250 	e = ifpromisc(ifp, pswitch);
    251 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    252 
    253 	return e;
    254 }
    255 
    256 __unused static inline int
    257 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
    258 {
    259 	int e;
    260 
    261 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    262 	e = ifpromisc_locked(ifp, pswitch);
    263 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    264 
    265 	return e;
    266 }
    267 
    268 void
    269 vlanattach(int n)
    270 {
    271 
    272 	/*
    273 	 * Nothing to do here, initialization is handled by the
    274 	 * module initialization code in vlaninit() below.
    275 	 */
    276 }
    277 
    278 static void
    279 vlaninit(void)
    280 {
    281 	nvlanifs = 0;
    282 
    283 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
    284 	vlan_psz = pserialize_create();
    285 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
    286 	if_clone_attach(&vlan_cloner);
    287 
    288 	vlan_hash_init();
    289 	MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
    290 }
    291 
    292 static int
    293 vlandetach(void)
    294 {
    295 	int error;
    296 
    297 	if (nvlanifs > 0)
    298 		return EBUSY;
    299 
    300 	error = vlan_hash_fini();
    301 	if (error != 0)
    302 		return error;
    303 
    304 	if_clone_detach(&vlan_cloner);
    305 	psref_class_destroy(ifvm_psref_class);
    306 	pserialize_destroy(vlan_psz);
    307 	mutex_destroy(&ifv_hash.lock);
    308 
    309 	MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
    310 	return 0;
    311 }
    312 
    313 static void
    314 vlan_reset_linkname(struct ifnet *ifp)
    315 {
    316 
    317 	/*
    318 	 * We start out with a "802.1Q VLAN" type and zero-length
    319 	 * addresses.  When we attach to a parent interface, we
    320 	 * inherit its type, address length, address, and data link
    321 	 * type.
    322 	 */
    323 
    324 	ifp->if_type = IFT_L2VLAN;
    325 	ifp->if_addrlen = 0;
    326 	ifp->if_dlt = DLT_NULL;
    327 	if_alloc_sadl(ifp);
    328 }
    329 
    330 static int
    331 vlan_clone_create(struct if_clone *ifc, int unit)
    332 {
    333 	struct ifvlan *ifv;
    334 	struct ifnet *ifp;
    335 	struct ifvlan_linkmib *mib;
    336 
    337 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
    338 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
    339 	ifp = &ifv->ifv_if;
    340 	LIST_INIT(&ifv->ifv_mc_listhead);
    341 	cprng_fast(ifv->ifv_lladdr, sizeof(ifv->ifv_lladdr));
    342 	ifv->ifv_lladdr[0] &= 0xFE; /* clear I/G bit */
    343 	ifv->ifv_lladdr[0] |= 0x02; /* set G/L bit */
    344 
    345 	mib->ifvm_ifvlan = ifv;
    346 	mib->ifvm_p = NULL;
    347 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
    348 
    349 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
    350 	ifv->ifv_psz = pserialize_create();
    351 	ifv->ifv_mib = mib;
    352 
    353 	atomic_inc_uint(&nvlanifs);
    354 
    355 	if_initname(ifp, ifc->ifc_name, unit);
    356 	ifp->if_softc = ifv;
    357 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    358 #ifdef NET_MPSAFE
    359 	ifp->if_extflags = IFEF_MPSAFE;
    360 #endif
    361 	ifp->if_start = vlan_start;
    362 	ifp->if_transmit = vlan_transmit;
    363 	ifp->if_ioctl = vlan_ioctl;
    364 	IFQ_SET_READY(&ifp->if_snd);
    365 	if_initialize(ifp);
    366 	/*
    367 	 * Set the link state to down.
    368 	 * When the parent interface attaches we will use that link state.
    369 	 * When the parent interface link state changes, so will ours.
    370 	 * When the parent interface detaches, set the link state to down.
    371 	 */
    372 	ifp->if_link_state = LINK_STATE_DOWN;
    373 
    374 	vlan_reset_linkname(ifp);
    375 	if_register(ifp);
    376 	return 0;
    377 }
    378 
    379 static int
    380 vlan_clone_destroy(struct ifnet *ifp)
    381 {
    382 	struct ifvlan *ifv = ifp->if_softc;
    383 
    384 	atomic_dec_uint(&nvlanifs);
    385 
    386 	IFNET_LOCK(ifp);
    387 	vlan_unconfig(ifp);
    388 	IFNET_UNLOCK(ifp);
    389 	if_detach(ifp);
    390 
    391 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
    392 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
    393 	pserialize_destroy(ifv->ifv_psz);
    394 	mutex_destroy(&ifv->ifv_lock);
    395 	free(ifv, M_DEVBUF);
    396 
    397 	return 0;
    398 }
    399 
    400 /*
    401  * Configure a VLAN interface.
    402  */
    403 static int
    404 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
    405 {
    406 	struct ifnet *ifp = &ifv->ifv_if;
    407 	struct ifvlan_linkmib *nmib = NULL;
    408 	struct ifvlan_linkmib *omib = NULL;
    409 	struct ifvlan_linkmib *checkmib;
    410 	struct psref_target *nmib_psref = NULL;
    411 	struct ethercom *ec;
    412 	const uint16_t vid = EVL_VLANOFTAG(tag);
    413 	const uint8_t *lla;
    414 	u_char ifv_iftype;
    415 	int error = 0;
    416 	int idx;
    417 	bool omib_cleanup = false;
    418 	struct psref psref;
    419 
    420 	/* VLAN ID 0 and 4095 are reserved in the spec */
    421 	if ((vid == 0) || (vid == 0xfff))
    422 		return EINVAL;
    423 
    424 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    425 	mutex_enter(&ifv->ifv_lock);
    426 	omib = ifv->ifv_mib;
    427 
    428 	if (omib->ifvm_p != NULL) {
    429 		error = EBUSY;
    430 		goto done;
    431 	}
    432 
    433 	/* Duplicate check */
    434 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
    435 	if (checkmib != NULL) {
    436 		vlan_putref_linkmib(checkmib, &psref);
    437 		error = EEXIST;
    438 		goto done;
    439 	}
    440 
    441 	*nmib = *omib;
    442 	nmib_psref = &nmib->ifvm_psref;
    443 
    444 	psref_target_init(nmib_psref, ifvm_psref_class);
    445 
    446 	switch (p->if_type) {
    447 	case IFT_ETHER:
    448 		nmib->ifvm_msw = &vlan_ether_multisw;
    449 		nmib->ifvm_mintu = ETHERMIN;
    450 
    451 		/*
    452 		 * We inherit the parent's Ethernet address.
    453 		 */
    454 		lla = CLLADDR(p->if_sadl);
    455 
    456 		/*
    457 		 * Inherit the if_type from the parent.  This allows us
    458 		 * to participate in bridges of that type.
    459 		 */
    460 		ifv_iftype = p->if_type;
    461 		break;
    462 
    463 	case IFT_L2TP:
    464 		nmib->ifvm_msw = &vlan_nothing_multisw;
    465 		nmib->ifvm_mintu = ETHERMIN;
    466 		/* use random Ethernet address. */
    467 		lla = ifv->ifv_lladdr;
    468 		ifv_iftype = IFT_ETHER;
    469 		break;
    470 
    471 	default:
    472 		error = EPROTONOSUPPORT;
    473 		goto done;
    474 	}
    475 
    476 	error = ether_add_vlantag(p, tag, NULL);
    477 	if (error != 0)
    478 		goto done;
    479 
    480 	ec = (struct ethercom *)p;
    481 	if (ec->ec_capenable & ETHERCAP_VLAN_MTU) {
    482 		nmib->ifvm_mtufudge = 0;
    483 	} else {
    484 		/*
    485 		 * Fudge the MTU by the encapsulation size. This
    486 		 * makes us incompatible with strictly compliant
    487 		 * 802.1Q implementations, but allows us to use
    488 		 * the feature with other NetBSD
    489 		 * implementations, which might still be useful.
    490 		 */
    491 		nmib->ifvm_mtufudge = ETHER_VLAN_ENCAP_LEN;
    492 	}
    493 
    494 	/*
    495 	 * If the parent interface can do hardware-assisted
    496 	 * VLAN encapsulation, then propagate its hardware-
    497 	 * assisted checksumming flags and tcp segmentation
    498 	 * offload.
    499 	 */
    500 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
    501 		ifp->if_capabilities = p->if_capabilities &
    502 		    (IFCAP_TSOv4 | IFCAP_TSOv6 |
    503 			IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx |
    504 			IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    505 			IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    506 			IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
    507 			IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
    508 	}
    509 
    510 	ether_ifattach(ifp, lla);
    511 	ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
    512 
    513 	nmib->ifvm_p = p;
    514 	nmib->ifvm_tag = vid;
    515 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
    516 	ifv->ifv_if.if_flags = p->if_flags &
    517 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
    518 
    519 	/*XXX need to update the if_type in if_sadl if it is changed */
    520 	ifv->ifv_if.if_type = ifv_iftype;
    521 
    522 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
    523 	idx = vlan_tag_hash(vid, ifv_hash.mask);
    524 
    525 	mutex_enter(&ifv_hash.lock);
    526 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
    527 	mutex_exit(&ifv_hash.lock);
    528 
    529 	vlan_linkmib_update(ifv, nmib);
    530 	nmib = NULL;
    531 	nmib_psref = NULL;
    532 	omib_cleanup = true;
    533 
    534 	ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
    535 	    vlan_ifdetach, ifp);
    536 
    537 	/*
    538 	 * We inherit the parents link state.
    539 	 */
    540 	ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
    541 	    vlan_link_state_changed, ifv);
    542 	if_link_state_change(&ifv->ifv_if, p->if_link_state);
    543 
    544 done:
    545 	mutex_exit(&ifv->ifv_lock);
    546 
    547 	if (nmib_psref)
    548 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    549 	if (nmib)
    550 		kmem_free(nmib, sizeof(*nmib));
    551 	if (omib_cleanup)
    552 		kmem_free(omib, sizeof(*omib));
    553 
    554 	return error;
    555 }
    556 
    557 /*
    558  * Unconfigure a VLAN interface.
    559  */
    560 static void
    561 vlan_unconfig(struct ifnet *ifp)
    562 {
    563 	struct ifvlan *ifv = ifp->if_softc;
    564 	struct ifvlan_linkmib *nmib = NULL;
    565 	int error;
    566 
    567 	KASSERT(IFNET_LOCKED(ifp));
    568 
    569 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
    570 
    571 	mutex_enter(&ifv->ifv_lock);
    572 	error = vlan_unconfig_locked(ifv, nmib);
    573 	mutex_exit(&ifv->ifv_lock);
    574 
    575 	if (error)
    576 		kmem_free(nmib, sizeof(*nmib));
    577 }
    578 static int
    579 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    580 {
    581 	struct ifnet *p;
    582 	struct ifnet *ifp = &ifv->ifv_if;
    583 	struct psref_target *nmib_psref = NULL;
    584 	struct ifvlan_linkmib *omib;
    585 	int error = 0;
    586 
    587 	KASSERT(IFNET_LOCKED(ifp));
    588 	KASSERT(mutex_owned(&ifv->ifv_lock));
    589 
    590 	if (ifv->ifv_stopping) {
    591 		error = -1;
    592 		goto done;
    593 	}
    594 
    595 	ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
    596 
    597 	omib = ifv->ifv_mib;
    598 	p = omib->ifvm_p;
    599 
    600 	if (p == NULL) {
    601 		error = -1;
    602 		goto done;
    603 	}
    604 
    605 	*nmib = *omib;
    606 	nmib_psref = &nmib->ifvm_psref;
    607 	psref_target_init(nmib_psref, ifvm_psref_class);
    608 
    609 	/*
    610 	 * Since the interface is being unconfigured, we need to empty the
    611 	 * list of multicast groups that we may have joined while we were
    612 	 * alive and remove them from the parent's list also.
    613 	 */
    614 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
    615 
    616 	/* Disconnect from parent. */
    617 	KASSERT(
    618 	    p->if_type == IFT_ETHER ||
    619 	    p->if_type == IFT_L2TP);
    620 	(void)ether_del_vlantag(p, nmib->ifvm_tag);
    621 
    622 	/* XXX ether_ifdetach must not be called with IFNET_LOCK */
    623 	ifv->ifv_stopping = true;
    624 	mutex_exit(&ifv->ifv_lock);
    625 	IFNET_UNLOCK(ifp);
    626 	ether_ifdetach(ifp);
    627 	IFNET_LOCK(ifp);
    628 	mutex_enter(&ifv->ifv_lock);
    629 	ifv->ifv_stopping = false;
    630 
    631 	/* if_free_sadl must be called with IFNET_LOCK */
    632 	if_free_sadl(ifp, 1);
    633 
    634 	/* Restore vlan_ioctl overwritten by ether_ifdetach */
    635 	ifp->if_ioctl = vlan_ioctl;
    636 	vlan_reset_linkname(ifp);
    637 
    638 	nmib->ifvm_p = NULL;
    639 	ifv->ifv_if.if_mtu = 0;
    640 	ifv->ifv_flags = 0;
    641 
    642 	mutex_enter(&ifv_hash.lock);
    643 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
    644 	pserialize_perform(vlan_psz);
    645 	mutex_exit(&ifv_hash.lock);
    646 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
    647 	if_linkstate_change_disestablish(p,
    648 	    ifv->ifv_linkstate_hook, NULL);
    649 
    650 	vlan_linkmib_update(ifv, nmib);
    651 	if_link_state_change(ifp, LINK_STATE_DOWN);
    652 
    653 	/*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
    654 	IFNET_UNLOCK(ifp);
    655 	ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
    656 	    &ifv->ifv_lock);
    657 	mutex_exit(&ifv->ifv_lock);
    658 	IFNET_LOCK(ifp);
    659 
    660 	nmib_psref = NULL;
    661 	kmem_free(omib, sizeof(*omib));
    662 
    663 #ifdef INET6
    664 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
    665 	/* To delete v6 link local addresses */
    666 	if (in6_present)
    667 		in6_ifdetach(ifp);
    668 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
    669 #endif
    670 
    671 	if_down_locked(ifp);
    672 	ifp->if_capabilities = 0;
    673 	mutex_enter(&ifv->ifv_lock);
    674 done:
    675 	if (nmib_psref)
    676 		psref_target_destroy(nmib_psref, ifvm_psref_class);
    677 
    678 	return error;
    679 }
    680 
    681 static void
    682 vlan_hash_init(void)
    683 {
    684 
    685 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
    686 	    &ifv_hash.mask);
    687 }
    688 
    689 static int
    690 vlan_hash_fini(void)
    691 {
    692 	int i;
    693 
    694 	mutex_enter(&ifv_hash.lock);
    695 
    696 	for (i = 0; i < ifv_hash.mask + 1; i++) {
    697 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
    698 		    ifv_hash) != NULL) {
    699 			mutex_exit(&ifv_hash.lock);
    700 			return EBUSY;
    701 		}
    702 	}
    703 
    704 	for (i = 0; i < ifv_hash.mask + 1; i++)
    705 		PSLIST_DESTROY(&ifv_hash.lists[i]);
    706 
    707 	mutex_exit(&ifv_hash.lock);
    708 
    709 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
    710 
    711 	ifv_hash.lists = NULL;
    712 	ifv_hash.mask = 0;
    713 
    714 	return 0;
    715 }
    716 
    717 static int
    718 vlan_tag_hash(uint16_t tag, u_long mask)
    719 {
    720 	uint32_t hash;
    721 
    722 	hash = (tag >> 8) ^ tag;
    723 	hash = (hash >> 2) ^ hash;
    724 
    725 	return hash & mask;
    726 }
    727 
    728 static struct ifvlan_linkmib *
    729 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
    730 {
    731 	struct ifvlan_linkmib *mib;
    732 	int s;
    733 
    734 	s = pserialize_read_enter();
    735 	mib = atomic_load_consume(&sc->ifv_mib);
    736 	if (mib == NULL) {
    737 		pserialize_read_exit(s);
    738 		return NULL;
    739 	}
    740 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    741 	pserialize_read_exit(s);
    742 
    743 	return mib;
    744 }
    745 
    746 static void
    747 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
    748 {
    749 	if (mib == NULL)
    750 		return;
    751 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
    752 }
    753 
    754 static struct ifvlan_linkmib *
    755 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
    756 {
    757 	int idx;
    758 	int s;
    759 	struct ifvlan *sc;
    760 
    761 	idx = vlan_tag_hash(tag, ifv_hash.mask);
    762 
    763 	s = pserialize_read_enter();
    764 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
    765 	    ifv_hash) {
    766 		struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
    767 		if (mib == NULL)
    768 			continue;
    769 		if (mib->ifvm_tag != tag)
    770 			continue;
    771 		if (mib->ifvm_p != ifp)
    772 			continue;
    773 
    774 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
    775 		pserialize_read_exit(s);
    776 		return mib;
    777 	}
    778 	pserialize_read_exit(s);
    779 	return NULL;
    780 }
    781 
    782 static void
    783 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
    784 {
    785 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
    786 
    787 	KASSERT(mutex_owned(&ifv->ifv_lock));
    788 
    789 	atomic_store_release(&ifv->ifv_mib, nmib);
    790 
    791 	pserialize_perform(ifv->ifv_psz);
    792 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
    793 }
    794 
    795 /*
    796  * Called when a parent interface is detaching; destroy any VLAN
    797  * configuration for the parent interface.
    798  */
    799 static void
    800 vlan_ifdetach(void *xifp)
    801 {
    802 	struct ifnet *ifp;
    803 
    804 	ifp = (struct ifnet *)xifp;
    805 
    806 	/* IFNET_LOCK must be held before ifv_lock. */
    807 	IFNET_LOCK(ifp);
    808 	vlan_unconfig(ifp);
    809 	IFNET_UNLOCK(ifp);
    810 }
    811 
    812 static int
    813 vlan_set_promisc(struct ifnet *ifp)
    814 {
    815 	struct ifvlan *ifv = ifp->if_softc;
    816 	struct ifvlan_linkmib *mib;
    817 	struct psref psref;
    818 	int error = 0;
    819 	int bound;
    820 
    821 	bound = curlwp_bind();
    822 	mib = vlan_getref_linkmib(ifv, &psref);
    823 	if (mib == NULL) {
    824 		curlwp_bindx(bound);
    825 		return EBUSY;
    826 	}
    827 
    828 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
    829 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
    830 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
    831 			if (error == 0)
    832 				ifv->ifv_flags |= IFVF_PROMISC;
    833 		}
    834 	} else {
    835 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
    836 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    837 			if (error == 0)
    838 				ifv->ifv_flags &= ~IFVF_PROMISC;
    839 		}
    840 	}
    841 	vlan_putref_linkmib(mib, &psref);
    842 	curlwp_bindx(bound);
    843 
    844 	return error;
    845 }
    846 
    847 static int
    848 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    849 {
    850 	struct lwp *l = curlwp;
    851 	struct ifvlan *ifv = ifp->if_softc;
    852 	struct ifaddr *ifa = (struct ifaddr *) data;
    853 	struct ifreq *ifr = (struct ifreq *) data;
    854 	struct ifnet *pr;
    855 	struct ifcapreq *ifcr;
    856 	struct vlanreq vlr;
    857 	struct ifvlan_linkmib *mib;
    858 	struct psref psref;
    859 	int error = 0;
    860 	int bound;
    861 
    862 	switch (cmd) {
    863 	case SIOCSIFMTU:
    864 		bound = curlwp_bind();
    865 		mib = vlan_getref_linkmib(ifv, &psref);
    866 		if (mib == NULL) {
    867 			curlwp_bindx(bound);
    868 			error = EBUSY;
    869 			break;
    870 		}
    871 
    872 		if (mib->ifvm_p == NULL) {
    873 			vlan_putref_linkmib(mib, &psref);
    874 			curlwp_bindx(bound);
    875 			error = EINVAL;
    876 		} else if (
    877 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
    878 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
    879 			vlan_putref_linkmib(mib, &psref);
    880 			curlwp_bindx(bound);
    881 			error = EINVAL;
    882 		} else {
    883 			vlan_putref_linkmib(mib, &psref);
    884 			curlwp_bindx(bound);
    885 
    886 			error = ifioctl_common(ifp, cmd, data);
    887 			if (error == ENETRESET)
    888 				error = 0;
    889 		}
    890 
    891 		break;
    892 
    893 	case SIOCSETVLAN:
    894 		if ((error = kauth_authorize_network(l->l_cred,
    895 		    KAUTH_NETWORK_INTERFACE,
    896 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
    897 		    NULL)) != 0)
    898 			break;
    899 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
    900 			break;
    901 
    902 		if (vlr.vlr_parent[0] == '\0') {
    903 			bound = curlwp_bind();
    904 			mib = vlan_getref_linkmib(ifv, &psref);
    905 			if (mib == NULL) {
    906 				curlwp_bindx(bound);
    907 				error = EBUSY;
    908 				break;
    909 			}
    910 
    911 			if (mib->ifvm_p != NULL &&
    912 			    (ifp->if_flags & IFF_PROMISC) != 0)
    913 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
    914 
    915 			vlan_putref_linkmib(mib, &psref);
    916 			curlwp_bindx(bound);
    917 
    918 			vlan_unconfig(ifp);
    919 			break;
    920 		}
    921 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
    922 			error = EINVAL;		 /* check for valid tag */
    923 			break;
    924 		}
    925 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
    926 			error = ENOENT;
    927 			break;
    928 		}
    929 
    930 		error = vlan_config(ifv, pr, vlr.vlr_tag);
    931 		if (error != 0)
    932 			break;
    933 
    934 		/* Update promiscuous mode, if necessary. */
    935 		vlan_set_promisc(ifp);
    936 
    937 		ifp->if_flags |= IFF_RUNNING;
    938 		break;
    939 
    940 	case SIOCGETVLAN:
    941 		memset(&vlr, 0, sizeof(vlr));
    942 		bound = curlwp_bind();
    943 		mib = vlan_getref_linkmib(ifv, &psref);
    944 		if (mib == NULL) {
    945 			curlwp_bindx(bound);
    946 			error = EBUSY;
    947 			break;
    948 		}
    949 		if (mib->ifvm_p != NULL) {
    950 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
    951 			    mib->ifvm_p->if_xname);
    952 			vlr.vlr_tag = mib->ifvm_tag;
    953 		}
    954 		vlan_putref_linkmib(mib, &psref);
    955 		curlwp_bindx(bound);
    956 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
    957 		break;
    958 
    959 	case SIOCSIFFLAGS:
    960 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    961 			break;
    962 		/*
    963 		 * For promiscuous mode, we enable promiscuous mode on
    964 		 * the parent if we need promiscuous on the VLAN interface.
    965 		 */
    966 		bound = curlwp_bind();
    967 		mib = vlan_getref_linkmib(ifv, &psref);
    968 		if (mib == NULL) {
    969 			curlwp_bindx(bound);
    970 			error = EBUSY;
    971 			break;
    972 		}
    973 
    974 		if (mib->ifvm_p != NULL)
    975 			error = vlan_set_promisc(ifp);
    976 		vlan_putref_linkmib(mib, &psref);
    977 		curlwp_bindx(bound);
    978 		break;
    979 
    980 	case SIOCADDMULTI:
    981 		mutex_enter(&ifv->ifv_lock);
    982 		mib = ifv->ifv_mib;
    983 		if (mib == NULL) {
    984 			error = EBUSY;
    985 			mutex_exit(&ifv->ifv_lock);
    986 			break;
    987 		}
    988 
    989 		error = (mib->ifvm_p != NULL) ?
    990 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
    991 		mib = NULL;
    992 		mutex_exit(&ifv->ifv_lock);
    993 		break;
    994 
    995 	case SIOCDELMULTI:
    996 		mutex_enter(&ifv->ifv_lock);
    997 		mib = ifv->ifv_mib;
    998 		if (mib == NULL) {
    999 			error = EBUSY;
   1000 			mutex_exit(&ifv->ifv_lock);
   1001 			break;
   1002 		}
   1003 		error = (mib->ifvm_p != NULL) ?
   1004 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
   1005 		mib = NULL;
   1006 		mutex_exit(&ifv->ifv_lock);
   1007 		break;
   1008 
   1009 	case SIOCSIFCAP:
   1010 		ifcr = data;
   1011 		/* make sure caps are enabled on parent */
   1012 		bound = curlwp_bind();
   1013 		mib = vlan_getref_linkmib(ifv, &psref);
   1014 		if (mib == NULL) {
   1015 			curlwp_bindx(bound);
   1016 			error = EBUSY;
   1017 			break;
   1018 		}
   1019 
   1020 		if (mib->ifvm_p == NULL) {
   1021 			vlan_putref_linkmib(mib, &psref);
   1022 			curlwp_bindx(bound);
   1023 			error = EINVAL;
   1024 			break;
   1025 		}
   1026 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
   1027 		    ifcr->ifcr_capenable) {
   1028 			vlan_putref_linkmib(mib, &psref);
   1029 			curlwp_bindx(bound);
   1030 			error = EINVAL;
   1031 			break;
   1032 		}
   1033 
   1034 		vlan_putref_linkmib(mib, &psref);
   1035 		curlwp_bindx(bound);
   1036 
   1037 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   1038 			error = 0;
   1039 		break;
   1040 	case SIOCINITIFADDR:
   1041 		bound = curlwp_bind();
   1042 		mib = vlan_getref_linkmib(ifv, &psref);
   1043 		if (mib == NULL) {
   1044 			curlwp_bindx(bound);
   1045 			error = EBUSY;
   1046 			break;
   1047 		}
   1048 
   1049 		if (mib->ifvm_p == NULL) {
   1050 			error = EINVAL;
   1051 			vlan_putref_linkmib(mib, &psref);
   1052 			curlwp_bindx(bound);
   1053 			break;
   1054 		}
   1055 		vlan_putref_linkmib(mib, &psref);
   1056 		curlwp_bindx(bound);
   1057 
   1058 		ifp->if_flags |= IFF_UP;
   1059 #ifdef INET
   1060 		if (ifa->ifa_addr->sa_family == AF_INET)
   1061 			arp_ifinit(ifp, ifa);
   1062 #endif
   1063 		break;
   1064 
   1065 	default:
   1066 		error = ether_ioctl(ifp, cmd, data);
   1067 	}
   1068 
   1069 	return error;
   1070 }
   1071 
   1072 static int
   1073 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1074 {
   1075 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
   1076 	struct vlan_mc_entry *mc;
   1077 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1078 	struct ifvlan_linkmib *mib;
   1079 	int error;
   1080 
   1081 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1082 
   1083 	if (sa->sa_len > sizeof(struct sockaddr_storage))
   1084 		return EINVAL;
   1085 
   1086 	error = ether_addmulti(sa, &ifv->ifv_ec);
   1087 	if (error != ENETRESET)
   1088 		return error;
   1089 
   1090 	/*
   1091 	 * This is a new multicast address.  We have to tell parent
   1092 	 * about it.  Also, remember this multicast address so that
   1093 	 * we can delete it on unconfigure.
   1094 	 */
   1095 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
   1096 	if (mc == NULL) {
   1097 		error = ENOMEM;
   1098 		goto alloc_failed;
   1099 	}
   1100 
   1101 	/*
   1102 	 * Since ether_addmulti() returned ENETRESET, the following two
   1103 	 * statements shouldn't fail. Here ifv_ec is implicitly protected
   1104 	 * by the ifv_lock lock.
   1105 	 */
   1106 	error = ether_multiaddr(sa, addrlo, addrhi);
   1107 	KASSERT(error == 0);
   1108 
   1109 	ETHER_LOCK(&ifv->ifv_ec);
   1110 	mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
   1111 	ETHER_UNLOCK(&ifv->ifv_ec);
   1112 
   1113 	KASSERT(mc->mc_enm != NULL);
   1114 
   1115 	memcpy(&mc->mc_addr, sa, sa->sa_len);
   1116 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
   1117 
   1118 	mib = ifv->ifv_mib;
   1119 
   1120 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1121 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
   1122 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
   1123 
   1124 	if (error != 0)
   1125 		goto ioctl_failed;
   1126 	return error;
   1127 
   1128 ioctl_failed:
   1129 	LIST_REMOVE(mc, mc_entries);
   1130 	free(mc, M_DEVBUF);
   1131 
   1132 alloc_failed:
   1133 	(void)ether_delmulti(sa, &ifv->ifv_ec);
   1134 	return error;
   1135 }
   1136 
   1137 static int
   1138 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
   1139 {
   1140 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
   1141 	struct ether_multi *enm;
   1142 	struct vlan_mc_entry *mc;
   1143 	struct ifvlan_linkmib *mib;
   1144 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
   1145 	int error;
   1146 
   1147 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1148 
   1149 	/*
   1150 	 * Find a key to lookup vlan_mc_entry.  We have to do this
   1151 	 * before calling ether_delmulti for obvious reasons.
   1152 	 */
   1153 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
   1154 		return error;
   1155 
   1156 	ETHER_LOCK(&ifv->ifv_ec);
   1157 	enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
   1158 	ETHER_UNLOCK(&ifv->ifv_ec);
   1159 	if (enm == NULL)
   1160 		return EINVAL;
   1161 
   1162 	LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
   1163 		if (mc->mc_enm == enm)
   1164 			break;
   1165 	}
   1166 
   1167 	/* We woun't delete entries we didn't add */
   1168 	if (mc == NULL)
   1169 		return EINVAL;
   1170 
   1171 	error = ether_delmulti(sa, &ifv->ifv_ec);
   1172 	if (error != ENETRESET)
   1173 		return error;
   1174 
   1175 	/* We no longer use this multicast address.  Tell parent so. */
   1176 	mib = ifv->ifv_mib;
   1177 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
   1178 
   1179 	if (error == 0) {
   1180 		/* And forget about this address. */
   1181 		LIST_REMOVE(mc, mc_entries);
   1182 		free(mc, M_DEVBUF);
   1183 	} else {
   1184 		(void)ether_addmulti(sa, &ifv->ifv_ec);
   1185 	}
   1186 
   1187 	return error;
   1188 }
   1189 
   1190 /*
   1191  * Delete any multicast address we have asked to add from parent
   1192  * interface.  Called when the vlan is being unconfigured.
   1193  */
   1194 static void
   1195 vlan_ether_purgemulti(struct ifvlan *ifv)
   1196 {
   1197 	struct vlan_mc_entry *mc;
   1198 	struct ifvlan_linkmib *mib;
   1199 
   1200 	KASSERT(mutex_owned(&ifv->ifv_lock));
   1201 	mib = ifv->ifv_mib;
   1202 	if (mib == NULL) {
   1203 		return;
   1204 	}
   1205 
   1206 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
   1207 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
   1208 		    sstocsa(&mc->mc_addr));
   1209 		LIST_REMOVE(mc, mc_entries);
   1210 		free(mc, M_DEVBUF);
   1211 	}
   1212 }
   1213 
   1214 static int
   1215 vlan_multi_nothing_ifreq(struct ifvlan *v __unused, struct ifreq *r __unused)
   1216 {
   1217 	/* do nothing */
   1218 	return 0;
   1219 }
   1220 static void
   1221 vlan_multi_nothing(struct ifvlan *v __unused)
   1222 {
   1223 	/* do nothing */
   1224 }
   1225 
   1226 static void
   1227 vlan_start(struct ifnet *ifp)
   1228 {
   1229 	struct ifvlan *ifv = ifp->if_softc;
   1230 	struct ifnet *p;
   1231 	struct ethercom *ec;
   1232 	struct mbuf *m;
   1233 	struct ifvlan_linkmib *mib;
   1234 	struct psref psref;
   1235 	struct ether_header *eh;
   1236 	int error, bound;
   1237 
   1238 	bound = curlwp_bind();
   1239 	mib = vlan_getref_linkmib(ifv, &psref);
   1240 	if (mib == NULL) {
   1241 		curlwp_bindx(bound);
   1242 		return;
   1243 	}
   1244 
   1245 	if (__predict_false(mib->ifvm_p == NULL)) {
   1246 		vlan_putref_linkmib(mib, &psref);
   1247 		curlwp_bindx(bound);
   1248 		return;
   1249 	}
   1250 
   1251 	p = mib->ifvm_p;
   1252 	ec = (void *)mib->ifvm_p;
   1253 
   1254 	ifp->if_flags |= IFF_OACTIVE;
   1255 
   1256 	for (;;) {
   1257 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1258 		if (m == NULL)
   1259 			break;
   1260 
   1261 		if (m->m_len < sizeof(*eh)) {
   1262 			m = m_pullup(m, sizeof(*eh));
   1263 			if (m == NULL) {
   1264 				if_statinc(ifp, if_oerrors);
   1265 				continue;
   1266 			}
   1267 		}
   1268 
   1269 		eh = mtod(m, struct ether_header *);
   1270 		if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
   1271 			m_freem(m);
   1272 			if_statinc(ifp, if_noproto);
   1273 			continue;
   1274 		}
   1275 
   1276 #ifdef ALTQ
   1277 		/*
   1278 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
   1279 		 * defined.
   1280 		 */
   1281 		KERNEL_LOCK(1, NULL);
   1282 		/*
   1283 		 * If ALTQ is enabled on the parent interface, do
   1284 		 * classification; the queueing discipline might
   1285 		 * not require classification, but might require
   1286 		 * the address family/header pointer in the pktattr.
   1287 		 */
   1288 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
   1289 			KASSERT(
   1290 			    p->if_type == IFT_ETHER ||
   1291 			    p->if_type == IFT_L2TP);
   1292 			altq_etherclassify(&p->if_snd, m);
   1293 		}
   1294 		KERNEL_UNLOCK_ONE(NULL);
   1295 #endif /* ALTQ */
   1296 
   1297 		bpf_mtap(ifp, m, BPF_D_OUT);
   1298 		/*
   1299 		 * If the parent can insert the tag itself, just mark
   1300 		 * the tag in the mbuf header.
   1301 		 */
   1302 		if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
   1303 			vlan_set_tag(m, mib->ifvm_tag);
   1304 		} else {
   1305 			/*
   1306 			 * insert the tag ourselves
   1307 			 */
   1308 			KASSERT(
   1309 			    p->if_type == IFT_ETHER ||
   1310 			    p->if_type == IFT_L2TP);
   1311 			(void)ether_inject_vlantag(&m,
   1312 			    ETHERTYPE_VLAN, mib->ifvm_tag);
   1313 			if (m == NULL) {
   1314 				printf("%s: unable to inject VLAN tag",
   1315 				    p->if_xname);
   1316 				continue;
   1317 			}
   1318 		}
   1319 
   1320 		if ((p->if_flags & IFF_RUNNING) == 0) {
   1321 			m_freem(m);
   1322 			continue;
   1323 		}
   1324 
   1325 		error = if_transmit_lock(p, m);
   1326 		if (error) {
   1327 			/* mbuf is already freed */
   1328 			if_statinc(ifp, if_oerrors);
   1329 			continue;
   1330 		}
   1331 		if_statinc(ifp, if_opackets);
   1332 	}
   1333 
   1334 	ifp->if_flags &= ~IFF_OACTIVE;
   1335 
   1336 	/* Remove reference to mib before release */
   1337 	vlan_putref_linkmib(mib, &psref);
   1338 	curlwp_bindx(bound);
   1339 }
   1340 
   1341 static int
   1342 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
   1343 {
   1344 	struct ifvlan *ifv = ifp->if_softc;
   1345 	struct ifnet *p;
   1346 	struct ethercom *ec;
   1347 	struct ifvlan_linkmib *mib;
   1348 	struct psref psref;
   1349 	struct ether_header *eh;
   1350 	int error, bound;
   1351 	size_t pktlen = m->m_pkthdr.len;
   1352 	bool mcast = (m->m_flags & M_MCAST) != 0;
   1353 
   1354 	if (m->m_len < sizeof(*eh)) {
   1355 		m = m_pullup(m, sizeof(*eh));
   1356 		if (m == NULL) {
   1357 			if_statinc(ifp, if_oerrors);
   1358 			return ENOBUFS;
   1359 		}
   1360 	}
   1361 
   1362 	eh = mtod(m, struct ether_header *);
   1363 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
   1364 		m_freem(m);
   1365 		if_statinc(ifp, if_noproto);
   1366 		return EPROTONOSUPPORT;
   1367 	}
   1368 
   1369 	bound = curlwp_bind();
   1370 	mib = vlan_getref_linkmib(ifv, &psref);
   1371 	if (mib == NULL) {
   1372 		curlwp_bindx(bound);
   1373 		m_freem(m);
   1374 		return ENETDOWN;
   1375 	}
   1376 
   1377 	if (__predict_false(mib->ifvm_p == NULL)) {
   1378 		vlan_putref_linkmib(mib, &psref);
   1379 		curlwp_bindx(bound);
   1380 		m_freem(m);
   1381 		return ENETDOWN;
   1382 	}
   1383 
   1384 	p = mib->ifvm_p;
   1385 	ec = (void *)mib->ifvm_p;
   1386 
   1387 	bpf_mtap(ifp, m, BPF_D_OUT);
   1388 
   1389 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
   1390 		goto out;
   1391 	if (m == NULL)
   1392 		goto out;
   1393 
   1394 	/*
   1395 	 * If the parent can insert the tag itself, just mark
   1396 	 * the tag in the mbuf header.
   1397 	 */
   1398 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
   1399 		vlan_set_tag(m, mib->ifvm_tag);
   1400 	} else {
   1401 		/*
   1402 		 * insert the tag ourselves
   1403 		 */
   1404 		KASSERT(
   1405 		    p->if_type == IFT_ETHER ||
   1406 		    p->if_type == IFT_L2TP);
   1407 		error = ether_inject_vlantag(&m,
   1408 		    ETHERTYPE_VLAN, mib->ifvm_tag);
   1409 		if (error != 0) {
   1410 			KASSERT(m == NULL);
   1411 			printf("%s: unable to inject VLAN tag",
   1412 			    p->if_xname);
   1413 			goto out;
   1414 		}
   1415 	}
   1416 
   1417 	if ((p->if_flags & IFF_RUNNING) == 0) {
   1418 		m_freem(m);
   1419 		error = ENETDOWN;
   1420 		goto out;
   1421 	}
   1422 
   1423 	error = if_transmit_lock(p, m);
   1424 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1425 	if (error) {
   1426 		/* mbuf is already freed */
   1427 		if_statinc_ref(ifp, nsr, if_oerrors);
   1428 	} else {
   1429 		if_statinc_ref(ifp, nsr, if_opackets);
   1430 		if_statadd_ref(ifp, nsr, if_obytes, pktlen);
   1431 		if (mcast)
   1432 			if_statinc_ref(ifp, nsr, if_omcasts);
   1433 	}
   1434 	IF_STAT_PUTREF(ifp);
   1435 
   1436 out:
   1437 	/* Remove reference to mib before release */
   1438 	vlan_putref_linkmib(mib, &psref);
   1439 	curlwp_bindx(bound);
   1440 
   1441 	return error;
   1442 }
   1443 
   1444 /*
   1445  * Given an Ethernet frame, find a valid vlan interface corresponding to the
   1446  * given source interface and tag, then run the real packet through the
   1447  * parent's input routine.
   1448  */
   1449 struct mbuf *
   1450 vlan_input(struct ifnet *ifp, struct mbuf *m)
   1451 {
   1452 	struct ifvlan *ifv;
   1453 	uint16_t vid;
   1454 	struct ifvlan_linkmib *mib;
   1455 	struct psref psref;
   1456 
   1457 	KASSERT(vlan_has_tag(m));
   1458 	vid = EVL_VLANOFTAG(vlan_get_tag(m));
   1459 	KASSERT(vid != 0);
   1460 
   1461 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
   1462 	if (mib == NULL) {
   1463 		return m;
   1464 	}
   1465 
   1466 	ifv = mib->ifvm_ifvlan;
   1467 	if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
   1468 	    (IFF_UP | IFF_RUNNING)) {
   1469 		m_freem(m);
   1470 		if_statinc(ifp, if_noproto);
   1471 		goto out;
   1472 	}
   1473 
   1474 	/*
   1475 	 * Having found a valid vlan interface corresponding to
   1476 	 * the given source interface and vlan tag.
   1477 	 * remove the vlan tag.
   1478 	 */
   1479 	m->m_flags &= ~M_VLANTAG;
   1480 
   1481 	/*
   1482 	 * Drop promiscuously received packets if we are not in
   1483 	 * promiscuous mode
   1484 	 */
   1485 	if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
   1486 	    (ifp->if_flags & IFF_PROMISC) &&
   1487 	    (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
   1488 		struct ether_header *eh;
   1489 
   1490 		eh = mtod(m, struct ether_header *);
   1491 		if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
   1492 		    eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
   1493 			m_freem(m);
   1494 			if_statinc(&ifv->ifv_if, if_ierrors);
   1495 			goto out;
   1496 		}
   1497 	}
   1498 
   1499 	m_set_rcvif(m, &ifv->ifv_if);
   1500 
   1501 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
   1502 		goto out;
   1503 	if (m == NULL)
   1504 		goto out;
   1505 
   1506 	m->m_flags &= ~M_PROMISC;
   1507 	if_input(&ifv->ifv_if, m);
   1508 out:
   1509 	vlan_putref_linkmib(mib, &psref);
   1510 	return NULL;
   1511 }
   1512 
   1513 /*
   1514  * If the parent link state changed, the vlan link state should change also.
   1515  */
   1516 static void
   1517 vlan_link_state_changed(void *xifv)
   1518 {
   1519 	struct ifvlan *ifv = xifv;
   1520 	struct ifnet *ifp, *p;
   1521 	struct ifvlan_linkmib *mib;
   1522 	struct psref psref;
   1523 	int bound;
   1524 
   1525 	bound = curlwp_bind();
   1526 	mib = vlan_getref_linkmib(ifv, &psref);
   1527 	if (mib == NULL) {
   1528 		curlwp_bindx(bound);
   1529 		return;
   1530 	}
   1531 
   1532 	if (mib->ifvm_p == NULL) {
   1533 		vlan_putref_linkmib(mib, &psref);
   1534 		curlwp_bindx(bound);
   1535 		return;
   1536 	}
   1537 
   1538 	ifp = &ifv->ifv_if;
   1539 	p = mib->ifvm_p;
   1540 	if_link_state_change(ifp, p->if_link_state);
   1541 
   1542 	vlan_putref_linkmib(mib, &psref);
   1543 	curlwp_bindx(bound);
   1544 }
   1545 
   1546 /*
   1547  * Module infrastructure
   1548  */
   1549 #include "if_module.h"
   1550 
   1551 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
   1552