Home | History | Annotate | Line # | Download | only in x86
      1 /*	$NetBSD: cpu.c,v 1.214 2025/05/02 07:08:11 imil Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.214 2025/05/02 07:08:11 imil Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 #include "opt_multiprocessor.h"
     71 #include "opt_svs.h"
     72 
     73 #include "lapic.h"
     74 #include "ioapic.h"
     75 #include "acpica.h"
     76 #include "hpet.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/cpu.h>
     83 #include <sys/cpufreq.h>
     84 #include <sys/idle.h>
     85 #include <sys/atomic.h>
     86 #include <sys/reboot.h>
     87 #include <sys/csan.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92 
     93 #include <x86/machdep.h>
     94 #include <machine/cpufunc.h>
     95 #include <machine/cpuvar.h>
     96 #include <machine/pmap.h>
     97 #include <machine/vmparam.h>
     98 #if defined(MULTIPROCESSOR)
     99 #include <machine/mpbiosvar.h>
    100 #endif
    101 #include <machine/mpconfig.h>		/* for mp_verbose */
    102 #include <machine/pcb.h>
    103 #include <machine/specialreg.h>
    104 #include <machine/segments.h>
    105 #include <machine/gdt.h>
    106 #include <machine/mtrr.h>
    107 #include <machine/pio.h>
    108 #include <machine/cpu_counter.h>
    109 #include <machine/pmap_private.h>
    110 
    111 #include <x86/fpu.h>
    112 
    113 #if NACPICA > 0
    114 #include <dev/acpi/acpi_srat.h>
    115 #endif
    116 
    117 #if NLAPIC > 0
    118 #include <machine/apicvar.h>
    119 #include <machine/i82489reg.h>
    120 #include <machine/i82489var.h>
    121 #endif
    122 
    123 #include <dev/ic/mc146818reg.h>
    124 #include <dev/ic/hpetvar.h>
    125 #include <i386/isa/nvram.h>
    126 #include <dev/isa/isareg.h>
    127 
    128 #include "tsc.h"
    129 
    130 #ifndef XENPV
    131 #include "hyperv.h"
    132 #if NHYPERV > 0
    133 #include <x86/x86/hypervvar.h>
    134 #endif
    135 #endif
    136 
    137 #ifdef XEN
    138 #include <xen/hypervisor.h>
    139 #endif
    140 
    141 static int	cpu_match(device_t, cfdata_t, void *);
    142 static void	cpu_attach(device_t, device_t, void *);
    143 static void	cpu_defer(device_t);
    144 static int	cpu_rescan(device_t, const char *, const int *);
    145 static void	cpu_childdetached(device_t, device_t);
    146 static bool	cpu_stop(device_t);
    147 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    148 static bool	cpu_resume(device_t, const pmf_qual_t *);
    149 static bool	cpu_shutdown(device_t, int);
    150 
    151 struct cpu_softc {
    152 	device_t sc_dev;		/* device tree glue */
    153 	struct cpu_info *sc_info;	/* pointer to CPU info */
    154 	bool sc_wasonline;
    155 };
    156 
    157 #ifdef MULTIPROCESSOR
    158 int mp_cpu_start(struct cpu_info *, paddr_t);
    159 void mp_cpu_start_cleanup(struct cpu_info *);
    160 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    161 					    mp_cpu_start_cleanup };
    162 #endif
    163 
    164 
    165 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    166     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    167 
    168 /*
    169  * Statically-allocated CPU info for the primary CPU (or the only
    170  * CPU, on uniprocessors).  The CPU info list is initialized to
    171  * point at it.
    172  */
    173 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    174 	.ci_dev = 0,
    175 	.ci_self = &cpu_info_primary,
    176 	.ci_idepth = -1,
    177 	.ci_curlwp = &lwp0,
    178 	.ci_curldt = -1,
    179 	.ci_kfpu_spl = -1,
    180 };
    181 
    182 struct cpu_info *cpu_info_list = &cpu_info_primary;
    183 
    184 #ifdef i386
    185 void		cpu_set_tss_gates(struct cpu_info *);
    186 #endif
    187 
    188 static void	cpu_init_idle_lwp(struct cpu_info *);
    189 
    190 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    191 			/* [0] basic features cpuid.1:%edx
    192 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    193 			 * [2] extended features cpuid:80000001:%edx
    194 			 * [3] extended features cpuid:80000001:%ecx
    195 			 * [4] VIA padlock features
    196 			 * [5] structured extended features cpuid.7:%ebx
    197 			 * [6] structured extended features cpuid.7:%ecx
    198 			 */
    199 
    200 #ifdef MULTIPROCESSOR
    201 bool x86_mp_online;
    202 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    203 #endif
    204 #if NLAPIC > 0
    205 static vaddr_t cmos_data_mapping;
    206 #endif
    207 struct cpu_info *cpu_starting;
    208 
    209 #ifdef MULTIPROCESSOR
    210 void		cpu_hatch(void *);
    211 static void	cpu_boot_secondary(struct cpu_info *ci);
    212 static void	cpu_start_secondary(struct cpu_info *ci);
    213 #if NLAPIC > 0
    214 static void	cpu_copy_trampoline(paddr_t);
    215 #endif
    216 #endif /* MULTIPROCESSOR */
    217 
    218 /*
    219  * Runs once per boot once multiprocessor goo has been detected and
    220  * the local APIC on the boot processor has been mapped.
    221  *
    222  * Called from lapic_boot_init() (from mpbios_scan()).
    223  */
    224 #if NLAPIC > 0
    225 void
    226 cpu_init_first(void)
    227 {
    228 
    229 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    230 
    231 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    232 	if (cmos_data_mapping == 0)
    233 		panic("No KVA for page 0");
    234 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    235 	pmap_update(pmap_kernel());
    236 }
    237 #endif
    238 
    239 static int
    240 cpu_match(device_t parent, cfdata_t match, void *aux)
    241 {
    242 
    243 	return 1;
    244 }
    245 
    246 #ifdef __HAVE_PCPU_AREA
    247 void
    248 cpu_pcpuarea_init(struct cpu_info *ci)
    249 {
    250 	struct vm_page *pg;
    251 	size_t i, npages;
    252 	vaddr_t base, va;
    253 	paddr_t pa;
    254 
    255 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    256 
    257 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    258 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    259 
    260 	for (i = 0; i < npages; i++) {
    261 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    262 		if (pg == NULL) {
    263 			panic("failed to allocate pcpu PA");
    264 		}
    265 
    266 		va = base + i * PAGE_SIZE;
    267 		pa = VM_PAGE_TO_PHYS(pg);
    268 
    269 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    270 	}
    271 
    272 	pmap_update(pmap_kernel());
    273 }
    274 #endif
    275 
    276 static void
    277 cpu_vm_init(struct cpu_info *ci)
    278 {
    279 	unsigned int ncolors = 2;
    280 
    281 	/*
    282 	 * XXX: for AP's the cache info has not been initialized yet
    283 	 * but that does not matter because uvm only pays attention at
    284 	 * the maximum only. We should fix it once cpus have different
    285 	 * cache sizes.
    286 	 */
    287 	for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    288 		struct x86_cache_info *cai;
    289 		unsigned int tcolors;
    290 
    291 		cai = &ci->ci_cinfo[i];
    292 
    293 		tcolors = atop(cai->cai_totalsize);
    294 		switch (cai->cai_associativity) {
    295 		case 0xff:
    296 			tcolors = 1; /* fully associative */
    297 			break;
    298 		case 0:
    299 		case 1:
    300 			break;
    301 		default:
    302 			tcolors /= cai->cai_associativity;
    303 		}
    304 		if (tcolors <= ncolors)
    305 			continue;
    306 		ncolors = tcolors;
    307 	}
    308 
    309 	/*
    310 	 * If the desired number of colors is not a power of
    311 	 * two, it won't be good.  Find the greatest power of
    312 	 * two which is an even divisor of the number of colors,
    313 	 * to preserve even coloring of pages.
    314 	 */
    315 	if (ncolors & (ncolors - 1) ) {
    316 		unsigned int try, picked = 1;
    317 		for (try = 1; try < ncolors; try *= 2) {
    318 			if (ncolors % try == 0) picked = try;
    319 		}
    320 		if (picked == 1) {
    321 			panic("desired number of cache colors %u is "
    322 			" > 1, but not even!", ncolors);
    323 		}
    324 		ncolors = picked;
    325 	}
    326 
    327 	/*
    328 	 * Knowing the size of the largest cache on this CPU, potentially
    329 	 * re-color our pages.
    330 	 */
    331 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    332 	uvm_page_recolor(ncolors);
    333 
    334 	pmap_tlb_cpu_init(ci);
    335 #ifndef __HAVE_DIRECT_MAP
    336 	pmap_vpage_cpu_init(ci);
    337 #endif
    338 }
    339 
    340 static void
    341 cpu_attach(device_t parent, device_t self, void *aux)
    342 {
    343 	struct cpu_softc *sc = device_private(self);
    344 	struct cpu_attach_args *caa = aux;
    345 	struct cpu_info *ci;
    346 	uintptr_t ptr;
    347 #if NLAPIC > 0
    348 	int cpunum = caa->cpu_number;
    349 #endif
    350 	static bool again;
    351 
    352 	sc->sc_dev = self;
    353 
    354 	if (ncpu > maxcpus) {
    355 #ifndef _LP64
    356 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    357 #else
    358 		aprint_error(": too many CPUs\n");
    359 #endif
    360 		return;
    361 	}
    362 
    363 	/*
    364 	 * If we're an Application Processor, allocate a cpu_info
    365 	 * structure, otherwise use the primary's.
    366 	 */
    367 	if (caa->cpu_role == CPU_ROLE_AP) {
    368 		if ((boothowto & RB_MD1) != 0) {
    369 			aprint_error(": multiprocessor boot disabled\n");
    370 			if (!pmf_device_register(self, NULL, NULL))
    371 				aprint_error_dev(self,
    372 				    "couldn't establish power handler\n");
    373 			return;
    374 		}
    375 		aprint_naive(": Application Processor\n");
    376 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    377 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    378 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    379 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    380 		ci->ci_curldt = -1;
    381 	} else {
    382 		aprint_naive(": %s Processor\n",
    383 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    384 		ci = &cpu_info_primary;
    385 #if NLAPIC > 0
    386 		if (cpunum != lapic_cpu_number()) {
    387 			/* XXX should be done earlier. */
    388 			uint32_t reg;
    389 			aprint_verbose("\n");
    390 			aprint_verbose_dev(self, "running CPU at apic %d"
    391 			    " instead of at expected %d", lapic_cpu_number(),
    392 			    cpunum);
    393 			reg = lapic_readreg(LAPIC_ID);
    394 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    395 			    (cpunum << LAPIC_ID_SHIFT));
    396 		}
    397 		if (cpunum != lapic_cpu_number()) {
    398 			aprint_error_dev(self, "unable to reset apic id\n");
    399 		}
    400 #endif
    401 	}
    402 
    403 	ci->ci_self = ci;
    404 	sc->sc_info = ci;
    405 	ci->ci_dev = self;
    406 	ci->ci_acpiid = caa->cpu_id;
    407 	ci->ci_cpuid = caa->cpu_number;
    408 	ci->ci_func = caa->cpu_func;
    409 	ci->ci_kfpu_spl = -1;
    410 	aprint_normal("\n");
    411 
    412 	/* Must be before mi_cpu_attach(). */
    413 	cpu_vm_init(ci);
    414 
    415 	if (caa->cpu_role == CPU_ROLE_AP) {
    416 		int error;
    417 
    418 		error = mi_cpu_attach(ci);
    419 		if (error != 0) {
    420 			aprint_error_dev(self,
    421 			    "mi_cpu_attach failed with %d\n", error);
    422 			return;
    423 		}
    424 #ifdef __HAVE_PCPU_AREA
    425 		cpu_pcpuarea_init(ci);
    426 #endif
    427 		cpu_init_tss(ci);
    428 	} else {
    429 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    430 #if NACPICA > 0
    431 		/* Parse out NUMA info for cpu_identify(). */
    432 		acpisrat_init();
    433 #endif
    434 	}
    435 
    436 #ifdef SVS
    437 	cpu_svs_init(ci);
    438 #endif
    439 
    440 	pmap_reference(pmap_kernel());
    441 	ci->ci_pmap = pmap_kernel();
    442 	ci->ci_tlbstate = TLBSTATE_STALE;
    443 
    444 	/*
    445 	 * Boot processor may not be attached first, but the below
    446 	 * must be done to allow booting other processors.
    447 	 */
    448 	if (!again) {
    449 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    450 		DELAY(1);
    451 
    452 		/*
    453 		 * Basic init.  Compute an approximate frequency for the TSC
    454 		 * using the i8254.  If there's a HPET we'll redo it later.
    455 		 */
    456 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    457 		cpu_intr_init(ci);
    458 		tsc_setfunc(ci);
    459 		cpu_get_tsc_freq(ci);
    460 		cpu_init(ci);
    461 #ifdef i386
    462 		cpu_set_tss_gates(ci);
    463 #endif
    464 		pmap_cpu_init_late(ci);
    465 #if NLAPIC > 0
    466 		if (caa->cpu_role != CPU_ROLE_SP) {
    467 			/* Enable lapic. */
    468 			lapic_enable();
    469 			lapic_set_lvt();
    470 			if (!vm_guest_is_xenpvh_or_pvhvm())
    471 				lapic_calibrate_timer(false);
    472 		}
    473 #endif
    474 		kcsan_cpu_init(ci);
    475 		again = true;
    476 	}
    477 
    478 	/* further PCB init done later. */
    479 
    480 	switch (caa->cpu_role) {
    481 	case CPU_ROLE_SP:
    482 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    483 		cpu_identify(ci);
    484 		x86_errata();
    485 		x86_cpu_idle_init();
    486 #ifdef XENPVHVM
    487 		xen_hvm_init_cpu(ci);
    488 #endif
    489 		break;
    490 
    491 	case CPU_ROLE_BP:
    492 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    493 		cpu_identify(ci);
    494 		x86_errata();
    495 		x86_cpu_idle_init();
    496 #ifdef XENPVHVM
    497 		xen_hvm_init_cpu(ci);
    498 #endif
    499 		break;
    500 
    501 #ifdef MULTIPROCESSOR
    502 	case CPU_ROLE_AP:
    503 		/*
    504 		 * report on an AP
    505 		 */
    506 		cpu_intr_init(ci);
    507 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
    508 		gdt_alloc_cpu(ci);
    509 #ifdef i386
    510 		cpu_set_tss_gates(ci);
    511 #endif
    512 		pmap_cpu_init_late(ci);
    513 		cpu_start_secondary(ci);
    514 		if (ci->ci_flags & CPUF_PRESENT) {
    515 			struct cpu_info *tmp;
    516 
    517 			cpu_identify(ci);
    518 			tmp = cpu_info_list;
    519 			while (tmp->ci_next)
    520 				tmp = tmp->ci_next;
    521 
    522 			tmp->ci_next = ci;
    523 		}
    524 		break;
    525 #endif
    526 
    527 	default:
    528 		panic("unknown processor type??\n");
    529 	}
    530 
    531 	pat_init(ci);
    532 
    533 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    534 		aprint_error_dev(self, "couldn't establish power handler\n");
    535 
    536 #ifdef MULTIPROCESSOR
    537 	if (mp_verbose) {
    538 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    539 		struct pcb *pcb = lwp_getpcb(l);
    540 
    541 		aprint_verbose_dev(self,
    542 		    "idle lwp at %p, idle sp at %p\n",
    543 		    l,
    544 #ifdef i386
    545 		    (void *)pcb->pcb_esp
    546 #else
    547 		    (void *)pcb->pcb_rsp
    548 #endif
    549 		);
    550 	}
    551 #endif
    552 
    553 	/*
    554 	 * Postpone the "cpufeaturebus" scan.
    555 	 * It is safe to scan the pseudo-bus
    556 	 * only after all CPUs have attached.
    557 	 */
    558 	(void)config_defer(self, cpu_defer);
    559 }
    560 
    561 static void
    562 cpu_defer(device_t self)
    563 {
    564 	cpu_rescan(self, NULL, NULL);
    565 }
    566 
    567 static int
    568 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    569 {
    570 	struct cpu_softc *sc = device_private(self);
    571 	struct cpufeature_attach_args cfaa;
    572 	struct cpu_info *ci = sc->sc_info;
    573 
    574 	/*
    575 	 * If we booted with RB_MD1 to disable multiprocessor, the
    576 	 * auto-configuration data still contains the additional
    577 	 * CPUs.   But their initialization was mostly bypassed
    578 	 * during attach, so we have to make sure we don't look at
    579 	 * their featurebus info, since it wasn't retrieved.
    580 	 */
    581 	if (ci == NULL)
    582 		return 0;
    583 
    584 	memset(&cfaa, 0, sizeof(cfaa));
    585 	cfaa.ci = ci;
    586 
    587 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    588 		if (ci->ci_frequency == NULL) {
    589 			cfaa.name = "frequency";
    590 			ci->ci_frequency =
    591 			    config_found(self, &cfaa, NULL,
    592 					 CFARGS(.iattr = "cpufeaturebus"));
    593 		}
    594 
    595 		if (ci->ci_padlock == NULL) {
    596 			cfaa.name = "padlock";
    597 			ci->ci_padlock =
    598 			    config_found(self, &cfaa, NULL,
    599 					 CFARGS(.iattr = "cpufeaturebus"));
    600 		}
    601 
    602 		if (ci->ci_temperature == NULL) {
    603 			cfaa.name = "temperature";
    604 			ci->ci_temperature =
    605 			    config_found(self, &cfaa, NULL,
    606 					 CFARGS(.iattr = "cpufeaturebus"));
    607 		}
    608 
    609 		if (ci->ci_vm == NULL) {
    610 			cfaa.name = "vm";
    611 			ci->ci_vm =
    612 			    config_found(self, &cfaa, NULL,
    613 					 CFARGS(.iattr = "cpufeaturebus"));
    614 		}
    615 	}
    616 
    617 	return 0;
    618 }
    619 
    620 static void
    621 cpu_childdetached(device_t self, device_t child)
    622 {
    623 	struct cpu_softc *sc = device_private(self);
    624 	struct cpu_info *ci = sc->sc_info;
    625 
    626 	if (ci->ci_frequency == child)
    627 		ci->ci_frequency = NULL;
    628 
    629 	if (ci->ci_padlock == child)
    630 		ci->ci_padlock = NULL;
    631 
    632 	if (ci->ci_temperature == child)
    633 		ci->ci_temperature = NULL;
    634 
    635 	if (ci->ci_vm == child)
    636 		ci->ci_vm = NULL;
    637 }
    638 
    639 /*
    640  * Initialize the processor appropriately.
    641  */
    642 
    643 void
    644 cpu_init(struct cpu_info *ci)
    645 {
    646 	extern int x86_fpu_save;
    647 	uint32_t cr4 = 0;
    648 
    649 	lcr0(rcr0() | CR0_WP);
    650 
    651 	/* If global TLB caching is supported, enable it */
    652 	if (cpu_feature[0] & CPUID_PGE)
    653 		cr4 |= CR4_PGE;
    654 
    655 	/*
    656 	 * If we have FXSAVE/FXRESTOR, use them.
    657 	 */
    658 	if (cpu_feature[0] & CPUID_FXSR) {
    659 		cr4 |= CR4_OSFXSR;
    660 
    661 		/*
    662 		 * If we have SSE/SSE2, enable XMM exceptions.
    663 		 */
    664 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    665 			cr4 |= CR4_OSXMMEXCPT;
    666 	}
    667 
    668 	/* If xsave is supported, enable it */
    669 	if (cpu_feature[1] & CPUID2_XSAVE)
    670 		cr4 |= CR4_OSXSAVE;
    671 
    672 	/* If SMEP is supported, enable it */
    673 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    674 		cr4 |= CR4_SMEP;
    675 
    676 	/* If SMAP is supported, enable it */
    677 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    678 		cr4 |= CR4_SMAP;
    679 
    680 #ifdef SVS
    681 	/* If PCID is supported, enable it */
    682 	if (svs_pcid)
    683 		cr4 |= CR4_PCIDE;
    684 #endif
    685 
    686 	if (cr4) {
    687 		cr4 |= rcr4();
    688 		lcr4(cr4);
    689 	}
    690 
    691 	/*
    692 	 * Changing CR4 register may change cpuid values. For example, setting
    693 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    694 	 * ci_feat_val[1], so update it.
    695 	 * XXX Other than ci_feat_val[1] might be changed.
    696 	 */
    697 	if (cpuid_level >= 1) {
    698 		u_int descs[4];
    699 
    700 		x86_cpuid(1, descs);
    701 		ci->ci_feat_val[1] = descs[2];
    702 	}
    703 
    704 	if (CPU_IS_PRIMARY(ci) &&
    705 	    x86_fpu_save >= FPU_SAVE_FXSAVE) {
    706 		fpuinit_mxcsr_mask();
    707 	}
    708 
    709 	/* If xsave is enabled, enable all fpu features */
    710 	if (cr4 & CR4_OSXSAVE)
    711 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    712 
    713 #ifdef MTRR
    714 	/*
    715 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    716 	 */
    717 	if (cpu_feature[0] & CPUID_MTRR) {
    718 		if ((ci->ci_flags & CPUF_AP) == 0)
    719 			i686_mtrr_init_first();
    720 		mtrr_init_cpu(ci);
    721 	}
    722 
    723 #ifdef i386
    724 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    725 		/*
    726 		 * Must be a K6-2 Step >= 7 or a K6-III.
    727 		 */
    728 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    729 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    730 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    731 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    732 				mtrr_funcs = &k6_mtrr_funcs;
    733 				k6_mtrr_init_first();
    734 				mtrr_init_cpu(ci);
    735 			}
    736 		}
    737 	}
    738 #endif	/* i386 */
    739 #endif /* MTRR */
    740 
    741 	if (ci != &cpu_info_primary) {
    742 		/* Synchronize TSC */
    743 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    744 		tsc_sync_ap(ci);
    745 	} else {
    746 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    747 	}
    748 }
    749 
    750 #ifdef MULTIPROCESSOR
    751 void
    752 cpu_boot_secondary_processors(void)
    753 {
    754 	struct cpu_info *ci;
    755 	kcpuset_t *cpus;
    756 	u_long i;
    757 
    758 	/* Now that we know the number of CPUs, patch the text segment. */
    759 	x86_patch(false);
    760 
    761 #if NACPICA > 0
    762 	/* Finished with NUMA info for now. */
    763 	acpisrat_exit();
    764 #endif
    765 
    766 	kcpuset_create(&cpus, true);
    767 	kcpuset_set(cpus, cpu_index(curcpu()));
    768 	for (i = 0; i < maxcpus; i++) {
    769 		ci = cpu_lookup(i);
    770 		if (ci == NULL)
    771 			continue;
    772 		if (ci->ci_data.cpu_idlelwp == NULL)
    773 			continue;
    774 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    775 			continue;
    776 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    777 			continue;
    778 		cpu_boot_secondary(ci);
    779 		kcpuset_set(cpus, cpu_index(ci));
    780 	}
    781 	while (!kcpuset_match(cpus, kcpuset_running))
    782 		;
    783 	kcpuset_destroy(cpus);
    784 
    785 	x86_mp_online = true;
    786 
    787 	/* Now that we know about the TSC, attach the timecounter. */
    788 	tsc_tc_init();
    789 }
    790 #endif
    791 
    792 static void
    793 cpu_init_idle_lwp(struct cpu_info *ci)
    794 {
    795 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    796 	struct pcb *pcb = lwp_getpcb(l);
    797 
    798 	pcb->pcb_cr0 = rcr0();
    799 }
    800 
    801 void
    802 cpu_init_idle_lwps(void)
    803 {
    804 	struct cpu_info *ci;
    805 	u_long i;
    806 
    807 	for (i = 0; i < maxcpus; i++) {
    808 		ci = cpu_lookup(i);
    809 		if (ci == NULL)
    810 			continue;
    811 		if (ci->ci_data.cpu_idlelwp == NULL)
    812 			continue;
    813 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    814 			continue;
    815 		cpu_init_idle_lwp(ci);
    816 	}
    817 }
    818 
    819 #ifdef MULTIPROCESSOR
    820 void
    821 cpu_start_secondary(struct cpu_info *ci)
    822 {
    823 	u_long psl;
    824 	int i;
    825 
    826 #if NLAPIC > 0
    827 	paddr_t mp_pdirpa;
    828 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    829 	cpu_copy_trampoline(mp_pdirpa);
    830 #endif
    831 
    832 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    833 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    834 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    835 		return;
    836 	}
    837 
    838 	/*
    839 	 * Wait for it to become ready.   Setting cpu_starting opens the
    840 	 * initial gate and allows the AP to start soft initialization.
    841 	 */
    842 	KASSERT(cpu_starting == NULL);
    843 	cpu_starting = ci;
    844 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    845 		delay_func(10);
    846 	}
    847 
    848 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    849 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    850 #if defined(MPDEBUG) && defined(DDB)
    851 		printf("dropping into debugger; continue from here to resume boot\n");
    852 		Debugger();
    853 #endif
    854 	} else {
    855 		/*
    856 		 * Synchronize time stamp counters. Invalidate cache and do
    857 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    858 		 * Disable interrupts to try and rule out any external
    859 		 * interference.
    860 		 */
    861 		psl = x86_read_psl();
    862 		x86_disable_intr();
    863 		tsc_sync_bp(ci);
    864 		x86_write_psl(psl);
    865 	}
    866 
    867 	CPU_START_CLEANUP(ci);
    868 	cpu_starting = NULL;
    869 }
    870 
    871 void
    872 cpu_boot_secondary(struct cpu_info *ci)
    873 {
    874 	int64_t drift;
    875 	u_long psl;
    876 	int i;
    877 
    878 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    879 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    880 		delay_func(10);
    881 	}
    882 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    883 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    884 #if defined(MPDEBUG) && defined(DDB)
    885 		printf("dropping into debugger; continue from here to resume boot\n");
    886 		Debugger();
    887 #endif
    888 	} else {
    889 		/* Synchronize TSC again, check for drift. */
    890 		drift = ci->ci_data.cpu_cc_skew;
    891 		psl = x86_read_psl();
    892 		x86_disable_intr();
    893 		tsc_sync_bp(ci);
    894 		x86_write_psl(psl);
    895 		drift -= ci->ci_data.cpu_cc_skew;
    896 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    897 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    898 		tsc_sync_drift(drift);
    899 	}
    900 }
    901 
    902 /*
    903  * The CPU ends up here when it's ready to run.
    904  * This is called from code in mptramp.s; at this point, we are running
    905  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    906  * this processor will enter the idle loop and start looking for work.
    907  */
    908 void
    909 cpu_hatch(void *v)
    910 {
    911 	struct cpu_info *ci = (struct cpu_info *)v;
    912 	struct pcb *pcb;
    913 	int s, i;
    914 
    915 	/* ------------------------------------------------------------- */
    916 
    917 	/*
    918 	 * This section of code must be compiled with SSP disabled, to
    919 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    920 	 */
    921 
    922 	/*
    923 	 * Initialize MSRs on this CPU:
    924 	 *
    925 	 * - On amd64: Enables SYSCALL/SYSRET.
    926 	 *
    927 	 * - On amd64: Sets up %fs and %gs so that %gs points to the
    928 	 *   current struct cpu_info as needed for CPUVAR(...),
    929 	 *   curcpu(), and curlwp.
    930 	 *
    931 	 *   (On i386, CPUVAR(...), curcpu(), and curlwp are made to
    932 	 *   work first by the conifguration of segment descriptors in
    933 	 *   the Global Descriptor Table (GDT) in initgdt.)
    934 	 *
    935 	 * - Enables the no-execute bit if supported.
    936 	 *
    937 	 * Thus, after this point, CPUVAR(...), curcpu(), and curlwp
    938 	 * will work on this CPU.
    939 	 *
    940 	 * Note: The call to cpu_init_msrs for cpu0 happens in
    941 	 * init386/init_x86_64.
    942 	 */
    943 	cpu_init_msrs(ci, true);
    944 
    945 	cpu_probe(ci);
    946 	cpu_speculation_init(ci);
    947 #if NHYPERV > 0
    948 	hyperv_init_cpu(ci);
    949 #endif
    950 
    951 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    952 	/* cpu_get_tsc_freq(ci); */
    953 
    954 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    955 
    956 	/*
    957 	 * Synchronize the TSC for the first time. Note that interrupts are
    958 	 * off at this point.
    959 	 */
    960 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    961 	tsc_sync_ap(ci);
    962 
    963 	/* ------------------------------------------------------------- */
    964 
    965 	/*
    966 	 * Wait to be brought online.
    967 	 *
    968 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    969 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    970 	 * this causes the TSC to drift. We want this to happen, so that we
    971 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    972 	 * TSCs. That's just for safety; by definition such drifts should
    973 	 * never occur with invariant TSCs.
    974 	 *
    975 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    976 	 * interrupts off.
    977 	 */
    978 	while ((ci->ci_flags & CPUF_GO) == 0) {
    979 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    980 			x86_monitor(&ci->ci_flags, 0, 0);
    981 			if ((ci->ci_flags & CPUF_GO) != 0) {
    982 				continue;
    983 			}
    984 			x86_mwait(0, 0);
    985 		} else {
    986 	/*
    987 	 * XXX The loop repetition count could be a lot higher, but
    988 	 * XXX currently qemu emulator takes a _very_long_time_ to
    989 	 * XXX execute the pause instruction.  So for now, use a low
    990 	 * XXX value to allow the cpu to hatch before timing out.
    991 	 */
    992 			for (i = 50; i != 0; i--) {
    993 				x86_pause();
    994 			}
    995 		}
    996 	}
    997 
    998 	/* Because the text may have been patched in x86_patch(). */
    999 	wbinvd();
   1000 	x86_flush();
   1001 	tlbflushg();
   1002 
   1003 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
   1004 
   1005 #ifdef PAE
   1006 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
   1007 	for (i = 0 ; i < PDP_SIZE; i++) {
   1008 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
   1009 	}
   1010 	lcr3(ci->ci_pae_l3_pdirpa);
   1011 #else
   1012 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
   1013 #endif
   1014 
   1015 	pcb = lwp_getpcb(curlwp);
   1016 	pcb->pcb_cr3 = rcr3();
   1017 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
   1018 	lcr0(pcb->pcb_cr0);
   1019 
   1020 	cpu_init_idt(ci);
   1021 	gdt_init_cpu(ci);
   1022 #if NLAPIC > 0
   1023 	lapic_enable();
   1024 	lapic_set_lvt();
   1025 #endif
   1026 
   1027 	fpuinit(ci);
   1028 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
   1029 	ltr(ci->ci_tss_sel);
   1030 
   1031 	/*
   1032 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
   1033 	 * drift that would have been caused by the use of MONITOR/MWAIT
   1034 	 * above.
   1035 	 */
   1036 	cpu_init(ci);
   1037 #ifdef XENPVHVM
   1038 	xen_hvm_init_cpu(ci);
   1039 #endif
   1040 	(*x86_initclock_func)();
   1041 	cpu_get_tsc_freq(ci);
   1042 
   1043 	s = splhigh();
   1044 #if NLAPIC > 0
   1045 	lapic_write_tpri(0);
   1046 #endif
   1047 	x86_enable_intr();
   1048 	splx(s);
   1049 	x86_errata();
   1050 
   1051 	aprint_debug_dev(ci->ci_dev, "running\n");
   1052 
   1053 	kcsan_cpu_init(ci);
   1054 
   1055 	idle_loop(NULL);
   1056 	KASSERT(false);
   1057 }
   1058 #endif
   1059 
   1060 #if defined(DDB)
   1061 
   1062 #include <ddb/db_output.h>
   1063 #include <machine/db_machdep.h>
   1064 
   1065 /*
   1066  * Dump CPU information from ddb.
   1067  */
   1068 void
   1069 cpu_debug_dump(void)
   1070 {
   1071 	struct cpu_info *ci;
   1072 	CPU_INFO_ITERATOR cii;
   1073 	const char sixtyfour64space[] =
   1074 #ifdef _LP64
   1075 			   "        "
   1076 #endif
   1077 			   "";
   1078 
   1079 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1080 		  "\n", sixtyfour64space);
   1081 	for (CPU_INFO_FOREACH(cii, ci)) {
   1082 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1083 		    ci,
   1084 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1085 		    (long)ci->ci_cpuid,
   1086 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1087 		    ci->ci_curlwp);
   1088 	}
   1089 }
   1090 #endif
   1091 
   1092 #ifdef MULTIPROCESSOR
   1093 #if NLAPIC > 0
   1094 static void
   1095 cpu_copy_trampoline(paddr_t pdir_pa)
   1096 {
   1097 	extern uint32_t nox_flag;
   1098 	extern u_char cpu_spinup_trampoline[];
   1099 	extern u_char cpu_spinup_trampoline_end[];
   1100 	vaddr_t mp_trampoline_vaddr;
   1101 	struct {
   1102 		uint32_t large;
   1103 		uint32_t nox;
   1104 		uint32_t pdir;
   1105 	} smp_data;
   1106 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1107 
   1108 	smp_data.large = (pmap_largepages != 0);
   1109 	smp_data.nox = nox_flag;
   1110 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1111 
   1112 	/* Enter the physical address */
   1113 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1114 	    UVM_KMF_VAONLY);
   1115 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1116 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1117 	pmap_update(pmap_kernel());
   1118 
   1119 	/* Copy boot code */
   1120 	memcpy((void *)mp_trampoline_vaddr,
   1121 	    cpu_spinup_trampoline,
   1122 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1123 
   1124 	/* Copy smp_data at the end */
   1125 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1126 	    &smp_data, sizeof(smp_data));
   1127 
   1128 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1129 	pmap_update(pmap_kernel());
   1130 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1131 }
   1132 #endif
   1133 
   1134 int
   1135 mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1136 {
   1137 #if NLAPIC > 0
   1138 	int error;
   1139 
   1140 	/*
   1141 	 * Bootstrap code must be addressable in real mode
   1142 	 * and it must be page aligned.
   1143 	 */
   1144 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1145 
   1146 	/*
   1147 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1148 	 */
   1149 
   1150 	outb(IO_RTC, NVRAM_RESET);
   1151 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1152 
   1153 	/*
   1154 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1155 	 * to the AP startup code ..."
   1156 	 */
   1157 	unsigned short dwordptr[2];
   1158 	dwordptr[0] = 0;
   1159 	dwordptr[1] = target >> 4;
   1160 
   1161 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1162 
   1163 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1164 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1165 		return ENODEV;
   1166 	}
   1167 
   1168 	/*
   1169 	 * ... prior to executing the following sequence:".  We'll also add in
   1170 	 * local cache flush, in case the BIOS has left the AP with its cache
   1171 	 * disabled.  It may not be able to cope with MP coherency.
   1172 	 */
   1173 	wbinvd();
   1174 
   1175 	if (ci->ci_flags & CPUF_AP) {
   1176 		error = x86_ipi_init(ci->ci_cpuid);
   1177 		if (error != 0) {
   1178 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1179 			    __func__);
   1180 			return error;
   1181 		}
   1182 		delay_func(10000);
   1183 
   1184 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1185 		if (error != 0) {
   1186 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1187 			    __func__);
   1188 			return error;
   1189 		}
   1190 		delay_func(200);
   1191 
   1192 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1193 		if (error != 0) {
   1194 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1195 			    __func__);
   1196 			return error;
   1197 		}
   1198 		delay_func(200);
   1199 	}
   1200 
   1201 	return 0;
   1202 #else
   1203 	return ENODEV;
   1204 #endif /* NLAPIC > 0 */
   1205 }
   1206 
   1207 void
   1208 mp_cpu_start_cleanup(struct cpu_info *ci)
   1209 {
   1210 	/*
   1211 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1212 	 */
   1213 
   1214 	outb(IO_RTC, NVRAM_RESET);
   1215 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1216 }
   1217 #endif
   1218 
   1219 #ifdef __x86_64__
   1220 typedef void (vector)(void);
   1221 extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1222 #endif
   1223 
   1224 /*
   1225  * cpu_init_msrs(ci, full)
   1226  *
   1227  *	Initialize some Model-Specific Registers (MSRs) on the current
   1228  *	CPU, whose struct cpu_info pointer is ci, for:
   1229  *
   1230  *	- SYSCALL/SYSRET.
   1231  *	- %fs/%gs on amd64 if `full' is true; needed to make
   1232  *	  CPUVAR(...), curcpu(), and curlwp work.  (We do this at boot,
   1233  *	  but skip it on ACPI wakeup.)
   1234  *	- No-execute bit, if supported.
   1235  *
   1236  *	References:
   1237  *
   1238  *	- Intel 64 and IA-32 Architectures Software Developer's Manual,
   1239  *	  Volume 3: System Programming Guide, Order Number 325384,
   1240  *	  April 2022, Sec. 5.8.8 `Fast System Calls in 64-Bit Mode',
   1241  *	  pp. 5-22 through 5-23.
   1242  *
   1243  *	- Intel 64 and IA-32 Architectures Software Developer's Manual,
   1244  *	  Volume 4: Model-Specific Registers, Order Number 335592,
   1245  *	  April 2022, Sec. 2.1 `Architectural MSRs', Table 2-2,
   1246  *	  pp. 2-60 through 2-61.
   1247  */
   1248 void
   1249 cpu_init_msrs(struct cpu_info *ci, bool full)
   1250 {
   1251 #ifdef __x86_64__
   1252 	/*
   1253 	 * On amd64, set up the syscall target address registers
   1254 	 * for SYSCALL/SYSRET:
   1255 	 *
   1256 	 * - IA32_STAR, c000_0081h (MSR_STAR): System Call Target
   1257 	 *   Address.  Code and stack segment selectors for SYSRET
   1258 	 *   (bits 48:63) and SYSCALL (bits 32:47).
   1259 	 *
   1260 	 * - IA32_LSTAR, c000_0082h (MSR_LSTAR): IA-32e Mode System
   1261 	 *   Call Target Address.  Target rip for SYSCALL when executed
   1262 	 *   in 64-bit mode.
   1263 	 *
   1264 	 * - IA32_CSTAR, c000_0083h (MSR_CSTAR): IA-32e Mode System
   1265 	 *   Call Target Address.  Target rip for SYSCALL when executed
   1266 	 *   in compatibility mode.  (XXX Manual says this is `[n]ot
   1267 	 *   used, as the SYSCALL instruction is not recognized in
   1268 	 *   compatibility mode', so why do we set it?)
   1269 	 *
   1270 	 * - IA32_FMASK, c000_0084h (MSR_SFMASK): System Call Flag
   1271 	 *   Mask.  Mask for the RFLAGS register on SYSCALL.
   1272 	 */
   1273 	wrmsr(MSR_STAR,
   1274 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1275 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1276 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1277 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1278 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1279 
   1280 #ifdef SVS
   1281 	if (svs_enabled)
   1282 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1283 #endif
   1284 
   1285 	/*
   1286 	 * On amd64 if `full' is true -- used at boot, but not on ACPI
   1287 	 * wakeup -- then additionally set up %fs and %gs:
   1288 	 *
   1289 	 * - IA32_FS_BASE, c000_0100h (MSR_FSBASE): Base address of
   1290 	 *   %fs.  Not used in NetBSD kernel, so zero it.
   1291 	 *
   1292 	 * - IA32_GS_BASE, c000_0101h (MSR_GSBASE): Base address of
   1293 	 *   %gs.  Used in NetBSD kernel by CPUVAR(...), curcpu(), and
   1294 	 *   curlwp for access to the CPU-local area, so set it to ci.
   1295 	 *
   1296 	 * - IA32_KERNEL_GS_BASE, c000_0102h (MSR_KERNELGSBASE): Base
   1297 	 *   address of what swapgs will leave in %gs when switching to
   1298 	 *   userland.  Zero for now; will be set to pcb->pcb_gs in
   1299 	 *   cpu_switchto for user threads.
   1300 	 */
   1301 	if (full) {
   1302 		wrmsr(MSR_FSBASE, 0);
   1303 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1304 		wrmsr(MSR_KERNELGSBASE, 0);
   1305 	}
   1306 #endif	/* __x86_64__ */
   1307 
   1308 	/*
   1309 	 * If the no-execute bit is supported, enable it in:
   1310 	 *
   1311 	 * - IA32_EFER, c000_0080h (MSR_EFER): Extended Feature
   1312          *   Enables.
   1313 	 */
   1314 	if (cpu_feature[2] & CPUID_NOX)
   1315 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1316 }
   1317 
   1318 void
   1319 cpu_offline_md(void)
   1320 {
   1321 	return;
   1322 }
   1323 
   1324 /* XXX joerg restructure and restart CPUs individually */
   1325 static bool
   1326 cpu_stop(device_t dv)
   1327 {
   1328 	struct cpu_softc *sc = device_private(dv);
   1329 	struct cpu_info *ci = sc->sc_info;
   1330 	int err;
   1331 
   1332 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1333 
   1334 	if (CPU_IS_PRIMARY(ci))
   1335 		return true;
   1336 
   1337 	if (ci->ci_data.cpu_idlelwp == NULL)
   1338 		return true;
   1339 
   1340 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1341 
   1342 	if (sc->sc_wasonline) {
   1343 		mutex_enter(&cpu_lock);
   1344 		err = cpu_setstate(ci, false);
   1345 		mutex_exit(&cpu_lock);
   1346 
   1347 		if (err != 0)
   1348 			return false;
   1349 	}
   1350 
   1351 	return true;
   1352 }
   1353 
   1354 static bool
   1355 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1356 {
   1357 	struct cpu_softc *sc = device_private(dv);
   1358 	struct cpu_info *ci = sc->sc_info;
   1359 
   1360 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1361 		return true;
   1362 	else {
   1363 		cpufreq_suspend(ci);
   1364 	}
   1365 
   1366 	return cpu_stop(dv);
   1367 }
   1368 
   1369 static bool
   1370 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1371 {
   1372 	struct cpu_softc *sc = device_private(dv);
   1373 	struct cpu_info *ci = sc->sc_info;
   1374 	int err = 0;
   1375 
   1376 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1377 		return true;
   1378 
   1379 	if (CPU_IS_PRIMARY(ci))
   1380 		goto out;
   1381 
   1382 	if (ci->ci_data.cpu_idlelwp == NULL)
   1383 		goto out;
   1384 
   1385 	if (sc->sc_wasonline) {
   1386 		mutex_enter(&cpu_lock);
   1387 		err = cpu_setstate(ci, true);
   1388 		mutex_exit(&cpu_lock);
   1389 	}
   1390 
   1391 out:
   1392 	if (err != 0)
   1393 		return false;
   1394 
   1395 	cpufreq_resume(ci);
   1396 
   1397 	return true;
   1398 }
   1399 
   1400 static bool
   1401 cpu_shutdown(device_t dv, int how)
   1402 {
   1403 	struct cpu_softc *sc = device_private(dv);
   1404 	struct cpu_info *ci = sc->sc_info;
   1405 
   1406 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1407 		return false;
   1408 
   1409 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1410 		return true;
   1411 
   1412 	return cpu_stop(dv);
   1413 }
   1414 
   1415 /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1416 void
   1417 cpu_get_tsc_freq(struct cpu_info *ci)
   1418 {
   1419 	static uint64_t freq_from_cpuid = 0;
   1420 	uint64_t freq = 0, t0, t1;
   1421 	int64_t overhead;
   1422 
   1423 	if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
   1424 		/*
   1425 		 * If it's the first call of this function, try to get TSC
   1426 		 * freq from CPUID by calling cpu_tsc_freq_cpuid().
   1427 		 * The function also set lapic_per_second variable if it's
   1428 		 * known. This is required for Intel's Comet Lake and newer
   1429 		 * processors to set LAPIC timer correctly.
   1430 		 *
   1431 		 * If TSC freq is already known by CPUID, don't go through
   1432 		 * tests again.
   1433 		 */
   1434 		if (freq_from_cpuid != 0)
   1435 			return;
   1436 
   1437 		if (ci->ci_data.cpu_cc_freq == 0)
   1438 			freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1439 		if (freq != 0)
   1440 			aprint_debug_dev(ci->ci_dev, "TSC freq "
   1441 			    "from CPUID %" PRIu64 " Hz\n", freq);
   1442 #if NHPET > 0
   1443 		if (freq == 0) {
   1444 			freq = hpet_tsc_freq();
   1445 			if (freq != 0)
   1446 				aprint_debug_dev(ci->ci_dev, "TSC freq "
   1447 				    "from HPET %" PRIu64 " Hz\n", freq);
   1448 		}
   1449 #endif
   1450 		if (freq == 0) {
   1451 			/*
   1452 			 * Work out the approximate overhead involved below.
   1453 			 * Discard the result of the first go around the
   1454 			 * loop.
   1455 			 */
   1456 			overhead = 0;
   1457 			for (int i = 0; i <= 8; i++) {
   1458 				const int s = splhigh();
   1459 				t0 = cpu_counter();
   1460 				delay_func(0);
   1461 				t1 = cpu_counter();
   1462 				splx(s);
   1463 				if (i > 0) {
   1464 					overhead += (t1 - t0);
   1465 				}
   1466 			}
   1467 			overhead >>= 3;
   1468 
   1469 			/*
   1470 			 * Now do the calibration.
   1471 			 */
   1472 			freq = 0;
   1473 			for (int i = 0; i < 1000; i++) {
   1474 				const int s = splhigh();
   1475 				t0 = cpu_counter();
   1476 				delay_func(100);
   1477 				t1 = cpu_counter();
   1478 				splx(s);
   1479 				freq += t1 - t0 - overhead;
   1480 			}
   1481 			freq = freq * 10;
   1482 
   1483 			aprint_debug_dev(ci->ci_dev, "TSC freq "
   1484 			    "from delay %" PRIu64 " Hz\n", freq);
   1485 		}
   1486 		if (ci->ci_data.cpu_cc_freq != 0) {
   1487 			freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1488 			if ((freq_from_cpuid != 0)
   1489 			    && (freq != freq_from_cpuid))
   1490 				aprint_verbose_dev(ci->ci_dev, "TSC freq "
   1491 				    "calibrated %" PRIu64 " Hz\n", freq);
   1492 		}
   1493 	} else {
   1494 		freq = cpu_info_primary.ci_data.cpu_cc_freq;
   1495 	}
   1496 
   1497 	ci->ci_data.cpu_cc_freq = freq;
   1498 }
   1499 
   1500 bool
   1501 has_lapic(void)
   1502 {
   1503 #if NLAPIC > 0
   1504 	return true;
   1505 #else
   1506 	return false;
   1507 #endif
   1508 }
   1509 
   1510 void
   1511 x86_cpu_idle_mwait(void)
   1512 {
   1513 	struct cpu_info *ci = curcpu();
   1514 
   1515 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1516 
   1517 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1518 	if (__predict_false(ci->ci_want_resched)) {
   1519 		return;
   1520 	}
   1521 	x86_mwait(0, 0);
   1522 }
   1523 
   1524 void
   1525 x86_cpu_idle_halt(void)
   1526 {
   1527 	struct cpu_info *ci = curcpu();
   1528 
   1529 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1530 
   1531 	x86_disable_intr();
   1532 	if (!__predict_false(ci->ci_want_resched)) {
   1533 		x86_stihlt();
   1534 	} else {
   1535 		x86_enable_intr();
   1536 	}
   1537 }
   1538 
   1539 /*
   1540  * Loads pmap for the current CPU.
   1541  */
   1542 void
   1543 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1544 {
   1545 
   1546 	KASSERT(kpreempt_disabled());
   1547 
   1548 #ifdef SVS
   1549 	if (svs_enabled && pmap_is_user(pmap)) {
   1550 		svs_pdir_switch(pmap);
   1551 	}
   1552 #endif
   1553 
   1554 #ifdef PAE
   1555 	struct cpu_info *ci = curcpu();
   1556 	bool interrupts_enabled;
   1557 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1558 	int i;
   1559 
   1560 	/*
   1561 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1562 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1563 	 * reload cr3.
   1564 	 */
   1565 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1566 	if (interrupts_enabled)
   1567 		x86_disable_intr();
   1568 
   1569 	for (i = 0 ; i < PDP_SIZE; i++) {
   1570 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1571 	}
   1572 
   1573 	if (interrupts_enabled)
   1574 		x86_enable_intr();
   1575 	tlbflush();
   1576 #else
   1577 	lcr3(pmap_pdirpa(pmap, 0));
   1578 #endif
   1579 }
   1580 
   1581 /*
   1582  * Notify all other cpus to halt.
   1583  */
   1584 
   1585 void
   1586 cpu_broadcast_halt(void)
   1587 {
   1588 	x86_broadcast_ipi(X86_IPI_HALT);
   1589 }
   1590 
   1591 /*
   1592  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1593  * and trigger an AST on the running LWP.
   1594  */
   1595 
   1596 void
   1597 cpu_kick(struct cpu_info *ci)
   1598 {
   1599 	x86_send_ipi(ci, X86_IPI_AST);
   1600 }
   1601