1 /* $NetBSD: ath.c,v 1.140 2025/10/04 04:48:49 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.140 2025/10/04 04:48:49 thorpej Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #ifdef _KERNEL_OPT 55 #include "opt_inet.h" 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #include <sys/mbuf.h> 64 #include <sys/malloc.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/errno.h> 69 #include <sys/callout.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 #include <sys/kauth.h> 73 74 #include <net/if.h> 75 #include <net/if_dl.h> 76 #include <net/if_media.h> 77 #include <net/if_types.h> 78 #include <net/if_arp.h> 79 #include <net/if_ether.h> 80 #include <net/if_llc.h> 81 82 #include <net80211/ieee80211_netbsd.h> 83 #include <net80211/ieee80211_var.h> 84 85 #include <net/bpf.h> 86 87 #ifdef INET 88 #include <netinet/in.h> 89 #endif 90 91 #include <sys/device.h> 92 #include <dev/ic/ath_netbsd.h> 93 94 #define AR_DEBUG 95 #include <dev/ic/athvar.h> 96 #include "ah_desc.h" 97 #include "ah_devid.h" /* XXX for softled */ 98 #include "opt_ah.h" 99 100 #ifdef ATH_TX99_DIAG 101 #include <dev/ath/ath_tx99/ath_tx99.h> 102 #endif 103 104 /* unaligned little endian access */ 105 #define LE_READ_2(p) \ 106 ((u_int16_t) \ 107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 108 #define LE_READ_4(p) \ 109 ((u_int32_t) \ 110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 111 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 112 113 enum { 114 ATH_LED_TX, 115 ATH_LED_RX, 116 ATH_LED_POLL, 117 }; 118 119 #ifdef AH_NEED_DESC_SWAP 120 #define HTOAH32(x) htole32(x) 121 #else 122 #define HTOAH32(x) (x) 123 #endif 124 125 static int ath_ifinit(struct ifnet *); 126 static int ath_init(struct ath_softc *); 127 static void ath_stop_locked(struct ifnet *, int); 128 static void ath_stop(struct ifnet *, int); 129 static void ath_start(struct ifnet *); 130 static int ath_media_change(struct ifnet *); 131 static void ath_watchdog(struct ifnet *); 132 static int ath_ioctl(struct ifnet *, u_long, void *); 133 static void ath_fatal_proc(void *, int); 134 static void ath_rxorn_proc(void *, int); 135 static void ath_bmiss_proc(void *, int); 136 static void ath_radar_proc(void *, int); 137 static int ath_key_alloc(struct ieee80211com *, 138 const struct ieee80211_key *, 139 ieee80211_keyix *, ieee80211_keyix *); 140 static int ath_key_delete(struct ieee80211com *, 141 const struct ieee80211_key *); 142 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 143 const u_int8_t mac[IEEE80211_ADDR_LEN]); 144 static void ath_key_update_begin(struct ieee80211com *); 145 static void ath_key_update_end(struct ieee80211com *); 146 static void ath_mode_init(struct ath_softc *); 147 static void ath_setslottime(struct ath_softc *); 148 static void ath_updateslot(struct ifnet *); 149 static int ath_beaconq_setup(struct ath_hal *); 150 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 151 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 152 static void ath_beacon_proc(void *, int); 153 static void ath_bstuck_proc(void *, int); 154 static void ath_beacon_free(struct ath_softc *); 155 static void ath_beacon_config(struct ath_softc *); 156 static void ath_descdma_cleanup(struct ath_softc *sc, 157 struct ath_descdma *, ath_bufhead *); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 161 static void ath_node_free(struct ieee80211_node *); 162 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 163 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 164 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 165 struct ieee80211_node *ni, 166 int subtype, int rssi, u_int32_t rstamp); 167 static void ath_setdefantenna(struct ath_softc *, u_int); 168 static void ath_rx_proc(void *, int); 169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 170 static int ath_tx_setup(struct ath_softc *, int, int); 171 static int ath_wme_update(struct ieee80211com *); 172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 173 static void ath_tx_cleanup(struct ath_softc *); 174 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 175 struct ath_buf *, struct mbuf *); 176 static void ath_tx_proc_q0(void *, int); 177 static void ath_tx_proc_q0123(void *, int); 178 static void ath_tx_proc(void *, int); 179 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_draintxq(struct ath_softc *); 181 static void ath_stoprecv(struct ath_softc *); 182 static int ath_startrecv(struct ath_softc *); 183 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 184 static void ath_next_scan(void *); 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_getchannels(struct ath_softc *, u_int cc, 190 HAL_BOOL outdoor, HAL_BOOL xchanmode); 191 static void ath_led_event(struct ath_softc *, int); 192 static void ath_update_txpow(struct ath_softc *); 193 static void ath_freetx(struct mbuf *); 194 static void ath_restore_diversity(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_bpfattach(struct ath_softc *); 200 static void ath_announce(struct ath_softc *); 201 202 #ifdef __NetBSD__ 203 #define ATH_TASK_FUNC(__func) \ 204 static void __CONCAT(__func, _si)(void *arg) \ 205 { \ 206 __func(arg, 1); \ 207 } 208 ATH_TASK_FUNC(ath_rx_proc); 209 ATH_TASK_FUNC(ath_rxorn_proc); 210 ATH_TASK_FUNC(ath_fatal_proc); 211 ATH_TASK_FUNC(ath_bmiss_proc); 212 ATH_TASK_FUNC(ath_bstuck_proc); 213 ATH_TASK_FUNC(ath_radar_proc); 214 ATH_TASK_FUNC(ath_tx_proc_q0); 215 ATH_TASK_FUNC(ath_tx_proc_q0123); 216 ATH_TASK_FUNC(ath_tx_proc); 217 #endif 218 219 int ath_dwelltime = 200; /* 5 channels/second */ 220 int ath_calinterval = 30; /* calibrate every 30 secs */ 221 int ath_outdoor = AH_TRUE; /* outdoor operation */ 222 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 223 int ath_countrycode = CTRY_DEFAULT; /* country code */ 224 int ath_regdomain = 0; /* regulatory domain */ 225 int ath_debug = 0; 226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 227 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 228 229 #ifdef AR_DEBUG 230 enum { 231 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 232 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 233 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 234 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 235 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 236 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 237 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 238 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 239 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 240 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 241 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 242 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 243 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 244 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 245 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 246 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 247 ATH_DEBUG_NODE = 0x00080000, /* node management */ 248 ATH_DEBUG_LED = 0x00100000, /* led management */ 249 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 250 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 251 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 252 ATH_DEBUG_ANY = 0xffffffff 253 }; 254 #define IFF_DUMPPKTS(sc, m) \ 255 ((sc->sc_debug & (m)) || \ 256 (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 257 == (IFF_DEBUG | IFF_LINK2)) 258 #define DPRINTF(sc, m, fmt, ...) do { \ 259 if (sc->sc_debug & (m)) \ 260 printf(fmt, __VA_ARGS__); \ 261 } while (0) 262 #define KEYPRINTF(sc, ix, hk, mac) do { \ 263 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 264 ath_keyprint(__func__, ix, hk, mac); \ 265 } while (0) 266 static void ath_printrxbuf(struct ath_buf *bf, int); 267 static void ath_printtxbuf(struct ath_buf *bf, int); 268 #else 269 #define IFF_DUMPPKTS(sc, m) \ 270 ((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \ 271 == (IFF_DEBUG | IFF_LINK2)) 272 #define DPRINTF(m, fmt, ...) 273 #define KEYPRINTF(sc, k, ix, mac) 274 #endif 275 276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 277 278 int 279 ath_attach(u_int16_t devid, struct ath_softc *sc) 280 { 281 struct ifnet *ifp = &sc->sc_if; 282 struct ieee80211com *ic = &sc->sc_ic; 283 struct ath_hal *ah = NULL; 284 HAL_STATUS status; 285 int error = 0, i; 286 287 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 288 289 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 290 291 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 292 293 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 294 if (ah == NULL) { 295 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 296 status); 297 error = ENXIO; 298 goto bad; 299 } 300 if (ah->ah_abi != HAL_ABI_VERSION) { 301 if_printf(ifp, "HAL ABI mismatch detected " 302 "(HAL:0x%x != driver:0x%x)\n", 303 ah->ah_abi, HAL_ABI_VERSION); 304 error = ENXIO; 305 goto bad; 306 } 307 sc->sc_ah = ah; 308 309 if (! device_setprop_bool(sc->sc_dev, "pmf-no-powerdown", true)) 310 goto bad; 311 312 /* 313 * Check if the MAC has multi-rate retry support. 314 * We do this by trying to setup a fake extended 315 * descriptor. MAC's that don't have support will 316 * return false w/o doing anything. MAC's that do 317 * support it will return true w/o doing anything. 318 */ 319 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 320 321 /* 322 * Check if the device has hardware counters for PHY 323 * errors. If so we need to enable the MIB interrupt 324 * so we can act on stat triggers. 325 */ 326 if (ath_hal_hwphycounters(ah)) 327 sc->sc_needmib = 1; 328 329 /* 330 * Get the hardware key cache size. 331 */ 332 sc->sc_keymax = ath_hal_keycachesize(ah); 333 if (sc->sc_keymax > ATH_KEYMAX) { 334 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 335 ATH_KEYMAX, sc->sc_keymax); 336 sc->sc_keymax = ATH_KEYMAX; 337 } 338 /* 339 * Reset the key cache since some parts do not 340 * reset the contents on initial power up. 341 */ 342 for (i = 0; i < sc->sc_keymax; i++) 343 ath_hal_keyreset(ah, i); 344 /* 345 * Mark key cache slots associated with global keys 346 * as in use. If we knew TKIP was not to be used we 347 * could leave the +32, +64, and +32+64 slots free. 348 * XXX only for splitmic. 349 */ 350 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 351 setbit(sc->sc_keymap, i); 352 setbit(sc->sc_keymap, i+32); 353 setbit(sc->sc_keymap, i+64); 354 setbit(sc->sc_keymap, i+32+64); 355 } 356 357 /* 358 * Collect the channel list using the default country 359 * code and including outdoor channels. The 802.11 layer 360 * is resposible for filtering this list based on settings 361 * like the phy mode. 362 */ 363 error = ath_getchannels(sc, ath_countrycode, 364 ath_outdoor, ath_xchanmode); 365 if (error != 0) 366 goto bad; 367 368 /* 369 * Setup rate tables for all potential media types. 370 */ 371 ath_rate_setup(sc, IEEE80211_MODE_11A); 372 ath_rate_setup(sc, IEEE80211_MODE_11B); 373 ath_rate_setup(sc, IEEE80211_MODE_11G); 374 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 376 /* NB: setup here so ath_rate_update is happy */ 377 ath_setcurmode(sc, IEEE80211_MODE_11A); 378 379 /* 380 * Allocate tx+rx descriptors and populate the lists. 381 */ 382 error = ath_desc_alloc(sc); 383 if (error != 0) { 384 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 385 goto bad; 386 } 387 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 388 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 389 #if 0 390 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 391 #endif 392 393 ATH_TXBUF_LOCK_INIT(sc); 394 395 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 396 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 397 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 398 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 399 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 400 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 401 402 /* 403 * Allocate hardware transmit queues: one queue for 404 * beacon frames and one data queue for each QoS 405 * priority. Note that the hal handles resetting 406 * these queues at the needed time. 407 * 408 * XXX PS-Poll 409 */ 410 sc->sc_bhalq = ath_beaconq_setup(ah); 411 if (sc->sc_bhalq == (u_int) -1) { 412 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 413 error = EIO; 414 goto bad2; 415 } 416 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 417 if (sc->sc_cabq == NULL) { 418 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 419 error = EIO; 420 goto bad2; 421 } 422 /* NB: insure BK queue is the lowest priority h/w queue */ 423 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 424 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 425 ieee80211_wme_acnames[WME_AC_BK]); 426 error = EIO; 427 goto bad2; 428 } 429 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 430 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 431 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 432 /* 433 * Not enough hardware tx queues to properly do WME; 434 * just punt and assign them all to the same h/w queue. 435 * We could do a better job of this if, for example, 436 * we allocate queues when we switch from station to 437 * AP mode. 438 */ 439 if (sc->sc_ac2q[WME_AC_VI] != NULL) 440 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 441 if (sc->sc_ac2q[WME_AC_BE] != NULL) 442 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 443 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 444 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 445 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 446 } 447 448 /* 449 * Special case certain configurations. Note the 450 * CAB queue is handled by these specially so don't 451 * include them when checking the txq setup mask. 452 */ 453 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 454 case 0x01: 455 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 456 break; 457 case 0x0f: 458 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 459 break; 460 default: 461 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 462 break; 463 } 464 465 /* 466 * Setup rate control. Some rate control modules 467 * call back to change the anntena state so expose 468 * the necessary entry points. 469 * XXX maybe belongs in struct ath_ratectrl? 470 */ 471 sc->sc_setdefantenna = ath_setdefantenna; 472 sc->sc_rc = ath_rate_attach(sc); 473 if (sc->sc_rc == NULL) { 474 error = EIO; 475 goto bad2; 476 } 477 478 sc->sc_blinking = 0; 479 sc->sc_ledstate = 1; 480 sc->sc_ledon = 0; /* low true */ 481 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 482 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 483 /* 484 * Auto-enable soft led processing for IBM cards and for 485 * 5211 minipci cards. Users can also manually enable/disable 486 * support with a sysctl. 487 */ 488 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 489 if (sc->sc_softled) { 490 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 491 HAL_GPIO_MUX_MAC_NETWORK_LED); 492 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 493 } 494 495 ifp->if_softc = sc; 496 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 497 ifp->if_start = ath_start; 498 ifp->if_stop = ath_stop; 499 ifp->if_watchdog = ath_watchdog; 500 ifp->if_ioctl = ath_ioctl; 501 ifp->if_init = ath_ifinit; 502 IFQ_SET_READY(&ifp->if_snd); 503 504 ic->ic_ifp = ifp; 505 ic->ic_reset = ath_reset; 506 ic->ic_newassoc = ath_newassoc; 507 ic->ic_updateslot = ath_updateslot; 508 ic->ic_wme.wme_update = ath_wme_update; 509 /* XXX not right but it's not used anywhere important */ 510 ic->ic_phytype = IEEE80211_T_OFDM; 511 ic->ic_opmode = IEEE80211_M_STA; 512 ic->ic_caps = 513 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 514 | IEEE80211_C_HOSTAP /* hostap mode */ 515 | IEEE80211_C_MONITOR /* monitor mode */ 516 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 517 | IEEE80211_C_SHSLOT /* short slot time supported */ 518 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 519 | IEEE80211_C_TXFRAG /* handle tx frags */ 520 ; 521 /* 522 * Query the hal to figure out h/w crypto support. 523 */ 524 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 525 ic->ic_caps |= IEEE80211_C_WEP; 526 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 527 ic->ic_caps |= IEEE80211_C_AES; 528 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 529 ic->ic_caps |= IEEE80211_C_AES_CCM; 530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 531 ic->ic_caps |= IEEE80211_C_CKIP; 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 533 ic->ic_caps |= IEEE80211_C_TKIP; 534 /* 535 * Check if h/w does the MIC and/or whether the 536 * separate key cache entries are required to 537 * handle both tx+rx MIC keys. 538 */ 539 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 540 ic->ic_caps |= IEEE80211_C_TKIPMIC; 541 542 /* 543 * If the h/w supports storing tx+rx MIC keys 544 * in one cache slot automatically enable use. 545 */ 546 if (ath_hal_hastkipsplit(ah) || 547 !ath_hal_settkipsplit(ah, AH_FALSE)) 548 sc->sc_splitmic = 1; 549 550 /* 551 * If the h/w can do TKIP MIC together with WME then 552 * we use it; otherwise we force the MIC to be done 553 * in software by the net80211 layer. 554 */ 555 if (ath_hal_haswmetkipmic(ah)) 556 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 557 } 558 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 559 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 560 /* 561 * Mark key cache slots associated with global keys 562 * as in use. If we knew TKIP was not to be used we 563 * could leave the +32, +64, and +32+64 slots free. 564 */ 565 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 566 setbit(sc->sc_keymap, i); 567 setbit(sc->sc_keymap, i+64); 568 if (sc->sc_splitmic) { 569 setbit(sc->sc_keymap, i+32); 570 setbit(sc->sc_keymap, i+32+64); 571 } 572 } 573 /* 574 * TPC support can be done either with a global cap or 575 * per-packet support. The latter is not available on 576 * all parts. We're a bit pedantic here as all parts 577 * support a global cap. 578 */ 579 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 580 ic->ic_caps |= IEEE80211_C_TXPMGT; 581 582 /* 583 * Mark WME capability only if we have sufficient 584 * hardware queues to do proper priority scheduling. 585 */ 586 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 587 ic->ic_caps |= IEEE80211_C_WME; 588 /* 589 * Check for misc other capabilities. 590 */ 591 if (ath_hal_hasbursting(ah)) 592 ic->ic_caps |= IEEE80211_C_BURST; 593 594 /* 595 * Indicate we need the 802.11 header padded to a 596 * 32-bit boundary for 4-address and QoS frames. 597 */ 598 ic->ic_flags |= IEEE80211_F_DATAPAD; 599 600 /* 601 * Query the hal about antenna support. 602 */ 603 sc->sc_defant = ath_hal_getdefantenna(ah); 604 605 /* 606 * Not all chips have the VEOL support we want to 607 * use with IBSS beacons; check here for it. 608 */ 609 sc->sc_hasveol = ath_hal_hasveol(ah); 610 611 /* get mac address from hardware */ 612 ath_hal_getmac(ah, ic->ic_myaddr); 613 614 if_attach(ifp); 615 /* call MI attach routine. */ 616 ieee80211_ifattach(ic); 617 /* override default methods */ 618 ic->ic_node_alloc = ath_node_alloc; 619 sc->sc_node_free = ic->ic_node_free; 620 ic->ic_node_free = ath_node_free; 621 ic->ic_node_getrssi = ath_node_getrssi; 622 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 623 ic->ic_recv_mgmt = ath_recv_mgmt; 624 sc->sc_newstate = ic->ic_newstate; 625 ic->ic_newstate = ath_newstate; 626 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 627 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 628 ic->ic_crypto.cs_key_delete = ath_key_delete; 629 ic->ic_crypto.cs_key_set = ath_key_set; 630 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 631 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 632 /* complete initialization */ 633 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 634 635 ath_bpfattach(sc); 636 637 sc->sc_flags |= ATH_ATTACHED; 638 639 /* 640 * Setup dynamic sysctl's now that country code and 641 * regdomain are available from the hal. 642 */ 643 ath_sysctlattach(sc); 644 645 ieee80211_announce(ic); 646 ath_announce(sc); 647 return 0; 648 bad2: 649 ath_tx_cleanup(sc); 650 ath_desc_free(sc); 651 bad: 652 if (ah) 653 ath_hal_detach(ah); 654 (void)config_deactivate(sc->sc_dev); 655 return error; 656 } 657 658 int 659 ath_detach(struct ath_softc *sc) 660 { 661 struct ifnet *ifp = &sc->sc_if; 662 int s; 663 664 if ((sc->sc_flags & ATH_ATTACHED) == 0) 665 return (0); 666 667 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 668 __func__, ifp->if_flags); 669 670 s = splnet(); 671 ath_stop(ifp, 1); 672 bpf_detach(ifp); 673 /* 674 * NB: the order of these is important: 675 * o call the 802.11 layer before detaching the hal to 676 * insure callbacks into the driver to delete global 677 * key cache entries can be handled 678 * o reclaim the tx queue data structures after calling 679 * the 802.11 layer as we'll get called back to reclaim 680 * node state and potentially want to use them 681 * o to cleanup the tx queues the hal is called, so detach 682 * it last 683 * Other than that, it's straightforward... 684 */ 685 ieee80211_ifdetach(&sc->sc_ic); 686 #ifdef ATH_TX99_DIAG 687 if (sc->sc_tx99 != NULL) 688 sc->sc_tx99->detach(sc->sc_tx99); 689 #endif 690 ath_rate_detach(sc->sc_rc); 691 ath_desc_free(sc); 692 ath_tx_cleanup(sc); 693 sysctl_teardown(&sc->sc_sysctllog); 694 ath_hal_detach(sc->sc_ah); 695 if_detach(ifp); 696 splx(s); 697 698 return 0; 699 } 700 701 void 702 ath_suspend(struct ath_softc *sc) 703 { 704 #if notyet 705 /* 706 * Set the chip in full sleep mode. Note that we are 707 * careful to do this only when bringing the interface 708 * completely to a stop. When the chip is in this state 709 * it must be carefully woken up or references to 710 * registers in the PCI clock domain may freeze the bus 711 * (and system). This varies by chip and is mostly an 712 * issue with newer parts that go to sleep more quickly. 713 */ 714 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 715 #endif 716 } 717 718 bool 719 ath_resume(struct ath_softc *sc) 720 { 721 struct ath_hal *ah = sc->sc_ah; 722 struct ieee80211com *ic = &sc->sc_ic; 723 HAL_STATUS status; 724 int i; 725 726 #if notyet 727 ath_hal_setpower(ah, HAL_PM_AWAKE); 728 #else 729 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, HAL_M_IBSS, &status); 730 #endif 731 732 /* 733 * Reset the key cache since some parts do not 734 * reset the contents on initial power up. 735 */ 736 for (i = 0; i < sc->sc_keymax; i++) 737 ath_hal_keyreset(ah, i); 738 739 ath_hal_resettxqueue(ah, sc->sc_bhalq); 740 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 741 if (ATH_TXQ_SETUP(sc, i)) 742 ath_hal_resettxqueue(ah, i); 743 744 if (sc->sc_softled) { 745 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 746 HAL_GPIO_MUX_MAC_NETWORK_LED); 747 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 748 } 749 return true; 750 } 751 752 /* 753 * Interrupt handler. Most of the actual processing is deferred. 754 */ 755 int 756 ath_intr(void *arg) 757 { 758 struct ath_softc *sc = arg; 759 struct ifnet *ifp = &sc->sc_if; 760 struct ath_hal *ah = sc->sc_ah; 761 HAL_INT status = 0; 762 763 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 764 /* 765 * The hardware is not ready/present, don't touch anything. 766 * Note this can happen early on if the IRQ is shared. 767 */ 768 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 769 return 0; 770 } 771 772 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 773 return 0; 774 775 if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) { 776 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 777 __func__, ifp->if_flags); 778 ath_hal_getisr(ah, &status); /* clear ISR */ 779 ath_hal_intrset(ah, 0); /* disable further intr's */ 780 return 1; /* XXX */ 781 } 782 /* 783 * Figure out the reason(s) for the interrupt. Note 784 * that the hal returns a pseudo-ISR that may include 785 * bits we haven't explicitly enabled so we mask the 786 * value to insure we only process bits we requested. 787 */ 788 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 789 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 790 status &= sc->sc_imask; /* discard unasked for bits */ 791 if (status & HAL_INT_FATAL) { 792 /* 793 * Fatal errors are unrecoverable. Typically 794 * these are caused by DMA errors. Unfortunately 795 * the exact reason is not (presently) returned 796 * by the hal. 797 */ 798 sc->sc_stats.ast_hardware++; 799 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 800 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 801 } else if (status & HAL_INT_RXORN) { 802 sc->sc_stats.ast_rxorn++; 803 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 804 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 805 } else { 806 if (status & HAL_INT_SWBA) { 807 /* 808 * Software beacon alert--time to send a beacon. 809 * Handle beacon transmission directly; deferring 810 * this is too slow to meet timing constraints 811 * under load. 812 */ 813 ath_beacon_proc(sc, 0); 814 } 815 if (status & HAL_INT_RXEOL) { 816 /* 817 * NB: the hardware should re-read the link when 818 * RXE bit is written, but it doesn't work at 819 * least on older hardware revs. 820 */ 821 sc->sc_stats.ast_rxeol++; 822 sc->sc_rxlink = NULL; 823 } 824 if (status & HAL_INT_TXURN) { 825 sc->sc_stats.ast_txurn++; 826 /* bump tx trigger level */ 827 ath_hal_updatetxtriglevel(ah, AH_TRUE); 828 } 829 if (status & HAL_INT_RX) 830 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 831 if (status & HAL_INT_TX) 832 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 833 if (status & HAL_INT_BMISS) { 834 sc->sc_stats.ast_bmiss++; 835 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 836 } 837 if (status & HAL_INT_MIB) { 838 sc->sc_stats.ast_mib++; 839 /* 840 * Disable interrupts until we service the MIB 841 * interrupt; otherwise it will continue to fire. 842 */ 843 ath_hal_intrset(ah, 0); 844 /* 845 * Let the hal handle the event. We assume it will 846 * clear whatever condition caused the interrupt. 847 */ 848 ath_hal_mibevent(ah, &sc->sc_halstats); 849 ath_hal_intrset(ah, sc->sc_imask); 850 } 851 } 852 return 1; 853 } 854 855 /* Swap transmit descriptor. 856 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 857 * function. 858 */ 859 static inline void 860 ath_desc_swap(struct ath_desc *ds) 861 { 862 #ifdef AH_NEED_DESC_SWAP 863 ds->ds_link = htole32(ds->ds_link); 864 ds->ds_data = htole32(ds->ds_data); 865 ds->ds_ctl0 = htole32(ds->ds_ctl0); 866 ds->ds_ctl1 = htole32(ds->ds_ctl1); 867 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 868 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 869 #endif 870 } 871 872 static void 873 ath_fatal_proc(void *arg, int pending) 874 { 875 struct ath_softc *sc = arg; 876 struct ifnet *ifp = &sc->sc_if; 877 #ifdef __NetBSD__ 878 int s; 879 #endif 880 881 if_printf(ifp, "hardware error; resetting\n"); 882 #ifdef __NetBSD__ 883 s = splnet(); 884 #endif 885 ath_reset(ifp); 886 #ifdef __NetBSD__ 887 splx(s); 888 #endif 889 } 890 891 static void 892 ath_rxorn_proc(void *arg, int pending) 893 { 894 struct ath_softc *sc = arg; 895 struct ifnet *ifp = &sc->sc_if; 896 #ifdef __NetBSD__ 897 int s; 898 #endif 899 900 if_printf(ifp, "rx FIFO overrun; resetting\n"); 901 #ifdef __NetBSD__ 902 s = splnet(); 903 #endif 904 ath_reset(ifp); 905 #ifdef __NetBSD__ 906 splx(s); 907 #endif 908 } 909 910 static void 911 ath_bmiss_proc(void *arg, int pending) 912 { 913 struct ath_softc *sc = arg; 914 struct ieee80211com *ic = &sc->sc_ic; 915 NET_LOCK_GIANT_FUNC_INIT(); 916 917 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 918 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA, 919 "unexpect operating mode %u", ic->ic_opmode); 920 if (ic->ic_state == IEEE80211_S_RUN) { 921 u_int64_t lastrx = sc->sc_lastrx; 922 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 923 924 DPRINTF(sc, ATH_DEBUG_BEACON, 925 "%s: tsf %" PRIu64 " lastrx %" PRId64 926 " (%" PRIu64 ") bmiss %u\n", 927 __func__, tsf, tsf - lastrx, lastrx, 928 ic->ic_bmisstimeout*1024); 929 /* 930 * Workaround phantom bmiss interrupts by sanity-checking 931 * the time of our last rx'd frame. If it is within the 932 * beacon miss interval then ignore the interrupt. If it's 933 * truly a bmiss we'll get another interrupt soon and that'll 934 * be dispatched up for processing. 935 */ 936 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 937 NET_LOCK_GIANT(); 938 ieee80211_beacon_miss(ic); 939 NET_UNLOCK_GIANT(); 940 } else 941 sc->sc_stats.ast_bmiss_phantom++; 942 } 943 } 944 945 static void 946 ath_radar_proc(void *arg, int pending) 947 { 948 #if 0 949 struct ath_softc *sc = arg; 950 struct ifnet *ifp = &sc->sc_if; 951 struct ath_hal *ah = sc->sc_ah; 952 HAL_CHANNEL hchan; 953 954 if (ath_hal_procdfs(ah, &hchan)) { 955 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 956 hchan.channel, hchan.channelFlags, hchan.privFlags); 957 /* 958 * Initiate channel change. 959 */ 960 /* XXX not yet */ 961 } 962 #endif 963 } 964 965 static u_int 966 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 967 { 968 #define N(a) (sizeof(a) / sizeof(a[0])) 969 static const u_int modeflags[] = { 970 0, /* IEEE80211_MODE_AUTO */ 971 CHANNEL_A, /* IEEE80211_MODE_11A */ 972 CHANNEL_B, /* IEEE80211_MODE_11B */ 973 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 974 0, /* IEEE80211_MODE_FH */ 975 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 976 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 977 }; 978 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 979 980 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode); 981 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode); 982 return modeflags[mode]; 983 #undef N 984 } 985 986 static int 987 ath_ifinit(struct ifnet *ifp) 988 { 989 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 990 991 return ath_init(sc); 992 } 993 994 static void 995 ath_settkipmic(struct ath_softc *sc) 996 { 997 struct ieee80211com *ic = &sc->sc_ic; 998 struct ath_hal *ah = sc->sc_ah; 999 1000 if ((ic->ic_caps & IEEE80211_C_TKIP) && 1001 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 1002 if (ic->ic_flags & IEEE80211_F_WME) { 1003 (void)ath_hal_settkipmic(ah, AH_FALSE); 1004 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 1005 } else { 1006 (void)ath_hal_settkipmic(ah, AH_TRUE); 1007 ic->ic_caps |= IEEE80211_C_TKIPMIC; 1008 } 1009 } 1010 } 1011 1012 static int 1013 ath_init(struct ath_softc *sc) 1014 { 1015 struct ifnet *ifp = &sc->sc_if; 1016 struct ieee80211com *ic = &sc->sc_ic; 1017 struct ath_hal *ah = sc->sc_ah; 1018 HAL_STATUS status; 1019 int error = 0, s; 1020 1021 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1022 __func__, ifp->if_flags); 1023 1024 if (device_is_active(sc->sc_dev)) { 1025 s = splnet(); 1026 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 1027 !device_is_active(sc->sc_dev)) 1028 return 0; 1029 else 1030 s = splnet(); 1031 1032 /* 1033 * Stop anything previously setup. This is safe 1034 * whether this is the first time through or not. 1035 */ 1036 ath_stop_locked(ifp, 0); 1037 1038 /* 1039 * The basic interface to setting the hardware in a good 1040 * state is ``reset''. On return the hardware is known to 1041 * be powered up and with interrupts disabled. This must 1042 * be followed by initialization of the appropriate bits 1043 * and then setup of the interrupt mask. 1044 */ 1045 ath_settkipmic(sc); 1046 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1047 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1048 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1049 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1050 status); 1051 error = EIO; 1052 goto done; 1053 } 1054 1055 /* 1056 * This is needed only to setup initial state 1057 * but it's best done after a reset. 1058 */ 1059 ath_update_txpow(sc); 1060 /* 1061 * Likewise this is set during reset so update 1062 * state cached in the driver. 1063 */ 1064 ath_restore_diversity(sc); 1065 sc->sc_calinterval = 1; 1066 sc->sc_caltries = 0; 1067 1068 /* 1069 * Setup the hardware after reset: the key cache 1070 * is filled as needed and the receive engine is 1071 * set going. Frame transmit is handled entirely 1072 * in the frame output path; there's nothing to do 1073 * here except setup the interrupt mask. 1074 */ 1075 if ((error = ath_startrecv(sc)) != 0) { 1076 if_printf(ifp, "unable to start recv logic\n"); 1077 goto done; 1078 } 1079 1080 /* 1081 * Enable interrupts. 1082 */ 1083 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1084 | HAL_INT_RXEOL | HAL_INT_RXORN 1085 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1086 /* 1087 * Enable MIB interrupts when there are hardware phy counters. 1088 * Note we only do this (at the moment) for station mode. 1089 */ 1090 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1091 sc->sc_imask |= HAL_INT_MIB; 1092 ath_hal_intrset(ah, sc->sc_imask); 1093 1094 ifp->if_flags |= IFF_RUNNING; 1095 ic->ic_state = IEEE80211_S_INIT; 1096 1097 /* 1098 * The hardware should be ready to go now so it's safe 1099 * to kick the 802.11 state machine as it's likely to 1100 * immediately call back to us to send mgmt frames. 1101 */ 1102 ath_chan_change(sc, ic->ic_curchan); 1103 #ifdef ATH_TX99_DIAG 1104 if (sc->sc_tx99 != NULL) 1105 sc->sc_tx99->start(sc->sc_tx99); 1106 else 1107 #endif 1108 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1109 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1110 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1111 } else 1112 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1113 done: 1114 splx(s); 1115 return error; 1116 } 1117 1118 static void 1119 ath_stop_locked(struct ifnet *ifp, int disable) 1120 { 1121 struct ath_softc *sc = ifp->if_softc; 1122 struct ieee80211com *ic = &sc->sc_ic; 1123 struct ath_hal *ah = sc->sc_ah; 1124 1125 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1126 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1127 1128 /* KASSERT() IPL_NET */ 1129 if (ifp->if_flags & IFF_RUNNING) { 1130 /* 1131 * Shutdown the hardware and driver: 1132 * reset 802.11 state machine 1133 * turn off timers 1134 * disable interrupts 1135 * turn off the radio 1136 * clear transmit machinery 1137 * clear receive machinery 1138 * drain and release tx queues 1139 * reclaim beacon resources 1140 * power down hardware 1141 * 1142 * Note that some of this work is not possible if the 1143 * hardware is gone (invalid). 1144 */ 1145 #ifdef ATH_TX99_DIAG 1146 if (sc->sc_tx99 != NULL) 1147 sc->sc_tx99->stop(sc->sc_tx99); 1148 #endif 1149 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1150 ifp->if_flags &= ~IFF_RUNNING; 1151 ifp->if_timer = 0; 1152 if (device_is_enabled(sc->sc_dev)) { 1153 if (sc->sc_softled) { 1154 callout_stop(&sc->sc_ledtimer); 1155 ath_hal_gpioset(ah, sc->sc_ledpin, 1156 !sc->sc_ledon); 1157 sc->sc_blinking = 0; 1158 } 1159 ath_hal_intrset(ah, 0); 1160 } 1161 ath_draintxq(sc); 1162 if (device_is_enabled(sc->sc_dev)) { 1163 ath_stoprecv(sc); 1164 ath_hal_phydisable(ah); 1165 } else 1166 sc->sc_rxlink = NULL; 1167 IF_PURGE(&ifp->if_snd); 1168 ath_beacon_free(sc); 1169 } 1170 if (disable) 1171 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1172 } 1173 1174 static void 1175 ath_stop(struct ifnet *ifp, int disable) 1176 { 1177 int s; 1178 1179 s = splnet(); 1180 ath_stop_locked(ifp, disable); 1181 splx(s); 1182 } 1183 1184 static void 1185 ath_restore_diversity(struct ath_softc *sc) 1186 { 1187 struct ifnet *ifp = &sc->sc_if; 1188 struct ath_hal *ah = sc->sc_ah; 1189 1190 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1191 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1192 if_printf(ifp, "could not restore diversity setting %d\n", 1193 sc->sc_diversity); 1194 sc->sc_diversity = ath_hal_getdiversity(ah); 1195 } 1196 } 1197 1198 /* 1199 * Reset the hardware w/o losing operational state. This is 1200 * basically a more efficient way of doing ath_stop, ath_init, 1201 * followed by state transitions to the current 802.11 1202 * operational state. Used to recover from various errors and 1203 * to reset or reload hardware state. 1204 */ 1205 int 1206 ath_reset(struct ifnet *ifp) 1207 { 1208 struct ath_softc *sc = ifp->if_softc; 1209 struct ieee80211com *ic = &sc->sc_ic; 1210 struct ath_hal *ah = sc->sc_ah; 1211 struct ieee80211_channel *c; 1212 HAL_STATUS status; 1213 1214 /* 1215 * Convert to a HAL channel description with the flags 1216 * constrained to reflect the current operating mode. 1217 */ 1218 c = ic->ic_curchan; 1219 sc->sc_curchan.channel = c->ic_freq; 1220 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1221 1222 ath_hal_intrset(ah, 0); /* disable interrupts */ 1223 ath_draintxq(sc); /* stop xmit side */ 1224 ath_stoprecv(sc); /* stop recv side */ 1225 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1226 /* NB: indicate channel change so we do a full reset */ 1227 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1228 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1229 __func__, status); 1230 ath_update_txpow(sc); /* update tx power state */ 1231 ath_restore_diversity(sc); 1232 sc->sc_calinterval = 1; 1233 sc->sc_caltries = 0; 1234 if (ath_startrecv(sc) != 0) /* restart recv */ 1235 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1236 /* 1237 * We may be doing a reset in response to an ioctl 1238 * that changes the channel so update any state that 1239 * might change as a result. 1240 */ 1241 ath_chan_change(sc, c); 1242 if (ic->ic_state == IEEE80211_S_RUN) 1243 ath_beacon_config(sc); /* restart beacons */ 1244 ath_hal_intrset(ah, sc->sc_imask); 1245 1246 ath_start(ifp); /* restart xmit */ 1247 return 0; 1248 } 1249 1250 /* 1251 * Cleanup driver resources when we run out of buffers 1252 * while processing fragments; return the tx buffers 1253 * allocated and drop node references. 1254 */ 1255 static void 1256 ath_txfrag_cleanup(struct ath_softc *sc, 1257 ath_bufhead *frags, struct ieee80211_node *ni) 1258 { 1259 struct ath_buf *bf; 1260 1261 ATH_TXBUF_LOCK_ASSERT(sc); 1262 1263 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1264 STAILQ_REMOVE_HEAD(frags, bf_list); 1265 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1266 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1267 ieee80211_node_decref(ni); 1268 } 1269 } 1270 1271 /* 1272 * Setup xmit of a fragmented frame. Allocate a buffer 1273 * for each frag and bump the node reference count to 1274 * reflect the held reference to be setup by ath_tx_start. 1275 */ 1276 static int 1277 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1278 struct mbuf *m0, struct ieee80211_node *ni) 1279 { 1280 struct mbuf *m; 1281 struct ath_buf *bf; 1282 1283 ATH_TXBUF_LOCK(sc); 1284 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1285 bf = STAILQ_FIRST(&sc->sc_txbuf); 1286 if (bf == NULL) { /* out of buffers, cleanup */ 1287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1288 __func__); 1289 sc->sc_if.if_flags |= IFF_OACTIVE; 1290 ath_txfrag_cleanup(sc, frags, ni); 1291 break; 1292 } 1293 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1294 ieee80211_node_incref(ni); 1295 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1296 } 1297 ATH_TXBUF_UNLOCK(sc); 1298 1299 return !STAILQ_EMPTY(frags); 1300 } 1301 1302 static void 1303 ath_start(struct ifnet *ifp) 1304 { 1305 struct ath_softc *sc = ifp->if_softc; 1306 struct ath_hal *ah = sc->sc_ah; 1307 struct ieee80211com *ic = &sc->sc_ic; 1308 struct ieee80211_node *ni; 1309 struct ath_buf *bf; 1310 struct mbuf *m, *next; 1311 struct ieee80211_frame *wh; 1312 struct ether_header *eh; 1313 ath_bufhead frags; 1314 1315 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1316 !device_is_active(sc->sc_dev)) 1317 return; 1318 1319 if (sc->sc_flags & ATH_KEY_UPDATING) 1320 return; 1321 1322 for (;;) { 1323 /* 1324 * Grab a TX buffer and associated resources. 1325 */ 1326 ATH_TXBUF_LOCK(sc); 1327 bf = STAILQ_FIRST(&sc->sc_txbuf); 1328 if (bf != NULL) 1329 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1330 ATH_TXBUF_UNLOCK(sc); 1331 if (bf == NULL) { 1332 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1333 __func__); 1334 sc->sc_stats.ast_tx_qstop++; 1335 ifp->if_flags |= IFF_OACTIVE; 1336 break; 1337 } 1338 /* 1339 * Poll the management queue for frames; they 1340 * have priority over normal data frames. 1341 */ 1342 IF_DEQUEUE(&ic->ic_mgtq, m); 1343 if (m == NULL) { 1344 /* 1345 * No data frames go out unless we're associated. 1346 */ 1347 if (ic->ic_state != IEEE80211_S_RUN) { 1348 DPRINTF(sc, ATH_DEBUG_XMIT, 1349 "%s: discard data packet, state %s\n", 1350 __func__, 1351 ieee80211_state_name[ic->ic_state]); 1352 sc->sc_stats.ast_tx_discard++; 1353 ATH_TXBUF_LOCK(sc); 1354 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1355 ATH_TXBUF_UNLOCK(sc); 1356 break; 1357 } 1358 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1359 if (m == NULL) { 1360 ATH_TXBUF_LOCK(sc); 1361 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1362 ATH_TXBUF_UNLOCK(sc); 1363 break; 1364 } 1365 STAILQ_INIT(&frags); 1366 /* 1367 * Find the node for the destination so we can do 1368 * things like power save and fast frames aggregation. 1369 */ 1370 if (m->m_len < sizeof(struct ether_header) && 1371 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1372 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1373 ni = NULL; 1374 goto bad; 1375 } 1376 eh = mtod(m, struct ether_header *); 1377 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1378 if (ni == NULL) { 1379 /* NB: ieee80211_find_txnode does stat+msg */ 1380 m_freem(m); 1381 goto bad; 1382 } 1383 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1384 (m->m_flags & M_PWR_SAV) == 0) { 1385 /* 1386 * Station in power save mode; pass the frame 1387 * to the 802.11 layer and continue. We'll get 1388 * the frame back when the time is right. 1389 */ 1390 ieee80211_pwrsave(ic, ni, m); 1391 goto reclaim; 1392 } 1393 /* calculate priority so we can find the tx queue */ 1394 if (ieee80211_classify(ic, m, ni)) { 1395 DPRINTF(sc, ATH_DEBUG_XMIT, 1396 "%s: discard, classification failure\n", 1397 __func__); 1398 m_freem(m); 1399 goto bad; 1400 } 1401 if_statinc(ifp, if_opackets); 1402 1403 bpf_mtap(ifp, m, BPF_D_OUT); 1404 /* 1405 * Encapsulate the packet in prep for transmission. 1406 */ 1407 m = ieee80211_encap(ic, m, ni); 1408 if (m == NULL) { 1409 DPRINTF(sc, ATH_DEBUG_XMIT, 1410 "%s: encapsulation failure\n", 1411 __func__); 1412 sc->sc_stats.ast_tx_encap++; 1413 goto bad; 1414 } 1415 /* 1416 * Check for fragmentation. If this has frame 1417 * has been broken up verify we have enough 1418 * buffers to send all the fragments so all 1419 * go out or none... 1420 */ 1421 if ((m->m_flags & M_FRAG) && 1422 !ath_txfrag_setup(sc, &frags, m, ni)) { 1423 DPRINTF(sc, ATH_DEBUG_ANY, 1424 "%s: out of txfrag buffers\n", __func__); 1425 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1426 ath_freetx(m); 1427 goto bad; 1428 } 1429 } else { 1430 /* 1431 * Hack! The referenced node pointer is in the 1432 * rcvif field of the packet header. This is 1433 * placed there by ieee80211_mgmt_output because 1434 * we need to hold the reference with the frame 1435 * and there's no other way (other than packet 1436 * tags which we consider too expensive to use) 1437 * to pass it along. 1438 */ 1439 ni = M_GETCTX(m, struct ieee80211_node *); 1440 M_CLEARCTX(m); 1441 1442 wh = mtod(m, struct ieee80211_frame *); 1443 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1444 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1445 /* fill time stamp */ 1446 u_int64_t tsf; 1447 u_int32_t *tstamp; 1448 1449 tsf = ath_hal_gettsf64(ah); 1450 /* XXX: adjust 100us delay to xmit */ 1451 tsf += 100; 1452 tstamp = (u_int32_t *)&wh[1]; 1453 tstamp[0] = htole32(tsf & 0xffffffff); 1454 tstamp[1] = htole32(tsf >> 32); 1455 } 1456 sc->sc_stats.ast_tx_mgmt++; 1457 } 1458 1459 nextfrag: 1460 next = m->m_nextpkt; 1461 if (ath_tx_start(sc, ni, bf, m)) { 1462 bad: 1463 if_statinc(ifp, if_oerrors); 1464 reclaim: 1465 ATH_TXBUF_LOCK(sc); 1466 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1467 ath_txfrag_cleanup(sc, &frags, ni); 1468 ATH_TXBUF_UNLOCK(sc); 1469 if (ni != NULL) 1470 ieee80211_free_node(ni); 1471 continue; 1472 } 1473 if (next != NULL) { 1474 m = next; 1475 bf = STAILQ_FIRST(&frags); 1476 KASSERTMSG(bf != NULL, "no buf for txfrag"); 1477 STAILQ_REMOVE_HEAD(&frags, bf_list); 1478 goto nextfrag; 1479 } 1480 1481 ifp->if_timer = 1; 1482 } 1483 } 1484 1485 static int 1486 ath_media_change(struct ifnet *ifp) 1487 { 1488 #define IS_UP(ifp) \ 1489 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1490 int error; 1491 1492 error = ieee80211_media_change(ifp); 1493 if (error == ENETRESET) { 1494 if (IS_UP(ifp)) 1495 ath_init(ifp->if_softc); /* XXX lose error */ 1496 error = 0; 1497 } 1498 return error; 1499 #undef IS_UP 1500 } 1501 1502 #ifdef AR_DEBUG 1503 static void 1504 ath_keyprint(const char *tag, u_int ix, 1505 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1506 { 1507 static const char *ciphers[] = { 1508 "WEP", 1509 "AES-OCB", 1510 "AES-CCM", 1511 "CKIP", 1512 "TKIP", 1513 "CLR", 1514 }; 1515 int i, n; 1516 1517 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1518 for (i = 0, n = hk->kv_len; i < n; i++) 1519 printf("%02x", hk->kv_val[i]); 1520 printf(" mac %s", ether_sprintf(mac)); 1521 if (hk->kv_type == HAL_CIPHER_TKIP) { 1522 printf(" mic "); 1523 for (i = 0; i < sizeof(hk->kv_mic); i++) 1524 printf("%02x", hk->kv_mic[i]); 1525 } 1526 printf("\n"); 1527 } 1528 #endif 1529 1530 /* 1531 * Set a TKIP key into the hardware. This handles the 1532 * potential distribution of key state to multiple key 1533 * cache slots for TKIP. 1534 */ 1535 static int 1536 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1537 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1538 { 1539 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1540 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1541 struct ath_hal *ah = sc->sc_ah; 1542 1543 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1544 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher); 1545 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1546 if (sc->sc_splitmic) { 1547 /* 1548 * TX key goes at first index, RX key at the rx index. 1549 * The hal handles the MIC keys at index+64. 1550 */ 1551 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1552 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1553 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1554 zerobssid)) 1555 return 0; 1556 1557 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1558 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1559 /* XXX delete tx key on failure? */ 1560 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1561 hk, mac); 1562 } else { 1563 /* 1564 * Room for both TX+RX MIC keys in one key cache 1565 * slot, just set key at the first index; the HAL 1566 * will handle the reset. 1567 */ 1568 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1569 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1570 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1571 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1572 } 1573 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1574 if (sc->sc_splitmic) { 1575 /* 1576 * NB: must pass MIC key in expected location when 1577 * the keycache only holds one MIC key per entry. 1578 */ 1579 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1580 } else 1581 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1582 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1583 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1584 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1585 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1586 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1587 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1588 } 1589 return 0; 1590 #undef IEEE80211_KEY_XR 1591 } 1592 1593 /* 1594 * Set a net80211 key into the hardware. This handles the 1595 * potential distribution of key state to multiple key 1596 * cache slots for TKIP with hardware MIC support. 1597 */ 1598 static int 1599 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1600 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1601 struct ieee80211_node *bss) 1602 { 1603 #define N(a) (sizeof(a)/sizeof(a[0])) 1604 static const u_int8_t ciphermap[] = { 1605 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1606 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1607 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1608 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1609 (u_int8_t) -1, /* 4 is not allocated */ 1610 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1611 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1612 }; 1613 struct ath_hal *ah = sc->sc_ah; 1614 const struct ieee80211_cipher *cip = k->wk_cipher; 1615 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1616 const u_int8_t *mac; 1617 HAL_KEYVAL hk; 1618 1619 memset(&hk, 0, sizeof(hk)); 1620 /* 1621 * Software crypto uses a "clear key" so non-crypto 1622 * state kept in the key cache are maintained and 1623 * so that rx frames have an entry to match. 1624 */ 1625 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1626 KASSERTMSG(cip->ic_cipher < N(ciphermap), 1627 "invalid cipher type %u", cip->ic_cipher); 1628 hk.kv_type = ciphermap[cip->ic_cipher]; 1629 hk.kv_len = k->wk_keylen; 1630 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1631 } else 1632 hk.kv_type = HAL_CIPHER_CLR; 1633 1634 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1635 /* 1636 * Group keys on hardware that supports multicast frame 1637 * key search use a mac that is the sender's address with 1638 * the high bit set instead of the app-specified address. 1639 */ 1640 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1641 gmac[0] |= 0x80; 1642 mac = gmac; 1643 } else 1644 mac = mac0; 1645 1646 if ((hk.kv_type == HAL_CIPHER_TKIP && 1647 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1648 return ath_keyset_tkip(sc, k, &hk, mac); 1649 } else { 1650 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1651 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1652 } 1653 #undef N 1654 } 1655 1656 /* 1657 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1658 * each key, one for decrypt/encrypt and the other for the MIC. 1659 */ 1660 static u_int16_t 1661 key_alloc_2pair(struct ath_softc *sc, 1662 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1663 { 1664 #define N(a) (sizeof(a)/sizeof(a[0])) 1665 u_int i, keyix; 1666 1667 KASSERTMSG(sc->sc_splitmic, "key cache !split"); 1668 /* XXX could optimize */ 1669 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1670 u_int8_t b = sc->sc_keymap[i]; 1671 if (b != 0xff) { 1672 /* 1673 * One or more slots in this byte are free. 1674 */ 1675 keyix = i*NBBY; 1676 while (b & 1) { 1677 again: 1678 keyix++; 1679 b >>= 1; 1680 } 1681 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1682 if (isset(sc->sc_keymap, keyix+32) || 1683 isset(sc->sc_keymap, keyix+64) || 1684 isset(sc->sc_keymap, keyix+32+64)) { 1685 /* full pair unavailable */ 1686 /* XXX statistic */ 1687 if (keyix == (i+1)*NBBY) { 1688 /* no slots were appropriate, advance */ 1689 continue; 1690 } 1691 goto again; 1692 } 1693 setbit(sc->sc_keymap, keyix); 1694 setbit(sc->sc_keymap, keyix+64); 1695 setbit(sc->sc_keymap, keyix+32); 1696 setbit(sc->sc_keymap, keyix+32+64); 1697 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1698 "%s: key pair %u,%u %u,%u\n", 1699 __func__, keyix, keyix+64, 1700 keyix+32, keyix+32+64); 1701 *txkeyix = keyix; 1702 *rxkeyix = keyix+32; 1703 return keyix; 1704 } 1705 } 1706 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1707 return IEEE80211_KEYIX_NONE; 1708 #undef N 1709 } 1710 1711 /* 1712 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1713 * each key, one for decrypt/encrypt and the other for the MIC. 1714 */ 1715 static int 1716 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1717 ieee80211_keyix *rxkeyix) 1718 { 1719 #define N(a) (sizeof(a)/sizeof(a[0])) 1720 u_int i, keyix; 1721 1722 KASSERTMSG(!sc->sc_splitmic, "key cache split"); 1723 /* XXX could optimize */ 1724 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1725 uint8_t b = sc->sc_keymap[i]; 1726 if (b != 0xff) { 1727 /* 1728 * One or more slots in this byte are free. 1729 */ 1730 keyix = i*NBBY; 1731 while (b & 1) { 1732 again: 1733 keyix++; 1734 b >>= 1; 1735 } 1736 if (isset(sc->sc_keymap, keyix+64)) { 1737 /* full pair unavailable */ 1738 /* XXX statistic */ 1739 if (keyix == (i+1)*NBBY) { 1740 /* no slots were appropriate, advance */ 1741 continue; 1742 } 1743 goto again; 1744 } 1745 setbit(sc->sc_keymap, keyix); 1746 setbit(sc->sc_keymap, keyix+64); 1747 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1748 "%s: key pair %u,%u\n", 1749 __func__, keyix, keyix+64); 1750 *txkeyix = *rxkeyix = keyix; 1751 return 1; 1752 } 1753 } 1754 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1755 return 0; 1756 #undef N 1757 } 1758 1759 /* 1760 * Allocate a single key cache slot. 1761 */ 1762 static int 1763 key_alloc_single(struct ath_softc *sc, 1764 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1765 { 1766 #define N(a) (sizeof(a)/sizeof(a[0])) 1767 u_int i, keyix; 1768 1769 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1770 for (i = 0; i < N(sc->sc_keymap); i++) { 1771 u_int8_t b = sc->sc_keymap[i]; 1772 if (b != 0xff) { 1773 /* 1774 * One or more slots are free. 1775 */ 1776 keyix = i*NBBY; 1777 while (b & 1) 1778 keyix++, b >>= 1; 1779 setbit(sc->sc_keymap, keyix); 1780 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1781 __func__, keyix); 1782 *txkeyix = *rxkeyix = keyix; 1783 return 1; 1784 } 1785 } 1786 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1787 return 0; 1788 #undef N 1789 } 1790 1791 /* 1792 * Allocate one or more key cache slots for a uniacst key. The 1793 * key itself is needed only to identify the cipher. For hardware 1794 * TKIP with split cipher+MIC keys we allocate two key cache slot 1795 * pairs so that we can setup separate TX and RX MIC keys. Note 1796 * that the MIC key for a TKIP key at slot i is assumed by the 1797 * hardware to be at slot i+64. This limits TKIP keys to the first 1798 * 64 entries. 1799 */ 1800 static int 1801 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1802 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1803 { 1804 struct ath_softc *sc = ic->ic_ifp->if_softc; 1805 1806 /* 1807 * Group key allocation must be handled specially for 1808 * parts that do not support multicast key cache search 1809 * functionality. For those parts the key id must match 1810 * the h/w key index so lookups find the right key. On 1811 * parts w/ the key search facility we install the sender's 1812 * mac address (with the high bit set) and let the hardware 1813 * find the key w/o using the key id. This is preferred as 1814 * it permits us to support multiple users for adhoc and/or 1815 * multi-station operation. 1816 */ 1817 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1818 if (!(&ic->ic_nw_keys[0] <= k && 1819 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1820 /* should not happen */ 1821 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1822 "%s: bogus group key\n", __func__); 1823 return 0; 1824 } 1825 /* 1826 * XXX we pre-allocate the global keys so 1827 * have no way to check if they've already been allocated. 1828 */ 1829 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1830 return 1; 1831 } 1832 1833 /* 1834 * We allocate two pair for TKIP when using the h/w to do 1835 * the MIC. For everything else, including software crypto, 1836 * we allocate a single entry. Note that s/w crypto requires 1837 * a pass-through slot on the 5211 and 5212. The 5210 does 1838 * not support pass-through cache entries and we map all 1839 * those requests to slot 0. 1840 */ 1841 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1842 return key_alloc_single(sc, keyix, rxkeyix); 1843 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1844 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1845 if (sc->sc_splitmic) 1846 return key_alloc_2pair(sc, keyix, rxkeyix); 1847 else 1848 return key_alloc_pair(sc, keyix, rxkeyix); 1849 } else { 1850 return key_alloc_single(sc, keyix, rxkeyix); 1851 } 1852 } 1853 1854 /* 1855 * Delete an entry in the key cache allocated by ath_key_alloc. 1856 */ 1857 static int 1858 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1859 { 1860 struct ath_softc *sc = ic->ic_ifp->if_softc; 1861 struct ath_hal *ah = sc->sc_ah; 1862 const struct ieee80211_cipher *cip = k->wk_cipher; 1863 u_int keyix = k->wk_keyix; 1864 1865 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1866 1867 if (!device_has_power(sc->sc_dev)) { 1868 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1869 k->wk_keyix); 1870 } 1871 1872 ath_hal_keyreset(ah, keyix); 1873 /* 1874 * Handle split tx/rx keying required for TKIP with h/w MIC. 1875 */ 1876 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1877 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1878 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1879 if (keyix >= IEEE80211_WEP_NKID) { 1880 /* 1881 * Don't touch keymap entries for global keys so 1882 * they are never considered for dynamic allocation. 1883 */ 1884 clrbit(sc->sc_keymap, keyix); 1885 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1886 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1887 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1888 if (sc->sc_splitmic) { 1889 /* +32 for RX key, +32+64 for RX key MIC */ 1890 clrbit(sc->sc_keymap, keyix+32); 1891 clrbit(sc->sc_keymap, keyix+32+64); 1892 } 1893 } 1894 } 1895 return 1; 1896 } 1897 1898 /* 1899 * Set the key cache contents for the specified key. Key cache 1900 * slot(s) must already have been allocated by ath_key_alloc. 1901 */ 1902 static int 1903 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1904 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1905 { 1906 struct ath_softc *sc = ic->ic_ifp->if_softc; 1907 1908 if (!device_has_power(sc->sc_dev)) { 1909 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1910 k->wk_keyix); 1911 } 1912 return ath_keyset(sc, k, mac, ic->ic_bss); 1913 } 1914 1915 /* 1916 * Block/unblock tx+rx processing while a key change is done. 1917 * We assume the caller serializes key management operations 1918 * so we only need to worry about synchronization with other 1919 * uses that originate in the driver. 1920 */ 1921 static void 1922 ath_key_update_begin(struct ieee80211com *ic) 1923 { 1924 struct ifnet *ifp = ic->ic_ifp; 1925 struct ath_softc *sc = ifp->if_softc; 1926 1927 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1928 #if 0 1929 tasklet_disable(&sc->sc_rxtq); 1930 #endif 1931 sc->sc_flags |= ATH_KEY_UPDATING; 1932 } 1933 1934 static void 1935 ath_key_update_end(struct ieee80211com *ic) 1936 { 1937 struct ifnet *ifp = ic->ic_ifp; 1938 struct ath_softc *sc = ifp->if_softc; 1939 1940 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1941 sc->sc_flags &= ~ATH_KEY_UPDATING; 1942 #if 0 1943 tasklet_enable(&sc->sc_rxtq); 1944 #endif 1945 } 1946 1947 /* 1948 * Calculate the receive filter according to the 1949 * operating mode and state: 1950 * 1951 * o always accept unicast, broadcast, and multicast traffic 1952 * o maintain current state of phy error reception (the hal 1953 * may enable phy error frames for noise immunity work) 1954 * o probe request frames are accepted only when operating in 1955 * hostap, adhoc, or monitor modes 1956 * o enable promiscuous mode according to the interface state 1957 * o accept beacons: 1958 * - when operating in adhoc mode so the 802.11 layer creates 1959 * node table entries for peers, 1960 * - when operating in station mode for collecting rssi data when 1961 * the station is otherwise quiet, or 1962 * - when scanning 1963 */ 1964 static u_int32_t 1965 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1966 { 1967 struct ieee80211com *ic = &sc->sc_ic; 1968 struct ath_hal *ah = sc->sc_ah; 1969 struct ifnet *ifp = &sc->sc_if; 1970 u_int32_t rfilt; 1971 1972 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1973 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1974 if (ic->ic_opmode != IEEE80211_M_STA) 1975 rfilt |= HAL_RX_FILTER_PROBEREQ; 1976 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1977 (ifp->if_flags & IFF_PROMISC)) 1978 rfilt |= HAL_RX_FILTER_PROM; 1979 if (ifp->if_flags & IFF_PROMISC) 1980 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1981 if (ic->ic_opmode == IEEE80211_M_STA || 1982 ic->ic_opmode == IEEE80211_M_IBSS || 1983 state == IEEE80211_S_SCAN) 1984 rfilt |= HAL_RX_FILTER_BEACON; 1985 return rfilt; 1986 } 1987 1988 static void 1989 ath_mode_init(struct ath_softc *sc) 1990 { 1991 struct ethercom *ec = &sc->sc_ec; 1992 struct ifnet *ifp = &sc->sc_if; 1993 struct ieee80211com *ic = &sc->sc_ic; 1994 struct ath_hal *ah = sc->sc_ah; 1995 struct ether_multi *enm; 1996 struct ether_multistep estep; 1997 u_int32_t rfilt, mfilt[2], val; 1998 int i; 1999 uint8_t pos; 2000 2001 /* configure rx filter */ 2002 rfilt = ath_calcrxfilter(sc, ic->ic_state); 2003 ath_hal_setrxfilter(ah, rfilt); 2004 2005 /* configure operational mode */ 2006 ath_hal_setopmode(ah); 2007 2008 /* Write keys to hardware; it may have been powered down. */ 2009 ath_key_update_begin(ic); 2010 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2011 ath_key_set(ic, 2012 &ic->ic_crypto.cs_nw_keys[i], 2013 ic->ic_myaddr); 2014 } 2015 ath_key_update_end(ic); 2016 2017 /* 2018 * Handle any link-level address change. Note that we only 2019 * need to force ic_myaddr; any other addresses are handled 2020 * as a byproduct of the ifnet code marking the interface 2021 * down then up. 2022 * 2023 * XXX should get from lladdr instead of arpcom but that's more work 2024 */ 2025 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 2026 ath_hal_setmac(ah, ic->ic_myaddr); 2027 2028 /* calculate and install multicast filter */ 2029 ifp->if_flags &= ~IFF_ALLMULTI; 2030 mfilt[0] = mfilt[1] = 0; 2031 ETHER_LOCK(ec); 2032 ETHER_FIRST_MULTI(estep, ec, enm); 2033 while (enm != NULL) { 2034 void *dl; 2035 /* XXX Punt on ranges. */ 2036 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 2037 mfilt[0] = mfilt[1] = 0xffffffff; 2038 ifp->if_flags |= IFF_ALLMULTI; 2039 break; 2040 } 2041 dl = enm->enm_addrlo; 2042 val = LE_READ_4((char *)dl + 0); 2043 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2044 val = LE_READ_4((char *)dl + 3); 2045 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2046 pos &= 0x3f; 2047 mfilt[pos / 32] |= (1 << (pos % 32)); 2048 2049 ETHER_NEXT_MULTI(estep, enm); 2050 } 2051 ETHER_UNLOCK(ec); 2052 2053 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2054 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2055 __func__, rfilt, mfilt[0], mfilt[1]); 2056 } 2057 2058 /* 2059 * Set the slot time based on the current setting. 2060 */ 2061 static void 2062 ath_setslottime(struct ath_softc *sc) 2063 { 2064 struct ieee80211com *ic = &sc->sc_ic; 2065 struct ath_hal *ah = sc->sc_ah; 2066 2067 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2068 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2069 else 2070 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2071 sc->sc_updateslot = OK; 2072 } 2073 2074 /* 2075 * Callback from the 802.11 layer to update the 2076 * slot time based on the current setting. 2077 */ 2078 static void 2079 ath_updateslot(struct ifnet *ifp) 2080 { 2081 struct ath_softc *sc = ifp->if_softc; 2082 struct ieee80211com *ic = &sc->sc_ic; 2083 2084 /* 2085 * When not coordinating the BSS, change the hardware 2086 * immediately. For other operation we defer the change 2087 * until beacon updates have propagated to the stations. 2088 */ 2089 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2090 sc->sc_updateslot = UPDATE; 2091 else 2092 ath_setslottime(sc); 2093 } 2094 2095 /* 2096 * Setup a h/w transmit queue for beacons. 2097 */ 2098 static int 2099 ath_beaconq_setup(struct ath_hal *ah) 2100 { 2101 HAL_TXQ_INFO qi; 2102 2103 memset(&qi, 0, sizeof(qi)); 2104 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2105 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2106 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2107 /* NB: for dynamic turbo, don't enable any other interrupts */ 2108 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2109 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2110 } 2111 2112 /* 2113 * Setup the transmit queue parameters for the beacon queue. 2114 */ 2115 static int 2116 ath_beaconq_config(struct ath_softc *sc) 2117 { 2118 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2119 struct ieee80211com *ic = &sc->sc_ic; 2120 struct ath_hal *ah = sc->sc_ah; 2121 HAL_TXQ_INFO qi; 2122 2123 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2124 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2125 /* 2126 * Always burst out beacon and CAB traffic. 2127 */ 2128 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2129 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2130 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2131 } else { 2132 struct wmeParams *wmep = 2133 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2134 /* 2135 * Adhoc mode; important thing is to use 2x cwmin. 2136 */ 2137 qi.tqi_aifs = wmep->wmep_aifsn; 2138 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2139 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2140 } 2141 2142 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2143 device_printf(sc->sc_dev, "unable to update parameters for " 2144 "beacon hardware queue!\n"); 2145 return 0; 2146 } else { 2147 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2148 return 1; 2149 } 2150 #undef ATH_EXPONENT_TO_VALUE 2151 } 2152 2153 /* 2154 * Allocate and setup an initial beacon frame. 2155 */ 2156 static int 2157 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2158 { 2159 struct ieee80211com *ic = ni->ni_ic; 2160 struct ath_buf *bf; 2161 struct mbuf *m; 2162 int error; 2163 2164 bf = STAILQ_FIRST(&sc->sc_bbuf); 2165 if (bf == NULL) { 2166 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2167 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2168 return ENOMEM; /* XXX */ 2169 } 2170 /* 2171 * NB: the beacon data buffer must be 32-bit aligned; 2172 * we assume the mbuf routines will return us something 2173 * with this alignment (perhaps should assert). 2174 */ 2175 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2176 if (m == NULL) { 2177 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2178 __func__); 2179 sc->sc_stats.ast_be_nombuf++; 2180 return ENOMEM; 2181 } 2182 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2183 BUS_DMA_NOWAIT); 2184 if (error == 0) { 2185 bf->bf_m = m; 2186 bf->bf_node = ieee80211_ref_node(ni); 2187 } else { 2188 m_freem(m); 2189 } 2190 return error; 2191 } 2192 2193 /* 2194 * Setup the beacon frame for transmit. 2195 */ 2196 static void 2197 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2198 { 2199 #define USE_SHPREAMBLE(_ic) \ 2200 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2201 == IEEE80211_F_SHPREAMBLE) 2202 struct ieee80211_node *ni = bf->bf_node; 2203 struct ieee80211com *ic = ni->ni_ic; 2204 struct mbuf *m = bf->bf_m; 2205 struct ath_hal *ah = sc->sc_ah; 2206 struct ath_desc *ds; 2207 int flags, antenna; 2208 const HAL_RATE_TABLE *rt; 2209 u_int8_t rix, rate; 2210 2211 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2212 __func__, m, m->m_len); 2213 2214 /* setup descriptors */ 2215 ds = bf->bf_desc; 2216 2217 flags = HAL_TXDESC_NOACK; 2218 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2219 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2220 flags |= HAL_TXDESC_VEOL; 2221 /* 2222 * Let hardware handle antenna switching unless 2223 * the user has selected a transmit antenna 2224 * (sc_txantenna is not 0). 2225 */ 2226 antenna = sc->sc_txantenna; 2227 } else { 2228 ds->ds_link = 0; 2229 /* 2230 * Switch antenna every 4 beacons, unless the user 2231 * has selected a transmit antenna (sc_txantenna 2232 * is not 0). 2233 * 2234 * XXX assumes two antenna 2235 */ 2236 if (sc->sc_txantenna == 0) 2237 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2238 else 2239 antenna = sc->sc_txantenna; 2240 } 2241 2242 KASSERTMSG(bf->bf_nseg == 1, 2243 "multi-segment beacon frame; nseg %u", bf->bf_nseg); 2244 ds->ds_data = bf->bf_segs[0].ds_addr; 2245 /* 2246 * Calculate rate code. 2247 * XXX everything at min xmit rate 2248 */ 2249 rix = sc->sc_minrateix; 2250 rt = sc->sc_currates; 2251 rate = rt->info[rix].rateCode; 2252 if (USE_SHPREAMBLE(ic)) 2253 rate |= rt->info[rix].shortPreamble; 2254 ath_hal_setuptxdesc(ah, ds 2255 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2256 , sizeof(struct ieee80211_frame)/* header length */ 2257 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2258 , ni->ni_txpower /* txpower XXX */ 2259 , rate, 1 /* series 0 rate/tries */ 2260 , HAL_TXKEYIX_INVALID /* no encryption */ 2261 , antenna /* antenna mode */ 2262 , flags /* no ack, veol for beacons */ 2263 , 0 /* rts/cts rate */ 2264 , 0 /* rts/cts duration */ 2265 ); 2266 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2267 ath_hal_filltxdesc(ah, ds 2268 , roundup(m->m_len, 4) /* buffer length */ 2269 , AH_TRUE /* first segment */ 2270 , AH_TRUE /* last segment */ 2271 , ds /* first descriptor */ 2272 ); 2273 2274 /* NB: The desc swap function becomes void, if descriptor swapping 2275 * is not enabled 2276 */ 2277 ath_desc_swap(ds); 2278 2279 #undef USE_SHPREAMBLE 2280 } 2281 2282 /* 2283 * Transmit a beacon frame at SWBA. Dynamic updates to the 2284 * frame contents are done as needed and the slot time is 2285 * also adjusted based on current state. 2286 */ 2287 static void 2288 ath_beacon_proc(void *arg, int pending) 2289 { 2290 struct ath_softc *sc = arg; 2291 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2292 struct ieee80211_node *ni = bf->bf_node; 2293 struct ieee80211com *ic = ni->ni_ic; 2294 struct ath_hal *ah = sc->sc_ah; 2295 struct mbuf *m; 2296 int ncabq, error, otherant; 2297 2298 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2299 __func__, pending); 2300 2301 if (ic->ic_opmode == IEEE80211_M_STA || 2302 ic->ic_opmode == IEEE80211_M_MONITOR || 2303 bf == NULL || bf->bf_m == NULL) { 2304 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2305 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2306 return; 2307 } 2308 /* 2309 * Check if the previous beacon has gone out. If 2310 * not don't try to post another, skip this period 2311 * and wait for the next. Missed beacons indicate 2312 * a problem and should not occur. If we miss too 2313 * many consecutive beacons reset the device. 2314 */ 2315 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2316 sc->sc_bmisscount++; 2317 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2318 "%s: missed %u consecutive beacons\n", 2319 __func__, sc->sc_bmisscount); 2320 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2321 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2322 return; 2323 } 2324 if (sc->sc_bmisscount != 0) { 2325 DPRINTF(sc, ATH_DEBUG_BEACON, 2326 "%s: resume beacon xmit after %u misses\n", 2327 __func__, sc->sc_bmisscount); 2328 sc->sc_bmisscount = 0; 2329 } 2330 2331 /* 2332 * Update dynamic beacon contents. If this returns 2333 * non-zero then we need to remap the memory because 2334 * the beacon frame changed size (probably because 2335 * of the TIM bitmap). 2336 */ 2337 m = bf->bf_m; 2338 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2339 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2340 /* XXX too conservative? */ 2341 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2342 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2343 BUS_DMA_NOWAIT); 2344 if (error != 0) { 2345 if_printf(&sc->sc_if, 2346 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2347 __func__, error); 2348 return; 2349 } 2350 } 2351 2352 /* 2353 * Handle slot time change when a non-ERP station joins/leaves 2354 * an 11g network. The 802.11 layer notifies us via callback, 2355 * we mark updateslot, then wait one beacon before effecting 2356 * the change. This gives associated stations at least one 2357 * beacon interval to note the state change. 2358 */ 2359 /* XXX locking */ 2360 if (sc->sc_updateslot == UPDATE) 2361 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2362 else if (sc->sc_updateslot == COMMIT) 2363 ath_setslottime(sc); /* commit change to h/w */ 2364 2365 /* 2366 * Check recent per-antenna transmit statistics and flip 2367 * the default antenna if noticeably more frames went out 2368 * on the non-default antenna. 2369 * XXX assumes 2 anntenae 2370 */ 2371 otherant = sc->sc_defant & 1 ? 2 : 1; 2372 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2373 ath_setdefantenna(sc, otherant); 2374 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2375 2376 /* 2377 * Construct tx descriptor. 2378 */ 2379 ath_beacon_setup(sc, bf); 2380 2381 /* 2382 * Stop any current dma and put the new frame on the queue. 2383 * This should never fail since we check above that no frames 2384 * are still pending on the queue. 2385 */ 2386 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2387 DPRINTF(sc, ATH_DEBUG_ANY, 2388 "%s: beacon queue %u did not stop?\n", 2389 __func__, sc->sc_bhalq); 2390 } 2391 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2392 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2393 2394 /* 2395 * Enable the CAB queue before the beacon queue to 2396 * insure cab frames are triggered by this beacon. 2397 */ 2398 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2399 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2400 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2401 ath_hal_txstart(ah, sc->sc_bhalq); 2402 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2403 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2404 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2405 2406 sc->sc_stats.ast_be_xmit++; 2407 } 2408 2409 /* 2410 * Reset the hardware after detecting beacons have stopped. 2411 */ 2412 static void 2413 ath_bstuck_proc(void *arg, int pending) 2414 { 2415 struct ath_softc *sc = arg; 2416 struct ifnet *ifp = &sc->sc_if; 2417 #ifdef __NetBSD__ 2418 int s; 2419 #endif 2420 2421 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2422 sc->sc_bmisscount); 2423 #ifdef __NetBSD__ 2424 s = splnet(); 2425 #endif 2426 ath_reset(ifp); 2427 #ifdef __NetBSD__ 2428 splx(s); 2429 #endif 2430 } 2431 2432 /* 2433 * Reclaim beacon resources. 2434 */ 2435 static void 2436 ath_beacon_free(struct ath_softc *sc) 2437 { 2438 struct ath_buf *bf; 2439 2440 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2441 if (bf->bf_m != NULL) { 2442 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2443 m_freem(bf->bf_m); 2444 bf->bf_m = NULL; 2445 } 2446 if (bf->bf_node != NULL) { 2447 ieee80211_free_node(bf->bf_node); 2448 bf->bf_node = NULL; 2449 } 2450 } 2451 } 2452 2453 /* 2454 * Configure the beacon and sleep timers. 2455 * 2456 * When operating as an AP this resets the TSF and sets 2457 * up the hardware to notify us when we need to issue beacons. 2458 * 2459 * When operating in station mode this sets up the beacon 2460 * timers according to the timestamp of the last received 2461 * beacon and the current TSF, configures PCF and DTIM 2462 * handling, programs the sleep registers so the hardware 2463 * will wakeup in time to receive beacons, and configures 2464 * the beacon miss handling so we'll receive a BMISS 2465 * interrupt when we stop seeing beacons from the AP 2466 * we've associated with. 2467 */ 2468 static void 2469 ath_beacon_config(struct ath_softc *sc) 2470 { 2471 #define TSF_TO_TU(_h,_l) \ 2472 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2473 #define FUDGE 2 2474 struct ath_hal *ah = sc->sc_ah; 2475 struct ieee80211com *ic = &sc->sc_ic; 2476 struct ieee80211_node *ni = ic->ic_bss; 2477 u_int32_t nexttbtt, intval, tsftu; 2478 u_int64_t tsf; 2479 2480 /* extract tstamp from last beacon and convert to TU */ 2481 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2482 LE_READ_4(ni->ni_tstamp.data)); 2483 /* NB: the beacon interval is kept internally in TU's */ 2484 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2485 if (nexttbtt == 0) /* e.g. for ap mode */ 2486 nexttbtt = intval; 2487 else if (intval) /* NB: can be 0 for monitor mode */ 2488 nexttbtt = roundup(nexttbtt, intval); 2489 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2490 __func__, nexttbtt, intval, ni->ni_intval); 2491 if (ic->ic_opmode == IEEE80211_M_STA) { 2492 HAL_BEACON_STATE bs; 2493 int dtimperiod, dtimcount; 2494 int cfpperiod, cfpcount; 2495 2496 /* 2497 * Setup dtim and cfp parameters according to 2498 * last beacon we received (which may be none). 2499 */ 2500 dtimperiod = ni->ni_dtim_period; 2501 if (dtimperiod <= 0) /* NB: 0 if not known */ 2502 dtimperiod = 1; 2503 dtimcount = ni->ni_dtim_count; 2504 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2505 dtimcount = 0; /* XXX? */ 2506 cfpperiod = 1; /* NB: no PCF support yet */ 2507 cfpcount = 0; 2508 /* 2509 * Pull nexttbtt forward to reflect the current 2510 * TSF and calculate dtim+cfp state for the result. 2511 */ 2512 tsf = ath_hal_gettsf64(ah); 2513 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2514 do { 2515 nexttbtt += intval; 2516 if (--dtimcount < 0) { 2517 dtimcount = dtimperiod - 1; 2518 if (--cfpcount < 0) 2519 cfpcount = cfpperiod - 1; 2520 } 2521 } while (nexttbtt < tsftu); 2522 memset(&bs, 0, sizeof(bs)); 2523 bs.bs_intval = intval; 2524 bs.bs_nexttbtt = nexttbtt; 2525 bs.bs_dtimperiod = dtimperiod*intval; 2526 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2527 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2528 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2529 bs.bs_cfpmaxduration = 0; 2530 #if 0 2531 /* 2532 * The 802.11 layer records the offset to the DTIM 2533 * bitmap while receiving beacons; use it here to 2534 * enable h/w detection of our AID being marked in 2535 * the bitmap vector (to indicate frames for us are 2536 * pending at the AP). 2537 * XXX do DTIM handling in s/w to WAR old h/w bugs 2538 * XXX enable based on h/w rev for newer chips 2539 */ 2540 bs.bs_timoffset = ni->ni_timoff; 2541 #endif 2542 /* 2543 * Calculate the number of consecutive beacons to miss 2544 * before taking a BMISS interrupt. The configuration 2545 * is specified in ms, so we need to convert that to 2546 * TU's and then calculate based on the beacon interval. 2547 * Note that we clamp the result to at most 10 beacons. 2548 */ 2549 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2550 if (bs.bs_bmissthreshold > 10) 2551 bs.bs_bmissthreshold = 10; 2552 else if (bs.bs_bmissthreshold <= 0) 2553 bs.bs_bmissthreshold = 1; 2554 2555 /* 2556 * Calculate sleep duration. The configuration is 2557 * given in ms. We insure a multiple of the beacon 2558 * period is used. Also, if the sleep duration is 2559 * greater than the DTIM period then it makes senses 2560 * to make it a multiple of that. 2561 * 2562 * XXX fixed at 100ms 2563 */ 2564 bs.bs_sleepduration = 2565 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2566 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2567 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2568 2569 DPRINTF(sc, ATH_DEBUG_BEACON, 2570 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2571 , __func__ 2572 , tsf, tsftu 2573 , bs.bs_intval 2574 , bs.bs_nexttbtt 2575 , bs.bs_dtimperiod 2576 , bs.bs_nextdtim 2577 , bs.bs_bmissthreshold 2578 , bs.bs_sleepduration 2579 , bs.bs_cfpperiod 2580 , bs.bs_cfpmaxduration 2581 , bs.bs_cfpnext 2582 , bs.bs_timoffset 2583 ); 2584 ath_hal_intrset(ah, 0); 2585 ath_hal_beacontimers(ah, &bs); 2586 sc->sc_imask |= HAL_INT_BMISS; 2587 ath_hal_intrset(ah, sc->sc_imask); 2588 } else { 2589 ath_hal_intrset(ah, 0); 2590 if (nexttbtt == intval) 2591 intval |= HAL_BEACON_RESET_TSF; 2592 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2593 /* 2594 * In IBSS mode enable the beacon timers but only 2595 * enable SWBA interrupts if we need to manually 2596 * prepare beacon frames. Otherwise we use a 2597 * self-linked tx descriptor and let the hardware 2598 * deal with things. 2599 */ 2600 intval |= HAL_BEACON_ENA; 2601 if (!sc->sc_hasveol) 2602 sc->sc_imask |= HAL_INT_SWBA; 2603 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2604 /* 2605 * Pull nexttbtt forward to reflect 2606 * the current TSF. 2607 */ 2608 tsf = ath_hal_gettsf64(ah); 2609 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2610 do { 2611 nexttbtt += intval; 2612 } while (nexttbtt < tsftu); 2613 } 2614 ath_beaconq_config(sc); 2615 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2616 /* 2617 * In AP mode we enable the beacon timers and 2618 * SWBA interrupts to prepare beacon frames. 2619 */ 2620 intval |= HAL_BEACON_ENA; 2621 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2622 ath_beaconq_config(sc); 2623 } 2624 ath_hal_beaconinit(ah, nexttbtt, intval); 2625 sc->sc_bmisscount = 0; 2626 ath_hal_intrset(ah, sc->sc_imask); 2627 /* 2628 * When using a self-linked beacon descriptor in 2629 * ibss mode load it once here. 2630 */ 2631 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2632 ath_beacon_proc(sc, 0); 2633 } 2634 sc->sc_syncbeacon = 0; 2635 #undef UNDEF 2636 #undef TSF_TO_TU 2637 } 2638 2639 static int 2640 ath_descdma_setup(struct ath_softc *sc, 2641 struct ath_descdma *dd, ath_bufhead *head, 2642 const char *name, int nbuf, int ndesc) 2643 { 2644 #define DS2PHYS(_dd, _ds) \ 2645 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2646 struct ifnet *ifp = &sc->sc_if; 2647 struct ath_desc *ds; 2648 struct ath_buf *bf; 2649 int i, bsize, error; 2650 2651 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2652 __func__, name, nbuf, ndesc); 2653 2654 dd->dd_name = name; 2655 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2656 2657 /* 2658 * Setup DMA descriptor area. 2659 */ 2660 dd->dd_dmat = sc->sc_dmat; 2661 2662 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2663 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2664 2665 if (error != 0) { 2666 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2667 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2668 goto fail0; 2669 } 2670 2671 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2672 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2673 if (error != 0) { 2674 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2675 nbuf * ndesc, dd->dd_name, error); 2676 goto fail1; 2677 } 2678 2679 /* allocate descriptors */ 2680 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2681 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2682 if (error != 0) { 2683 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2684 "error %u\n", dd->dd_name, error); 2685 goto fail2; 2686 } 2687 2688 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2689 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2690 if (error != 0) { 2691 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2692 dd->dd_name, error); 2693 goto fail3; 2694 } 2695 2696 ds = dd->dd_desc; 2697 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2698 DPRINTF(sc, ATH_DEBUG_RESET, 2699 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2700 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2701 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2702 2703 /* allocate rx buffers */ 2704 bsize = sizeof(struct ath_buf) * nbuf; 2705 bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO); 2706 dd->dd_bufptr = bf; 2707 2708 STAILQ_INIT(head); 2709 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2710 bf->bf_desc = ds; 2711 bf->bf_daddr = DS2PHYS(dd, ds); 2712 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2713 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2714 if (error != 0) { 2715 if_printf(ifp, "unable to create dmamap for %s " 2716 "buffer %u, error %u\n", dd->dd_name, i, error); 2717 ath_descdma_cleanup(sc, dd, head); 2718 return error; 2719 } 2720 STAILQ_INSERT_TAIL(head, bf, bf_list); 2721 } 2722 return 0; 2723 fail3: 2724 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2725 fail2: 2726 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2727 fail1: 2728 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2729 fail0: 2730 memset(dd, 0, sizeof(*dd)); 2731 return error; 2732 #undef DS2PHYS 2733 } 2734 2735 static void 2736 ath_descdma_cleanup(struct ath_softc *sc, 2737 struct ath_descdma *dd, ath_bufhead *head) 2738 { 2739 struct ath_buf *bf; 2740 struct ieee80211_node *ni; 2741 2742 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2743 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2744 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2745 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2746 2747 STAILQ_FOREACH(bf, head, bf_list) { 2748 m_freem(bf->bf_m); 2749 bf->bf_m = NULL; 2750 if (bf->bf_dmamap != NULL) { 2751 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2752 bf->bf_dmamap = NULL; 2753 } 2754 ni = bf->bf_node; 2755 bf->bf_node = NULL; 2756 if (ni != NULL) { 2757 /* 2758 * Reclaim node reference. 2759 */ 2760 ieee80211_free_node(ni); 2761 } 2762 } 2763 2764 STAILQ_INIT(head); 2765 free(dd->dd_bufptr, M_ATHDEV); 2766 memset(dd, 0, sizeof(*dd)); 2767 } 2768 2769 static int 2770 ath_desc_alloc(struct ath_softc *sc) 2771 { 2772 int error; 2773 2774 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2775 "rx", ath_rxbuf, 1); 2776 if (error != 0) 2777 return error; 2778 2779 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2780 "tx", ath_txbuf, ATH_TXDESC); 2781 if (error != 0) { 2782 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2783 return error; 2784 } 2785 2786 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2787 "beacon", 1, 1); 2788 if (error != 0) { 2789 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2790 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2791 return error; 2792 } 2793 return 0; 2794 } 2795 2796 static void 2797 ath_desc_free(struct ath_softc *sc) 2798 { 2799 2800 if (sc->sc_bdma.dd_desc_len != 0) 2801 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2802 if (sc->sc_txdma.dd_desc_len != 0) 2803 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2804 if (sc->sc_rxdma.dd_desc_len != 0) 2805 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2806 } 2807 2808 static struct ieee80211_node * 2809 ath_node_alloc(struct ieee80211_node_table *nt) 2810 { 2811 struct ieee80211com *ic = nt->nt_ic; 2812 struct ath_softc *sc = ic->ic_ifp->if_softc; 2813 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2814 struct ath_node *an; 2815 2816 an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO); 2817 if (an == NULL) { 2818 /* XXX stat+msg */ 2819 return NULL; 2820 } 2821 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2822 ath_rate_node_init(sc, an); 2823 2824 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2825 return &an->an_node; 2826 } 2827 2828 static void 2829 ath_node_free(struct ieee80211_node *ni) 2830 { 2831 struct ieee80211com *ic = ni->ni_ic; 2832 struct ath_softc *sc = ic->ic_ifp->if_softc; 2833 2834 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2835 2836 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2837 sc->sc_node_free(ni); 2838 } 2839 2840 static u_int8_t 2841 ath_node_getrssi(const struct ieee80211_node *ni) 2842 { 2843 #define HAL_EP_RND(x, mul) \ 2844 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2845 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2846 int32_t rssi; 2847 2848 /* 2849 * When only one frame is received there will be no state in 2850 * avgrssi so fallback on the value recorded by the 802.11 layer. 2851 */ 2852 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2853 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2854 else 2855 rssi = ni->ni_rssi; 2856 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2857 #undef HAL_EP_RND 2858 } 2859 2860 static int 2861 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2862 { 2863 struct ath_hal *ah = sc->sc_ah; 2864 int error; 2865 struct mbuf *m; 2866 struct ath_desc *ds; 2867 2868 m = bf->bf_m; 2869 if (m == NULL) { 2870 /* 2871 * NB: by assigning a page to the rx dma buffer we 2872 * implicitly satisfy the Atheros requirement that 2873 * this buffer be cache-line-aligned and sized to be 2874 * multiple of the cache line size. Not doing this 2875 * causes weird stuff to happen (for the 5210 at least). 2876 */ 2877 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2878 if (m == NULL) { 2879 DPRINTF(sc, ATH_DEBUG_ANY, 2880 "%s: no mbuf/cluster\n", __func__); 2881 sc->sc_stats.ast_rx_nombuf++; 2882 return ENOMEM; 2883 } 2884 bf->bf_m = m; 2885 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2886 2887 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2888 bf->bf_dmamap, m, 2889 BUS_DMA_NOWAIT); 2890 if (error != 0) { 2891 DPRINTF(sc, ATH_DEBUG_ANY, 2892 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2893 __func__, error); 2894 sc->sc_stats.ast_rx_busdma++; 2895 return error; 2896 } 2897 KASSERTMSG(bf->bf_nseg == 1, 2898 "multi-segment packet; nseg %u", bf->bf_nseg); 2899 } 2900 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2901 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2902 2903 /* 2904 * Setup descriptors. For receive we always terminate 2905 * the descriptor list with a self-linked entry so we'll 2906 * not get overrun under high load (as can happen with a 2907 * 5212 when ANI processing enables PHY error frames). 2908 * 2909 * To insure the last descriptor is self-linked we create 2910 * each descriptor as self-linked and add it to the end. As 2911 * each additional descriptor is added the previous self-linked 2912 * entry is ``fixed'' naturally. This should be safe even 2913 * if DMA is happening. When processing RX interrupts we 2914 * never remove/process the last, self-linked, entry on the 2915 * descriptor list. This insures the hardware always has 2916 * someplace to write a new frame. 2917 */ 2918 ds = bf->bf_desc; 2919 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2920 ds->ds_data = bf->bf_segs[0].ds_addr; 2921 /* ds->ds_vdata = mtod(m, void *); for radar */ 2922 ath_hal_setuprxdesc(ah, ds 2923 , m->m_len /* buffer size */ 2924 , 0 2925 ); 2926 2927 if (sc->sc_rxlink != NULL) 2928 *sc->sc_rxlink = bf->bf_daddr; 2929 sc->sc_rxlink = &ds->ds_link; 2930 return 0; 2931 } 2932 2933 /* 2934 * Extend 15-bit time stamp from rx descriptor to 2935 * a full 64-bit TSF using the specified TSF. 2936 */ 2937 static inline u_int64_t 2938 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2939 { 2940 if ((tsf & 0x7fff) < rstamp) 2941 tsf -= 0x8000; 2942 return ((tsf &~ 0x7fff) | rstamp); 2943 } 2944 2945 /* 2946 * Intercept management frames to collect beacon rssi data 2947 * and to do ibss merges. 2948 */ 2949 static void 2950 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2951 struct ieee80211_node *ni, 2952 int subtype, int rssi, u_int32_t rstamp) 2953 { 2954 struct ath_softc *sc = ic->ic_ifp->if_softc; 2955 2956 /* 2957 * Call up first so subsequent work can use information 2958 * potentially stored in the node (e.g. for ibss merge). 2959 */ 2960 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2961 switch (subtype) { 2962 case IEEE80211_FC0_SUBTYPE_BEACON: 2963 /* update rssi statistics for use by the hal */ 2964 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2965 if (sc->sc_syncbeacon && 2966 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2967 /* 2968 * Resync beacon timers using the tsf of the beacon 2969 * frame we just received. 2970 */ 2971 ath_beacon_config(sc); 2972 } 2973 /* fall thru... */ 2974 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2975 if (ic->ic_opmode == IEEE80211_M_IBSS && 2976 ic->ic_state == IEEE80211_S_RUN) { 2977 u_int64_t tsf = ath_extend_tsf(rstamp, 2978 ath_hal_gettsf64(sc->sc_ah)); 2979 2980 /* 2981 * Handle ibss merge as needed; check the tsf on the 2982 * frame before attempting the merge. The 802.11 spec 2983 * says the station should change its bssid to match 2984 * the oldest station with the same ssid, where oldest 2985 * is determined by the tsf. Note that hardware 2986 * reconfiguration happens through callback to 2987 * ath_newstate as the state machine will go from 2988 * RUN -> RUN when this happens. 2989 */ 2990 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2991 DPRINTF(sc, ATH_DEBUG_STATE, 2992 "ibss merge, rstamp %u tsf %ju " 2993 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2994 (uintmax_t)ni->ni_tstamp.tsf); 2995 (void) ieee80211_ibss_merge(ni); 2996 } 2997 } 2998 break; 2999 } 3000 } 3001 3002 /* 3003 * Set the default antenna. 3004 */ 3005 static void 3006 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3007 { 3008 struct ath_hal *ah = sc->sc_ah; 3009 3010 /* XXX block beacon interrupts */ 3011 ath_hal_setdefantenna(ah, antenna); 3012 if (sc->sc_defant != antenna) 3013 sc->sc_stats.ast_ant_defswitch++; 3014 sc->sc_defant = antenna; 3015 sc->sc_rxotherant = 0; 3016 } 3017 3018 static void 3019 ath_handle_micerror(struct ieee80211com *ic, 3020 struct ieee80211_frame *wh, int keyix) 3021 { 3022 struct ieee80211_node *ni; 3023 3024 /* XXX recheck MIC to deal w/ chips that lie */ 3025 /* XXX discard MIC errors on !data frames */ 3026 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 3027 if (ni != NULL) { 3028 ieee80211_notify_michael_failure(ic, wh, keyix); 3029 ieee80211_free_node(ni); 3030 } 3031 } 3032 3033 static void 3034 ath_rx_proc(void *arg, int npending) 3035 { 3036 #define PA2DESC(_sc, _pa) \ 3037 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 3038 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3039 struct ath_softc *sc = arg; 3040 struct ath_buf *bf; 3041 struct ieee80211com *ic = &sc->sc_ic; 3042 struct ifnet *ifp = &sc->sc_if; 3043 struct ath_hal *ah = sc->sc_ah; 3044 struct ath_desc *ds; 3045 struct mbuf *m; 3046 struct ieee80211_node *ni; 3047 struct ath_node *an; 3048 int len, ngood, type; 3049 u_int phyerr; 3050 HAL_STATUS status; 3051 int16_t nf; 3052 u_int64_t tsf; 3053 uint8_t rxerr_tap, rxerr_mon; 3054 NET_LOCK_GIANT_FUNC_INIT(); 3055 3056 NET_LOCK_GIANT(); /* XXX */ 3057 3058 rxerr_tap = 3059 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3060 3061 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3062 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3063 else if (ifp->if_flags & IFF_PROMISC) 3064 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3065 3066 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3067 ngood = 0; 3068 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3069 tsf = ath_hal_gettsf64(ah); 3070 do { 3071 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3072 if (bf == NULL) { /* NB: shouldn't happen */ 3073 if_printf(ifp, "%s: no buffer!\n", __func__); 3074 break; 3075 } 3076 ds = bf->bf_desc; 3077 if (ds->ds_link == bf->bf_daddr) { 3078 /* NB: never process the self-linked entry at the end */ 3079 break; 3080 } 3081 m = bf->bf_m; 3082 if (m == NULL) { /* NB: shouldn't happen */ 3083 if_printf(ifp, "%s: no mbuf!\n", __func__); 3084 break; 3085 } 3086 /* XXX sync descriptor memory */ 3087 /* 3088 * Must provide the virtual address of the current 3089 * descriptor, the physical address, and the virtual 3090 * address of the next descriptor in the h/w chain. 3091 * This allows the HAL to look ahead to see if the 3092 * hardware is done with a descriptor by checking the 3093 * done bit in the following descriptor and the address 3094 * of the current descriptor the DMA engine is working 3095 * on. All this is necessary because of our use of 3096 * a self-linked list to avoid rx overruns. 3097 */ 3098 status = ath_hal_rxprocdesc(ah, ds, 3099 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3100 &ds->ds_rxstat); 3101 #ifdef AR_DEBUG 3102 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3103 ath_printrxbuf(bf, status == HAL_OK); 3104 #endif 3105 if (status == HAL_EINPROGRESS) 3106 break; 3107 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3108 if (ds->ds_rxstat.rs_more) { 3109 /* 3110 * Frame spans multiple descriptors; this 3111 * cannot happen yet as we don't support 3112 * jumbograms. If not in monitor mode, 3113 * discard the frame. 3114 */ 3115 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3116 sc->sc_stats.ast_rx_toobig++; 3117 goto rx_next; 3118 } 3119 /* fall thru for monitor mode handling... */ 3120 } else if (ds->ds_rxstat.rs_status != 0) { 3121 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3122 sc->sc_stats.ast_rx_crcerr++; 3123 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3124 sc->sc_stats.ast_rx_fifoerr++; 3125 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3126 sc->sc_stats.ast_rx_phyerr++; 3127 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3128 sc->sc_stats.ast_rx_phy[phyerr]++; 3129 goto rx_next; 3130 } 3131 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3132 /* 3133 * Decrypt error. If the error occurred 3134 * because there was no hardware key, then 3135 * let the frame through so the upper layers 3136 * can process it. This is necessary for 5210 3137 * parts which have no way to setup a ``clear'' 3138 * key cache entry. 3139 * 3140 * XXX do key cache faulting 3141 */ 3142 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3143 goto rx_accept; 3144 sc->sc_stats.ast_rx_badcrypt++; 3145 } 3146 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3147 sc->sc_stats.ast_rx_badmic++; 3148 /* 3149 * Do minimal work required to hand off 3150 * the 802.11 header for notification. 3151 */ 3152 /* XXX frag's and qos frames */ 3153 len = ds->ds_rxstat.rs_datalen; 3154 if (len >= sizeof (struct ieee80211_frame)) { 3155 bus_dmamap_sync(sc->sc_dmat, 3156 bf->bf_dmamap, 3157 0, bf->bf_dmamap->dm_mapsize, 3158 BUS_DMASYNC_POSTREAD); 3159 ath_handle_micerror(ic, 3160 mtod(m, struct ieee80211_frame *), 3161 sc->sc_splitmic ? 3162 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3163 } 3164 } 3165 if_statinc(ifp, if_ierrors); 3166 /* 3167 * Reject error frames, we normally don't want 3168 * to see them in monitor mode (in monitor mode 3169 * allow through packets that have crypto problems). 3170 */ 3171 3172 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3173 goto rx_next; 3174 } 3175 rx_accept: 3176 /* 3177 * Sync and unmap the frame. At this point we're 3178 * committed to passing the mbuf somewhere so clear 3179 * bf_m; this means a new sk_buff must be allocated 3180 * when the rx descriptor is setup again to receive 3181 * another frame. 3182 */ 3183 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3184 0, bf->bf_dmamap->dm_mapsize, 3185 BUS_DMASYNC_POSTREAD); 3186 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3187 bf->bf_m = NULL; 3188 3189 m_set_rcvif(m, ifp); 3190 len = ds->ds_rxstat.rs_datalen; 3191 m->m_pkthdr.len = m->m_len = len; 3192 3193 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3194 3195 if (sc->sc_drvbpf) { 3196 u_int8_t rix; 3197 3198 /* 3199 * Discard anything shorter than an ack or cts. 3200 */ 3201 if (len < IEEE80211_ACK_LEN) { 3202 DPRINTF(sc, ATH_DEBUG_RECV, 3203 "%s: runt packet %d\n", 3204 __func__, len); 3205 sc->sc_stats.ast_rx_tooshort++; 3206 m_freem(m); 3207 goto rx_next; 3208 } 3209 rix = ds->ds_rxstat.rs_rate; 3210 sc->sc_rx_th.wr_tsf = htole64( 3211 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3212 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3213 if (ds->ds_rxstat.rs_status & 3214 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3215 sc->sc_rx_th.wr_flags |= 3216 IEEE80211_RADIOTAP_F_BADFCS; 3217 } 3218 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3219 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3220 sc->sc_rx_th.wr_antnoise = nf; 3221 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3222 3223 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3224 sc->sc_rx_th_len, m, BPF_D_IN); 3225 } 3226 3227 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3228 m_freem(m); 3229 goto rx_next; 3230 } 3231 /* 3232 * From this point on we assume the frame is at least 3233 * as large as ieee80211_frame_min; verify that. 3234 */ 3235 if (len < IEEE80211_MIN_LEN) { 3236 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3237 __func__, len); 3238 sc->sc_stats.ast_rx_tooshort++; 3239 m_freem(m); 3240 goto rx_next; 3241 } 3242 3243 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3244 ieee80211_dump_pkt(mtod(m, void *), len, 3245 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3246 ds->ds_rxstat.rs_rssi); 3247 } 3248 3249 m_adj(m, -IEEE80211_CRC_LEN); 3250 3251 /* 3252 * Locate the node for sender, track state, and then 3253 * pass the (referenced) node up to the 802.11 layer 3254 * for its use. 3255 */ 3256 ni = ieee80211_find_rxnode_withkey(ic, 3257 mtod(m, const struct ieee80211_frame_min *), 3258 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3259 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3260 /* 3261 * Track rx rssi and do any rx antenna management. 3262 */ 3263 an = ATH_NODE(ni); 3264 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3265 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3266 /* 3267 * Send frame up for processing. 3268 */ 3269 type = ieee80211_input(ic, m, ni, 3270 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3271 ieee80211_free_node(ni); 3272 if (sc->sc_diversity) { 3273 /* 3274 * When using fast diversity, change the default rx 3275 * antenna if diversity chooses the other antenna 3 3276 * times in a row. 3277 */ 3278 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3279 if (++sc->sc_rxotherant >= 3) 3280 ath_setdefantenna(sc, 3281 ds->ds_rxstat.rs_antenna); 3282 } else 3283 sc->sc_rxotherant = 0; 3284 } 3285 if (sc->sc_softled) { 3286 /* 3287 * Blink for any data frame. Otherwise do a 3288 * heartbeat-style blink when idle. The latter 3289 * is mainly for station mode where we depend on 3290 * periodic beacon frames to trigger the poll event. 3291 */ 3292 if (type == IEEE80211_FC0_TYPE_DATA) { 3293 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3294 ath_led_event(sc, ATH_LED_RX); 3295 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3296 ath_led_event(sc, ATH_LED_POLL); 3297 } 3298 /* 3299 * Arrange to update the last rx timestamp only for 3300 * frames from our ap when operating in station mode. 3301 * This assumes the rx key is always setup when associated. 3302 */ 3303 if (ic->ic_opmode == IEEE80211_M_STA && 3304 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3305 ngood++; 3306 rx_next: 3307 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3308 } while (ath_rxbuf_init(sc, bf) == 0); 3309 3310 /* rx signal state monitoring */ 3311 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3312 #if 0 3313 if (ath_hal_radar_event(ah)) 3314 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3315 #endif 3316 if (ngood) 3317 sc->sc_lastrx = tsf; 3318 3319 #ifdef __NetBSD__ 3320 /* XXX Why isn't this necessary in FreeBSD? */ 3321 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3322 ath_start(ifp); 3323 #endif /* __NetBSD__ */ 3324 3325 NET_UNLOCK_GIANT(); /* XXX */ 3326 #undef PA2DESC 3327 } 3328 3329 /* 3330 * Setup a h/w transmit queue. 3331 */ 3332 static struct ath_txq * 3333 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3334 { 3335 #define N(a) (sizeof(a)/sizeof(a[0])) 3336 struct ath_hal *ah = sc->sc_ah; 3337 HAL_TXQ_INFO qi; 3338 int qnum; 3339 3340 memset(&qi, 0, sizeof(qi)); 3341 qi.tqi_subtype = subtype; 3342 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3343 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3344 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3345 /* 3346 * Enable interrupts only for EOL and DESC conditions. 3347 * We mark tx descriptors to receive a DESC interrupt 3348 * when a tx queue gets deep; otherwise waiting for the 3349 * EOL to reap descriptors. Note that this is done to 3350 * reduce interrupt load and this only defers reaping 3351 * descriptors, never transmitting frames. Aside from 3352 * reducing interrupts this also permits more concurrency. 3353 * The only potential downside is if the tx queue backs 3354 * up in which case the top half of the kernel may backup 3355 * due to a lack of tx descriptors. 3356 */ 3357 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3358 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3359 if (qnum == -1) { 3360 /* 3361 * NB: don't print a message, this happens 3362 * normally on parts with too few tx queues 3363 */ 3364 return NULL; 3365 } 3366 if (qnum >= N(sc->sc_txq)) { 3367 device_printf(sc->sc_dev, 3368 "hal qnum %u out of range, max %zu!\n", 3369 qnum, N(sc->sc_txq)); 3370 ath_hal_releasetxqueue(ah, qnum); 3371 return NULL; 3372 } 3373 if (!ATH_TXQ_SETUP(sc, qnum)) { 3374 struct ath_txq *txq = &sc->sc_txq[qnum]; 3375 3376 txq->axq_qnum = qnum; 3377 txq->axq_depth = 0; 3378 txq->axq_intrcnt = 0; 3379 txq->axq_link = NULL; 3380 STAILQ_INIT(&txq->axq_q); 3381 ATH_TXQ_LOCK_INIT(sc, txq); 3382 sc->sc_txqsetup |= 1<<qnum; 3383 } 3384 return &sc->sc_txq[qnum]; 3385 #undef N 3386 } 3387 3388 /* 3389 * Setup a hardware data transmit queue for the specified 3390 * access control. The hal may not support all requested 3391 * queues in which case it will return a reference to a 3392 * previously setup queue. We record the mapping from ac's 3393 * to h/w queues for use by ath_tx_start and also track 3394 * the set of h/w queues being used to optimize work in the 3395 * transmit interrupt handler and related routines. 3396 */ 3397 static int 3398 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3399 { 3400 #define N(a) (sizeof(a)/sizeof(a[0])) 3401 struct ath_txq *txq; 3402 3403 if (ac >= N(sc->sc_ac2q)) { 3404 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3405 ac, N(sc->sc_ac2q)); 3406 return 0; 3407 } 3408 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3409 if (txq != NULL) { 3410 sc->sc_ac2q[ac] = txq; 3411 return 1; 3412 } else 3413 return 0; 3414 #undef N 3415 } 3416 3417 /* 3418 * Update WME parameters for a transmit queue. 3419 */ 3420 static int 3421 ath_txq_update(struct ath_softc *sc, int ac) 3422 { 3423 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3424 #define ATH_TXOP_TO_US(v) (v<<5) 3425 struct ieee80211com *ic = &sc->sc_ic; 3426 struct ath_txq *txq = sc->sc_ac2q[ac]; 3427 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3428 struct ath_hal *ah = sc->sc_ah; 3429 HAL_TXQ_INFO qi; 3430 3431 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3432 qi.tqi_aifs = wmep->wmep_aifsn; 3433 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3434 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3435 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3436 3437 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3438 device_printf(sc->sc_dev, "unable to update hardware queue " 3439 "parameters for %s traffic!\n", 3440 ieee80211_wme_acnames[ac]); 3441 return 0; 3442 } else { 3443 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3444 return 1; 3445 } 3446 #undef ATH_TXOP_TO_US 3447 #undef ATH_EXPONENT_TO_VALUE 3448 } 3449 3450 /* 3451 * Callback from the 802.11 layer to update WME parameters. 3452 */ 3453 static int 3454 ath_wme_update(struct ieee80211com *ic) 3455 { 3456 struct ath_softc *sc = ic->ic_ifp->if_softc; 3457 3458 return !ath_txq_update(sc, WME_AC_BE) || 3459 !ath_txq_update(sc, WME_AC_BK) || 3460 !ath_txq_update(sc, WME_AC_VI) || 3461 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3462 } 3463 3464 /* 3465 * Reclaim resources for a setup queue. 3466 */ 3467 static void 3468 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3469 { 3470 3471 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3472 ATH_TXQ_LOCK_DESTROY(txq); 3473 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3474 } 3475 3476 /* 3477 * Reclaim all tx queue resources. 3478 */ 3479 static void 3480 ath_tx_cleanup(struct ath_softc *sc) 3481 { 3482 int i; 3483 3484 ATH_TXBUF_LOCK_DESTROY(sc); 3485 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3486 if (ATH_TXQ_SETUP(sc, i)) 3487 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3488 } 3489 3490 /* 3491 * Defragment an mbuf chain, returning at most maxfrags separate 3492 * mbufs+clusters. If this is not possible NULL is returned and 3493 * the original mbuf chain is left in its present (potentially 3494 * modified) state. We use two techniques: collapsing consecutive 3495 * mbufs and replacing consecutive mbufs by a cluster. 3496 */ 3497 static struct mbuf * 3498 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3499 { 3500 struct mbuf *m, *n, *n2, **prev; 3501 u_int curfrags; 3502 3503 /* 3504 * Calculate the current number of frags. 3505 */ 3506 curfrags = 0; 3507 for (m = m0; m != NULL; m = m->m_next) 3508 curfrags++; 3509 /* 3510 * First, try to collapse mbufs. Note that we always collapse 3511 * towards the front so we don't need to deal with moving the 3512 * pkthdr. This may be suboptimal if the first mbuf has much 3513 * less data than the following. 3514 */ 3515 m = m0; 3516 again: 3517 for (;;) { 3518 n = m->m_next; 3519 if (n == NULL) 3520 break; 3521 if (n->m_len < M_TRAILINGSPACE(m)) { 3522 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3523 n->m_len); 3524 m->m_len += n->m_len; 3525 m->m_next = n->m_next; 3526 m_free(n); 3527 if (--curfrags <= maxfrags) 3528 return m0; 3529 } else 3530 m = n; 3531 } 3532 KASSERTMSG(maxfrags > 1, 3533 "maxfrags %u, but normal collapse failed", maxfrags); 3534 /* 3535 * Collapse consecutive mbufs to a cluster. 3536 */ 3537 prev = &m0->m_next; /* NB: not the first mbuf */ 3538 while ((n = *prev) != NULL) { 3539 if ((n2 = n->m_next) != NULL && 3540 n->m_len + n2->m_len < MCLBYTES) { 3541 m = m_getcl(how, MT_DATA, 0); 3542 if (m == NULL) 3543 goto bad; 3544 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3545 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3546 n2->m_len); 3547 m->m_len = n->m_len + n2->m_len; 3548 m->m_next = n2->m_next; 3549 *prev = m; 3550 m_free(n); 3551 m_free(n2); 3552 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3553 return m0; 3554 /* 3555 * Still not there, try the normal collapse 3556 * again before we allocate another cluster. 3557 */ 3558 goto again; 3559 } 3560 prev = &n->m_next; 3561 } 3562 /* 3563 * No place where we can collapse to a cluster; punt. 3564 * This can occur if, for example, you request 2 frags 3565 * but the packet requires that both be clusters (we 3566 * never reallocate the first mbuf to avoid moving the 3567 * packet header). 3568 */ 3569 bad: 3570 return NULL; 3571 } 3572 3573 /* 3574 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3575 */ 3576 static int 3577 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3578 { 3579 int i; 3580 3581 for (i = 0; i < rt->rateCount; i++) 3582 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3583 return i; 3584 return 0; /* NB: lowest rate */ 3585 } 3586 3587 static void 3588 ath_freetx(struct mbuf *m) 3589 { 3590 struct mbuf *next; 3591 3592 do { 3593 next = m->m_nextpkt; 3594 m->m_nextpkt = NULL; 3595 m_freem(m); 3596 } while ((m = next) != NULL); 3597 } 3598 3599 static int 3600 deduct_pad_bytes(int len, int hdrlen) 3601 { 3602 /* XXX I am suspicious that this code, which I extracted 3603 * XXX from ath_tx_start() for reuse, does the right thing. 3604 */ 3605 return len - (hdrlen & 3); 3606 } 3607 3608 static int 3609 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3610 struct mbuf *m0) 3611 { 3612 struct ieee80211com *ic = &sc->sc_ic; 3613 struct ath_hal *ah = sc->sc_ah; 3614 struct ifnet *ifp = &sc->sc_if; 3615 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3616 int i, error, iswep, ismcast, isfrag, ismrr; 3617 int keyix, hdrlen, pktlen, try0; 3618 u_int8_t rix, txrate, ctsrate; 3619 u_int8_t cix = 0xff; /* NB: silence compiler */ 3620 struct ath_desc *ds, *ds0; 3621 struct ath_txq *txq; 3622 struct ieee80211_frame *wh; 3623 u_int subtype, flags, ctsduration; 3624 HAL_PKT_TYPE atype; 3625 const HAL_RATE_TABLE *rt; 3626 HAL_BOOL shortPreamble; 3627 struct ath_node *an; 3628 struct mbuf *m; 3629 u_int pri; 3630 3631 wh = mtod(m0, struct ieee80211_frame *); 3632 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3633 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3634 isfrag = m0->m_flags & M_FRAG; 3635 hdrlen = ieee80211_anyhdrsize(wh); 3636 /* 3637 * Packet length must not include any 3638 * pad bytes; deduct them here. 3639 */ 3640 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3641 3642 if (iswep) { 3643 const struct ieee80211_cipher *cip; 3644 struct ieee80211_key *k; 3645 3646 /* 3647 * Construct the 802.11 header+trailer for an encrypted 3648 * frame. The only reason this can fail is because of an 3649 * unknown or unsupported cipher/key type. 3650 */ 3651 k = ieee80211_crypto_encap(ic, ni, m0); 3652 if (k == NULL) { 3653 /* 3654 * This can happen when the key is yanked after the 3655 * frame was queued. Just discard the frame; the 3656 * 802.11 layer counts failures and provides 3657 * debugging/diagnostics. 3658 */ 3659 ath_freetx(m0); 3660 return EIO; 3661 } 3662 /* 3663 * Adjust the packet + header lengths for the crypto 3664 * additions and calculate the h/w key index. When 3665 * a s/w mic is done the frame will have had any mic 3666 * added to it prior to entry so m0->m_pkthdr.len above will 3667 * account for it. Otherwise we need to add it to the 3668 * packet length. 3669 */ 3670 cip = k->wk_cipher; 3671 hdrlen += cip->ic_header; 3672 pktlen += cip->ic_header + cip->ic_trailer; 3673 /* NB: frags always have any TKIP MIC done in s/w */ 3674 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3675 pktlen += cip->ic_miclen; 3676 keyix = k->wk_keyix; 3677 3678 /* packet header may have moved, reset our local pointer */ 3679 wh = mtod(m0, struct ieee80211_frame *); 3680 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3681 /* 3682 * Use station key cache slot, if assigned. 3683 */ 3684 keyix = ni->ni_ucastkey.wk_keyix; 3685 if (keyix == IEEE80211_KEYIX_NONE) 3686 keyix = HAL_TXKEYIX_INVALID; 3687 } else 3688 keyix = HAL_TXKEYIX_INVALID; 3689 3690 pktlen += IEEE80211_CRC_LEN; 3691 3692 /* 3693 * Load the DMA map so any coalescing is done. This 3694 * also calculates the number of descriptors we need. 3695 */ 3696 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3697 BUS_DMA_NOWAIT); 3698 if (error == EFBIG) { 3699 /* XXX packet requires too many descriptors */ 3700 bf->bf_nseg = ATH_TXDESC+1; 3701 } else if (error != 0) { 3702 sc->sc_stats.ast_tx_busdma++; 3703 ath_freetx(m0); 3704 return error; 3705 } 3706 /* 3707 * Discard null packets and check for packets that 3708 * require too many TX descriptors. We try to convert 3709 * the latter to a cluster. 3710 */ 3711 if (error == EFBIG) { /* too many desc's, linearize */ 3712 sc->sc_stats.ast_tx_linear++; 3713 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3714 if (m == NULL) { 3715 ath_freetx(m0); 3716 sc->sc_stats.ast_tx_nombuf++; 3717 return ENOMEM; 3718 } 3719 m0 = m; 3720 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3721 BUS_DMA_NOWAIT); 3722 if (error != 0) { 3723 sc->sc_stats.ast_tx_busdma++; 3724 ath_freetx(m0); 3725 return error; 3726 } 3727 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC, 3728 "too many segments after defrag; nseg %u", bf->bf_nseg); 3729 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3730 sc->sc_stats.ast_tx_nodata++; 3731 ath_freetx(m0); 3732 return EIO; 3733 } 3734 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3735 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3736 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3737 bf->bf_m = m0; 3738 bf->bf_node = ni; /* NB: held reference */ 3739 3740 /* setup descriptors */ 3741 ds = bf->bf_desc; 3742 rt = sc->sc_currates; 3743 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode); 3744 3745 /* 3746 * NB: the 802.11 layer marks whether or not we should 3747 * use short preamble based on the current mode and 3748 * negotiated parameters. 3749 */ 3750 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3751 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3752 shortPreamble = AH_TRUE; 3753 sc->sc_stats.ast_tx_shortpre++; 3754 } else { 3755 shortPreamble = AH_FALSE; 3756 } 3757 3758 an = ATH_NODE(ni); 3759 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3760 ismrr = 0; /* default no multi-rate retry*/ 3761 /* 3762 * Calculate Atheros packet type from IEEE80211 packet header, 3763 * setup for rate calculations, and select h/w transmit queue. 3764 */ 3765 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3766 case IEEE80211_FC0_TYPE_MGT: 3767 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3768 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3769 atype = HAL_PKT_TYPE_BEACON; 3770 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3771 atype = HAL_PKT_TYPE_PROBE_RESP; 3772 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3773 atype = HAL_PKT_TYPE_ATIM; 3774 else 3775 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3776 rix = sc->sc_minrateix; 3777 txrate = rt->info[rix].rateCode; 3778 if (shortPreamble) 3779 txrate |= rt->info[rix].shortPreamble; 3780 try0 = ATH_TXMGTTRY; 3781 /* NB: force all management frames to highest queue */ 3782 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3783 /* NB: force all management frames to highest queue */ 3784 pri = WME_AC_VO; 3785 } else 3786 pri = WME_AC_BE; 3787 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3788 break; 3789 case IEEE80211_FC0_TYPE_CTL: 3790 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3791 rix = sc->sc_minrateix; 3792 txrate = rt->info[rix].rateCode; 3793 if (shortPreamble) 3794 txrate |= rt->info[rix].shortPreamble; 3795 try0 = ATH_TXMGTTRY; 3796 /* NB: force all ctl frames to highest queue */ 3797 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3798 /* NB: force all ctl frames to highest queue */ 3799 pri = WME_AC_VO; 3800 } else 3801 pri = WME_AC_BE; 3802 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3803 break; 3804 case IEEE80211_FC0_TYPE_DATA: 3805 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3806 /* 3807 * Data frames: multicast frames go out at a fixed rate, 3808 * otherwise consult the rate control module for the 3809 * rate to use. 3810 */ 3811 if (ismcast) { 3812 /* 3813 * Check mcast rate setting in case it's changed. 3814 * XXX move out of fastpath 3815 */ 3816 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3817 sc->sc_mcastrix = 3818 ath_tx_findrix(rt, ic->ic_mcast_rate); 3819 sc->sc_mcastrate = ic->ic_mcast_rate; 3820 } 3821 rix = sc->sc_mcastrix; 3822 txrate = rt->info[rix].rateCode; 3823 try0 = 1; 3824 } else { 3825 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3826 &rix, &try0, &txrate); 3827 sc->sc_txrate = txrate; /* for LED blinking */ 3828 if (try0 != ATH_TXMAXTRY) 3829 ismrr = 1; 3830 } 3831 pri = M_WME_GETAC(m0); 3832 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3833 flags |= HAL_TXDESC_NOACK; 3834 break; 3835 default: 3836 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3837 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3838 /* XXX statistic */ 3839 ath_freetx(m0); 3840 return EIO; 3841 } 3842 txq = sc->sc_ac2q[pri]; 3843 3844 /* 3845 * When servicing one or more stations in power-save mode 3846 * multicast frames must be buffered until after the beacon. 3847 * We use the CAB queue for that. 3848 */ 3849 if (ismcast && ic->ic_ps_sta) { 3850 txq = sc->sc_cabq; 3851 /* XXX? more bit in 802.11 frame header */ 3852 } 3853 3854 /* 3855 * Calculate miscellaneous flags. 3856 */ 3857 if (ismcast) { 3858 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3859 } else if (pktlen > ic->ic_rtsthreshold) { 3860 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3861 cix = rt->info[rix].controlRate; 3862 sc->sc_stats.ast_tx_rts++; 3863 } 3864 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3865 sc->sc_stats.ast_tx_noack++; 3866 3867 /* 3868 * If 802.11g protection is enabled, determine whether 3869 * to use RTS/CTS or just CTS. Note that this is only 3870 * done for OFDM unicast frames. 3871 */ 3872 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3873 rt->info[rix].phy == IEEE80211_T_OFDM && 3874 (flags & HAL_TXDESC_NOACK) == 0) { 3875 /* XXX fragments must use CCK rates w/ protection */ 3876 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3877 flags |= HAL_TXDESC_RTSENA; 3878 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3879 flags |= HAL_TXDESC_CTSENA; 3880 if (isfrag) { 3881 /* 3882 * For frags it would be desirable to use the 3883 * highest CCK rate for RTS/CTS. But stations 3884 * farther away may detect it at a lower CCK rate 3885 * so use the configured protection rate instead 3886 * (for now). 3887 */ 3888 cix = rt->info[sc->sc_protrix].controlRate; 3889 } else 3890 cix = rt->info[sc->sc_protrix].controlRate; 3891 sc->sc_stats.ast_tx_protect++; 3892 } 3893 3894 /* 3895 * Calculate duration. This logically belongs in the 802.11 3896 * layer but it lacks sufficient information to calculate it. 3897 */ 3898 if ((flags & HAL_TXDESC_NOACK) == 0 && 3899 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3900 u_int16_t dur; 3901 /* 3902 * XXX not right with fragmentation. 3903 */ 3904 if (shortPreamble) 3905 dur = rt->info[rix].spAckDuration; 3906 else 3907 dur = rt->info[rix].lpAckDuration; 3908 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3909 dur += dur; /* additional SIFS+ACK */ 3910 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment"); 3911 /* 3912 * Include the size of next fragment so NAV is 3913 * updated properly. The last fragment uses only 3914 * the ACK duration 3915 */ 3916 dur += ath_hal_computetxtime(ah, rt, 3917 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3918 hdrlen) - 3919 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3920 rix, shortPreamble); 3921 } 3922 if (isfrag) { 3923 /* 3924 * Force hardware to use computed duration for next 3925 * fragment by disabling multi-rate retry which updates 3926 * duration based on the multi-rate duration table. 3927 */ 3928 try0 = ATH_TXMAXTRY; 3929 } 3930 *(u_int16_t *)wh->i_dur = htole16(dur); 3931 } 3932 3933 /* 3934 * Calculate RTS/CTS rate and duration if needed. 3935 */ 3936 ctsduration = 0; 3937 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3938 /* 3939 * CTS transmit rate is derived from the transmit rate 3940 * by looking in the h/w rate table. We must also factor 3941 * in whether or not a short preamble is to be used. 3942 */ 3943 /* NB: cix is set above where RTS/CTS is enabled */ 3944 KASSERTMSG(cix != 0xff, "cix not setup"); 3945 ctsrate = rt->info[cix].rateCode; 3946 /* 3947 * Compute the transmit duration based on the frame 3948 * size and the size of an ACK frame. We call into the 3949 * HAL to do the computation since it depends on the 3950 * characteristics of the actual PHY being used. 3951 * 3952 * NB: CTS is assumed the same size as an ACK so we can 3953 * use the precalculated ACK durations. 3954 */ 3955 if (shortPreamble) { 3956 ctsrate |= rt->info[cix].shortPreamble; 3957 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3958 ctsduration += rt->info[cix].spAckDuration; 3959 ctsduration += ath_hal_computetxtime(ah, 3960 rt, pktlen, rix, AH_TRUE); 3961 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3962 ctsduration += rt->info[rix].spAckDuration; 3963 } else { 3964 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3965 ctsduration += rt->info[cix].lpAckDuration; 3966 ctsduration += ath_hal_computetxtime(ah, 3967 rt, pktlen, rix, AH_FALSE); 3968 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3969 ctsduration += rt->info[rix].lpAckDuration; 3970 } 3971 /* 3972 * Must disable multi-rate retry when using RTS/CTS. 3973 */ 3974 ismrr = 0; 3975 try0 = ATH_TXMGTTRY; /* XXX */ 3976 } else 3977 ctsrate = 0; 3978 3979 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3980 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3981 sc->sc_hwmap[txrate].ieeerate, -1); 3982 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT); 3983 if (sc->sc_drvbpf) { 3984 u_int64_t tsf = ath_hal_gettsf64(ah); 3985 3986 sc->sc_tx_th.wt_tsf = htole64(tsf); 3987 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3988 if (iswep) 3989 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3990 if (isfrag) 3991 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3992 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3993 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3994 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3995 3996 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0, 3997 BPF_D_OUT); 3998 } 3999 4000 /* 4001 * Determine if a tx interrupt should be generated for 4002 * this descriptor. We take a tx interrupt to reap 4003 * descriptors when the h/w hits an EOL condition or 4004 * when the descriptor is specifically marked to generate 4005 * an interrupt. We periodically mark descriptors in this 4006 * way to insure timely replenishing of the supply needed 4007 * for sending frames. Defering interrupts reduces system 4008 * load and potentially allows more concurrent work to be 4009 * done but if done to aggressively can cause senders to 4010 * backup. 4011 * 4012 * NB: use >= to deal with sc_txintrperiod changing 4013 * dynamically through sysctl. 4014 */ 4015 if (flags & HAL_TXDESC_INTREQ) { 4016 txq->axq_intrcnt = 0; 4017 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 4018 flags |= HAL_TXDESC_INTREQ; 4019 txq->axq_intrcnt = 0; 4020 } 4021 4022 /* 4023 * Formulate first tx descriptor with tx controls. 4024 */ 4025 /* XXX check return value? */ 4026 ath_hal_setuptxdesc(ah, ds 4027 , pktlen /* packet length */ 4028 , hdrlen /* header length */ 4029 , atype /* Atheros packet type */ 4030 , ni->ni_txpower /* txpower */ 4031 , txrate, try0 /* series 0 rate/tries */ 4032 , keyix /* key cache index */ 4033 , sc->sc_txantenna /* antenna mode */ 4034 , flags /* flags */ 4035 , ctsrate /* rts/cts rate */ 4036 , ctsduration /* rts/cts duration */ 4037 ); 4038 bf->bf_flags = flags; 4039 /* 4040 * Setup the multi-rate retry state only when we're 4041 * going to use it. This assumes ath_hal_setuptxdesc 4042 * initializes the descriptors (so we don't have to) 4043 * when the hardware supports multi-rate retry and 4044 * we don't use it. 4045 */ 4046 if (ismrr) 4047 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4048 4049 /* 4050 * Fillin the remainder of the descriptor info. 4051 */ 4052 ds0 = ds; 4053 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4054 ds->ds_data = bf->bf_segs[i].ds_addr; 4055 if (i == bf->bf_nseg - 1) 4056 ds->ds_link = 0; 4057 else 4058 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4059 ath_hal_filltxdesc(ah, ds 4060 , bf->bf_segs[i].ds_len /* segment length */ 4061 , i == 0 /* first segment */ 4062 , i == bf->bf_nseg - 1 /* last segment */ 4063 , ds0 /* first descriptor */ 4064 ); 4065 4066 /* NB: The desc swap function becomes void, 4067 * if descriptor swapping is not enabled 4068 */ 4069 ath_desc_swap(ds); 4070 4071 DPRINTF(sc, ATH_DEBUG_XMIT, 4072 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4073 __func__, i, ds->ds_link, ds->ds_data, 4074 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4075 } 4076 /* 4077 * Insert the frame on the outbound list and 4078 * pass it on to the hardware. 4079 */ 4080 ATH_TXQ_LOCK(txq); 4081 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4082 if (txq->axq_link == NULL) { 4083 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4084 DPRINTF(sc, ATH_DEBUG_XMIT, 4085 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4086 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4087 txq->axq_depth); 4088 } else { 4089 *txq->axq_link = HTOAH32(bf->bf_daddr); 4090 DPRINTF(sc, ATH_DEBUG_XMIT, 4091 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4092 __func__, txq->axq_qnum, txq->axq_link, 4093 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4094 } 4095 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4096 /* 4097 * The CAB queue is started from the SWBA handler since 4098 * frames only go out on DTIM and to avoid possible races. 4099 */ 4100 if (txq != sc->sc_cabq) 4101 ath_hal_txstart(ah, txq->axq_qnum); 4102 ATH_TXQ_UNLOCK(txq); 4103 4104 return 0; 4105 } 4106 4107 /* 4108 * Process completed xmit descriptors from the specified queue. 4109 */ 4110 static int 4111 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4112 { 4113 struct ath_hal *ah = sc->sc_ah; 4114 struct ieee80211com *ic = &sc->sc_ic; 4115 struct ath_buf *bf; 4116 struct ath_desc *ds, *ds0; 4117 struct ieee80211_node *ni; 4118 struct ath_node *an; 4119 int sr, lr, pri, nacked; 4120 HAL_STATUS status; 4121 4122 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4123 __func__, txq->axq_qnum, 4124 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4125 txq->axq_link); 4126 nacked = 0; 4127 for (;;) { 4128 ATH_TXQ_LOCK(txq); 4129 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4130 bf = STAILQ_FIRST(&txq->axq_q); 4131 if (bf == NULL) { 4132 txq->axq_link = NULL; 4133 ATH_TXQ_UNLOCK(txq); 4134 break; 4135 } 4136 ds0 = &bf->bf_desc[0]; 4137 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4138 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4139 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4140 ath_printtxbuf(bf, status == HAL_OK); 4141 if (status == HAL_EINPROGRESS) { 4142 ATH_TXQ_UNLOCK(txq); 4143 break; 4144 } 4145 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4146 ATH_TXQ_UNLOCK(txq); 4147 4148 ni = bf->bf_node; 4149 if (ni != NULL) { 4150 an = ATH_NODE(ni); 4151 if (ds->ds_txstat.ts_status == 0) { 4152 u_int8_t txant = ds->ds_txstat.ts_antenna; 4153 sc->sc_stats.ast_ant_tx[txant]++; 4154 sc->sc_ant_tx[txant]++; 4155 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4156 sc->sc_stats.ast_tx_altrate++; 4157 sc->sc_stats.ast_tx_rssi = 4158 ds->ds_txstat.ts_rssi; 4159 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4160 ds->ds_txstat.ts_rssi); 4161 pri = M_WME_GETAC(bf->bf_m); 4162 if (pri >= WME_AC_VO) 4163 ic->ic_wme.wme_hipri_traffic++; 4164 ni->ni_inact = ni->ni_inact_reload; 4165 } else { 4166 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4167 sc->sc_stats.ast_tx_xretries++; 4168 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4169 sc->sc_stats.ast_tx_fifoerr++; 4170 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4171 sc->sc_stats.ast_tx_filtered++; 4172 } 4173 sr = ds->ds_txstat.ts_shortretry; 4174 lr = ds->ds_txstat.ts_longretry; 4175 sc->sc_stats.ast_tx_shortretry += sr; 4176 sc->sc_stats.ast_tx_longretry += lr; 4177 /* 4178 * Hand the descriptor to the rate control algorithm. 4179 */ 4180 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4181 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4182 /* 4183 * If frame was ack'd update the last rx time 4184 * used to workaround phantom bmiss interrupts. 4185 */ 4186 if (ds->ds_txstat.ts_status == 0) 4187 nacked++; 4188 ath_rate_tx_complete(sc, an, ds, ds0); 4189 } 4190 /* 4191 * Reclaim reference to node. 4192 * 4193 * NB: the node may be reclaimed here if, for example 4194 * this is a DEAUTH message that was sent and the 4195 * node was timed out due to inactivity. 4196 */ 4197 ieee80211_free_node(ni); 4198 } 4199 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4200 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4201 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4202 m_freem(bf->bf_m); 4203 bf->bf_m = NULL; 4204 bf->bf_node = NULL; 4205 4206 ATH_TXBUF_LOCK(sc); 4207 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4208 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4209 ATH_TXBUF_UNLOCK(sc); 4210 } 4211 return nacked; 4212 } 4213 4214 static inline int 4215 txqactive(struct ath_hal *ah, int qnum) 4216 { 4217 u_int32_t txqs = 1<<qnum; 4218 ath_hal_gettxintrtxqs(ah, &txqs); 4219 return (txqs & (1<<qnum)); 4220 } 4221 4222 /* 4223 * Deferred processing of transmit interrupt; special-cased 4224 * for a single hardware transmit queue (e.g. 5210 and 5211). 4225 */ 4226 static void 4227 ath_tx_proc_q0(void *arg, int npending) 4228 { 4229 struct ath_softc *sc = arg; 4230 struct ifnet *ifp = &sc->sc_if; 4231 #ifdef __NetBSD__ 4232 int s; 4233 #endif 4234 4235 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0) 4236 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4237 4238 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4239 ath_tx_processq(sc, sc->sc_cabq); 4240 4241 if (sc->sc_softled) 4242 ath_led_event(sc, ATH_LED_TX); 4243 4244 #ifdef __NetBSD__ 4245 s = splnet(); 4246 #endif 4247 ath_start(ifp); 4248 #ifdef __NetBSD__ 4249 splx(s); 4250 #endif 4251 } 4252 4253 /* 4254 * Deferred processing of transmit interrupt; special-cased 4255 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4256 */ 4257 static void 4258 ath_tx_proc_q0123(void *arg, int npending) 4259 { 4260 struct ath_softc *sc = arg; 4261 struct ifnet *ifp = &sc->sc_if; 4262 int nacked; 4263 #ifdef __NetBSD__ 4264 int s; 4265 #endif 4266 4267 /* 4268 * Process each active queue. 4269 */ 4270 nacked = 0; 4271 if (txqactive(sc->sc_ah, 0)) 4272 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4273 if (txqactive(sc->sc_ah, 1)) 4274 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4275 if (txqactive(sc->sc_ah, 2)) 4276 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4277 if (txqactive(sc->sc_ah, 3)) 4278 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4279 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4280 ath_tx_processq(sc, sc->sc_cabq); 4281 if (nacked) { 4282 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4283 } 4284 4285 if (sc->sc_softled) 4286 ath_led_event(sc, ATH_LED_TX); 4287 4288 #ifdef __NetBSD__ 4289 s = splnet(); 4290 #endif 4291 ath_start(ifp); 4292 #ifdef __NetBSD__ 4293 splx(s); 4294 #endif 4295 } 4296 4297 /* 4298 * Deferred processing of transmit interrupt. 4299 */ 4300 static void 4301 ath_tx_proc(void *arg, int npending) 4302 { 4303 struct ath_softc *sc = arg; 4304 struct ifnet *ifp = &sc->sc_if; 4305 int i, nacked; 4306 #ifdef __NetBSD__ 4307 int s; 4308 #endif 4309 4310 /* 4311 * Process each active queue. 4312 */ 4313 nacked = 0; 4314 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4315 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4316 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4317 if (nacked) { 4318 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4319 } 4320 4321 if (sc->sc_softled) 4322 ath_led_event(sc, ATH_LED_TX); 4323 4324 #ifdef __NetBSD__ 4325 s = splnet(); 4326 #endif 4327 ath_start(ifp); 4328 #ifdef __NetBSD__ 4329 splx(s); 4330 #endif 4331 } 4332 4333 static void 4334 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4335 { 4336 struct ath_hal *ah = sc->sc_ah; 4337 struct ieee80211_node *ni; 4338 struct ath_buf *bf; 4339 struct ath_desc *ds; 4340 4341 /* 4342 * NB: this assumes output has been stopped and 4343 * we do not need to block ath_tx_tasklet 4344 */ 4345 for (;;) { 4346 ATH_TXQ_LOCK(txq); 4347 bf = STAILQ_FIRST(&txq->axq_q); 4348 if (bf == NULL) { 4349 txq->axq_link = NULL; 4350 ATH_TXQ_UNLOCK(txq); 4351 break; 4352 } 4353 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4354 ATH_TXQ_UNLOCK(txq); 4355 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4356 if (sc->sc_debug & ATH_DEBUG_RESET) 4357 ath_printtxbuf(bf, 4358 ath_hal_txprocdesc(ah, bf->bf_desc, 4359 &ds->ds_txstat) == HAL_OK); 4360 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4361 m_freem(bf->bf_m); 4362 bf->bf_m = NULL; 4363 ni = bf->bf_node; 4364 bf->bf_node = NULL; 4365 if (ni != NULL) { 4366 /* 4367 * Reclaim node reference. 4368 */ 4369 ieee80211_free_node(ni); 4370 } 4371 ATH_TXBUF_LOCK(sc); 4372 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4373 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4374 ATH_TXBUF_UNLOCK(sc); 4375 } 4376 } 4377 4378 static void 4379 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4380 { 4381 struct ath_hal *ah = sc->sc_ah; 4382 4383 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4384 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4385 __func__, txq->axq_qnum, 4386 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4387 txq->axq_link); 4388 } 4389 4390 /* 4391 * Drain the transmit queues and reclaim resources. 4392 */ 4393 static void 4394 ath_draintxq(struct ath_softc *sc) 4395 { 4396 struct ath_hal *ah = sc->sc_ah; 4397 int i; 4398 4399 /* XXX return value */ 4400 if (device_is_active(sc->sc_dev)) { 4401 /* don't touch the hardware if marked invalid */ 4402 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4403 DPRINTF(sc, ATH_DEBUG_RESET, 4404 "%s: beacon queue %p\n", __func__, 4405 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4406 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4407 if (ATH_TXQ_SETUP(sc, i)) 4408 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4409 } 4410 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4411 if (ATH_TXQ_SETUP(sc, i)) 4412 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4413 } 4414 4415 /* 4416 * Disable the receive h/w in preparation for a reset. 4417 */ 4418 static void 4419 ath_stoprecv(struct ath_softc *sc) 4420 { 4421 #define PA2DESC(_sc, _pa) \ 4422 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4423 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4424 struct ath_hal *ah = sc->sc_ah; 4425 4426 ath_hal_stoppcurecv(ah); /* disable PCU */ 4427 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4428 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4429 DELAY(3000); /* 3ms is long enough for 1 frame */ 4430 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4431 struct ath_buf *bf; 4432 4433 printf("%s: rx queue %p, link %p\n", __func__, 4434 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4435 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4436 struct ath_desc *ds = bf->bf_desc; 4437 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4438 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4439 &ds->ds_rxstat); 4440 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4441 ath_printrxbuf(bf, status == HAL_OK); 4442 } 4443 } 4444 sc->sc_rxlink = NULL; /* just in case */ 4445 #undef PA2DESC 4446 } 4447 4448 /* 4449 * Enable the receive h/w following a reset. 4450 */ 4451 static int 4452 ath_startrecv(struct ath_softc *sc) 4453 { 4454 struct ath_hal *ah = sc->sc_ah; 4455 struct ath_buf *bf; 4456 4457 sc->sc_rxlink = NULL; 4458 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4459 int error = ath_rxbuf_init(sc, bf); 4460 if (error != 0) { 4461 DPRINTF(sc, ATH_DEBUG_RECV, 4462 "%s: ath_rxbuf_init failed %d\n", 4463 __func__, error); 4464 return error; 4465 } 4466 } 4467 4468 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4469 ath_hal_putrxbuf(ah, bf->bf_daddr); 4470 ath_hal_rxena(ah); /* enable recv descriptors */ 4471 ath_mode_init(sc); /* set filters, etc. */ 4472 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4473 return 0; 4474 } 4475 4476 /* 4477 * Update internal state after a channel change. 4478 */ 4479 static void 4480 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4481 { 4482 struct ieee80211com *ic = &sc->sc_ic; 4483 enum ieee80211_phymode mode; 4484 u_int16_t flags; 4485 4486 /* 4487 * Change channels and update the h/w rate map 4488 * if we're switching; e.g. 11a to 11b/g. 4489 */ 4490 mode = ieee80211_chan2mode(ic, chan); 4491 if (mode != sc->sc_curmode) 4492 ath_setcurmode(sc, mode); 4493 /* 4494 * Update BPF state. NB: ethereal et. al. don't handle 4495 * merged flags well so pick a unique mode for their use. 4496 */ 4497 if (IEEE80211_IS_CHAN_A(chan)) 4498 flags = IEEE80211_CHAN_A; 4499 /* XXX 11g schizophrenia */ 4500 else if (IEEE80211_IS_CHAN_G(chan) || 4501 IEEE80211_IS_CHAN_PUREG(chan)) 4502 flags = IEEE80211_CHAN_G; 4503 else 4504 flags = IEEE80211_CHAN_B; 4505 if (IEEE80211_IS_CHAN_T(chan)) 4506 flags |= IEEE80211_CHAN_TURBO; 4507 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4508 htole16(chan->ic_freq); 4509 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4510 htole16(flags); 4511 } 4512 4513 #if 0 4514 /* 4515 * Poll for a channel clear indication; this is required 4516 * for channels requiring DFS and not previously visited 4517 * and/or with a recent radar detection. 4518 */ 4519 static void 4520 ath_dfswait(void *arg) 4521 { 4522 struct ath_softc *sc = arg; 4523 struct ath_hal *ah = sc->sc_ah; 4524 HAL_CHANNEL hchan; 4525 4526 ath_hal_radar_wait(ah, &hchan); 4527 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4528 if_printf(&sc->sc_if, 4529 "channel %u/0x%x/0x%x has interference\n", 4530 hchan.channel, hchan.channelFlags, hchan.privFlags); 4531 return; 4532 } 4533 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4534 /* XXX should not happen */ 4535 return; 4536 } 4537 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4538 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4539 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4540 if_printf(&sc->sc_if, 4541 "channel %u/0x%x/0x%x marked clear\n", 4542 hchan.channel, hchan.channelFlags, hchan.privFlags); 4543 } else 4544 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4545 } 4546 #endif 4547 4548 /* 4549 * Set/change channels. If the channel is really being changed, 4550 * it's done by resetting the chip. To accomplish this we must 4551 * first cleanup any pending DMA, then restart stuff after a la 4552 * ath_init. 4553 */ 4554 static int 4555 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4556 { 4557 struct ath_hal *ah = sc->sc_ah; 4558 struct ieee80211com *ic = &sc->sc_ic; 4559 HAL_CHANNEL hchan; 4560 4561 /* 4562 * Convert to a HAL channel description with 4563 * the flags constrained to reflect the current 4564 * operating mode. 4565 */ 4566 hchan.channel = chan->ic_freq; 4567 hchan.channelFlags = ath_chan2flags(ic, chan); 4568 4569 DPRINTF(sc, ATH_DEBUG_RESET, 4570 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4571 __func__, 4572 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4573 sc->sc_curchan.channelFlags), 4574 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4575 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4576 hchan.channel, hchan.channelFlags); 4577 if (hchan.channel != sc->sc_curchan.channel || 4578 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4579 HAL_STATUS status; 4580 4581 /* 4582 * To switch channels clear any pending DMA operations; 4583 * wait long enough for the RX fifo to drain, reset the 4584 * hardware at the new frequency, and then re-enable 4585 * the relevant bits of the h/w. 4586 */ 4587 ath_hal_intrset(ah, 0); /* disable interrupts */ 4588 ath_draintxq(sc); /* clear pending tx frames */ 4589 ath_stoprecv(sc); /* turn off frame recv */ 4590 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4591 if_printf(ic->ic_ifp, "%s: unable to reset " 4592 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4593 __func__, ieee80211_chan2ieee(ic, chan), 4594 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4595 return EIO; 4596 } 4597 sc->sc_curchan = hchan; 4598 ath_update_txpow(sc); /* update tx power state */ 4599 ath_restore_diversity(sc); 4600 sc->sc_calinterval = 1; 4601 sc->sc_caltries = 0; 4602 4603 /* 4604 * Re-enable rx framework. 4605 */ 4606 if (ath_startrecv(sc) != 0) { 4607 if_printf(&sc->sc_if, 4608 "%s: unable to restart recv logic\n", __func__); 4609 return EIO; 4610 } 4611 4612 /* 4613 * Change channels and update the h/w rate map 4614 * if we're switching; e.g. 11a to 11b/g. 4615 */ 4616 ic->ic_ibss_chan = chan; 4617 ath_chan_change(sc, chan); 4618 4619 #if 0 4620 /* 4621 * Handle DFS required waiting period to determine 4622 * if channel is clear of radar traffic. 4623 */ 4624 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4625 #define DFS_AND_NOT_CLEAR(_c) \ 4626 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4627 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4628 if_printf(&sc->sc_if, 4629 "wait for DFS clear channel signal\n"); 4630 /* XXX stop sndq */ 4631 sc->sc_if.if_flags |= IFF_OACTIVE; 4632 callout_reset(&sc->sc_dfs_ch, 4633 2 * hz, ath_dfswait, sc); 4634 } else 4635 callout_stop(&sc->sc_dfs_ch); 4636 #undef DFS_NOT_CLEAR 4637 } 4638 #endif 4639 4640 /* 4641 * Re-enable interrupts. 4642 */ 4643 ath_hal_intrset(ah, sc->sc_imask); 4644 } 4645 return 0; 4646 } 4647 4648 static void 4649 ath_next_scan(void *arg) 4650 { 4651 struct ath_softc *sc = arg; 4652 struct ieee80211com *ic = &sc->sc_ic; 4653 int s; 4654 4655 /* don't call ath_start w/o network interrupts blocked */ 4656 s = splnet(); 4657 4658 if (ic->ic_state == IEEE80211_S_SCAN) 4659 ieee80211_next_scan(ic); 4660 splx(s); 4661 } 4662 4663 /* 4664 * Periodically recalibrate the PHY to account 4665 * for temperature/environment changes. 4666 */ 4667 static void 4668 ath_calibrate(void *arg) 4669 { 4670 struct ath_softc *sc = arg; 4671 struct ath_hal *ah = sc->sc_ah; 4672 HAL_BOOL iqCalDone; 4673 int s; 4674 4675 sc->sc_stats.ast_per_cal++; 4676 4677 s = splnet(); 4678 4679 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4680 /* 4681 * Rfgain is out of bounds, reset the chip 4682 * to load new gain values. 4683 */ 4684 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4685 "%s: rfgain change\n", __func__); 4686 sc->sc_stats.ast_per_rfgain++; 4687 ath_reset(&sc->sc_if); 4688 } 4689 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4690 DPRINTF(sc, ATH_DEBUG_ANY, 4691 "%s: calibration of channel %u failed\n", 4692 __func__, sc->sc_curchan.channel); 4693 sc->sc_stats.ast_per_calfail++; 4694 } 4695 /* 4696 * Calibrate noise floor data again in case of change. 4697 */ 4698 ath_hal_process_noisefloor(ah); 4699 /* 4700 * Poll more frequently when the IQ calibration is in 4701 * progress to speedup loading the final settings. 4702 * We temper this aggressive polling with an exponential 4703 * back off after 4 tries up to ath_calinterval. 4704 */ 4705 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4706 sc->sc_caltries = 0; 4707 sc->sc_calinterval = ath_calinterval; 4708 } else if (sc->sc_caltries > 4) { 4709 sc->sc_caltries = 0; 4710 sc->sc_calinterval <<= 1; 4711 if (sc->sc_calinterval > ath_calinterval) 4712 sc->sc_calinterval = ath_calinterval; 4713 } 4714 KASSERTMSG(0 < sc->sc_calinterval && 4715 sc->sc_calinterval <= ath_calinterval, 4716 "bad calibration interval %u", sc->sc_calinterval); 4717 4718 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4719 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4720 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4721 sc->sc_caltries++; 4722 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4723 ath_calibrate, sc); 4724 splx(s); 4725 } 4726 4727 static int 4728 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4729 { 4730 struct ifnet *ifp = ic->ic_ifp; 4731 struct ath_softc *sc = ifp->if_softc; 4732 struct ath_hal *ah = sc->sc_ah; 4733 struct ieee80211_node *ni; 4734 int i, error; 4735 const u_int8_t *bssid; 4736 u_int32_t rfilt; 4737 static const HAL_LED_STATE leds[] = { 4738 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4739 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4740 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4741 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4742 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4743 }; 4744 4745 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4746 ieee80211_state_name[ic->ic_state], 4747 ieee80211_state_name[nstate]); 4748 4749 callout_stop(&sc->sc_scan_ch); 4750 callout_stop(&sc->sc_cal_ch); 4751 #if 0 4752 callout_stop(&sc->sc_dfs_ch); 4753 #endif 4754 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4755 4756 if (nstate == IEEE80211_S_INIT) { 4757 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4758 /* 4759 * NB: disable interrupts so we don't rx frames. 4760 */ 4761 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4762 /* 4763 * Notify the rate control algorithm. 4764 */ 4765 ath_rate_newstate(sc, nstate); 4766 goto done; 4767 } 4768 ni = ic->ic_bss; 4769 error = ath_chan_set(sc, ic->ic_curchan); 4770 if (error != 0) 4771 goto bad; 4772 rfilt = ath_calcrxfilter(sc, nstate); 4773 if (nstate == IEEE80211_S_SCAN) 4774 bssid = ifp->if_broadcastaddr; 4775 else 4776 bssid = ni->ni_bssid; 4777 ath_hal_setrxfilter(ah, rfilt); 4778 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4779 __func__, rfilt, ether_sprintf(bssid)); 4780 4781 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4782 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4783 else 4784 ath_hal_setassocid(ah, bssid, 0); 4785 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4786 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4787 if (ath_hal_keyisvalid(ah, i)) 4788 ath_hal_keysetmac(ah, i, bssid); 4789 } 4790 4791 /* 4792 * Notify the rate control algorithm so rates 4793 * are setup should ath_beacon_alloc be called. 4794 */ 4795 ath_rate_newstate(sc, nstate); 4796 4797 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4798 /* nothing to do */; 4799 } else if (nstate == IEEE80211_S_RUN) { 4800 DPRINTF(sc, ATH_DEBUG_STATE, 4801 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4802 "capinfo=0x%04x chan=%d\n" 4803 , __func__ 4804 , ic->ic_flags 4805 , ni->ni_intval 4806 , ether_sprintf(ni->ni_bssid) 4807 , ni->ni_capinfo 4808 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4809 4810 switch (ic->ic_opmode) { 4811 case IEEE80211_M_HOSTAP: 4812 case IEEE80211_M_IBSS: 4813 /* 4814 * Allocate and setup the beacon frame. 4815 * 4816 * Stop any previous beacon DMA. This may be 4817 * necessary, for example, when an ibss merge 4818 * causes reconfiguration; there will be a state 4819 * transition from RUN->RUN that means we may 4820 * be called with beacon transmission active. 4821 */ 4822 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4823 ath_beacon_free(sc); 4824 error = ath_beacon_alloc(sc, ni); 4825 if (error != 0) 4826 goto bad; 4827 /* 4828 * If joining an adhoc network defer beacon timer 4829 * configuration to the next beacon frame so we 4830 * have a current TSF to use. Otherwise we're 4831 * starting an ibss/bss so there's no need to delay. 4832 */ 4833 if (ic->ic_opmode == IEEE80211_M_IBSS && 4834 ic->ic_bss->ni_tstamp.tsf != 0) 4835 sc->sc_syncbeacon = 1; 4836 else 4837 ath_beacon_config(sc); 4838 break; 4839 case IEEE80211_M_STA: 4840 /* 4841 * Allocate a key cache slot to the station. 4842 */ 4843 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4844 sc->sc_hasclrkey && 4845 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4846 ath_setup_stationkey(ni); 4847 /* 4848 * Defer beacon timer configuration to the next 4849 * beacon frame so we have a current TSF to use 4850 * (any TSF collected when scanning is likely old). 4851 */ 4852 sc->sc_syncbeacon = 1; 4853 break; 4854 default: 4855 break; 4856 } 4857 /* 4858 * Let the hal process statistics collected during a 4859 * scan so it can provide calibrated noise floor data. 4860 */ 4861 ath_hal_process_noisefloor(ah); 4862 /* 4863 * Reset rssi stats; maybe not the best place... 4864 */ 4865 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4866 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4867 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4868 } else { 4869 ath_hal_intrset(ah, 4870 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4871 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4872 } 4873 done: 4874 /* 4875 * Invoke the parent method to complete the work. 4876 */ 4877 error = sc->sc_newstate(ic, nstate, arg); 4878 /* 4879 * Finally, start any timers. 4880 */ 4881 if (nstate == IEEE80211_S_RUN) { 4882 /* start periodic recalibration timer */ 4883 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4884 ath_calibrate, sc); 4885 } else if (nstate == IEEE80211_S_SCAN) { 4886 /* start ap/neighbor scan timer */ 4887 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4888 ath_next_scan, sc); 4889 } 4890 bad: 4891 return error; 4892 } 4893 4894 /* 4895 * Allocate a key cache slot to the station so we can 4896 * setup a mapping from key index to node. The key cache 4897 * slot is needed for managing antenna state and for 4898 * compression when stations do not use crypto. We do 4899 * it uniliaterally here; if crypto is employed this slot 4900 * will be reassigned. 4901 */ 4902 static void 4903 ath_setup_stationkey(struct ieee80211_node *ni) 4904 { 4905 struct ieee80211com *ic = ni->ni_ic; 4906 struct ath_softc *sc = ic->ic_ifp->if_softc; 4907 ieee80211_keyix keyix, rxkeyix; 4908 4909 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4910 /* 4911 * Key cache is full; we'll fall back to doing 4912 * the more expensive lookup in software. Note 4913 * this also means no h/w compression. 4914 */ 4915 /* XXX msg+statistic */ 4916 } else { 4917 /* XXX locking? */ 4918 ni->ni_ucastkey.wk_keyix = keyix; 4919 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4920 /* NB: this will create a pass-thru key entry */ 4921 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4922 } 4923 } 4924 4925 /* 4926 * Setup driver-specific state for a newly associated node. 4927 * Note that we're called also on a re-associate, the isnew 4928 * param tells us if this is the first time or not. 4929 */ 4930 static void 4931 ath_newassoc(struct ieee80211_node *ni, int isnew) 4932 { 4933 struct ieee80211com *ic = ni->ni_ic; 4934 struct ath_softc *sc = ic->ic_ifp->if_softc; 4935 4936 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4937 if (isnew && 4938 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4939 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4940 "new assoc with a unicast key already setup (keyix %u)", 4941 ni->ni_ucastkey.wk_keyix); 4942 ath_setup_stationkey(ni); 4943 } 4944 } 4945 4946 static int 4947 ath_getchannels(struct ath_softc *sc, u_int cc, 4948 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4949 { 4950 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4951 struct ieee80211com *ic = &sc->sc_ic; 4952 struct ifnet *ifp = &sc->sc_if; 4953 struct ath_hal *ah = sc->sc_ah; 4954 HAL_CHANNEL *chans; 4955 int i, ix, nchan; 4956 4957 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4958 M_TEMP, M_WAITOK); 4959 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4960 NULL, 0, NULL, 4961 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4962 u_int32_t rd; 4963 4964 (void)ath_hal_getregdomain(ah, &rd); 4965 if_printf(ifp, "unable to collect channel list from hal; " 4966 "regdomain likely %u country code %u\n", rd, cc); 4967 free(chans, M_TEMP); 4968 return EINVAL; 4969 } 4970 4971 /* 4972 * Convert HAL channels to ieee80211 ones and insert 4973 * them in the table according to their channel number. 4974 */ 4975 for (i = 0; i < nchan; i++) { 4976 HAL_CHANNEL *c = &chans[i]; 4977 u_int16_t flags; 4978 4979 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4980 if (ix > IEEE80211_CHAN_MAX) { 4981 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4982 ix, c->channel, c->channelFlags); 4983 continue; 4984 } 4985 if (ix < 0) { 4986 /* XXX can't handle stuff <2400 right now */ 4987 if (bootverbose) 4988 if_printf(ifp, "hal channel %d (%u/%x) " 4989 "cannot be handled; ignored\n", 4990 ix, c->channel, c->channelFlags); 4991 continue; 4992 } 4993 /* 4994 * Calculate net80211 flags; most are compatible 4995 * but some need massaging. Note the static turbo 4996 * conversion can be removed once net80211 is updated 4997 * to understand static vs. dynamic turbo. 4998 */ 4999 flags = c->channelFlags & COMPAT; 5000 if (c->channelFlags & CHANNEL_STURBO) 5001 flags |= IEEE80211_CHAN_TURBO; 5002 if (ic->ic_channels[ix].ic_freq == 0) { 5003 ic->ic_channels[ix].ic_freq = c->channel; 5004 ic->ic_channels[ix].ic_flags = flags; 5005 } else { 5006 /* channels overlap; e.g. 11g and 11b */ 5007 ic->ic_channels[ix].ic_flags |= flags; 5008 } 5009 } 5010 free(chans, M_TEMP); 5011 return 0; 5012 #undef COMPAT 5013 } 5014 5015 static void 5016 ath_led_done(void *arg) 5017 { 5018 struct ath_softc *sc = arg; 5019 5020 sc->sc_blinking = 0; 5021 } 5022 5023 /* 5024 * Turn the LED off: flip the pin and then set a timer so no 5025 * update will happen for the specified duration. 5026 */ 5027 static void 5028 ath_led_off(void *arg) 5029 { 5030 struct ath_softc *sc = arg; 5031 5032 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5033 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5034 } 5035 5036 /* 5037 * Blink the LED according to the specified on/off times. 5038 */ 5039 static void 5040 ath_led_blink(struct ath_softc *sc, int on, int off) 5041 { 5042 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5043 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5044 sc->sc_blinking = 1; 5045 sc->sc_ledoff = off; 5046 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5047 } 5048 5049 static void 5050 ath_led_event(struct ath_softc *sc, int event) 5051 { 5052 5053 sc->sc_ledevent = ticks; /* time of last event */ 5054 if (sc->sc_blinking) /* don't interrupt active blink */ 5055 return; 5056 switch (event) { 5057 case ATH_LED_POLL: 5058 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 5059 sc->sc_hwmap[0].ledoff); 5060 break; 5061 case ATH_LED_TX: 5062 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 5063 sc->sc_hwmap[sc->sc_txrate].ledoff); 5064 break; 5065 case ATH_LED_RX: 5066 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 5067 sc->sc_hwmap[sc->sc_rxrate].ledoff); 5068 break; 5069 } 5070 } 5071 5072 static void 5073 ath_update_txpow(struct ath_softc *sc) 5074 { 5075 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5076 struct ieee80211com *ic = &sc->sc_ic; 5077 struct ath_hal *ah = sc->sc_ah; 5078 u_int32_t txpow; 5079 5080 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5081 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5082 /* read back in case value is clamped */ 5083 (void)ath_hal_gettxpowlimit(ah, &txpow); 5084 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5085 } 5086 /* 5087 * Fetch max tx power level for status requests. 5088 */ 5089 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5090 ic->ic_bss->ni_txpower = txpow; 5091 } 5092 5093 static void 5094 rate_setup(struct ath_softc *sc, 5095 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5096 { 5097 int i, maxrates; 5098 5099 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5100 DPRINTF(sc, ATH_DEBUG_ANY, 5101 "%s: rate table too small (%u > %u)\n", 5102 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5103 maxrates = IEEE80211_RATE_MAXSIZE; 5104 } else 5105 maxrates = rt->rateCount; 5106 for (i = 0; i < maxrates; i++) 5107 rs->rs_rates[i] = rt->info[i].dot11Rate; 5108 rs->rs_nrates = maxrates; 5109 } 5110 5111 static int 5112 ath_rate_setup(struct ath_softc *sc, u_int mode) 5113 { 5114 struct ath_hal *ah = sc->sc_ah; 5115 struct ieee80211com *ic = &sc->sc_ic; 5116 const HAL_RATE_TABLE *rt; 5117 5118 switch (mode) { 5119 case IEEE80211_MODE_11A: 5120 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5121 break; 5122 case IEEE80211_MODE_11B: 5123 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5124 break; 5125 case IEEE80211_MODE_11G: 5126 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5127 break; 5128 case IEEE80211_MODE_TURBO_A: 5129 /* XXX until static/dynamic turbo is fixed */ 5130 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5131 break; 5132 case IEEE80211_MODE_TURBO_G: 5133 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5134 break; 5135 default: 5136 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5137 __func__, mode); 5138 return 0; 5139 } 5140 sc->sc_rates[mode] = rt; 5141 if (rt != NULL) { 5142 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5143 return 1; 5144 } else 5145 return 0; 5146 } 5147 5148 static void 5149 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5150 { 5151 #define N(a) (sizeof(a)/sizeof(a[0])) 5152 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5153 static const struct { 5154 u_int rate; /* tx/rx 802.11 rate */ 5155 u_int16_t timeOn; /* LED on time (ms) */ 5156 u_int16_t timeOff; /* LED off time (ms) */ 5157 } blinkrates[] = { 5158 { 108, 40, 10 }, 5159 { 96, 44, 11 }, 5160 { 72, 50, 13 }, 5161 { 48, 57, 14 }, 5162 { 36, 67, 16 }, 5163 { 24, 80, 20 }, 5164 { 22, 100, 25 }, 5165 { 18, 133, 34 }, 5166 { 12, 160, 40 }, 5167 { 10, 200, 50 }, 5168 { 6, 240, 58 }, 5169 { 4, 267, 66 }, 5170 { 2, 400, 100 }, 5171 { 0, 500, 130 }, 5172 }; 5173 const HAL_RATE_TABLE *rt; 5174 int i, j; 5175 5176 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5177 rt = sc->sc_rates[mode]; 5178 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode); 5179 for (i = 0; i < rt->rateCount; i++) 5180 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5181 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5182 for (i = 0; i < 32; i++) { 5183 u_int8_t ix = rt->rateCodeToIndex[i]; 5184 if (ix == 0xff) { 5185 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5186 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5187 continue; 5188 } 5189 sc->sc_hwmap[i].ieeerate = 5190 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5191 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5192 if (rt->info[ix].shortPreamble || 5193 rt->info[ix].phy == IEEE80211_T_OFDM) 5194 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5195 /* NB: receive frames include FCS */ 5196 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5197 IEEE80211_RADIOTAP_F_FCS; 5198 /* setup blink rate table to avoid per-packet lookup */ 5199 for (j = 0; j < N(blinkrates)-1; j++) 5200 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5201 break; 5202 /* NB: this uses the last entry if the rate isn't found */ 5203 /* XXX beware of overlow */ 5204 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5205 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5206 } 5207 sc->sc_currates = rt; 5208 sc->sc_curmode = mode; 5209 /* 5210 * All protection frames are transmited at 2Mb/s for 5211 * 11g, otherwise at 1Mb/s. 5212 */ 5213 if (mode == IEEE80211_MODE_11G) 5214 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5215 else 5216 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5217 /* rate index used to send management frames */ 5218 sc->sc_minrateix = 0; 5219 /* 5220 * Setup multicast rate state. 5221 */ 5222 /* XXX layering violation */ 5223 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5224 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5225 /* NB: caller is responsible for resetting rate control state */ 5226 #undef N 5227 } 5228 5229 #ifdef AR_DEBUG 5230 static void 5231 ath_printrxbuf(struct ath_buf *bf, int done) 5232 { 5233 struct ath_desc *ds; 5234 int i; 5235 5236 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5237 printf("R%d (%p %" PRIx64 5238 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5239 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5240 ds->ds_link, ds->ds_data, 5241 ds->ds_ctl0, ds->ds_ctl1, 5242 ds->ds_hw[0], ds->ds_hw[1], 5243 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5244 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5245 } 5246 } 5247 5248 static void 5249 ath_printtxbuf(struct ath_buf *bf, int done) 5250 { 5251 struct ath_desc *ds; 5252 int i; 5253 5254 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5255 printf("T%d (%p %" PRIx64 5256 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5257 i, ds, 5258 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5259 ds->ds_link, ds->ds_data, 5260 ds->ds_ctl0, ds->ds_ctl1, 5261 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5262 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5263 } 5264 } 5265 #endif /* AR_DEBUG */ 5266 5267 static void 5268 ath_watchdog(struct ifnet *ifp) 5269 { 5270 struct ath_softc *sc = ifp->if_softc; 5271 struct ieee80211com *ic = &sc->sc_ic; 5272 struct ath_txq *axq; 5273 int i; 5274 5275 ifp->if_timer = 0; 5276 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5277 !device_is_active(sc->sc_dev)) 5278 return; 5279 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5280 if (!ATH_TXQ_SETUP(sc, i)) 5281 continue; 5282 axq = &sc->sc_txq[i]; 5283 ATH_TXQ_LOCK(axq); 5284 if (axq->axq_timer == 0) 5285 ; 5286 else if (--axq->axq_timer == 0) { 5287 ATH_TXQ_UNLOCK(axq); 5288 if_printf(ifp, "device timeout (txq %d, " 5289 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5290 if (sc->sc_txintrperiod > 1) 5291 sc->sc_txintrperiod--; 5292 ath_reset(ifp); 5293 if_statinc(ifp, if_oerrors); 5294 sc->sc_stats.ast_watchdog++; 5295 break; 5296 } else 5297 ifp->if_timer = 1; 5298 ATH_TXQ_UNLOCK(axq); 5299 } 5300 ieee80211_watchdog(ic); 5301 } 5302 5303 /* 5304 * Diagnostic interface to the HAL. This is used by various 5305 * tools to do things like retrieve register contents for 5306 * debugging. The mechanism is intentionally opaque so that 5307 * it can change frequently w/o concern for compatibility. 5308 */ 5309 static int 5310 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5311 { 5312 struct ath_hal *ah = sc->sc_ah; 5313 u_int id = ad->ad_id & ATH_DIAG_ID; 5314 void *indata = NULL; 5315 void *outdata = NULL; 5316 u_int32_t insize = ad->ad_in_size; 5317 u_int32_t outsize = ad->ad_out_size; 5318 int error = 0; 5319 5320 if (ad->ad_id & ATH_DIAG_IN) { 5321 /* 5322 * Copy in data. 5323 */ 5324 indata = malloc(insize, M_TEMP, M_WAITOK); 5325 error = copyin(ad->ad_in_data, indata, insize); 5326 if (error) 5327 goto bad; 5328 } 5329 if (ad->ad_id & ATH_DIAG_DYN) { 5330 /* 5331 * Allocate a buffer for the results (otherwise the HAL 5332 * returns a pointer to a buffer where we can read the 5333 * results). Note that we depend on the HAL leaving this 5334 * pointer for us to use below in reclaiming the buffer; 5335 * may want to be more defensive. 5336 */ 5337 outdata = malloc(outsize, M_TEMP, M_WAITOK); 5338 } 5339 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5340 if (outsize < ad->ad_out_size) 5341 ad->ad_out_size = outsize; 5342 if (outdata != NULL) 5343 error = copyout(outdata, ad->ad_out_data, 5344 ad->ad_out_size); 5345 } else { 5346 error = EINVAL; 5347 } 5348 bad: 5349 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5350 free(indata, M_TEMP); 5351 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5352 free(outdata, M_TEMP); 5353 return error; 5354 } 5355 5356 static int 5357 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5358 { 5359 #define IS_RUNNING(ifp) \ 5360 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5361 struct ath_softc *sc = ifp->if_softc; 5362 struct ieee80211com *ic = &sc->sc_ic; 5363 struct ifreq *ifr = (struct ifreq *)data; 5364 int error = 0, s; 5365 5366 s = splnet(); 5367 switch (cmd) { 5368 case SIOCSIFFLAGS: 5369 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5370 break; 5371 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 5372 case IFF_UP | IFF_RUNNING: 5373 /* 5374 * To avoid rescanning another access point, 5375 * do not call ath_init() here. Instead, 5376 * only reflect promisc mode settings. 5377 */ 5378 ath_mode_init(sc); 5379 break; 5380 case IFF_UP: 5381 /* 5382 * Beware of being called during attach/detach 5383 * to reset promiscuous mode. In that case we 5384 * will still be marked UP but not RUNNING. 5385 * However trying to re-init the interface 5386 * is the wrong thing to do as we've already 5387 * torn down much of our state. There's 5388 * probably a better way to deal with this. 5389 */ 5390 error = ath_init(sc); 5391 break; 5392 case IFF_RUNNING: 5393 ath_stop_locked(ifp, 1); 5394 break; 5395 case 0: 5396 break; 5397 } 5398 break; 5399 case SIOCADDMULTI: 5400 case SIOCDELMULTI: 5401 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5402 if (ifp->if_flags & IFF_RUNNING) 5403 ath_mode_init(sc); 5404 error = 0; 5405 } 5406 break; 5407 case SIOCGATHSTATS: { 5408 struct ath_stats stats_out; 5409 struct if_data ifi; 5410 5411 /* NB: embed these numbers to get a consistent view */ 5412 5413 stats_out = sc->sc_stats; 5414 stats_out.ast_rx_rssi = ieee80211_getrssi(ic); 5415 splx(s); 5416 5417 if_export_if_data(ifp, &ifi, false); 5418 stats_out.ast_tx_packets = ifi.ifi_opackets; 5419 stats_out.ast_rx_packets = ifi.ifi_ipackets; 5420 5421 return copyout(&stats_out, 5422 ifr->ifr_data, sizeof (stats_out)); 5423 } 5424 5425 case SIOCGATHDIAG: 5426 error = kauth_authorize_network(kauth_cred_get(), 5427 KAUTH_NETWORK_INTERFACE, 5428 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 5429 NULL); 5430 if (error) 5431 break; 5432 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5433 break; 5434 default: 5435 error = ieee80211_ioctl(ic, cmd, data); 5436 if (error != ENETRESET) 5437 ; 5438 else if (IS_RUNNING(ifp) && 5439 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5440 error = ath_init(sc); 5441 else 5442 error = 0; 5443 break; 5444 } 5445 splx(s); 5446 return error; 5447 #undef IS_RUNNING 5448 } 5449 5450 static void 5451 ath_bpfattach(struct ath_softc *sc) 5452 { 5453 struct ifnet *ifp = &sc->sc_if; 5454 5455 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5456 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5457 &sc->sc_drvbpf); 5458 5459 /* 5460 * Initialize constant fields. 5461 * XXX make header lengths a multiple of 32-bits so subsequent 5462 * headers are properly aligned; this is a kludge to keep 5463 * certain applications happy. 5464 * 5465 * NB: the channel is setup each time we transition to the 5466 * RUN state to avoid filling it in for each frame. 5467 */ 5468 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5469 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5470 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5471 5472 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5473 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5474 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5475 } 5476 5477 /* 5478 * Announce various information on device/driver attach. 5479 */ 5480 static void 5481 ath_announce(struct ath_softc *sc) 5482 { 5483 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5484 struct ifnet *ifp = &sc->sc_if; 5485 struct ath_hal *ah = sc->sc_ah; 5486 u_int modes, cc; 5487 5488 if_printf(ifp, "mac %d.%d phy %d.%d", 5489 ah->ah_macVersion, ah->ah_macRev, 5490 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5491 /* 5492 * Print radio revision(s). We check the wireless modes 5493 * to avoid falsely printing revs for inoperable parts. 5494 * Dual-band radio revs are returned in the 5 GHz rev number. 5495 */ 5496 ath_hal_getcountrycode(ah, &cc); 5497 modes = ath_hal_getwirelessmodes(ah, cc); 5498 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5499 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5500 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5501 ah->ah_analog5GhzRev >> 4, 5502 ah->ah_analog5GhzRev & 0xf, 5503 ah->ah_analog2GhzRev >> 4, 5504 ah->ah_analog2GhzRev & 0xf); 5505 else 5506 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5507 ah->ah_analog5GhzRev & 0xf); 5508 } else 5509 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5510 ah->ah_analog5GhzRev & 0xf); 5511 printf("\n"); 5512 if (bootverbose) { 5513 int i; 5514 for (i = 0; i <= WME_AC_VO; i++) { 5515 struct ath_txq *txq = sc->sc_ac2q[i]; 5516 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5517 txq->axq_qnum, ieee80211_wme_acnames[i]); 5518 } 5519 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5520 sc->sc_cabq->axq_qnum); 5521 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5522 } 5523 if (ath_rxbuf != ATH_RXBUF) 5524 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5525 if (ath_txbuf != ATH_TXBUF) 5526 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5527 #undef HAL_MODE_DUALBAND 5528 } 5529