Home | History | Annotate | Line # | Download | only in i2c
      1 /*	$NetBSD: ds1307.c,v 1.43 2025/10/13 14:49:17 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.43 2025/10/13 14:49:17 thorpej Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 #include <dev/sysmon/sysmonvar.h>
     55 
     56 #include "ioconf.h"
     57 #include "opt_dsrtc.h"
     58 
     59 struct dsrtc_model {
     60 	const i2c_addr_t *dm_valid_addrs;
     61 	uint16_t dm_model;
     62 	uint8_t dm_ch_reg;
     63 	uint8_t dm_ch_value;
     64 	uint8_t dm_vbaten_reg;
     65 	uint8_t dm_vbaten_value;
     66 	uint8_t dm_rtc_start;
     67 	uint8_t dm_rtc_size;
     68 	uint8_t dm_nvram_start;
     69 	uint8_t dm_nvram_size;
     70 	uint8_t dm_flags;
     71 #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     72 #define	DSRTC_FLAG_BCD			0x02
     73 #define	DSRTC_FLAG_TEMP			0x04
     74 #define DSRTC_FLAG_VBATEN		0x08
     75 #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     76 };
     77 
     78 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     79 static const struct dsrtc_model ds1307_model = {
     80 	.dm_valid_addrs = ds1307_valid_addrs,
     81 	.dm_model = 1307,
     82 	.dm_ch_reg = DSXXXX_SECONDS,
     83 	.dm_ch_value = DS1307_SECONDS_CH,
     84 	.dm_rtc_start = DS1307_RTC_START,
     85 	.dm_rtc_size = DS1307_RTC_SIZE,
     86 	.dm_nvram_start = DS1307_NVRAM_START,
     87 	.dm_nvram_size = DS1307_NVRAM_SIZE,
     88 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     89 };
     90 
     91 static const struct dsrtc_model ds1339_model = {
     92 	.dm_valid_addrs = ds1307_valid_addrs,
     93 	.dm_model = 1339,
     94 	.dm_rtc_start = DS1339_RTC_START,
     95 	.dm_rtc_size = DS1339_RTC_SIZE,
     96 	.dm_flags = DSRTC_FLAG_BCD,
     97 };
     98 
     99 static const struct dsrtc_model ds1340_model = {
    100 	.dm_valid_addrs = ds1307_valid_addrs,
    101 	.dm_model = 1340,
    102 	.dm_ch_reg = DSXXXX_SECONDS,
    103 	.dm_ch_value = DS1340_SECONDS_EOSC,
    104 	.dm_rtc_start = DS1340_RTC_START,
    105 	.dm_rtc_size = DS1340_RTC_SIZE,
    106 	.dm_flags = DSRTC_FLAG_BCD,
    107 };
    108 
    109 static const struct dsrtc_model ds1672_model = {
    110 	.dm_valid_addrs = ds1307_valid_addrs,
    111 	.dm_model = 1672,
    112 	.dm_rtc_start = DS1672_RTC_START,
    113 	.dm_rtc_size = DS1672_RTC_SIZE,
    114 	.dm_ch_reg = DS1672_CONTROL,
    115 	.dm_ch_value = DS1672_CONTROL_CH,
    116 	.dm_flags = 0,
    117 };
    118 
    119 static const struct dsrtc_model ds3231_model = {
    120 	.dm_valid_addrs = ds1307_valid_addrs,
    121 	.dm_model = 3231,
    122 	.dm_rtc_start = DS3232_RTC_START,
    123 	.dm_rtc_size = DS3232_RTC_SIZE,
    124 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    125 };
    126 
    127 static const struct dsrtc_model ds3232_model = {
    128 	.dm_valid_addrs = ds1307_valid_addrs,
    129 	.dm_model = 3232,
    130 	.dm_rtc_start = DS3232_RTC_START,
    131 	.dm_rtc_size = DS3232_RTC_SIZE,
    132 	.dm_nvram_start = DS3232_NVRAM_START,
    133 	.dm_nvram_size = DS3232_NVRAM_SIZE,
    134 	/*
    135 	 * XXX
    136 	 * the DS3232 likely has the temperature sensor too but I can't
    137 	 * easily verify or test that right now
    138 	 */
    139 	.dm_flags = DSRTC_FLAG_BCD,
    140 };
    141 
    142 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
    143 static const struct dsrtc_model mcp7940_model = {
    144 	.dm_valid_addrs = mcp7940_valid_addrs,
    145 	.dm_model = 7940,
    146 	.dm_rtc_start = DS1307_RTC_START,
    147 	.dm_rtc_size = DS1307_RTC_SIZE,
    148 	.dm_ch_reg = DSXXXX_SECONDS,
    149 	.dm_ch_value = DS1307_SECONDS_CH,
    150 	.dm_vbaten_reg = DSXXXX_DAY,
    151 	.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    152 	.dm_nvram_start = MCP7940_NVRAM_START,
    153 	.dm_nvram_size = MCP7940_NVRAM_SIZE,
    154 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    155 		DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    156 };
    157 
    158 static const struct device_compatible_entry compat_data[] = {
    159 	{ .compat = "dallas,ds1307",		.data = &ds1307_model },
    160 	{ .compat = "maxim,ds1307",		.data = &ds1307_model },
    161 	{ .compat = "i2c-ds1307",		.data = &ds1307_model },
    162 
    163 	{ .compat = "dallas,ds1339",		.data = &ds1339_model },
    164 	{ .compat = "maxim,ds1339",		.data = &ds1339_model },
    165 
    166 	{ .compat = "dallas,ds1340",		.data = &ds1340_model },
    167 	{ .compat = "maxim,ds1340",		.data = &ds1340_model },
    168 
    169 	{ .compat = "dallas,ds1672",		.data = &ds1672_model },
    170 	{ .compat = "maxim,ds1672",		.data = &ds1672_model },
    171 
    172 	{ .compat = "dallas,ds3231",		.data = &ds3231_model },
    173 	{ .compat = "maxim,ds3231",		.data = &ds3231_model },
    174 
    175 	{ .compat = "dallas,ds3232",		.data = &ds3232_model },
    176 	{ .compat = "maxim,ds3232",		.data = &ds3232_model },
    177 
    178 	{ .compat = "microchip,mcp7940",	.data = &mcp7940_model },
    179 
    180 	DEVICE_COMPAT_EOL
    181 };
    182 
    183 struct dsrtc_softc {
    184 	device_t sc_dev;
    185 	i2c_tag_t sc_tag;
    186 	uint8_t sc_address;
    187 	bool sc_open;
    188 	struct dsrtc_model sc_model;
    189 	struct todr_chip_handle sc_todr;
    190 	struct sysmon_envsys *sc_sme;
    191 	envsys_data_t sc_sensor;
    192 	unsigned int sc_base_year;
    193 };
    194 
    195 static void	dsrtc_attach(device_t, device_t, void *);
    196 static int	dsrtc_match(device_t, cfdata_t, void *);
    197 
    198 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    199     dsrtc_match, dsrtc_attach, NULL, NULL);
    200 
    201 dev_type_open(dsrtc_open);
    202 dev_type_close(dsrtc_close);
    203 dev_type_read(dsrtc_read);
    204 dev_type_write(dsrtc_write);
    205 
    206 const struct cdevsw dsrtc_cdevsw = {
    207 	.d_open = dsrtc_open,
    208 	.d_close = dsrtc_close,
    209 	.d_read = dsrtc_read,
    210 	.d_write = dsrtc_write,
    211 	.d_ioctl = noioctl,
    212 	.d_stop = nostop,
    213 	.d_tty = notty,
    214 	.d_poll = nopoll,
    215 	.d_mmap = nommap,
    216 	.d_kqfilter = nokqfilter,
    217 	.d_discard = nodiscard,
    218 	.d_flag = D_OTHER
    219 };
    220 
    221 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    222 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    223 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    224 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    225 
    226 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    227 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    228 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    229 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    230 
    231 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    232 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    233 
    234 static const struct dsrtc_model *
    235 dsrtc_model_by_number(u_int model)
    236 {
    237 	const struct device_compatible_entry *dce;
    238 	const struct dsrtc_model *dm;
    239 
    240 	/* no model given, assume it's a DS1307 */
    241 	if (model == 0)
    242 		return &ds1307_model;
    243 
    244 	for (dce = compat_data; dce->compat != NULL; dce++) {
    245 		dm = dce->data;
    246 		if (dm->dm_model == model)
    247 			return dm;
    248 	}
    249 	return NULL;
    250 }
    251 
    252 static const struct dsrtc_model *
    253 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    254 {
    255 	const struct dsrtc_model *dm = NULL;
    256 	const struct device_compatible_entry *dce;
    257 
    258 	if ((dce = iic_compatible_lookup(ia, compat_data)) != NULL)
    259 		dm = dce->data;
    260 
    261 	return dm;
    262 }
    263 
    264 static bool
    265 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    266 {
    267 
    268 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    269 		if (addr == dm->dm_valid_addrs[i])
    270 			return true;
    271 	}
    272 	return false;
    273 }
    274 
    275 static int
    276 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    277 {
    278 	struct i2c_attach_args *ia = arg;
    279 	const struct dsrtc_model *dm;
    280 	int match_result;
    281 
    282 	if (iic_use_direct_match(ia, cf, compat_data, &match_result))
    283 		return match_result;
    284 
    285 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    286 	if (dm == NULL)
    287 		return 0;
    288 
    289 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    290 		return I2C_MATCH_ADDRESS_ONLY;
    291 
    292 	return 0;
    293 }
    294 
    295 static void
    296 dsrtc_attach(device_t parent, device_t self, void *arg)
    297 {
    298 	struct dsrtc_softc *sc = device_private(self);
    299 	struct i2c_attach_args *ia = arg;
    300 	const struct dsrtc_model *dm;
    301 
    302 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    303 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    304 
    305 	if (dm == NULL) {
    306 		aprint_error(": unable to determine model!\n");
    307 		return;
    308 	}
    309 
    310 	aprint_naive(": Real-time Clock%s\n",
    311 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    312 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    313 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    314 
    315 	sc->sc_tag = ia->ia_tag;
    316 	sc->sc_address = ia->ia_addr;
    317 	sc->sc_model = *dm;
    318 	sc->sc_dev = self;
    319 	sc->sc_open = 0;
    320 	sc->sc_todr.todr_dev = self;
    321 
    322 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    323 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    324 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    325 	} else {
    326 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    327 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    328 	}
    329 
    330 	sc->sc_base_year = device_getprop_uint_default(self, "start-year",
    331 	    POSIX_BASE_YEAR);
    332 
    333 	todr_attach(&sc->sc_todr);
    334 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    335 		int error;
    336 
    337 		sc->sc_sme = sysmon_envsys_create();
    338 		sc->sc_sme->sme_name = device_xname(self);
    339 		sc->sc_sme->sme_cookie = sc;
    340 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    341 
    342 		sc->sc_sensor.units =  ENVSYS_STEMP;
    343 		sc->sc_sensor.state = ENVSYS_SINVALID;
    344 		sc->sc_sensor.flags = 0;
    345 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    346 		    sizeof(sc->sc_sensor.desc));
    347 
    348 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    349 			aprint_error_dev(self, "unable to attach sensor\n");
    350 			goto bad;
    351 		}
    352 
    353 		error = sysmon_envsys_register(sc->sc_sme);
    354 		if (error) {
    355 			aprint_error_dev(self,
    356 			    "error %d registering with sysmon\n", error);
    357 			goto bad;
    358 		}
    359 	}
    360 	return;
    361 bad:
    362 	sysmon_envsys_destroy(sc->sc_sme);
    363 }
    364 
    365 /*ARGSUSED*/
    366 int
    367 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    368 {
    369 	struct dsrtc_softc *sc;
    370 
    371 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    372 		return ENXIO;
    373 
    374 	/* XXX: Locking */
    375 	if (sc->sc_open)
    376 		return EBUSY;
    377 
    378 	sc->sc_open = true;
    379 	return 0;
    380 }
    381 
    382 /*ARGSUSED*/
    383 int
    384 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    385 {
    386 	struct dsrtc_softc *sc;
    387 
    388 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    389 		return ENXIO;
    390 
    391 	sc->sc_open = false;
    392 	return 0;
    393 }
    394 
    395 /*ARGSUSED*/
    396 int
    397 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    398 {
    399 	struct dsrtc_softc *sc;
    400 	int error;
    401 
    402 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    403 		return ENXIO;
    404 
    405 	const struct dsrtc_model * const dm = &sc->sc_model;
    406 	if (uio->uio_offset < 0 || uio->uio_offset >= dm->dm_nvram_size)
    407 		return EINVAL;
    408 
    409 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    410 		return error;
    411 
    412 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    413 		uint8_t ch, cmd;
    414 		const u_int a = uio->uio_offset;
    415 		cmd = a + dm->dm_nvram_start;
    416 		if ((error = iic_exec(sc->sc_tag,
    417 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    418 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    419 			iic_release_bus(sc->sc_tag, 0);
    420 			aprint_error_dev(sc->sc_dev,
    421 			    "%s: read failed at 0x%x: %d\n",
    422 			    __func__, a, error);
    423 			return error;
    424 		}
    425 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    426 			iic_release_bus(sc->sc_tag, 0);
    427 			return error;
    428 		}
    429 	}
    430 
    431 	iic_release_bus(sc->sc_tag, 0);
    432 
    433 	return 0;
    434 }
    435 
    436 /*ARGSUSED*/
    437 int
    438 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    439 {
    440 	struct dsrtc_softc *sc;
    441 	int error;
    442 
    443 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    444 		return ENXIO;
    445 
    446 	const struct dsrtc_model * const dm = &sc->sc_model;
    447 	if (uio->uio_offset >= dm->dm_nvram_size)
    448 		return EINVAL;
    449 
    450 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    451 		return error;
    452 
    453 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    454 		uint8_t cmdbuf[2];
    455 		const u_int a = (int)uio->uio_offset;
    456 		cmdbuf[0] = a + dm->dm_nvram_start;
    457 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    458 			break;
    459 
    460 		if ((error = iic_exec(sc->sc_tag,
    461 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    462 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    463 			aprint_error_dev(sc->sc_dev,
    464 			    "%s: write failed at 0x%x: %d\n",
    465 			    __func__, a, error);
    466 			break;
    467 		}
    468 	}
    469 
    470 	iic_release_bus(sc->sc_tag, 0);
    471 
    472 	return error;
    473 }
    474 
    475 static int
    476 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    477 {
    478 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    479 	struct clock_ymdhms check;
    480 	int retries;
    481 
    482 	memset(dt, 0, sizeof(*dt));
    483 	memset(&check, 0, sizeof(check));
    484 
    485 	/*
    486 	 * Since we don't support Burst Read, we have to read the clock twice
    487 	 * until we get two consecutive identical results.
    488 	 */
    489 	retries = 5;
    490 	do {
    491 		dsrtc_clock_read_ymdhms(sc, dt);
    492 		dsrtc_clock_read_ymdhms(sc, &check);
    493 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    494 
    495 	return 0;
    496 }
    497 
    498 static int
    499 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    500 {
    501 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    502 
    503 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    504 		return -1;
    505 
    506 	return 0;
    507 }
    508 
    509 static int
    510 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    511 {
    512 	struct dsrtc_model * const dm = &sc->sc_model;
    513 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    514 	int error;
    515 
    516 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    517 
    518 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    519 		aprint_error_dev(sc->sc_dev,
    520 		    "%s: failed to acquire I2C bus: %d\n",
    521 		    __func__, error);
    522 		return 0;
    523 	}
    524 
    525 	/* Read each RTC register in order. */
    526 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    527 		cmdbuf[0] = dm->dm_rtc_start + i;
    528 
    529 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    530 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0);
    531 	}
    532 
    533 	/* Done with I2C */
    534 	iic_release_bus(sc->sc_tag, 0);
    535 
    536 	if (error != 0) {
    537 		aprint_error_dev(sc->sc_dev,
    538 		    "%s: failed to read rtc at 0x%x: %d\n",
    539 		    __func__, cmdbuf[0], error);
    540 		return 0;
    541 	}
    542 
    543 	/*
    544 	 * Convert the RTC's register values into something useable
    545 	 */
    546 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    547 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    548 
    549 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    550 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    551 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    552 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    553 			dt->dt_hour += 12;
    554 	} else
    555 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    556 		    DSXXXX_HOURS_24MASK);
    557 
    558 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    559 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    560 
    561 	dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + sc->sc_base_year;
    562 	if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY) {
    563 		dt->dt_year += 100;
    564 	}
    565 
    566 	return 1;
    567 }
    568 
    569 static int
    570 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    571 {
    572 	struct dsrtc_model * const dm = &sc->sc_model;
    573 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    574 	int error;
    575 
    576 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    577 
    578 	/*
    579 	 * Convert our time representation into something the DSXXXX
    580 	 * can understand.
    581 	 */
    582 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    583 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    584 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    585 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    586 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    587 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    588 
    589 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - sc->sc_base_year) % 100);
    590 	if (dt->dt_year - sc->sc_base_year >= 100)
    591 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    592 
    593 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    594 		aprint_error_dev(sc->sc_dev,
    595 		    "%s: failed to acquire I2C bus: %d\n",
    596 		    __func__, error);
    597 		return 0;
    598 	}
    599 
    600 	/* Stop the clock */
    601 	cmdbuf[0] = dm->dm_ch_reg;
    602 
    603 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    604 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    605 		iic_release_bus(sc->sc_tag, 0);
    606 		aprint_error_dev(sc->sc_dev,
    607 		    "%s: failed to read Hold Clock: %d\n",
    608 		    __func__, error);
    609 		return 0;
    610 	}
    611 
    612 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    613 		cmdbuf[1] &= ~dm->dm_ch_value;
    614 	else
    615 		cmdbuf[1] |= dm->dm_ch_value;
    616 
    617 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    618 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    619 		iic_release_bus(sc->sc_tag, 0);
    620 		aprint_error_dev(sc->sc_dev,
    621 		    "%s: failed to write Hold Clock: %d\n",
    622 		    __func__, error);
    623 		return 0;
    624 	}
    625 
    626 	/*
    627 	 * Write registers in reverse order. The last write (to the Seconds
    628 	 * register) will undo the Clock Hold, above.
    629 	 */
    630 	uint8_t op = I2C_OP_WRITE;
    631 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    632 		cmdbuf[0] = dm->dm_rtc_start + i;
    633 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    634 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    635 			bcd[i] |= dm->dm_vbaten_value;
    636 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    637 			op = I2C_OP_WRITE_WITH_STOP;
    638 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    639 				bcd[i] |= dm->dm_ch_value;
    640 		}
    641 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    642 		    cmdbuf, 1, &bcd[i], 1, 0)) != 0) {
    643 			iic_release_bus(sc->sc_tag, 0);
    644 			aprint_error_dev(sc->sc_dev,
    645 			    "%s: failed to write rtc at 0x%x: %d\n",
    646 			    __func__, i, error);
    647 			/* XXX: Clock Hold is likely still asserted! */
    648 			return 0;
    649 		}
    650 	}
    651 	/*
    652 	 * If the clock hold register isn't the same register as seconds,
    653 	 * we need to reenable the clock.
    654 	 */
    655 	if (op != I2C_OP_WRITE_WITH_STOP) {
    656 		cmdbuf[0] = dm->dm_ch_reg;
    657 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    658 			cmdbuf[1] |= dm->dm_ch_value;
    659 		else
    660 			cmdbuf[1] &= ~dm->dm_ch_value;
    661 
    662 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    663 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    664 			iic_release_bus(sc->sc_tag, 0);
    665 			aprint_error_dev(sc->sc_dev,
    666 			    "%s: failed to Hold Clock: %d\n",
    667 			    __func__, error);
    668 			return 0;
    669 		}
    670 	}
    671 
    672 	iic_release_bus(sc->sc_tag, 0);
    673 
    674 	return 1;
    675 }
    676 
    677 static int
    678 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    679 {
    680 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    681 	struct timeval check;
    682 	int retries;
    683 
    684 	memset(tv, 0, sizeof(*tv));
    685 	memset(&check, 0, sizeof(check));
    686 
    687 	/*
    688 	 * Since we don't support Burst Read, we have to read the clock twice
    689 	 * until we get two consecutive identical results.
    690 	 */
    691 	retries = 5;
    692 	do {
    693 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    694 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    695 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    696 
    697 	return 0;
    698 }
    699 
    700 static int
    701 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    702 {
    703 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    704 
    705 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    706 		return -1;
    707 
    708 	return 0;
    709 }
    710 
    711 /*
    712  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    713  * it, since some I2C controllers don't support anything other than single-byte
    714  * transfers.
    715  */
    716 static int
    717 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    718 {
    719 	const struct dsrtc_model * const dm = &sc->sc_model;
    720 	uint8_t buf[4];
    721 	int error;
    722 
    723 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    724 		aprint_error_dev(sc->sc_dev,
    725 		    "%s: failed to acquire I2C bus: %d\n",
    726 		    __func__, error);
    727 		return 0;
    728 	}
    729 
    730 	/* read all registers: */
    731 	uint8_t reg = dm->dm_rtc_start;
    732 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    733 	     &reg, 1, buf, 4, 0);
    734 
    735 	/* Done with I2C */
    736 	iic_release_bus(sc->sc_tag, 0);
    737 
    738 	if (error != 0) {
    739 		aprint_error_dev(sc->sc_dev,
    740 		    "%s: failed to read rtc at 0x%x: %d\n",
    741 		    __func__, reg, error);
    742 		return 0;
    743 	}
    744 
    745 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    746 	*tp = v;
    747 
    748 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    749 	    __func__, v);
    750 
    751 	return 1;
    752 }
    753 
    754 static int
    755 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    756 {
    757 	const struct dsrtc_model * const dm = &sc->sc_model;
    758 	size_t buflen = dm->dm_rtc_size + 2;
    759 	/* XXX: the biggest dm_rtc_size we have now is 7, so we should be ok */
    760 	uint8_t buf[16];
    761 	int error;
    762 
    763 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    764 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    765 
    766 	buf[0] = dm->dm_rtc_start;
    767 	buf[1] = (t >> 0) & 0xff;
    768 	buf[2] = (t >> 8) & 0xff;
    769 	buf[3] = (t >> 16) & 0xff;
    770 	buf[4] = (t >> 24) & 0xff;
    771 	buf[5] = 0;
    772 
    773 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    774 		aprint_error_dev(sc->sc_dev,
    775 		    "%s: failed to acquire I2C bus: %d\n",
    776 		    __func__, error);
    777 		return 0;
    778 	}
    779 
    780 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    781 	    &buf, buflen, NULL, 0, 0);
    782 
    783 	/* Done with I2C */
    784 	iic_release_bus(sc->sc_tag, 0);
    785 
    786 	/* send data */
    787 	if (error != 0) {
    788 		aprint_error_dev(sc->sc_dev,
    789 		    "%s: failed to set time: %d\n",
    790 		    __func__, error);
    791 		return 0;
    792 	}
    793 
    794 	return 1;
    795 }
    796 
    797 static int
    798 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    799 {
    800 	int error, tc;
    801 	uint8_t reg = DS3232_TEMP_MSB;
    802 	uint8_t buf[2];
    803 
    804 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    805 		return ENOTSUP;
    806 
    807 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    808 		aprint_error_dev(sc->sc_dev,
    809 		    "%s: failed to acquire I2C bus: %d\n",
    810 		    __func__, error);
    811 		return 0;
    812 	}
    813 
    814 	/* read temperature registers: */
    815 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    816 	     &reg, 1, buf, 2, 0);
    817 
    818 	/* Done with I2C */
    819 	iic_release_bus(sc->sc_tag, 0);
    820 
    821 	if (error != 0) {
    822 		aprint_error_dev(sc->sc_dev,
    823 		    "%s: failed to read temperature: %d\n",
    824 		    __func__, error);
    825 		return 0;
    826 	}
    827 
    828 	/* convert to microkelvin */
    829 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    830 	*temp = tc + 273150000;
    831 	return 1;
    832 }
    833 
    834 static void
    835 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    836 {
    837 	struct dsrtc_softc *sc = sme->sme_cookie;
    838 	uint32_t temp = 0;	/* XXX gcc */
    839 
    840 	if (dsrtc_read_temp(sc, &temp) == 0) {
    841 		edata->state = ENVSYS_SINVALID;
    842 		return;
    843 	}
    844 
    845 	edata->value_cur = temp;
    846 
    847 	edata->state = ENVSYS_SVALID;
    848 }
    849