1 /* $NetBSD: lfs_syscalls.c,v 1.177 2025/10/20 04:20:37 perseant Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Konrad E. Schroder <perseant (at) hhhh.org>. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 /*- 33 * Copyright (c) 1991, 1993, 1994 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.177 2025/10/20 04:20:37 perseant Exp $"); 65 66 #ifndef LFS 67 # define LFS /* for prototypes in syscallargs.h */ 68 #endif 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/proc.h> 73 #include <sys/buf.h> 74 #include <sys/mount.h> 75 #include <sys/vnode.h> 76 #include <sys/kernel.h> 77 #include <sys/kauth.h> 78 #include <sys/syscallargs.h> 79 80 #include <ufs/lfs/ulfs_inode.h> 81 #include <ufs/lfs/ulfsmount.h> 82 #include <ufs/lfs/ulfs_extern.h> 83 84 #include <ufs/lfs/lfs.h> 85 #include <ufs/lfs/lfs_accessors.h> 86 #include <ufs/lfs/lfs_kernel.h> 87 #include <ufs/lfs/lfs_extern.h> 88 89 static int lfs_fastvget(struct mount *, ino_t, BLOCK_INFO *, int, 90 struct vnode **); 91 static struct buf *lfs_fakebuf(struct lfs *, struct vnode *, daddr_t, 92 size_t, void *); 93 94 /* 95 * sys_lfs_markv: 96 * 97 * This will mark inodes and blocks dirty, so they are written into the log. 98 * It will block until all the blocks have been written. The segment create 99 * time passed in the block_info and inode_info structures is used to decide 100 * if the data is valid for each block (in case some process dirtied a block 101 * or inode that is being cleaned between the determination that a block is 102 * live and the lfs_markv call). 103 * 104 * 0 on success 105 * -1/errno is return on error. 106 */ 107 #ifdef USE_64BIT_SYSCALLS 108 int 109 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval) 110 { 111 /* { 112 syscallarg(fsid_t *) fsidp; 113 syscallarg(struct block_info *) blkiov; 114 syscallarg(int) blkcnt; 115 } */ 116 BLOCK_INFO *blkiov; 117 int blkcnt, error; 118 fsid_t fsid; 119 struct lfs *fs; 120 struct mount *mntp; 121 122 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 123 return (error); 124 125 if ((mntp = vfs_getvfs(&fsid)) == NULL) 126 return (ENOENT); 127 fs = VFSTOULFS(mntp)->um_lfs; 128 129 blkcnt = SCARG(uap, blkcnt); 130 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) 131 return (EINVAL); 132 133 KERNEL_LOCK(1, NULL); 134 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); 135 if ((error = copyin(SCARG(uap, blkiov), blkiov, 136 blkcnt * sizeof(BLOCK_INFO))) != 0) 137 goto out; 138 139 if ((error = lfs_markv(l, &fsid, blkiov, blkcnt)) == 0) 140 copyout(blkiov, SCARG(uap, blkiov), 141 blkcnt * sizeof(BLOCK_INFO)); 142 out: 143 lfs_free(fs, blkiov, LFS_NB_BLKIOV); 144 KERNEL_UNLOCK_ONE(NULL); 145 return error; 146 } 147 #else 148 int 149 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval) 150 { 151 /* { 152 syscallarg(fsid_t *) fsidp; 153 syscallarg(struct block_info *) blkiov; 154 syscallarg(int) blkcnt; 155 } */ 156 BLOCK_INFO *blkiov; 157 BLOCK_INFO_15 *blkiov15; 158 int i, blkcnt, error; 159 fsid_t fsid; 160 struct lfs *fs; 161 struct mount *mntp; 162 163 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 164 return (error); 165 166 if ((mntp = vfs_getvfs(&fsid)) == NULL) 167 return (ENOENT); 168 fs = VFSTOULFS(mntp)->um_lfs; 169 170 blkcnt = SCARG(uap, blkcnt); 171 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) 172 return (EINVAL); 173 174 KERNEL_LOCK(1, NULL); 175 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); 176 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV); 177 if ((error = copyin(SCARG(uap, blkiov), blkiov15, 178 blkcnt * sizeof(BLOCK_INFO_15))) != 0) 179 goto out; 180 181 for (i = 0; i < blkcnt; i++) { 182 blkiov[i].bi_inode = blkiov15[i].bi_inode; 183 blkiov[i].bi_lbn = blkiov15[i].bi_lbn; 184 blkiov[i].bi_daddr = blkiov15[i].bi_daddr; 185 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate; 186 blkiov[i].bi_version = blkiov15[i].bi_version; 187 blkiov[i].bi_bp = blkiov15[i].bi_bp; 188 blkiov[i].bi_size = blkiov15[i].bi_size; 189 } 190 191 if ((error = lfs_markv(l, &fsid, blkiov, blkcnt)) == 0) { 192 for (i = 0; i < blkcnt; i++) { 193 blkiov15[i].bi_inode = blkiov[i].bi_inode; 194 blkiov15[i].bi_lbn = blkiov[i].bi_lbn; 195 blkiov15[i].bi_daddr = blkiov[i].bi_daddr; 196 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate; 197 blkiov15[i].bi_version = blkiov[i].bi_version; 198 blkiov15[i].bi_bp = blkiov[i].bi_bp; 199 blkiov15[i].bi_size = blkiov[i].bi_size; 200 } 201 copyout(blkiov15, SCARG(uap, blkiov), 202 blkcnt * sizeof(BLOCK_INFO_15)); 203 } 204 out: 205 lfs_free(fs, blkiov, LFS_NB_BLKIOV); 206 lfs_free(fs, blkiov15, LFS_NB_BLKIOV); 207 KERNEL_UNLOCK_ONE(NULL); 208 return error; 209 } 210 #endif 211 212 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS) 213 214 int 215 lfs_markv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov, 216 int blkcnt) 217 { 218 BLOCK_INFO *blkp; 219 IFILE *ifp; 220 struct buf *bp; 221 struct inode *ip = NULL; 222 struct lfs *fs; 223 struct mount *mntp; 224 struct ulfsmount *ump; 225 struct vnode *vp; 226 ino_t lastino; 227 daddr_t b_daddr; 228 int cnt, error; 229 int do_again = 0; 230 int numrefed = 0; 231 ino_t maxino; 232 size_t obsize; 233 234 /* number of blocks/inodes that we have already bwrite'ed */ 235 int nblkwritten, ninowritten; 236 237 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, 238 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL); 239 240 if (error) 241 return (error); 242 243 if ((mntp = vfs_getvfs(fsidp)) == NULL) 244 return (ENOENT); 245 246 ump = VFSTOULFS(mntp); 247 fs = ump->um_lfs; 248 249 if (fs->lfs_ronly) 250 return EROFS; 251 252 maxino = (lfs_fragstoblks(fs, lfs_dino_getblocks(fs, VTOI(fs->lfs_ivnode)->i_din)) - 253 lfs_sb_getcleansz(fs) - lfs_sb_getsegtabsz(fs)) * lfs_sb_getifpb(fs); 254 255 if ((error = vfs_busy(mntp)) != 0) 256 return (error); 257 258 /* 259 * Reference all the vnodes we will need before we lock. 260 * This prevents a reclaimed vnode from being written 261 * in the same partial segment with cleaning blocks. 262 */ 263 lfs_cleanerlock(fs); 264 lastino = LFS_UNUSED_INUM; 265 for (cnt = blkcnt, blkp = blkiov; cnt--; ++blkp) { 266 /* Bounds-check incoming data, avoid panic for failed VGET */ 267 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) { 268 error = EINVAL; 269 goto err4; 270 } 271 272 if (lastino != blkp->bi_inode) { 273 /* Load the vnode and add a cleaning reference */ 274 error = lfs_fastvget(mntp, blkp->bi_inode, blkp, 275 LK_EXCLUSIVE | LK_NOWAIT, &vp); 276 lfs_setclean(fs, vp); 277 vput(vp); 278 vp = NULL; 279 280 lastino = blkp->bi_inode; 281 } 282 } 283 284 /* 285 * This seglock is just to prevent the fact that we might have to sleep 286 * from allowing the possibility that our blocks might become 287 * invalid. 288 * 289 * It is also important to note here that unless we specify SEGM_CKP, 290 * any Ifile blocks that we might be asked to clean will never get 291 * to the disk. 292 */ 293 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC); 294 295 /* Mark blocks/inodes dirty. */ 296 error = 0; 297 298 /* these were inside the initialization for the for loop */ 299 vp = NULL; 300 lastino = LFS_UNUSED_INUM; 301 nblkwritten = ninowritten = 0; 302 cnt = blkcnt; 303 for (blkp = blkiov; cnt--; ++blkp) 304 { 305 /* Bounds-check incoming data, avoid panic for failed VGET */ 306 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) { 307 error = EINVAL; 308 goto err3; 309 } 310 /* 311 * Get the IFILE entry (only once) and see if the file still 312 * exists. 313 */ 314 if (lastino != blkp->bi_inode) { 315 /* 316 * Finish the old file, if there was one. 317 */ 318 if (vp != NULL) { 319 vput(vp); 320 vp = NULL; 321 numrefed--; 322 } 323 324 /* 325 * Start a new file 326 */ 327 lastino = blkp->bi_inode; 328 329 /* Get the vnode/inode. */ 330 error = lfs_fastvget(mntp, blkp->bi_inode, blkp, 331 LK_EXCLUSIVE | LK_NOWAIT, &vp); 332 if (error) { 333 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget" 334 " failed with %d (ino %d, segment %d)\n", 335 error, blkp->bi_inode, 336 lfs_dtosn(fs, blkp->bi_daddr))); 337 /* 338 * If we got EAGAIN, that means that the 339 * Inode was locked. This is 340 * recoverable: just clean the rest of 341 * this segment, and let the cleaner try 342 * again with another. (When the 343 * cleaner runs again, this segment will 344 * sort high on the list, since it is 345 * now almost entirely empty.) 346 */ 347 if (error == EAGAIN) { 348 error = 0; 349 do_again++; 350 } else 351 KASSERT(error == ENOENT); 352 KASSERT(vp == NULL); 353 ip = NULL; 354 continue; 355 } 356 357 ip = VTOI(vp); 358 numrefed++; 359 ninowritten++; 360 } else if (vp == NULL) { 361 /* 362 * This can only happen if the vnode is dead (or 363 * in any case we can't get it...e.g., it is 364 * inlocked). Keep going. 365 */ 366 continue; 367 } 368 369 /* Past this point we are guaranteed that vp, ip are valid. */ 370 371 /* Can't clean VU_DIROP directories in case of truncation */ 372 /* XXX - maybe we should mark removed dirs specially? */ 373 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) { 374 do_again++; 375 continue; 376 } 377 378 /* If this BLOCK_INFO didn't contain a block, keep going. */ 379 if (blkp->bi_lbn == LFS_UNUSED_LBN) { 380 /* XXX need to make sure that the inode gets written in this case */ 381 /* XXX but only write the inode if it's the right one */ 382 if (blkp->bi_inode != LFS_IFILE_INUM) { 383 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp); 384 if (lfs_if_getdaddr(fs, ifp) == blkp->bi_daddr) { 385 mutex_enter(&lfs_lock); 386 LFS_SET_UINO(ip, IN_CLEANING); 387 mutex_exit(&lfs_lock); 388 } 389 brelse(bp, 0); 390 } 391 continue; 392 } 393 394 b_daddr = 0; 395 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) || 396 LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr) 397 { 398 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) == 399 lfs_dtosn(fs, blkp->bi_daddr)) 400 { 401 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %jx vs %jx\n", 402 (intmax_t)blkp->bi_daddr, (intmax_t)LFS_DBTOFSB(fs, b_daddr))); 403 } 404 do_again++; 405 continue; 406 } 407 408 /* 409 * Check block sizes. The blocks being cleaned come from 410 * disk, so they should have the same size as their on-disk 411 * counterparts. 412 */ 413 if (blkp->bi_lbn >= 0) 414 obsize = lfs_blksize(fs, ip, blkp->bi_lbn); 415 else 416 obsize = lfs_sb_getbsize(fs); 417 /* Check for fragment size change */ 418 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) { 419 obsize = ip->i_lfs_fragsize[blkp->bi_lbn]; 420 } 421 if (obsize != blkp->bi_size) { 422 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %jd wrong" 423 " size (%ld != %d), try again\n", 424 blkp->bi_inode, (intmax_t)blkp->bi_lbn, 425 (long) obsize, blkp->bi_size)); 426 do_again++; 427 continue; 428 } 429 430 /* 431 * If we get to here, then we are keeping the block. If 432 * it is an indirect block, we want to actually put it 433 * in the buffer cache so that it can be updated in the 434 * finish_meta section. If it's not, we need to 435 * allocate a fake buffer so that writeseg can perform 436 * the copyin and write the buffer. 437 */ 438 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) { 439 /* Data Block */ 440 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn, 441 blkp->bi_size, blkp->bi_bp); 442 /* Pretend we used bread() to get it */ 443 bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr); 444 } else { 445 /* Indirect block or ifile */ 446 if (blkp->bi_size != lfs_sb_getbsize(fs) && 447 ip->i_number != LFS_IFILE_INUM) 448 panic("lfs_markv: partial indirect block?" 449 " size=%d\n", blkp->bi_size); 450 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0); 451 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) { 452 /* 453 * The block in question was not found 454 * in the cache; i.e., the block that 455 * getblk() returned is empty. So, we 456 * can (and should) copy in the 457 * contents, because we've already 458 * determined that this was the right 459 * version of this block on disk. 460 * 461 * And, it can't have changed underneath 462 * us, because we have the segment lock. 463 */ 464 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size); 465 if (error) 466 goto err2; 467 } 468 } 469 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0) 470 goto err2; 471 472 nblkwritten++; 473 /* 474 * XXX should account indirect blocks and ifile pages as well 475 */ 476 if (nblkwritten + lfs_lblkno(fs, ninowritten * DINOSIZE(fs)) 477 > LFS_MARKV_MAX_BLOCKS) { 478 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n", 479 nblkwritten, ninowritten)); 480 lfs_segwrite(mntp, SEGM_CLEAN); 481 nblkwritten = ninowritten = 0; 482 } 483 } 484 485 /* 486 * Finish the old file, if there was one 487 */ 488 if (vp != NULL) { 489 vput(vp); 490 vp = NULL; 491 numrefed--; 492 } 493 494 KASSERTMSG((numrefed == 0), "lfs_markv: numrefed=%d", numrefed); 495 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n", 496 nblkwritten, ninowritten)); 497 498 /* 499 * The last write has to be SEGM_SYNC, because of calling semantics. 500 * It also has to be SEGM_CKP, because otherwise we could write 501 * over the newly cleaned data contained in a checkpoint, and then 502 * we'd be unhappy at recovery time. 503 */ 504 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC); 505 506 lfs_segunlock(fs); 507 508 vfs_unbusy(mntp); 509 if (error) 510 return (error); 511 else if (do_again) 512 return EAGAIN; 513 514 return 0; 515 516 err2: 517 DLOG((DLOG_CLEAN, "lfs_markv err2\n")); 518 519 /* 520 * XXX we're here because copyin() failed. 521 * XXX it means that we can't trust the cleanerd. too bad. 522 * XXX how can we recover from this? 523 */ 524 525 err3: 526 /* 527 * XXX should do segwrite here anyway? 528 */ 529 530 if (vp != NULL) { 531 vput(vp); 532 vp = NULL; 533 --numrefed; 534 } 535 536 lfs_segunlock(fs); 537 538 err4: 539 vfs_unbusy(mntp); 540 KASSERTMSG((numrefed == 0), "lfs_markv: numrefed=%d", numrefed); 541 542 return (error); 543 } 544 545 /* 546 * sys_lfs_bmapv: 547 * 548 * This will fill in the current disk address for arrays of blocks. 549 * 550 * 0 on success 551 * -1/errno is return on error. 552 */ 553 #ifdef USE_64BIT_SYSCALLS 554 int 555 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval) 556 { 557 /* { 558 syscallarg(fsid_t *) fsidp; 559 syscallarg(struct block_info *) blkiov; 560 syscallarg(int) blkcnt; 561 } */ 562 BLOCK_INFO *blkiov; 563 int blkcnt, error; 564 fsid_t fsid; 565 struct lfs *fs; 566 struct mount *mntp; 567 568 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 569 return (error); 570 571 if ((mntp = vfs_getvfs(&fsid)) == NULL) 572 return (ENOENT); 573 fs = VFSTOULFS(mntp)->um_lfs; 574 575 blkcnt = SCARG(uap, blkcnt); 576 #if SIZE_T_MAX <= UINT_MAX 577 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO)) 578 return (EINVAL); 579 #endif 580 KERNEL_LOCK(1, NULL); 581 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); 582 if ((error = copyin(SCARG(uap, blkiov), blkiov, 583 blkcnt * sizeof(BLOCK_INFO))) != 0) 584 goto out; 585 586 if ((error = lfs_bmapv(l, &fsid, blkiov, blkcnt)) == 0) 587 copyout(blkiov, SCARG(uap, blkiov), 588 blkcnt * sizeof(BLOCK_INFO)); 589 out: 590 lfs_free(fs, blkiov, LFS_NB_BLKIOV); 591 KERNEL_UNLOCK_ONE(NULL); 592 return error; 593 } 594 #else 595 int 596 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval) 597 { 598 /* { 599 syscallarg(fsid_t *) fsidp; 600 syscallarg(struct block_info *) blkiov; 601 syscallarg(int) blkcnt; 602 } */ 603 BLOCK_INFO *blkiov; 604 BLOCK_INFO_15 *blkiov15; 605 int i, blkcnt, error; 606 fsid_t fsid; 607 struct lfs *fs; 608 struct mount *mntp; 609 610 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 611 return (error); 612 613 if ((mntp = vfs_getvfs(&fsid)) == NULL) 614 return (ENOENT); 615 fs = VFSTOULFS(mntp)->um_lfs; 616 617 blkcnt = SCARG(uap, blkcnt); 618 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO)) 619 return (EINVAL); 620 KERNEL_LOCK(1, NULL); 621 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); 622 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV); 623 if ((error = copyin(SCARG(uap, blkiov), blkiov15, 624 blkcnt * sizeof(BLOCK_INFO_15))) != 0) 625 goto out; 626 627 for (i = 0; i < blkcnt; i++) { 628 blkiov[i].bi_inode = blkiov15[i].bi_inode; 629 blkiov[i].bi_lbn = blkiov15[i].bi_lbn; 630 blkiov[i].bi_daddr = blkiov15[i].bi_daddr; 631 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate; 632 blkiov[i].bi_version = blkiov15[i].bi_version; 633 blkiov[i].bi_bp = blkiov15[i].bi_bp; 634 blkiov[i].bi_size = blkiov15[i].bi_size; 635 } 636 637 if ((error = lfs_bmapv(l, &fsid, blkiov, blkcnt)) == 0) { 638 for (i = 0; i < blkcnt; i++) { 639 blkiov15[i].bi_inode = blkiov[i].bi_inode; 640 blkiov15[i].bi_lbn = blkiov[i].bi_lbn; 641 blkiov15[i].bi_daddr = blkiov[i].bi_daddr; 642 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate; 643 blkiov15[i].bi_version = blkiov[i].bi_version; 644 blkiov15[i].bi_bp = blkiov[i].bi_bp; 645 blkiov15[i].bi_size = blkiov[i].bi_size; 646 } 647 copyout(blkiov15, SCARG(uap, blkiov), 648 blkcnt * sizeof(BLOCK_INFO_15)); 649 } 650 out: 651 lfs_free(fs, blkiov, LFS_NB_BLKIOV); 652 lfs_free(fs, blkiov15, LFS_NB_BLKIOV); 653 KERNEL_UNLOCK_ONE(NULL); 654 return error; 655 } 656 #endif 657 658 int 659 lfs_bmapv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt) 660 { 661 BLOCK_INFO *blkp; 662 IFILE *ifp; 663 struct buf *bp; 664 struct inode *ip = NULL; 665 struct lfs *fs; 666 struct mount *mntp; 667 struct ulfsmount *ump; 668 struct vnode *vp; 669 ino_t lastino; 670 daddr_t v_daddr; 671 int cnt, error; 672 int numrefed = 0; 673 674 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, 675 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL); 676 if (error) 677 return (error); 678 679 if ((mntp = vfs_getvfs(fsidp)) == NULL) 680 return (ENOENT); 681 682 if ((error = vfs_busy(mntp)) != 0) 683 return (error); 684 685 ump = VFSTOULFS(mntp); 686 fs = ump->um_lfs; 687 688 if (fs->lfs_cleaner_thread == NULL) 689 fs->lfs_cleaner_thread = curlwp; 690 KASSERT(fs->lfs_cleaner_thread == curlwp); 691 692 cnt = blkcnt; 693 694 error = 0; 695 696 /* these were inside the initialization for the for loop */ 697 vp = NULL; 698 v_daddr = LFS_UNUSED_DADDR; 699 lastino = LFS_UNUSED_INUM; 700 for (blkp = blkiov; cnt--; ++blkp) 701 { 702 /* 703 * Get the IFILE entry (only once) and see if the file still 704 * exists. 705 */ 706 if (lastino != blkp->bi_inode) { 707 /* 708 * Finish the old file, if there was one. 709 */ 710 if (vp != NULL) { 711 vput(vp); 712 vp = NULL; 713 numrefed--; 714 } 715 716 /* 717 * Start a new file 718 */ 719 lastino = blkp->bi_inode; 720 if (blkp->bi_inode == LFS_IFILE_INUM) 721 v_daddr = lfs_sb_getidaddr(fs); 722 else { 723 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp); 724 v_daddr = lfs_if_getdaddr(fs, ifp); 725 brelse(bp, 0); 726 } 727 if (v_daddr == LFS_UNUSED_DADDR) { 728 blkp->bi_daddr = LFS_UNUSED_DADDR; 729 continue; 730 } 731 error = lfs_fastvget(mntp, blkp->bi_inode, NULL, 732 LK_SHARED, &vp); 733 if (error) { 734 DLOG((DLOG_CLEAN, "lfs_bmapv: lfs_fastvget ino" 735 "%d failed with %d", 736 blkp->bi_inode,error)); 737 KASSERT(vp == NULL); 738 continue; 739 } else { 740 KASSERT(VOP_ISLOCKED(vp)); 741 numrefed++; 742 } 743 ip = VTOI(vp); 744 } else if (vp == NULL) { 745 /* 746 * This can only happen if the vnode is dead. 747 * Keep going. Note that we DO NOT set the 748 * bi_addr to anything -- if we failed to get 749 * the vnode, for example, we want to assume 750 * conservatively that all of its blocks *are* 751 * located in the segment in question. 752 * lfs_markv will throw them out if we are 753 * wrong. 754 */ 755 continue; 756 } 757 758 /* Past this point we are guaranteed that vp, ip are valid. */ 759 760 if (blkp->bi_lbn == LFS_UNUSED_LBN) { 761 /* 762 * We just want the inode address, which is 763 * conveniently in v_daddr. 764 */ 765 blkp->bi_daddr = v_daddr; 766 } else { 767 daddr_t bi_daddr; 768 769 error = VOP_BMAP(vp, blkp->bi_lbn, NULL, 770 &bi_daddr, NULL); 771 if (error) 772 { 773 blkp->bi_daddr = LFS_UNUSED_DADDR; 774 continue; 775 } 776 blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr); 777 /* Fill in the block size, too */ 778 if (blkp->bi_lbn >= 0) 779 blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn); 780 else 781 blkp->bi_size = lfs_sb_getbsize(fs); 782 } 783 } 784 785 /* 786 * Finish the old file, if there was one. 787 */ 788 if (vp != NULL) { 789 vput(vp); 790 vp = NULL; 791 numrefed--; 792 } 793 794 KASSERTMSG((numrefed == 0), "lfs_bmapv: numrefed=%d", numrefed); 795 796 vfs_unbusy(mntp); 797 798 return 0; 799 } 800 801 /* 802 * sys_lfs_segclean: 803 * 804 * Mark the segment clean. 805 * 806 * 0 on success 807 * -1/errno is return on error. 808 */ 809 int 810 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval) 811 { 812 /* { 813 syscallarg(fsid_t *) fsidp; 814 syscallarg(u_long) segment; 815 } */ 816 struct lfs *fs; 817 struct mount *mntp; 818 fsid_t fsid; 819 int error; 820 unsigned long segnum; 821 822 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, 823 KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL); 824 if (error) 825 return (error); 826 827 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 828 return (error); 829 if ((mntp = vfs_getvfs(&fsid)) == NULL) 830 return (ENOENT); 831 832 fs = VFSTOULFS(mntp)->um_lfs; 833 segnum = SCARG(uap, segment); 834 835 if ((error = vfs_busy(mntp)) != 0) 836 return (error); 837 838 KERNEL_LOCK(1, NULL); 839 lfs_seglock(fs, SEGM_PROT); 840 error = lfs_do_segclean(fs, segnum, l->l_cred, l); 841 lfs_segunlock(fs); 842 KERNEL_UNLOCK_ONE(NULL); 843 vfs_unbusy(mntp); 844 return error; 845 } 846 847 /* 848 * Actually mark the segment clean. 849 * Must be called with the segment lock held. 850 */ 851 int 852 lfs_do_segclean(struct lfs *fs, unsigned long segnum, kauth_cred_t cred, struct lwp *l) 853 { 854 extern int lfs_dostats; 855 struct buf *bp; 856 CLEANERINFO *cip; 857 SEGUSE *sup; 858 859 if (lfs_dtosn(fs, lfs_sb_getcurseg(fs)) == segnum) { 860 return (EBUSY); 861 } 862 863 LFS_SEGENTRY(sup, fs, segnum, bp); 864 if (sup->su_nbytes) { 865 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" 866 " %d live bytes\n", segnum, sup->su_nbytes)); 867 brelse(bp, 0); 868 return (EBUSY); 869 } 870 if (sup->su_flags & SEGUSE_ACTIVE) { 871 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" 872 " segment is active\n", segnum)); 873 brelse(bp, 0); 874 return (EBUSY); 875 } 876 if (!(sup->su_flags & SEGUSE_DIRTY)) { 877 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:" 878 " segment is already clean\n", segnum)); 879 brelse(bp, 0); 880 return (EALREADY); 881 } 882 883 #ifdef DEBUG 884 if (lfs_checkempty(fs, segnum, cred, l) == EEXIST) 885 panic("Live data in cleaned segment %jd\n", (intmax_t)segnum); 886 #endif /* DEBUG */ 887 888 lfs_sb_addavail(fs, lfs_segtod(fs, 1)); 889 if (sup->su_flags & SEGUSE_SUPERBLOCK) 890 lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_SBPAD)); 891 if (lfs_sb_getversion(fs) > 1 && segnum == 0 && 892 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) 893 lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs)); 894 mutex_enter(&lfs_lock); 895 lfs_sb_addbfree(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + 896 lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs))); 897 lfs_sb_subdmeta(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + 898 lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs))); 899 if (lfs_sb_getdmeta(fs) < 0) 900 lfs_sb_setdmeta(fs, 0); 901 mutex_exit(&lfs_lock); 902 sup->su_flags &= ~SEGUSE_DIRTY; 903 LFS_WRITESEGENTRY(sup, fs, segnum, bp); 904 905 LFS_CLEANERINFO(cip, fs, bp); 906 lfs_ci_shiftdirtytoclean(fs, cip, 1); 907 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip)); 908 mutex_enter(&lfs_lock); 909 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); 910 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) 911 - fs->lfs_ravail - fs->lfs_favail); 912 wakeup(&fs->lfs_availsleep); 913 mutex_exit(&lfs_lock); 914 (void) LFS_BWRITE_LOG(bp); 915 916 if (lfs_dostats) 917 ++lfs_stats.segs_reclaimed; 918 919 return (0); 920 } 921 922 /* 923 * This will block until a segment in file system fsid is written. A timeout 924 * in milliseconds may be specified which will awake the cleaner automatically. 925 * An fsid of -1 means any file system, and a timeout of 0 means forever. 926 */ 927 int 928 lfs_segwait(fsid_t *fsidp, struct timeval *tv) 929 { 930 struct mount *mntp; 931 void *addr; 932 u_long timeout; 933 int error; 934 935 mutex_enter(&lfs_lock); 936 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL) 937 addr = &lfs_allclean_wakeup; 938 else 939 addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextsegsleep; 940 /* 941 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}! 942 * XXX IS THAT WHAT IS INTENDED? 943 */ 944 timeout = tvtohz(tv); 945 error = cv_timedwait_sig(addr, &lfs_lock, timeout); 946 mutex_exit(&lfs_lock); 947 return (error == ERESTART ? EINTR : 0); 948 } 949 950 /* 951 * sys_lfs_segwait: 952 * 953 * System call wrapper around lfs_segwait(). 954 * 955 * 0 on success 956 * 1 on timeout 957 * -1/errno is return on error. 958 */ 959 int 960 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap, 961 register_t *retval) 962 { 963 /* { 964 syscallarg(fsid_t *) fsidp; 965 syscallarg(struct timeval *) tv; 966 } */ 967 struct timeval atv; 968 fsid_t fsid; 969 int error; 970 971 /* XXX need we be su to segwait? */ 972 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, 973 KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL); 974 if (error) 975 return (error); 976 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0) 977 return (error); 978 979 if (SCARG(uap, tv)) { 980 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval)); 981 if (error) 982 return (error); 983 if (itimerfix(&atv)) 984 return (EINVAL); 985 } else /* NULL or invalid */ 986 atv.tv_sec = atv.tv_usec = 0; 987 return lfs_segwait(&fsid, &atv); 988 } 989 990 /* 991 * VFS_VGET call specialized for the cleaner. If the cleaner is 992 * processing IINFO structures, it may have the ondisk inode already, so 993 * don't go retrieving it again. 994 * 995 * Return the vnode referenced and locked. 996 */ 997 998 static int 999 lfs_fastvget(struct mount *mp, ino_t ino, BLOCK_INFO *blkp, int lk_flags, 1000 struct vnode **vpp) 1001 { 1002 struct ulfsmount *ump; 1003 struct lfs *fs; 1004 int error; 1005 1006 ump = VFSTOULFS(mp); 1007 fs = ump->um_lfs; 1008 fs->lfs_cleaner_hint = blkp; 1009 error = vcache_get(mp, &ino, sizeof(ino), vpp); 1010 fs->lfs_cleaner_hint = NULL; 1011 if (error) 1012 return error; 1013 error = vn_lock(*vpp, lk_flags); 1014 if (error) { 1015 if (error == EBUSY) 1016 error = EAGAIN; 1017 vrele(*vpp); 1018 *vpp = NULL; 1019 return error; 1020 } 1021 1022 return 0; 1023 } 1024 1025 /* 1026 * Make up a "fake" cleaner buffer, copy the data from userland into it. 1027 */ 1028 static struct buf * 1029 lfs_fakebuf(struct lfs *fs, struct vnode *vp, daddr_t lbn, size_t size, void *uaddr) 1030 { 1031 struct buf *bp; 1032 int error; 1033 1034 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM); 1035 1036 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN); 1037 error = copyin(uaddr, bp->b_data, size); 1038 if (error) { 1039 lfs_freebuf(fs, bp); 1040 return NULL; 1041 } 1042 KDASSERT(bp->b_iodone == lfs_free_aiodone); 1043 1044 #if 0 1045 mutex_enter(&lfs_lock); 1046 ++fs->lfs_iocount; 1047 mutex_exit(&lfs_lock); 1048 #endif 1049 bp->b_bufsize = size; 1050 bp->b_bcount = size; 1051 return (bp); 1052 } 1053