1 /* $NetBSD: if_ethersubr.c,v 1.333 2025/10/12 23:41:09 thorpej Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.333 2025/10/12 23:41:09 thorpej Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 #include <net/ether_calls.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/ether_slowprotocols.h> 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #if NBRIDGE > 0 129 #include <net/if_bridgevar.h> 130 #endif 131 132 #include <netinet/in.h> 133 #ifdef INET 134 #include <netinet/in_var.h> 135 #endif 136 #include <netinet/if_inarp.h> 137 138 #ifdef INET6 139 #ifndef INET 140 #include <netinet/in.h> 141 #endif 142 #include <netinet6/in6_var.h> 143 #include <netinet6/nd6.h> 144 #endif 145 146 #include "carp.h" 147 #if NCARP > 0 148 #include <netinet/ip_carp.h> 149 #endif 150 151 #ifdef NETATALK 152 #include <netatalk/at.h> 153 #include <netatalk/at_var.h> 154 #include <netatalk/at_extern.h> 155 156 #define llc_snap_org_code llc_un.type_snap.org_code 157 #define llc_snap_ether_type llc_un.type_snap.ether_type 158 159 extern u_char at_org_code[3]; 160 extern u_char aarp_org_code[3]; 161 #endif /* NETATALK */ 162 163 #ifdef MPLS 164 #include <netmpls/mpls.h> 165 #include <netmpls/mpls_var.h> 166 #endif 167 168 CTASSERT(sizeof(struct ether_addr) == 6); 169 CTASSERT(sizeof(struct ether_header) == 14); 170 171 #ifdef DIAGNOSTIC 172 static struct timeval bigpktppslim_last; 173 static int bigpktppslim = 2; /* XXX */ 174 static int bigpktpps_count; 175 static kmutex_t bigpktpps_lock __cacheline_aligned; 176 #endif 177 178 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 179 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 180 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 181 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 182 #define senderr(e) { error = (e); goto bad;} 183 184 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 185 186 /* 187 * Attempt to get the Ethernet address from device properties. 188 * 189 * We generally follow the Device Tree specification with regard 190 * to the property names, but that's OK because the property names 191 * are pretty generic. 192 */ 193 bool 194 ether_getaddr(device_t dev, uint8_t enaddr[ETHER_ADDR_LEN]) 195 { 196 /* 197 * First check the platform device tree; it may have specific 198 * rules about how Ethernet addresses are assigned, separate 199 * from properties associated with a given device. 200 */ 201 struct ether_get_mac_address_args args = { 202 .enaddr = enaddr, 203 }; 204 if (device_call(dev, ETHER_GET_MAC_ADDRESS(&args)) == 0) { 205 /* Got it from the platform device tree. */ 206 return true; 207 } 208 209 /* 210 * Check first for the "mac-address" property. The bindings 211 * say that this would be used only if it is different then the 212 * "local-mac-address" property. But if it's the same, then 213 * using it is exactly the same as using "local-mac-address". So, 214 * we first look for "mac-address", and if that's not there, then 215 * we look for "local-mac-address". 216 */ 217 if (device_getprop_data(dev, "mac-address", enaddr, 218 ETHER_ADDR_LEN) == ETHER_ADDR_LEN || 219 device_getprop_data(dev, "local-mac-address", enaddr, 220 ETHER_ADDR_LEN) == ETHER_ADDR_LEN) { 221 return true; 222 } 223 return false; 224 } 225 226 /* 227 * Ethernet output routine. 228 * Encapsulate a packet of type family for the local net. 229 * Assumes that ifp is actually pointer to ethercom structure. 230 */ 231 static int 232 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 233 const struct sockaddr * const dst, const struct rtentry *rt) 234 { 235 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 236 uint16_t etype = 0; 237 int error = 0, hdrcmplt = 0; 238 struct mbuf *m = m0; 239 struct mbuf *mcopy = NULL; 240 struct ether_header *eh; 241 struct ifnet *ifp = ifp0; 242 #ifdef INET 243 struct arphdr *ah; 244 #endif 245 #ifdef NETATALK 246 struct at_ifaddr *aa; 247 #endif 248 249 #ifdef MBUFTRACE 250 m_claimm(m, ifp->if_mowner); 251 #endif 252 253 #if NCARP > 0 254 if (ifp->if_type == IFT_CARP) { 255 struct ifaddr *ifa; 256 int s = pserialize_read_enter(); 257 258 /* loop back if this is going to the carp interface */ 259 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 260 (ifa = ifa_ifwithaddr(dst)) != NULL) { 261 if (ifa->ifa_ifp == ifp0) { 262 pserialize_read_exit(s); 263 return looutput(ifp0, m, dst, rt); 264 } 265 } 266 pserialize_read_exit(s); 267 268 ifp = ifp->if_carpdev; 269 /* ac = (struct arpcom *)ifp; */ 270 271 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 272 (IFF_UP | IFF_RUNNING)) 273 senderr(ENETDOWN); 274 } 275 #endif 276 277 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 278 senderr(ENETDOWN); 279 280 switch (dst->sa_family) { 281 282 #ifdef INET 283 case AF_INET: 284 if (m->m_flags & M_BCAST) { 285 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 286 } else if (m->m_flags & M_MCAST) { 287 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 288 } else { 289 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 290 if (error) 291 return (error == EWOULDBLOCK) ? 0 : error; 292 } 293 /* If broadcasting on a simplex interface, loopback a copy */ 294 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 295 mcopy = m_copypacket(m, M_DONTWAIT); 296 etype = htons(ETHERTYPE_IP); 297 break; 298 299 case AF_ARP: 300 ah = mtod(m, struct arphdr *); 301 if (m->m_flags & M_BCAST) { 302 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 303 } else { 304 void *tha = ar_tha(ah); 305 306 if (tha == NULL) { 307 /* fake with ARPHRD_IEEE1394 */ 308 m_freem(m); 309 return 0; 310 } 311 memcpy(edst, tha, sizeof(edst)); 312 } 313 314 ah->ar_hrd = htons(ARPHRD_ETHER); 315 316 switch (ntohs(ah->ar_op)) { 317 case ARPOP_REVREQUEST: 318 case ARPOP_REVREPLY: 319 etype = htons(ETHERTYPE_REVARP); 320 break; 321 322 case ARPOP_REQUEST: 323 case ARPOP_REPLY: 324 default: 325 etype = htons(ETHERTYPE_ARP); 326 } 327 break; 328 #endif 329 330 #ifdef INET6 331 case AF_INET6: 332 if (m->m_flags & M_BCAST) { 333 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 334 } else if (m->m_flags & M_MCAST) { 335 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 336 edst); 337 } else { 338 error = nd6_resolve(ifp0, rt, m, dst, edst, 339 sizeof(edst)); 340 if (error) 341 return (error == EWOULDBLOCK) ? 0 : error; 342 } 343 etype = htons(ETHERTYPE_IPV6); 344 break; 345 #endif 346 347 #ifdef NETATALK 348 case AF_APPLETALK: { 349 struct ifaddr *ifa; 350 int s; 351 352 KERNEL_LOCK(1, NULL); 353 354 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 355 KERNEL_UNLOCK_ONE(NULL); 356 return 0; 357 } 358 359 /* 360 * ifaddr is the first thing in at_ifaddr 361 */ 362 s = pserialize_read_enter(); 363 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 364 if (ifa == NULL) { 365 pserialize_read_exit(s); 366 KERNEL_UNLOCK_ONE(NULL); 367 senderr(EADDRNOTAVAIL); 368 } 369 aa = (struct at_ifaddr *)ifa; 370 371 /* 372 * In the phase 2 case, we need to prepend an mbuf for the 373 * llc header. 374 */ 375 if (aa->aa_flags & AFA_PHASE2) { 376 struct llc llc; 377 378 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 379 if (m == NULL) { 380 pserialize_read_exit(s); 381 KERNEL_UNLOCK_ONE(NULL); 382 senderr(ENOBUFS); 383 } 384 385 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 386 llc.llc_control = LLC_UI; 387 memcpy(llc.llc_snap_org_code, at_org_code, 388 sizeof(llc.llc_snap_org_code)); 389 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 390 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 391 } else { 392 etype = htons(ETHERTYPE_ATALK); 393 } 394 pserialize_read_exit(s); 395 KERNEL_UNLOCK_ONE(NULL); 396 break; 397 } 398 #endif /* NETATALK */ 399 400 case pseudo_AF_HDRCMPLT: 401 hdrcmplt = 1; 402 memcpy(esrc, 403 ((const struct ether_header *)dst->sa_data)->ether_shost, 404 sizeof(esrc)); 405 /* FALLTHROUGH */ 406 407 case AF_UNSPEC: 408 memcpy(edst, 409 ((const struct ether_header *)dst->sa_data)->ether_dhost, 410 sizeof(edst)); 411 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 412 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 413 break; 414 415 default: 416 rt_unhandled(__func__, ifp, dst); 417 senderr(EAFNOSUPPORT); 418 } 419 420 #ifdef MPLS 421 { 422 struct m_tag *mtag; 423 mtag = m_tag_find(m, PACKET_TAG_MPLS); 424 if (mtag != NULL) { 425 /* Having the tag itself indicates it's MPLS */ 426 etype = htons(ETHERTYPE_MPLS); 427 m_tag_delete(m, mtag); 428 } 429 } 430 #endif 431 432 if (mcopy) 433 (void)looutput(ifp, mcopy, dst, rt); 434 435 KASSERT((m->m_flags & M_PKTHDR) != 0); 436 437 /* 438 * If no ether type is set, this must be a 802.2 formatted packet. 439 */ 440 if (etype == 0) 441 etype = htons(m->m_pkthdr.len); 442 443 /* 444 * Add local net header. If no space in first mbuf, allocate another. 445 */ 446 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 447 if (m == NULL) 448 senderr(ENOBUFS); 449 450 eh = mtod(m, struct ether_header *); 451 /* Note: etype is already in network byte order. */ 452 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 453 memcpy(eh->ether_dhost, edst, sizeof(edst)); 454 if (hdrcmplt) { 455 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 456 } else { 457 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 458 sizeof(eh->ether_shost)); 459 } 460 461 #if NCARP > 0 462 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 463 /* update with virtual MAC */ 464 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 465 sizeof(eh->ether_shost)); 466 } 467 #endif 468 469 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 470 return error; 471 if (m == NULL) 472 return 0; 473 474 #if NBRIDGE > 0 475 /* 476 * Bridges require special output handling. 477 */ 478 if (ifp->if_bridge) 479 return bridge_output(ifp, m, NULL, NULL); 480 #endif 481 482 #if NCARP > 0 483 if (ifp != ifp0) 484 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 485 #endif 486 487 #ifdef ALTQ 488 KERNEL_LOCK(1, NULL); 489 /* 490 * If ALTQ is enabled on the parent interface, do 491 * classification; the queueing discipline might not 492 * require classification, but might require the 493 * address family/header pointer in the pktattr. 494 */ 495 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 496 altq_etherclassify(&ifp->if_snd, m); 497 KERNEL_UNLOCK_ONE(NULL); 498 #endif 499 return ifq_enqueue(ifp, m); 500 501 bad: 502 if_statinc(ifp, if_oerrors); 503 m_freem(m); 504 return error; 505 } 506 507 #ifdef ALTQ 508 /* 509 * This routine is a slight hack to allow a packet to be classified 510 * if the Ethernet headers are present. It will go away when ALTQ's 511 * classification engine understands link headers. 512 * 513 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 514 * is indeed contiguous, then to read the LLC and so on. 515 */ 516 void 517 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 518 { 519 struct ether_header *eh; 520 struct mbuf *mtop = m; 521 uint16_t ether_type; 522 int hlen, af, hdrsize; 523 void *hdr; 524 525 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 526 527 hlen = ETHER_HDR_LEN; 528 eh = mtod(m, struct ether_header *); 529 530 ether_type = htons(eh->ether_type); 531 532 if (ether_type < ETHERMTU) { 533 /* LLC/SNAP */ 534 struct llc *llc = (struct llc *)(eh + 1); 535 hlen += 8; 536 537 if (m->m_len < hlen || 538 llc->llc_dsap != LLC_SNAP_LSAP || 539 llc->llc_ssap != LLC_SNAP_LSAP || 540 llc->llc_control != LLC_UI) { 541 /* Not SNAP. */ 542 goto bad; 543 } 544 545 ether_type = htons(llc->llc_un.type_snap.ether_type); 546 } 547 548 switch (ether_type) { 549 case ETHERTYPE_IP: 550 af = AF_INET; 551 hdrsize = 20; /* sizeof(struct ip) */ 552 break; 553 554 case ETHERTYPE_IPV6: 555 af = AF_INET6; 556 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 557 break; 558 559 default: 560 af = AF_UNSPEC; 561 hdrsize = 0; 562 break; 563 } 564 565 while (m->m_len <= hlen) { 566 hlen -= m->m_len; 567 m = m->m_next; 568 if (m == NULL) 569 goto bad; 570 } 571 572 if (m->m_len < (hlen + hdrsize)) { 573 /* 574 * protocol header not in a single mbuf. 575 * We can't cope with this situation right 576 * now (but it shouldn't ever happen, really, anyhow). 577 */ 578 #ifdef DEBUG 579 printf("altq_etherclassify: headers span multiple mbufs: " 580 "%d < %d\n", m->m_len, (hlen + hdrsize)); 581 #endif 582 goto bad; 583 } 584 585 m->m_data += hlen; 586 m->m_len -= hlen; 587 588 hdr = mtod(m, void *); 589 590 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 591 mtop->m_pkthdr.pattr_class = 592 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 593 } 594 mtop->m_pkthdr.pattr_af = af; 595 mtop->m_pkthdr.pattr_hdr = hdr; 596 597 m->m_data -= hlen; 598 m->m_len += hlen; 599 600 return; 601 602 bad: 603 mtop->m_pkthdr.pattr_class = NULL; 604 mtop->m_pkthdr.pattr_hdr = NULL; 605 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 606 } 607 #endif /* ALTQ */ 608 609 #if defined (LLC) || defined (NETATALK) 610 static void 611 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 612 { 613 pktqueue_t *pktq = NULL; 614 struct llc *l; 615 616 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 617 goto error; 618 619 l = (struct llc *)(eh+1); 620 switch (l->llc_dsap) { 621 #ifdef NETATALK 622 case LLC_SNAP_LSAP: 623 switch (l->llc_control) { 624 case LLC_UI: 625 if (l->llc_ssap != LLC_SNAP_LSAP) 626 goto error; 627 628 if (memcmp(&(l->llc_snap_org_code)[0], 629 at_org_code, sizeof(at_org_code)) == 0 && 630 ntohs(l->llc_snap_ether_type) == 631 ETHERTYPE_ATALK) { 632 pktq = at_pktq2; 633 m_adj(m, sizeof(struct ether_header) 634 + sizeof(struct llc)); 635 break; 636 } 637 638 if (memcmp(&(l->llc_snap_org_code)[0], 639 aarp_org_code, 640 sizeof(aarp_org_code)) == 0 && 641 ntohs(l->llc_snap_ether_type) == 642 ETHERTYPE_AARP) { 643 m_adj(m, sizeof(struct ether_header) 644 + sizeof(struct llc)); 645 aarpinput(ifp, m); /* XXX queue? */ 646 return; 647 } 648 649 default: 650 goto error; 651 } 652 break; 653 #endif 654 default: 655 goto noproto; 656 } 657 658 KASSERT(pktq != NULL); 659 if (__predict_false(!pktq_enqueue(pktq, m, 0))) { 660 m_freem(m); 661 } 662 return; 663 664 noproto: 665 m_freem(m); 666 if_statinc(ifp, if_noproto); 667 return; 668 error: 669 m_freem(m); 670 if_statinc(ifp, if_ierrors); 671 return; 672 } 673 #endif /* defined (LLC) || defined (NETATALK) */ 674 675 /* 676 * Process a received Ethernet packet; 677 * the packet is in the mbuf chain m with 678 * the ether header. 679 */ 680 void 681 ether_input(struct ifnet *ifp, struct mbuf *m) 682 { 683 #if NVLAN > 0 || defined(MBUFTRACE) 684 struct ethercom *ec = (struct ethercom *) ifp; 685 #endif 686 pktqueue_t *pktq = NULL; 687 uint16_t etype; 688 struct ether_header *eh; 689 size_t ehlen; 690 static int earlypkts; 691 692 /* No RPS for not-IP. */ 693 pktq_rps_hash_func_t rps_hash = NULL; 694 695 KASSERT(!cpu_intr_p()); 696 KASSERT((m->m_flags & M_PKTHDR) != 0); 697 698 if ((ifp->if_flags & IFF_UP) == 0) 699 goto drop; 700 701 #ifdef MBUFTRACE 702 m_claimm(m, &ec->ec_rx_mowner); 703 #endif 704 705 if (__predict_false(m->m_len < sizeof(*eh))) { 706 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 707 if_statinc(ifp, if_ierrors); 708 return; 709 } 710 } 711 712 eh = mtod(m, struct ether_header *); 713 etype = ntohs(eh->ether_type); 714 ehlen = sizeof(*eh); 715 716 if (__predict_false(earlypkts < 100 || 717 entropy_epoch() == (unsigned)-1)) { 718 rnd_add_data(NULL, eh, ehlen, 0); 719 earlypkts++; 720 } 721 722 /* 723 * Determine if the packet is within its size limits. For MPLS the 724 * header length is variable, so we skip the check. 725 */ 726 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 727 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 728 #ifdef DIAGNOSTIC 729 mutex_enter(&bigpktpps_lock); 730 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 731 bigpktppslim)) { 732 printf("%s: discarding oversize frame (len=%d)\n", 733 ifp->if_xname, m->m_pkthdr.len); 734 } 735 mutex_exit(&bigpktpps_lock); 736 #endif 737 goto error; 738 } 739 740 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 741 /* 742 * If this is not a simplex interface, drop the packet 743 * if it came from us. 744 */ 745 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 746 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 747 ETHER_ADDR_LEN) == 0) { 748 goto drop; 749 } 750 751 if (memcmp(etherbroadcastaddr, 752 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 753 m->m_flags |= M_BCAST; 754 else 755 m->m_flags |= M_MCAST; 756 if_statinc(ifp, if_imcasts); 757 } 758 759 /* If the CRC is still on the packet, trim it off. */ 760 if (m->m_flags & M_HASFCS) { 761 m_adj(m, -ETHER_CRC_LEN); 762 m->m_flags &= ~M_HASFCS; 763 } 764 765 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 766 767 if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) { 768 m = ether_strip_vlantag(m); 769 if (m == NULL) { 770 if_statinc(ifp, if_ierrors); 771 return; 772 } 773 774 eh = mtod(m, struct ether_header *); 775 etype = ntohs(eh->ether_type); 776 ehlen = sizeof(*eh); 777 } 778 779 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 780 (ifp->if_flags & IFF_PROMISC) != 0 && 781 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 782 ETHER_ADDR_LEN) != 0) { 783 m->m_flags |= M_PROMISC; 784 } 785 786 if ((m->m_flags & M_PROMISC) == 0) { 787 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 788 return; 789 if (m == NULL) 790 return; 791 792 eh = mtod(m, struct ether_header *); 793 etype = ntohs(eh->ether_type); 794 } 795 796 /* 797 * Processing a logical interfaces that are able 798 * to configure vlan(4). 799 */ 800 #if NAGR > 0 801 if (ifp->if_lagg != NULL && 802 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 803 m->m_flags &= ~M_PROMISC; 804 agr_input(ifp, m); 805 return; 806 } 807 #endif 808 809 /* 810 * VLAN processing. 811 * 812 * VLAN provides service delimiting so the frames are 813 * processed before other handlings. If a VLAN interface 814 * does not exist to take those frames, they're returned 815 * to ether_input(). 816 */ 817 818 if (vlan_has_tag(m)) { 819 if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) { 820 if (etype == ETHERTYPE_VLAN || 821 etype == ETHERTYPE_QINQ) 822 goto drop; 823 824 /* XXX we should actually use the prio value? */ 825 m->m_flags &= ~M_VLANTAG; 826 } else { 827 #if NVLAN > 0 828 if (ec->ec_nvlans > 0) { 829 m = vlan_input(ifp, m); 830 831 /* vlan_input() called ether_input() recursively */ 832 if (m == NULL) 833 return; 834 } 835 #endif 836 /* drop VLAN frames not for this port. */ 837 goto noproto; 838 } 839 } 840 841 #if NCARP > 0 842 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 843 /* 844 * Clear M_PROMISC, in case the packet comes from a 845 * vlan. 846 */ 847 m->m_flags &= ~M_PROMISC; 848 if (carp_input(m, (uint8_t *)&eh->ether_shost, 849 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 850 return; 851 } 852 #endif 853 854 /* 855 * Handle protocols that expect to have the Ethernet header 856 * (and possibly FCS) intact. 857 */ 858 switch (etype) { 859 #if NPPPOE > 0 860 case ETHERTYPE_PPPOEDISC: 861 pppoedisc_input(ifp, m); 862 return; 863 864 case ETHERTYPE_PPPOE: 865 pppoe_input(ifp, m); 866 return; 867 #endif 868 869 case ETHERTYPE_SLOWPROTOCOLS: { 870 uint8_t subtype; 871 872 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 873 goto error; 874 875 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 876 switch (subtype) { 877 #if NAGR > 0 878 case SLOWPROTOCOLS_SUBTYPE_LACP: 879 if (ifp->if_lagg != NULL) { 880 ieee8023ad_lacp_input(ifp, m); 881 return; 882 } 883 break; 884 885 case SLOWPROTOCOLS_SUBTYPE_MARKER: 886 if (ifp->if_lagg != NULL) { 887 ieee8023ad_marker_input(ifp, m); 888 return; 889 } 890 break; 891 #endif 892 893 default: 894 if (subtype == 0 || subtype > 10) { 895 /* illegal value */ 896 goto noproto; 897 } 898 /* unknown subtype */ 899 break; 900 } 901 } 902 /* FALLTHROUGH */ 903 default: 904 if (m->m_flags & M_PROMISC) 905 goto drop; 906 } 907 908 /* If the CRC is still on the packet, trim it off. */ 909 if (m->m_flags & M_HASFCS) { 910 m_adj(m, -ETHER_CRC_LEN); 911 m->m_flags &= ~M_HASFCS; 912 } 913 914 /* etype represents the size of the payload in this case */ 915 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 916 KASSERT(ehlen == sizeof(*eh)); 917 #if defined (LLC) || defined (NETATALK) 918 ether_input_llc(ifp, m, eh); 919 return; 920 #else 921 /* ethertype of 0-1500 is regarded as noproto */ 922 goto noproto; 923 #endif 924 } 925 926 /* For ARP packets, store the source address so that 927 * ARP DAD probes can be validated. */ 928 if (etype == ETHERTYPE_ARP) { 929 struct m_tag *mtag; 930 931 mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN, 932 M_NOWAIT); 933 if (mtag != NULL) { 934 memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN); 935 m_tag_prepend(m, mtag); 936 } 937 } 938 939 /* Strip off the Ethernet header. */ 940 m_adj(m, ehlen); 941 942 switch (etype) { 943 #ifdef INET 944 case ETHERTYPE_IP: 945 #ifdef GATEWAY 946 if (ipflow_fastforward(m)) 947 return; 948 #endif 949 pktq = ip_pktq; 950 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 951 break; 952 953 case ETHERTYPE_ARP: 954 pktq = arp_pktq; 955 break; 956 957 case ETHERTYPE_REVARP: 958 revarpinput(m); /* XXX queue? */ 959 return; 960 #endif 961 962 #ifdef INET6 963 case ETHERTYPE_IPV6: 964 if (__predict_false(!in6_present)) 965 goto noproto; 966 #ifdef GATEWAY 967 if (ip6flow_fastforward(&m)) 968 return; 969 #endif 970 pktq = ip6_pktq; 971 rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p); 972 break; 973 #endif 974 975 #ifdef NETATALK 976 case ETHERTYPE_ATALK: 977 pktq = at_pktq1; 978 break; 979 980 case ETHERTYPE_AARP: 981 aarpinput(ifp, m); /* XXX queue? */ 982 return; 983 #endif 984 985 #ifdef MPLS 986 case ETHERTYPE_MPLS: 987 pktq = mpls_pktq; 988 break; 989 #endif 990 991 default: 992 goto noproto; 993 } 994 995 KASSERT(pktq != NULL); 996 const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0; 997 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 998 m_freem(m); 999 } 1000 return; 1001 1002 drop: 1003 m_freem(m); 1004 if_statinc(ifp, if_iqdrops); 1005 return; 1006 noproto: 1007 m_freem(m); 1008 if_statinc(ifp, if_noproto); 1009 return; 1010 error: 1011 m_freem(m); 1012 if_statinc(ifp, if_ierrors); 1013 return; 1014 } 1015 1016 static void 1017 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction) 1018 { 1019 struct ether_vlan_header evl; 1020 struct m_hdr mh, md; 1021 1022 KASSERT(bp != NULL); 1023 1024 if (!vlan_has_tag(m)) { 1025 bpf_mtap3(bp, m, direction); 1026 return; 1027 } 1028 1029 memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN); 1030 evl.evl_proto = evl.evl_encap_proto; 1031 evl.evl_encap_proto = htons(ETHERTYPE_VLAN); 1032 evl.evl_tag = htons(vlan_get_tag(m)); 1033 1034 md.mh_flags = 0; 1035 md.mh_data = m->m_data + ETHER_HDR_LEN; 1036 md.mh_len = m->m_len - ETHER_HDR_LEN; 1037 md.mh_next = m->m_next; 1038 1039 mh.mh_flags = 0; 1040 mh.mh_data = (char *)&evl; 1041 mh.mh_len = sizeof(evl); 1042 mh.mh_next = (struct mbuf *)&md; 1043 1044 bpf_mtap3(bp, (struct mbuf *)&mh, direction); 1045 } 1046 1047 /* 1048 * Convert Ethernet address to printable (loggable) representation. 1049 */ 1050 char * 1051 ether_sprintf(const u_char *ap) 1052 { 1053 static char etherbuf[3 * ETHER_ADDR_LEN]; 1054 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 1055 } 1056 1057 char * 1058 ether_snprintf(char *buf, size_t len, const u_char *ap) 1059 { 1060 char *cp = buf; 1061 size_t i; 1062 1063 for (i = 0; i < len / 3; i++) { 1064 *cp++ = hexdigits[*ap >> 4]; 1065 *cp++ = hexdigits[*ap++ & 0xf]; 1066 *cp++ = ':'; 1067 } 1068 *--cp = '\0'; 1069 return buf; 1070 } 1071 1072 /* 1073 * Perform common duties while attaching to interface list 1074 */ 1075 void 1076 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1077 { 1078 struct ethercom *ec = (struct ethercom *)ifp; 1079 char xnamebuf[HOOKNAMSIZ]; 1080 1081 if (lla != NULL && ETHER_IS_MULTICAST(lla)) 1082 aprint_error("The multicast bit is set in the MAC address. " 1083 "It's wrong.\n"); 1084 1085 ifp->if_type = IFT_ETHER; 1086 ifp->if_hdrlen = ETHER_HDR_LEN; 1087 ifp->if_dlt = DLT_EN10MB; 1088 ifp->if_mtu = ETHERMTU; 1089 ifp->if_output = ether_output; 1090 ifp->_if_input = ether_input; 1091 if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) 1092 ifp->if_bpf_mtap = ether_bpf_mtap; 1093 if (ifp->if_baudrate == 0) 1094 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1095 1096 if (lla != NULL) 1097 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1098 1099 LIST_INIT(&ec->ec_multiaddrs); 1100 SIMPLEQ_INIT(&ec->ec_vids); 1101 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1102 ec->ec_flags = 0; 1103 ifp->if_broadcastaddr = etherbroadcastaddr; 1104 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1105 snprintf(xnamebuf, sizeof(xnamebuf), 1106 "%s-ether_ifdetachhooks", ifp->if_xname); 1107 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1108 #ifdef MBUFTRACE 1109 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1110 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1111 MOWNER_ATTACH(&ec->ec_tx_mowner); 1112 MOWNER_ATTACH(&ec->ec_rx_mowner); 1113 ifp->if_mowner = &ec->ec_tx_mowner; 1114 #endif 1115 } 1116 1117 void 1118 ether_ifdetach(struct ifnet *ifp) 1119 { 1120 struct ethercom *ec = (void *) ifp; 1121 struct ether_multi *enm; 1122 1123 IFNET_ASSERT_UNLOCKED(ifp); 1124 /* 1125 * Prevent further calls to ioctl (for example turning off 1126 * promiscuous mode from the bridge code), which eventually can 1127 * call if_init() which can cause panics because the interface 1128 * is in the process of being detached. Return device not configured 1129 * instead. 1130 */ 1131 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1132 enxio); 1133 1134 simplehook_dohooks(ec->ec_ifdetach_hooks); 1135 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1136 simplehook_destroy(ec->ec_ifdetach_hooks); 1137 1138 bpf_detach(ifp); 1139 1140 ETHER_LOCK(ec); 1141 KASSERT(ec->ec_nvlans == 0); 1142 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1143 LIST_REMOVE(enm, enm_list); 1144 kmem_free(enm, sizeof(*enm)); 1145 ec->ec_multicnt--; 1146 } 1147 ETHER_UNLOCK(ec); 1148 1149 mutex_obj_free(ec->ec_lock); 1150 ec->ec_lock = NULL; 1151 1152 ifp->if_mowner = NULL; 1153 MOWNER_DETACH(&ec->ec_rx_mowner); 1154 MOWNER_DETACH(&ec->ec_tx_mowner); 1155 } 1156 1157 void * 1158 ether_ifdetachhook_establish(struct ifnet *ifp, 1159 void (*fn)(void *), void *arg) 1160 { 1161 struct ethercom *ec; 1162 khook_t *hk; 1163 1164 if (ifp->if_type != IFT_ETHER) 1165 return NULL; 1166 1167 ec = (struct ethercom *)ifp; 1168 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1169 fn, arg); 1170 1171 return (void *)hk; 1172 } 1173 1174 void 1175 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1176 void *vhook, kmutex_t *lock) 1177 { 1178 struct ethercom *ec; 1179 1180 if (vhook == NULL) 1181 return; 1182 1183 ec = (struct ethercom *)ifp; 1184 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1185 } 1186 1187 #if 0 1188 /* 1189 * This is for reference. We have a table-driven version 1190 * of the little-endian crc32 generator, which is faster 1191 * than the double-loop. 1192 */ 1193 uint32_t 1194 ether_crc32_le(const uint8_t *buf, size_t len) 1195 { 1196 uint32_t c, crc, carry; 1197 size_t i, j; 1198 1199 crc = 0xffffffffU; /* initial value */ 1200 1201 for (i = 0; i < len; i++) { 1202 c = buf[i]; 1203 for (j = 0; j < 8; j++) { 1204 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1205 crc >>= 1; 1206 c >>= 1; 1207 if (carry) 1208 crc = (crc ^ ETHER_CRC_POLY_LE); 1209 } 1210 } 1211 1212 return (crc); 1213 } 1214 #else 1215 uint32_t 1216 ether_crc32_le(const uint8_t *buf, size_t len) 1217 { 1218 static const uint32_t crctab[] = { 1219 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1220 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1221 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1222 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1223 }; 1224 uint32_t crc; 1225 size_t i; 1226 1227 crc = 0xffffffffU; /* initial value */ 1228 1229 for (i = 0; i < len; i++) { 1230 crc ^= buf[i]; 1231 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1232 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1233 } 1234 1235 return (crc); 1236 } 1237 #endif 1238 1239 uint32_t 1240 ether_crc32_be(const uint8_t *buf, size_t len) 1241 { 1242 uint32_t c, crc, carry; 1243 size_t i, j; 1244 1245 crc = 0xffffffffU; /* initial value */ 1246 1247 for (i = 0; i < len; i++) { 1248 c = buf[i]; 1249 for (j = 0; j < 8; j++) { 1250 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1251 crc <<= 1; 1252 c >>= 1; 1253 if (carry) 1254 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1255 } 1256 } 1257 1258 return (crc); 1259 } 1260 1261 #ifdef INET 1262 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1263 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1264 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1265 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1266 #endif 1267 #ifdef INET6 1268 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1269 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1270 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1271 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1272 #endif 1273 1274 /* 1275 * ether_aton implementation, not using a static buffer. 1276 */ 1277 int 1278 ether_aton_r(u_char *dest, size_t len, const char *str) 1279 { 1280 const u_char *cp = (const void *)str; 1281 u_char *ep; 1282 1283 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1284 1285 if (len < ETHER_ADDR_LEN) 1286 return ENOSPC; 1287 1288 ep = dest + ETHER_ADDR_LEN; 1289 1290 while (*cp) { 1291 if (!isxdigit(*cp)) 1292 return EINVAL; 1293 1294 *dest = atox(*cp); 1295 cp++; 1296 if (isxdigit(*cp)) { 1297 *dest = (*dest << 4) | atox(*cp); 1298 cp++; 1299 } 1300 dest++; 1301 1302 if (dest == ep) 1303 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1304 1305 switch (*cp) { 1306 case ':': 1307 case '-': 1308 case '.': 1309 cp++; 1310 break; 1311 } 1312 } 1313 return ENOBUFS; 1314 } 1315 1316 /* 1317 * Convert a sockaddr into an Ethernet address or range of Ethernet 1318 * addresses. 1319 */ 1320 int 1321 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1322 uint8_t addrhi[ETHER_ADDR_LEN]) 1323 { 1324 #ifdef INET 1325 const struct sockaddr_in *sin; 1326 #endif 1327 #ifdef INET6 1328 const struct sockaddr_in6 *sin6; 1329 #endif 1330 1331 switch (sa->sa_family) { 1332 1333 case AF_UNSPEC: 1334 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1335 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1336 break; 1337 1338 #ifdef INET 1339 case AF_INET: 1340 sin = satocsin(sa); 1341 if (sin->sin_addr.s_addr == INADDR_ANY) { 1342 /* 1343 * An IP address of INADDR_ANY means listen to 1344 * or stop listening to all of the Ethernet 1345 * multicast addresses used for IP. 1346 * (This is for the sake of IP multicast routers.) 1347 */ 1348 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1349 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1350 } else { 1351 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1352 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1353 } 1354 break; 1355 #endif 1356 #ifdef INET6 1357 case AF_INET6: 1358 sin6 = satocsin6(sa); 1359 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1360 /* 1361 * An IP6 address of 0 means listen to or stop 1362 * listening to all of the Ethernet multicast 1363 * address used for IP6. 1364 * (This is used for multicast routers.) 1365 */ 1366 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1367 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1368 } else { 1369 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1370 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1371 } 1372 break; 1373 #endif 1374 1375 default: 1376 return EAFNOSUPPORT; 1377 } 1378 return 0; 1379 } 1380 1381 /* 1382 * Add an Ethernet multicast address or range of addresses to the list for a 1383 * given interface. 1384 */ 1385 int 1386 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1387 { 1388 struct ether_multi *enm, *_enm; 1389 u_char addrlo[ETHER_ADDR_LEN]; 1390 u_char addrhi[ETHER_ADDR_LEN]; 1391 int error = 0; 1392 1393 /* Allocate out of lock */ 1394 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1395 1396 ETHER_LOCK(ec); 1397 error = ether_multiaddr(sa, addrlo, addrhi); 1398 if (error != 0) 1399 goto out; 1400 1401 /* 1402 * Verify that we have valid Ethernet multicast addresses. 1403 */ 1404 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1405 error = EINVAL; 1406 goto out; 1407 } 1408 1409 /* 1410 * See if the address range is already in the list. 1411 */ 1412 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1413 if (_enm != NULL) { 1414 /* 1415 * Found it; just increment the reference count. 1416 */ 1417 ++_enm->enm_refcount; 1418 error = 0; 1419 goto out; 1420 } 1421 1422 /* 1423 * Link a new multicast record into the interface's multicast list. 1424 */ 1425 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1426 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1427 enm->enm_refcount = 1; 1428 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1429 ec->ec_multicnt++; 1430 1431 /* 1432 * Return ENETRESET to inform the driver that the list has changed 1433 * and its reception filter should be adjusted accordingly. 1434 */ 1435 error = ENETRESET; 1436 enm = NULL; 1437 1438 out: 1439 ETHER_UNLOCK(ec); 1440 if (enm != NULL) 1441 kmem_free(enm, sizeof(*enm)); 1442 return error; 1443 } 1444 1445 /* 1446 * Delete a multicast address record. 1447 */ 1448 int 1449 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1450 { 1451 struct ether_multi *enm; 1452 u_char addrlo[ETHER_ADDR_LEN]; 1453 u_char addrhi[ETHER_ADDR_LEN]; 1454 int error; 1455 1456 ETHER_LOCK(ec); 1457 error = ether_multiaddr(sa, addrlo, addrhi); 1458 if (error != 0) 1459 goto error; 1460 1461 /* 1462 * Look up the address in our list. 1463 */ 1464 enm = ether_lookup_multi(addrlo, addrhi, ec); 1465 if (enm == NULL) { 1466 error = ENXIO; 1467 goto error; 1468 } 1469 if (--enm->enm_refcount != 0) { 1470 /* 1471 * Still some claims to this record. 1472 */ 1473 error = 0; 1474 goto error; 1475 } 1476 1477 /* 1478 * No remaining claims to this record; unlink and free it. 1479 */ 1480 LIST_REMOVE(enm, enm_list); 1481 ec->ec_multicnt--; 1482 ETHER_UNLOCK(ec); 1483 kmem_free(enm, sizeof(*enm)); 1484 1485 /* 1486 * Return ENETRESET to inform the driver that the list has changed 1487 * and its reception filter should be adjusted accordingly. 1488 */ 1489 return ENETRESET; 1490 1491 error: 1492 ETHER_UNLOCK(ec); 1493 return error; 1494 } 1495 1496 void 1497 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1498 { 1499 ec->ec_ifflags_cb = cb; 1500 } 1501 1502 void 1503 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1504 { 1505 1506 ec->ec_vlan_cb = cb; 1507 } 1508 1509 static int 1510 ether_ioctl_reinit(struct ethercom *ec) 1511 { 1512 struct ifnet *ifp = &ec->ec_if; 1513 int error; 1514 1515 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 1516 1517 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1518 case IFF_RUNNING: 1519 /* 1520 * If interface is marked down and it is running, 1521 * then stop and disable it. 1522 */ 1523 if_stop(ifp, 1); 1524 break; 1525 case IFF_UP: 1526 /* 1527 * If interface is marked up and it is stopped, then 1528 * start it. 1529 */ 1530 return if_init(ifp); 1531 case IFF_UP | IFF_RUNNING: 1532 error = 0; 1533 if (ec->ec_ifflags_cb != NULL) { 1534 error = (*ec->ec_ifflags_cb)(ec); 1535 if (error == ENETRESET) { 1536 /* 1537 * Reset the interface to pick up 1538 * changes in any other flags that 1539 * affect the hardware state. 1540 */ 1541 return if_init(ifp); 1542 } 1543 } else 1544 error = if_init(ifp); 1545 return error; 1546 case 0: 1547 break; 1548 } 1549 1550 return 0; 1551 } 1552 1553 /* 1554 * Common ioctls for Ethernet interfaces. Note, we must be 1555 * called at splnet(). 1556 */ 1557 int 1558 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1559 { 1560 struct ethercom *ec = (void *)ifp; 1561 struct eccapreq *eccr; 1562 struct ifreq *ifr = (struct ifreq *)data; 1563 struct if_laddrreq *iflr = data; 1564 const struct sockaddr_dl *sdl; 1565 static const uint8_t zero[ETHER_ADDR_LEN]; 1566 int error; 1567 1568 switch (cmd) { 1569 case SIOCINITIFADDR: 1570 { 1571 struct ifaddr *ifa = (struct ifaddr *)data; 1572 if (ifa->ifa_addr->sa_family != AF_LINK 1573 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1574 (IFF_UP | IFF_RUNNING)) { 1575 ifp->if_flags |= IFF_UP; 1576 if ((error = if_init(ifp)) != 0) 1577 return error; 1578 } 1579 #ifdef INET 1580 if (ifa->ifa_addr->sa_family == AF_INET) 1581 arp_ifinit(ifp, ifa); 1582 #endif 1583 return 0; 1584 } 1585 1586 case SIOCSIFMTU: 1587 { 1588 int maxmtu; 1589 1590 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1591 maxmtu = ETHERMTU_JUMBO; 1592 else 1593 maxmtu = ETHERMTU; 1594 1595 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1596 return EINVAL; 1597 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1598 return error; 1599 else if (ifp->if_flags & IFF_UP) { 1600 /* Make sure the device notices the MTU change. */ 1601 return if_init(ifp); 1602 } else 1603 return 0; 1604 } 1605 1606 case SIOCSIFFLAGS: 1607 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1608 return error; 1609 return ether_ioctl_reinit(ec); 1610 case SIOCGIFFLAGS: 1611 error = ifioctl_common(ifp, cmd, data); 1612 if (error == 0) { 1613 /* Set IFF_ALLMULTI for backcompat */ 1614 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1615 IFF_ALLMULTI : 0; 1616 } 1617 return error; 1618 case SIOCGETHERCAP: 1619 eccr = (struct eccapreq *)data; 1620 eccr->eccr_capabilities = ec->ec_capabilities; 1621 eccr->eccr_capenable = ec->ec_capenable; 1622 return 0; 1623 case SIOCSETHERCAP: 1624 eccr = (struct eccapreq *)data; 1625 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1626 return EINVAL; 1627 if (eccr->eccr_capenable == ec->ec_capenable) 1628 return 0; 1629 #if 0 /* notyet */ 1630 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1631 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1632 #else 1633 ec->ec_capenable = eccr->eccr_capenable; 1634 #endif 1635 return ether_ioctl_reinit(ec); 1636 case SIOCADDMULTI: 1637 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1638 case SIOCDELMULTI: 1639 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1640 case SIOCSIFMEDIA: 1641 case SIOCGIFMEDIA: 1642 if (ec->ec_mii != NULL) 1643 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1644 cmd); 1645 else if (ec->ec_ifmedia != NULL) 1646 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1647 else 1648 return ENOTTY; 1649 break; 1650 case SIOCALIFADDR: 1651 sdl = satocsdl(sstocsa(&iflr->addr)); 1652 if (sdl->sdl_family != AF_LINK) 1653 ; 1654 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1655 return EINVAL; 1656 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1657 return EINVAL; 1658 /*FALLTHROUGH*/ 1659 default: 1660 return ifioctl_common(ifp, cmd, data); 1661 } 1662 return 0; 1663 } 1664 1665 /* 1666 * Enable/disable passing VLAN packets if the parent interface supports it. 1667 * Return: 1668 * 0: Ok 1669 * -1: Parent interface does not support vlans 1670 * >0: Error 1671 */ 1672 int 1673 ether_enable_vlan_mtu(struct ifnet *ifp) 1674 { 1675 int error; 1676 struct ethercom *ec = (void *)ifp; 1677 1678 /* Parent does not support VLAN's */ 1679 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1680 return -1; 1681 1682 /* 1683 * Parent supports the VLAN_MTU capability, 1684 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1685 * enable it. 1686 */ 1687 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1688 1689 /* Interface is down, defer for later */ 1690 if ((ifp->if_flags & IFF_UP) == 0) 1691 return 0; 1692 1693 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1694 return 0; 1695 1696 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1697 return error; 1698 } 1699 1700 int 1701 ether_disable_vlan_mtu(struct ifnet *ifp) 1702 { 1703 int error; 1704 struct ethercom *ec = (void *)ifp; 1705 1706 /* We still have VLAN's, defer for later */ 1707 if (ec->ec_nvlans != 0) 1708 return 0; 1709 1710 /* Parent does not support VLAB's, nothing to do. */ 1711 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1712 return -1; 1713 1714 /* 1715 * Disable Tx/Rx of VLAN-sized frames. 1716 */ 1717 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1718 1719 /* Interface is down, defer for later */ 1720 if ((ifp->if_flags & IFF_UP) == 0) 1721 return 0; 1722 1723 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1724 return 0; 1725 1726 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1727 return error; 1728 } 1729 1730 /* 1731 * Add and delete VLAN TAG 1732 */ 1733 int 1734 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status) 1735 { 1736 struct ethercom *ec = (void *)ifp; 1737 struct vlanid_list *vidp; 1738 bool vlanmtu_enabled; 1739 uint16_t vid = EVL_VLANOFTAG(vtag); 1740 int error; 1741 1742 vlanmtu_enabled = false; 1743 1744 /* Add a vid to the list */ 1745 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP); 1746 vidp->vid = vid; 1747 1748 ETHER_LOCK(ec); 1749 ec->ec_nvlans++; 1750 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list); 1751 ETHER_UNLOCK(ec); 1752 1753 if (ec->ec_nvlans == 1) { 1754 IFNET_LOCK(ifp); 1755 error = ether_enable_vlan_mtu(ifp); 1756 IFNET_UNLOCK(ifp); 1757 1758 if (error == 0) { 1759 vlanmtu_enabled = true; 1760 } else if (error != -1) { 1761 goto fail; 1762 } 1763 } 1764 1765 if (ec->ec_vlan_cb != NULL) { 1766 error = (*ec->ec_vlan_cb)(ec, vid, true); 1767 if (error != 0) 1768 goto fail; 1769 } 1770 1771 if (vlanmtu_status != NULL) 1772 *vlanmtu_status = vlanmtu_enabled; 1773 1774 return 0; 1775 fail: 1776 ETHER_LOCK(ec); 1777 ec->ec_nvlans--; 1778 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list); 1779 ETHER_UNLOCK(ec); 1780 1781 if (vlanmtu_enabled) { 1782 IFNET_LOCK(ifp); 1783 (void)ether_disable_vlan_mtu(ifp); 1784 IFNET_UNLOCK(ifp); 1785 } 1786 1787 kmem_free(vidp, sizeof(*vidp)); 1788 1789 return error; 1790 } 1791 1792 int 1793 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag) 1794 { 1795 struct ethercom *ec = (void *)ifp; 1796 struct vlanid_list *vidp; 1797 uint16_t vid = EVL_VLANOFTAG(vtag); 1798 1799 ETHER_LOCK(ec); 1800 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) { 1801 if (vidp->vid == vid) { 1802 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, 1803 vlanid_list, vid_list); 1804 ec->ec_nvlans--; 1805 break; 1806 } 1807 } 1808 ETHER_UNLOCK(ec); 1809 1810 if (vidp == NULL) 1811 return ENOENT; 1812 1813 if (ec->ec_vlan_cb != NULL) { 1814 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false); 1815 } 1816 1817 if (ec->ec_nvlans == 0) { 1818 IFNET_LOCK(ifp); 1819 (void)ether_disable_vlan_mtu(ifp); 1820 IFNET_UNLOCK(ifp); 1821 } 1822 1823 kmem_free(vidp, sizeof(*vidp)); 1824 1825 return 0; 1826 } 1827 1828 int 1829 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag) 1830 { 1831 static const size_t min_data_len = 1832 ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 1833 /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ 1834 static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 }; 1835 1836 struct ether_vlan_header *evl; 1837 struct mbuf *m = *mp; 1838 int error; 1839 1840 error = 0; 1841 1842 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT); 1843 if (m == NULL) { 1844 error = ENOBUFS; 1845 goto out; 1846 } 1847 1848 if (m->m_len < sizeof(*evl)) { 1849 m = m_pullup(m, sizeof(*evl)); 1850 if (m == NULL) { 1851 error = ENOBUFS; 1852 goto out; 1853 } 1854 } 1855 1856 /* 1857 * Transform the Ethernet header into an 1858 * Ethernet header with 802.1Q encapsulation. 1859 */ 1860 memmove(mtod(m, void *), 1861 mtod(m, char *) + ETHER_VLAN_ENCAP_LEN, 1862 sizeof(struct ether_header)); 1863 evl = mtod(m, struct ether_vlan_header *); 1864 evl->evl_proto = evl->evl_encap_proto; 1865 evl->evl_encap_proto = htons(etype); 1866 evl->evl_tag = htons(tag); 1867 1868 /* 1869 * To cater for VLAN-aware layer 2 ethernet 1870 * switches which may need to strip the tag 1871 * before forwarding the packet, make sure 1872 * the packet+tag is at least 68 bytes long. 1873 * This is necessary because our parent will 1874 * only pad to 64 bytes (ETHER_MIN_LEN) and 1875 * some switches will not pad by themselves 1876 * after deleting a tag. 1877 */ 1878 if (m->m_pkthdr.len < min_data_len) { 1879 m_copyback(m, m->m_pkthdr.len, 1880 min_data_len - m->m_pkthdr.len, 1881 vlan_zero_pad_buff); 1882 } 1883 1884 m->m_flags &= ~M_VLANTAG; 1885 1886 out: 1887 *mp = m; 1888 return error; 1889 } 1890 1891 struct mbuf * 1892 ether_strip_vlantag(struct mbuf *m) 1893 { 1894 struct ether_vlan_header *evl; 1895 1896 if (m->m_len < sizeof(*evl) && 1897 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1898 return NULL; 1899 } 1900 1901 if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) { 1902 m_freem(m); 1903 return NULL; 1904 } 1905 1906 evl = mtod(m, struct ether_vlan_header *); 1907 KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); 1908 1909 vlan_set_tag(m, ntohs(evl->evl_tag)); 1910 1911 /* 1912 * Restore the original ethertype. We'll remove 1913 * the encapsulation after we've found the vlan 1914 * interface corresponding to the tag. 1915 */ 1916 evl->evl_encap_proto = evl->evl_proto; 1917 1918 /* 1919 * Remove the encapsulation header and append tag. 1920 * The original header has already been fixed up above. 1921 */ 1922 vlan_set_tag(m, ntohs(evl->evl_tag)); 1923 memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl, 1924 offsetof(struct ether_vlan_header, evl_encap_proto)); 1925 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1926 1927 return m; 1928 } 1929 1930 static int 1931 ether_multicast_sysctl(SYSCTLFN_ARGS) 1932 { 1933 struct ether_multi *enm; 1934 struct ifnet *ifp; 1935 struct ethercom *ec; 1936 int error = 0; 1937 size_t written; 1938 struct psref psref; 1939 int bound; 1940 unsigned int multicnt; 1941 struct ether_multi_sysctl *addrs; 1942 int i; 1943 1944 if (namelen != 1) 1945 return EINVAL; 1946 1947 bound = curlwp_bind(); 1948 ifp = if_get_byindex(name[0], &psref); 1949 if (ifp == NULL) { 1950 error = ENODEV; 1951 goto out; 1952 } 1953 if (ifp->if_type != IFT_ETHER) { 1954 if_put(ifp, &psref); 1955 *oldlenp = 0; 1956 goto out; 1957 } 1958 ec = (struct ethercom *)ifp; 1959 1960 if (oldp == NULL) { 1961 if_put(ifp, &psref); 1962 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1963 goto out; 1964 } 1965 1966 /* 1967 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1968 * is sleepable, while holding it. Copy data to a local buffer first 1969 * with the lock taken and then call sysctl_copyout without holding it. 1970 */ 1971 retry: 1972 multicnt = ec->ec_multicnt; 1973 1974 if (multicnt == 0) { 1975 if_put(ifp, &psref); 1976 *oldlenp = 0; 1977 goto out; 1978 } 1979 1980 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1981 1982 ETHER_LOCK(ec); 1983 if (multicnt != ec->ec_multicnt) { 1984 /* The number of multicast addresses has changed */ 1985 ETHER_UNLOCK(ec); 1986 kmem_free(addrs, sizeof(*addrs) * multicnt); 1987 goto retry; 1988 } 1989 1990 i = 0; 1991 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1992 struct ether_multi_sysctl *addr = &addrs[i]; 1993 addr->enm_refcount = enm->enm_refcount; 1994 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1995 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1996 i++; 1997 } 1998 ETHER_UNLOCK(ec); 1999 2000 error = 0; 2001 written = 0; 2002 for (i = 0; i < multicnt; i++) { 2003 struct ether_multi_sysctl *addr = &addrs[i]; 2004 2005 if (written + sizeof(*addr) > *oldlenp) 2006 break; 2007 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 2008 if (error) 2009 break; 2010 written += sizeof(*addr); 2011 oldp = (char *)oldp + sizeof(*addr); 2012 } 2013 kmem_free(addrs, sizeof(*addrs) * multicnt); 2014 2015 if_put(ifp, &psref); 2016 2017 *oldlenp = written; 2018 out: 2019 curlwp_bindx(bound); 2020 return error; 2021 } 2022 2023 static void 2024 ether_sysctl_setup(struct sysctllog **clog) 2025 { 2026 const struct sysctlnode *rnode = NULL; 2027 2028 sysctl_createv(clog, 0, NULL, &rnode, 2029 CTLFLAG_PERMANENT, 2030 CTLTYPE_NODE, "ether", 2031 SYSCTL_DESCR("Ethernet-specific information"), 2032 NULL, 0, NULL, 0, 2033 CTL_NET, CTL_CREATE, CTL_EOL); 2034 2035 sysctl_createv(clog, 0, &rnode, NULL, 2036 CTLFLAG_PERMANENT, 2037 CTLTYPE_NODE, "multicast", 2038 SYSCTL_DESCR("multicast addresses"), 2039 ether_multicast_sysctl, 0, NULL, 0, 2040 CTL_CREATE, CTL_EOL); 2041 2042 sysctl_createv(clog, 0, &rnode, NULL, 2043 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2044 CTLTYPE_STRING, "rps_hash", 2045 SYSCTL_DESCR("Interface rps hash function control"), 2046 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 2047 PKTQ_RPS_HASH_NAME_LEN, 2048 CTL_CREATE, CTL_EOL); 2049 } 2050 2051 void 2052 etherinit(void) 2053 { 2054 2055 #ifdef DIAGNOSTIC 2056 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 2057 #endif 2058 ether_pktq_rps_hash_p = pktq_rps_hash_default; 2059 ether_sysctl_setup(NULL); 2060 } 2061