Home | History | Annotate | Line # | Download | only in ld.elf_so
      1 /*	$NetBSD: tls.c,v 1.25 2025/09/30 06:12:53 skrll Exp $	*/
      2 /*-
      3  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Joerg Sonnenberger.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __RCSID("$NetBSD: tls.c,v 1.25 2025/09/30 06:12:53 skrll Exp $");
     33 
     34 /*
     35  * Thread-local storage
     36  *
     37  * Reference:
     38  *
     39  *	[ELFTLS] Ulrich Drepper, `ELF Handling For Thread-Local
     40  *	Storage', Version 0.21, 2023-08-22.
     41  *	https://akkadia.org/drepper/tls.pdf
     42  *	https://web.archive.org/web/20240718081934/https://akkadia.org/drepper/tls.pdf
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/ucontext.h>
     47 #include <lwp.h>
     48 #include <stdalign.h>
     49 #include <stddef.h>
     50 #include <string.h>
     51 #include "debug.h"
     52 #include "rtld.h"
     53 
     54 #include <machine/lwp_private.h>
     55 
     56 #if defined(__HAVE_TLS_VARIANT_I) || defined(__HAVE_TLS_VARIANT_II)
     57 
     58 static struct tls_tcb *_rtld_tls_allocate_locked(void);
     59 static void *_rtld_tls_module_allocate(struct tls_tcb *, size_t);
     60 
     61 /* A macro to test correct alignment of a pointer. */
     62 #define ALIGNED_P(ptr, algnmt)	(((uintptr_t)(ptr) & ((algnmt) - 1)) == 0)
     63 
     64 /*
     65  * DTV offset
     66  *
     67  *	On some architectures (m68k, mips, or1k, powerpc, and riscv),
     68  *	the DTV offsets passed to __tls_get_addr have a bias relative
     69  *	to the start of the DTV, in order to maximize the range of TLS
     70  *	offsets that can be used by instruction encodings with signed
     71  *	displacements.
     72  */
     73 #ifndef TLS_DTV_OFFSET
     74 #define	TLS_DTV_OFFSET	0
     75 #endif
     76 
     77 static size_t _rtld_tls_static_space;	/* Static TLS space allocated */
     78 static size_t _rtld_tls_static_offset;	/* Next offset for static TLS to use */
     79 size_t _rtld_tls_dtv_generation = 1;	/* Bumped on each load of obj w/ TLS */
     80 size_t _rtld_tls_max_index = 1;		/* Max index into up-to-date DTV */
     81 
     82 /*
     83  * DTV -- Dynamic Thread Vector
     84  *
     85  *	The DTV is a per-thread array that maps each module with
     86  *	thread-local storage to a pointer into part of the thread's TCB
     87  *	(thread control block), or dynamically loaded TLS blocks,
     88  *	reserved for that module's storage.
     89  *
     90  *	The TCB itself, struct tls_tcb, has a pointer to the DTV at
     91  *	tcb->tcb_dtv.
     92  *
     93  *	The layout is:
     94  *
     95  *		+---------------+
     96  *		| max index     | -1    max index i for which dtv[i] is alloced
     97  *		+---------------+
     98  *		| generation    |  0    void **dtv points here
     99  *		+---------------+
    100  *		| obj 1 tls ptr |  1    TLS pointer for obj w/ obj->tlsindex 1
    101  *		+---------------+
    102  *		| obj 2 tls ptr |  2    TLS pointer for obj w/ obj->tlsindex 2
    103  *		+---------------+
    104  *		  .
    105  *		  .
    106  *		  .
    107  *
    108  *	The values of obj->tlsindex start at 1; this way,
    109  *	dtv[obj->tlsindex] works, when dtv[0] is the generation.  The
    110  *	TLS pointers go either into the static thread-local storage,
    111  *	for the initial objects (i.e., those loaded at startup), or
    112  *	into TLS blocks dynamically allocated for objects that
    113  *	dynamically loaded by dlopen.
    114  *
    115  *	The generation field is a cache of the global generation number
    116  *	_rtld_tls_dtv_generation, which is bumped every time an object
    117  *	with TLS is loaded in _rtld_map_object, and cached by
    118  *	__tls_get_addr (via _rtld_tls_get_addr) when a newly loaded
    119  *	module lies outside the bounds of the current DTV.
    120  *
    121  *	XXX Why do we keep max index and generation separately?  They
    122  *	appear to be initialized the same, always incremented together,
    123  *	and always stored together.
    124  *
    125  *	XXX Why is this not a struct?
    126  *
    127  *		struct dtv {
    128  *			size_t	dtv_gen;
    129  *			void	*dtv_module[];
    130  *		};
    131  */
    132 #define	DTV_GENERATION(dtv)		((size_t)((dtv)[0]))
    133 #define	DTV_MAX_INDEX(dtv)		((size_t)((dtv)[-1]))
    134 #define	SET_DTV_GENERATION(dtv, val)	(dtv)[0] = (void *)(size_t)(val)
    135 #define	SET_DTV_MAX_INDEX(dtv, val)	(dtv)[-1] = (void *)(size_t)(val)
    136 
    137 /*
    138  * _rtld_tls_get_addr(tcb, idx, offset)
    139  *
    140  *	Slow path for __tls_get_addr (see below), called to allocate
    141  *	TLS space if needed for the object obj with obj->tlsindex idx,
    142  *	at offset, which must be below obj->tlssize.
    143  *
    144  *	This may allocate a DTV if the current one is too old, and it
    145  *	may allocate a dynamically loaded TLS block if there isn't one
    146  *	already allocated for it.
    147  *
    148  *	XXX Why is the first argument passed as `void *tls' instead of
    149  *	just `struct tls_tcb *tcb'?
    150  */
    151 void *
    152 _rtld_tls_get_addr(void *tls, size_t idx, size_t offset)
    153 {
    154 	struct tls_tcb *tcb = tls;
    155 	void **dtv, **new_dtv;
    156 	sigset_t mask;
    157 
    158 	_rtld_exclusive_enter(&mask);
    159 
    160 	dtv = tcb->tcb_dtv;
    161 
    162 	/*
    163 	 * If the generation number has changed, we have to allocate a
    164 	 * new DTV.
    165 	 *
    166 	 * XXX Do we really?  Isn't it enough to check whether idx <=
    167 	 * DTV_MAX_INDEX(dtv)?
    168 	 */
    169 	if (__predict_false(DTV_GENERATION(dtv) != _rtld_tls_dtv_generation)) {
    170 		size_t to_copy = DTV_MAX_INDEX(dtv);
    171 
    172 		/*
    173 		 * "2 +" because the first element is the generation and
    174 		 * the second one is the maximum index.
    175 		 */
    176 		new_dtv = xcalloc((2 + _rtld_tls_max_index) * sizeof(*dtv));
    177 		++new_dtv;		/* advance past DTV_MAX_INDEX */
    178 		if (to_copy > _rtld_tls_max_index)	/* XXX How? */
    179 			to_copy = _rtld_tls_max_index;
    180 		memcpy(new_dtv + 1, dtv + 1, to_copy * sizeof(*dtv));
    181 		xfree(dtv - 1);		/* retreat back to DTV_MAX_INDEX */
    182 		dtv = tcb->tcb_dtv = new_dtv;
    183 		SET_DTV_MAX_INDEX(dtv, _rtld_tls_max_index);
    184 		SET_DTV_GENERATION(dtv, _rtld_tls_dtv_generation);
    185 	}
    186 
    187 	if (__predict_false(dtv[idx] == NULL))
    188 		dtv[idx] = _rtld_tls_module_allocate(tcb, idx);
    189 
    190 	_rtld_exclusive_exit(&mask);
    191 
    192 	return (uint8_t *)dtv[idx] + offset;
    193 }
    194 
    195 /*
    196  * _rtld_tls_initial_allocation()
    197  *
    198  *	Allocate the TCB (thread control block) for the initial thread,
    199  *	once the static TLS space usage has been determined (plus some
    200  *	slop to allow certain special cases like Mesa to be dlopened).
    201  *
    202  *	This must be done _after_ all initial objects (i.e., those
    203  *	loaded at startup, as opposed to objects dynamically loaded by
    204  *	dlopen) have had TLS offsets allocated if need be by
    205  *	_rtld_tls_offset_allocate, and have had relocations processed.
    206  */
    207 void
    208 _rtld_tls_initial_allocation(void)
    209 {
    210 	struct tls_tcb *tcb;
    211 
    212 	_rtld_tls_static_space = _rtld_tls_static_offset +
    213 	    RTLD_STATIC_TLS_RESERVATION;
    214 
    215 #ifndef __HAVE_TLS_VARIANT_I
    216 	_rtld_tls_static_space = roundup2(_rtld_tls_static_space,
    217 	    alignof(max_align_t));
    218 #endif
    219 	dbg(("_rtld_tls_static_space %zu", _rtld_tls_static_space));
    220 
    221 	tcb = _rtld_tls_allocate_locked();
    222 #ifdef __HAVE___LWP_SETTCB
    223 	__lwp_settcb(tcb);
    224 #else
    225 	_lwp_setprivate(tcb);
    226 #endif
    227 }
    228 
    229 /*
    230  * _rtld_tls_allocate_locked()
    231  *
    232  *	Internal subroutine to allocate a TCB (thread control block)
    233  *	for the current thread.
    234  *
    235  *	This allocates a DTV and a TCB that points to it, including
    236  *	static space in the TCB for the TLS of the initial objects.
    237  *	TLS blocks for dynamically loaded objects are allocated lazily.
    238  *
    239  *	Caller must either be single-threaded (at startup via
    240  *	_rtld_tls_initial_allocation) or hold the rtld exclusive lock
    241  *	(via _rtld_tls_allocate).
    242  */
    243 static struct tls_tcb *
    244 _rtld_tls_allocate_locked(void)
    245 {
    246 	Obj_Entry *obj;
    247 	struct tls_tcb *tcb;
    248 	uint8_t *p, *q;
    249 
    250 	p = xcalloc(_rtld_tls_static_space + sizeof(struct tls_tcb));
    251 #ifdef __HAVE_TLS_VARIANT_I
    252 	tcb = (struct tls_tcb *)p;
    253 	p += sizeof(struct tls_tcb);
    254 #else
    255 	p += _rtld_tls_static_space;
    256 	tcb = (struct tls_tcb *)p;
    257 	tcb->tcb_self = tcb;
    258 #endif
    259 	dbg(("lwp %d tls tcb %p", _lwp_self(), tcb));
    260 	/*
    261 	 * "2 +" because the first element is the generation and the second
    262 	 * one is the maximum index.
    263 	 */
    264 	tcb->tcb_dtv = xcalloc(sizeof(*tcb->tcb_dtv) * (2 + _rtld_tls_max_index));
    265 	++tcb->tcb_dtv;		/* advance past DTV_MAX_INDEX */
    266 	SET_DTV_MAX_INDEX(tcb->tcb_dtv, _rtld_tls_max_index);
    267 	SET_DTV_GENERATION(tcb->tcb_dtv, _rtld_tls_dtv_generation);
    268 
    269 	for (obj = _rtld_objlist; obj != NULL; obj = obj->next) {
    270 		if (obj->tls_static) {
    271 #ifdef __HAVE_TLS_VARIANT_I
    272 			q = p + obj->tlsoffset;
    273 #else
    274 			q = p - obj->tlsoffset;
    275 #endif
    276 			dbg(("%s: [lwp %d] tls dtv %p-%p index %zu "
    277 			    "offset %zx alignment %zx tlsinit %p%s",
    278 			    obj->path, _lwp_self(),
    279 			    q, q + obj->tlsinitsize, obj->tlsindex,
    280 			    obj->tlsoffset, obj->tlsalign, obj->tlsinit,
    281 			    ALIGNED_P(q, obj->tlsalign) ? "" :
    282 				 " BAD ALIGNMENT"));
    283 			if (obj->tlsinitsize)
    284 				memcpy(q, obj->tlsinit, obj->tlsinitsize);
    285 			tcb->tcb_dtv[obj->tlsindex] = q;
    286 		}
    287 	}
    288 
    289 	return tcb;
    290 }
    291 
    292 /*
    293  * _rtld_tls_allocate()
    294  *
    295  *	Allocate a TCB (thread control block) for the current thread.
    296  *
    297  *	Called by pthread_create for non-initial threads.  (The initial
    298  *	thread's TCB is allocated by _rtld_tls_initial_allocation.)
    299  */
    300 struct tls_tcb *
    301 _rtld_tls_allocate(void)
    302 {
    303 	struct tls_tcb *tcb;
    304 	sigset_t mask;
    305 
    306 	_rtld_exclusive_enter(&mask);
    307 	tcb = _rtld_tls_allocate_locked();
    308 	_rtld_exclusive_exit(&mask);
    309 
    310 	return tcb;
    311 }
    312 
    313 /*
    314  * _rtld_tls_free(tcb)
    315  *
    316  *	Free a TCB allocated with _rtld_tls_allocate.
    317  *
    318  *	Frees any TLS blocks for dynamically loaded objects that tcb's
    319  *	DTV points to, and frees tcb's DTV, and frees tcb.
    320  */
    321 void
    322 _rtld_tls_free(struct tls_tcb *tcb)
    323 {
    324 	size_t i, max_index;
    325 	uint8_t *p, *p_end;
    326 	sigset_t mask;
    327 
    328 	_rtld_exclusive_enter(&mask);
    329 
    330 #ifdef __HAVE_TLS_VARIANT_I
    331 	p = (uint8_t *)tcb;
    332 #else
    333 	p = (uint8_t *)tcb - _rtld_tls_static_space;
    334 #endif
    335 	p_end = p + _rtld_tls_static_space;
    336 
    337 	max_index = DTV_MAX_INDEX(tcb->tcb_dtv);
    338 	for (i = 1; i <= max_index; ++i) {
    339 		if ((uint8_t *)tcb->tcb_dtv[i] < p ||
    340 		    (uint8_t *)tcb->tcb_dtv[i] >= p_end)
    341 			xfree(tcb->tcb_dtv[i]);
    342 	}
    343 	xfree(tcb->tcb_dtv - 1);	/* retreat back to DTV_MAX_INDEX */
    344 	xfree(p);
    345 
    346 	_rtld_exclusive_exit(&mask);
    347 }
    348 
    349 /*
    350  * _rtld_tls_module_allocate(tcb, idx)
    351  *
    352  *	Allocate thread-local storage in the thread with the given TCB
    353  *	(thread control block) for the object obj whose obj->tlsindex
    354  *	is idx.
    355  *
    356  *	If obj has had space in static TLS reserved (obj->tls_static),
    357  *	return a pointer into that.  Otherwise, allocate a TLS block,
    358  *	mark obj as having a TLS block allocated (obj->tls_dynamic),
    359  *	and return it.
    360  *
    361  *	Called by _rtld_tls_get_addr to get the thread-local storage
    362  *	for an object the first time around.
    363  */
    364 static void *
    365 _rtld_tls_module_allocate(struct tls_tcb *tcb, size_t idx)
    366 {
    367 	Obj_Entry *obj;
    368 	uint8_t *p;
    369 
    370 	for (obj = _rtld_objlist; obj != NULL; obj = obj->next) {
    371 		if (obj->tlsindex == idx)
    372 			break;
    373 	}
    374 	if (obj == NULL) {
    375 		_rtld_error("Module for TLS index %zu missing", idx);
    376 		_rtld_die();
    377 	}
    378 	if (obj->tls_static) {
    379 #ifdef __HAVE_TLS_VARIANT_I
    380 		p = (uint8_t *)tcb + obj->tlsoffset + sizeof(struct tls_tcb);
    381 #else
    382 		p = (uint8_t *)tcb - obj->tlsoffset;
    383 #endif
    384 		return p;
    385 	}
    386 
    387 	p = xmalloc(obj->tlssize);
    388 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
    389 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
    390 
    391 	obj->tls_dynamic = 1;
    392 
    393 	return p;
    394 }
    395 
    396 /*
    397  * _rtld_tls_offset_allocate(obj)
    398  *
    399  *	Allocate a static thread-local storage offset for obj.
    400  *
    401  *	Called by _rtld at startup for all initial objects.  Called
    402  *	also by MD relocation logic, which is allowed (for Mesa) to
    403  *	allocate an additional 64 bytes (RTLD_STATIC_TLS_RESERVATION)
    404  *	of static thread-local storage in dlopened objects.
    405  */
    406 int
    407 _rtld_tls_offset_allocate(Obj_Entry *obj)
    408 {
    409 	size_t offset, next_offset;
    410 
    411 	if (obj->tls_dynamic)
    412 		return -1;
    413 
    414 	if (obj->tls_static)
    415 		return 0;
    416 
    417 	if (obj->tlssize == 0) {
    418 		obj->tlsoffset = 0;
    419 		obj->tls_static = 1;
    420 		return 0;
    421 	}
    422 
    423 #ifdef __HAVE_TLS_VARIANT_I
    424 	offset = roundup2(_rtld_tls_static_offset, obj->tlsalign);
    425 	next_offset = offset + obj->tlssize;
    426 #else
    427 	offset = roundup2(_rtld_tls_static_offset + obj->tlssize,
    428 	    obj->tlsalign);
    429 	next_offset = offset;
    430 #endif
    431 
    432 	/*
    433 	 * Check if the static allocation was already done.
    434 	 * This happens if dynamically loaded modules want to use
    435 	 * static TLS space.
    436 	 *
    437 	 * XXX Keep an actual free list and callbacks for initialisation.
    438 	 */
    439 	if (_rtld_tls_static_space) {
    440 		if (obj->tlsinitsize) {
    441 			_rtld_error("%s: Use of initialized "
    442 			    "Thread Local Storage with model initial-exec "
    443 			    "and dlopen is not supported",
    444 			    obj->path);
    445 			return -1;
    446 		}
    447 		if (next_offset > _rtld_tls_static_space) {
    448 			_rtld_error("%s: No space available "
    449 			    "for static Thread Local Storage",
    450 			    obj->path);
    451 			return -1;
    452 		}
    453 	}
    454 	obj->tlsoffset = offset;
    455 	dbg(("%s: static tls offset 0x%zx size %zu align %zu (%zx/%zx)\n",
    456 	   obj->path, obj->tlsoffset, obj->tlssize, obj->tlsalign,
    457 	   _rtld_tls_static_offset, next_offset));
    458 	_rtld_tls_static_offset = next_offset;
    459 	obj->tls_static = 1;
    460 
    461 	return 0;
    462 }
    463 
    464 /*
    465  * _rtld_tls_offset_free(obj)
    466  *
    467  *	Free a static thread-local storage offset for obj.
    468  *
    469  *	Called by dlclose (via _rtld_unload_object -> _rtld_obj_free).
    470  *
    471  *	Since static thread-local storage is normally not used by
    472  *	dlopened objects (with the exception of Mesa), this doesn't do
    473  *	anything to recycle the space right now.
    474  */
    475 void
    476 _rtld_tls_offset_free(Obj_Entry *obj)
    477 {
    478 
    479 	/*
    480 	 * XXX See above.
    481 	 */
    482 	obj->tls_static = 0;
    483 	return;
    484 }
    485 
    486 #if defined(__HAVE_COMMON___TLS_GET_ADDR) && defined(RTLD_LOADER)
    487 /*
    488  * __tls_get_addr(tlsindex)
    489  *
    490  *	Symbol directly called by code generated by the compiler for
    491  *	references thread-local storage in the general-dynamic or
    492  *	local-dynamic TLS models (but not initial-exec or local-exec).
    493  *
    494  *	The argument is a pointer to
    495  *
    496  *		struct {
    497  *			unsigned long int ti_module;
    498  *			unsigned long int ti_offset;
    499  *		};
    500  *
    501  *	 as in, e.g., [ELFTLS] Sec. 3.4.3.  This coincides with the
    502  *	 type size_t[2] on all architectures that use this common
    503  *	 __tls_get_addr definition (XXX but why do we write it as
    504  *	 size_t[2]?).
    505  *
    506  *	 ti_module, i.e., arg[0], is the obj->tlsindex assigned at
    507  *	 load-time by _rtld_map_object, and ti_offset, i.e., arg[1], is
    508  *	 assigned at link-time by ld(1), possibly adjusted by
    509  *	 TLS_DTV_OFFSET.
    510  *
    511  *	 Some architectures -- specifically IA-64 -- use a different
    512  *	 calling convention.  Some architectures -- specifically i386
    513  *	 -- also use another entry point ___tls_get_addr (that's three
    514  *	 leading underscores) with a different calling convention.
    515  */
    516 void *
    517 __tls_get_addr(void *arg_)
    518 {
    519 	size_t *arg = (size_t *)arg_;
    520 	void **dtv;
    521 #ifdef __HAVE___LWP_GETTCB_FAST
    522 	struct tls_tcb * const tcb = __lwp_gettcb_fast();
    523 #else
    524 	struct tls_tcb * const tcb = __lwp_getprivate_fast();
    525 #endif
    526 	size_t idx = arg[0], offset = arg[1] + TLS_DTV_OFFSET;
    527 
    528 	dtv = tcb->tcb_dtv;
    529 
    530 	/*
    531 	 * Fast path: access to an already allocated DTV entry.  This
    532 	 * checks the current limit and the entry without needing any
    533 	 * locking.  Entries are only freed on dlclose() and it is an
    534 	 * application bug if code of the module is still running at
    535 	 * that point.
    536 	 */
    537 	if (__predict_true(idx <= DTV_MAX_INDEX(dtv) && dtv[idx] != NULL))
    538 		return (uint8_t *)dtv[idx] + offset;
    539 
    540 	return _rtld_tls_get_addr(tcb, idx, offset);
    541 }
    542 #endif
    543 
    544 #endif /* __HAVE_TLS_VARIANT_I || __HAVE_TLS_VARIANT_II */
    545