1 /* 2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $Id: ar5111.c,v 1.3 2009/01/06 06:03:57 mrg Exp $ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 24 #include "ah_eeprom_v3.h" 25 26 #include "ar5212/ar5212.h" 27 #include "ar5212/ar5212reg.h" 28 #include "ar5212/ar5212phy.h" 29 30 #define AH_5212_5111 31 #include "ar5212/ar5212.ini" 32 33 #define N(a) (sizeof(a)/sizeof(a[0])) 34 35 struct ar5111State { 36 RF_HAL_FUNCS base; /* public state, must be first */ 37 uint16_t pcdacTable[PWR_TABLE_SIZE]; 38 39 uint32_t Bank0Data[N(ar5212Bank0_5111)]; 40 uint32_t Bank1Data[N(ar5212Bank1_5111)]; 41 uint32_t Bank2Data[N(ar5212Bank2_5111)]; 42 uint32_t Bank3Data[N(ar5212Bank3_5111)]; 43 uint32_t Bank6Data[N(ar5212Bank6_5111)]; 44 uint32_t Bank7Data[N(ar5212Bank7_5111)]; 45 }; 46 #define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal) 47 48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue, 49 const PCDACS_EEPROM *pSrcStruct); 50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue, 51 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue); 52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, 53 const PCDACS_EEPROM *pSrcStruct, 54 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac); 55 56 extern void ar5212GetLowerUpperValues(uint16_t value, 57 const uint16_t *pList, uint16_t listSize, 58 uint16_t *pLowerValue, uint16_t *pUpperValue); 59 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 60 uint32_t numBits, uint32_t firstBit, uint32_t column); 61 62 static void 63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 64 int writes) 65 { 66 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes); 67 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes); 68 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes); 69 } 70 71 /* 72 * Take the MHz channel value and set the Channel value 73 * 74 * ASSUMES: Writes enabled to analog bus 75 */ 76 static HAL_BOOL 77 ar5111SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) 78 { 79 #define CI_2GHZ_INDEX_CORRECTION 19 80 uint32_t refClk, reg32, data2111; 81 int16_t chan5111, chanIEEE; 82 83 /* 84 * Structure to hold 11b tuning information for 5111/2111 85 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12 86 */ 87 typedef struct { 88 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */ 89 uint32_t channelSelect; /* P[7:4]S[3:0] bits */ 90 uint16_t channel5111; /* 11a channel for 5111 */ 91 } CHAN_INFO_2GHZ; 92 93 static const CHAN_INFO_2GHZ chan2GHzData[] = { 94 { 1, 0x46, 96 }, /* 2312 -19 */ 95 { 1, 0x46, 97 }, /* 2317 -18 */ 96 { 1, 0x46, 98 }, /* 2322 -17 */ 97 { 1, 0x46, 99 }, /* 2327 -16 */ 98 { 1, 0x46, 100 }, /* 2332 -15 */ 99 { 1, 0x46, 101 }, /* 2337 -14 */ 100 { 1, 0x46, 102 }, /* 2342 -13 */ 101 { 1, 0x46, 103 }, /* 2347 -12 */ 102 { 1, 0x46, 104 }, /* 2352 -11 */ 103 { 1, 0x46, 105 }, /* 2357 -10 */ 104 { 1, 0x46, 106 }, /* 2362 -9 */ 105 { 1, 0x46, 107 }, /* 2367 -8 */ 106 { 1, 0x46, 108 }, /* 2372 -7 */ 107 /* index -6 to 0 are pad to make this a nolookup table */ 108 { 1, 0x46, 116 }, /* -6 */ 109 { 1, 0x46, 116 }, /* -5 */ 110 { 1, 0x46, 116 }, /* -4 */ 111 { 1, 0x46, 116 }, /* -3 */ 112 { 1, 0x46, 116 }, /* -2 */ 113 { 1, 0x46, 116 }, /* -1 */ 114 { 1, 0x46, 116 }, /* 0 */ 115 { 1, 0x46, 116 }, /* 2412 1 */ 116 { 1, 0x46, 117 }, /* 2417 2 */ 117 { 1, 0x46, 118 }, /* 2422 3 */ 118 { 1, 0x46, 119 }, /* 2427 4 */ 119 { 1, 0x46, 120 }, /* 2432 5 */ 120 { 1, 0x46, 121 }, /* 2437 6 */ 121 { 1, 0x46, 122 }, /* 2442 7 */ 122 { 1, 0x46, 123 }, /* 2447 8 */ 123 { 1, 0x46, 124 }, /* 2452 9 */ 124 { 1, 0x46, 125 }, /* 2457 10 */ 125 { 1, 0x46, 126 }, /* 2462 11 */ 126 { 1, 0x46, 127 }, /* 2467 12 */ 127 { 1, 0x46, 128 }, /* 2472 13 */ 128 { 1, 0x44, 124 }, /* 2484 14 */ 129 { 1, 0x46, 136 }, /* 2512 15 */ 130 { 1, 0x46, 140 }, /* 2532 16 */ 131 { 1, 0x46, 144 }, /* 2552 17 */ 132 { 1, 0x46, 148 }, /* 2572 18 */ 133 { 1, 0x46, 152 }, /* 2592 19 */ 134 { 1, 0x46, 156 }, /* 2612 20 */ 135 { 1, 0x46, 160 }, /* 2632 21 */ 136 { 1, 0x46, 164 }, /* 2652 22 */ 137 { 1, 0x46, 168 }, /* 2672 23 */ 138 { 1, 0x46, 172 }, /* 2692 24 */ 139 { 1, 0x46, 176 }, /* 2712 25 */ 140 { 1, 0x46, 180 } /* 2732 26 */ 141 }; 142 143 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); 144 145 chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags); 146 if (IS_CHAN_2GHZ(chan)) { 147 const CHAN_INFO_2GHZ* ci = 148 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION]; 149 uint32_t txctl; 150 151 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff) 152 << 5) 153 | (ci->refClkSel << 4); 154 chan5111 = ci->channel5111; 155 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 156 if (chan->channel == 2484) { 157 /* Enable channel spreading for channel 14 */ 158 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 159 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 160 } else { 161 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 162 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 163 } 164 } else { 165 chan5111 = chanIEEE; /* no conversion needed */ 166 data2111 = 0; 167 } 168 169 /* Rest of the code is common for 5 GHz and 2.4 GHz. */ 170 if (chan5111 >= 145 || (chan5111 & 0x1)) { 171 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff; 172 refClk = 1; 173 } else { 174 reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff; 175 refClk = 0; 176 } 177 178 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1; 179 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff)); 180 reg32 >>= 8; 181 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff)); 182 183 AH_PRIVATE(ah)->ah_curchan = chan; 184 return AH_TRUE; 185 #undef CI_2GHZ_INDEX_CORRECTION 186 } 187 188 /* 189 * Return a reference to the requested RF Bank. 190 */ 191 static uint32_t * 192 ar5111GetRfBank(struct ath_hal *ah, int bank) 193 { 194 struct ar5111State *priv = AR5111(ah); 195 196 HALASSERT(priv != AH_NULL); 197 switch (bank) { 198 case 0: return priv->Bank0Data; 199 case 1: return priv->Bank1Data; 200 case 2: return priv->Bank2Data; 201 case 3: return priv->Bank3Data; 202 case 6: return priv->Bank6Data; 203 case 7: return priv->Bank7Data; 204 } 205 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 206 __func__, bank); 207 return AH_NULL; 208 } 209 210 /* 211 * Reads EEPROM header info from device structure and programs 212 * all rf registers 213 * 214 * REQUIRES: Access to the analog rf device 215 */ 216 static HAL_BOOL 217 ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, 218 uint16_t modesIndex, uint16_t *rfXpdGain) 219 { 220 struct ath_hal_5212 *ahp = AH5212(ah); 221 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 222 uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI; 223 uint16_t tempOB, tempDB; 224 uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)]; 225 int i, regWrites = 0; 226 227 /* Setup rf parameters */ 228 switch (chan->channelFlags & CHANNEL_ALL) { 229 case CHANNEL_A: 230 case CHANNEL_T: 231 if (4000 < chan->channel && chan->channel < 5260) { 232 tempOB = ee->ee_ob1; 233 tempDB = ee->ee_db1; 234 } else if (5260 <= chan->channel && chan->channel < 5500) { 235 tempOB = ee->ee_ob2; 236 tempDB = ee->ee_db2; 237 } else if (5500 <= chan->channel && chan->channel < 5725) { 238 tempOB = ee->ee_ob3; 239 tempDB = ee->ee_db3; 240 } else if (chan->channel >= 5725) { 241 tempOB = ee->ee_ob4; 242 tempDB = ee->ee_db4; 243 } else { 244 /* XXX when does this happen??? */ 245 tempOB = tempDB = 0; 246 } 247 ob2GHz = db2GHz = 0; 248 249 rfXpdGainFixed = ee->ee_xgain[headerInfo11A]; 250 rfPloSel = ee->ee_xpd[headerInfo11A]; 251 rfPwdXpd = !ee->ee_xpd[headerInfo11A]; 252 gainI = ee->ee_gainI[headerInfo11A]; 253 break; 254 case CHANNEL_B: 255 tempOB = ee->ee_obFor24; 256 tempDB = ee->ee_dbFor24; 257 ob2GHz = ee->ee_ob2GHz[0]; 258 db2GHz = ee->ee_db2GHz[0]; 259 260 rfXpdGainFixed = ee->ee_xgain[headerInfo11B]; 261 rfPloSel = ee->ee_xpd[headerInfo11B]; 262 rfPwdXpd = !ee->ee_xpd[headerInfo11B]; 263 gainI = ee->ee_gainI[headerInfo11B]; 264 break; 265 case CHANNEL_G: 266 tempOB = ee->ee_obFor24g; 267 tempDB = ee->ee_dbFor24g; 268 ob2GHz = ee->ee_ob2GHz[1]; 269 db2GHz = ee->ee_db2GHz[1]; 270 271 rfXpdGainFixed = ee->ee_xgain[headerInfo11G]; 272 rfPloSel = ee->ee_xpd[headerInfo11G]; 273 rfPwdXpd = !ee->ee_xpd[headerInfo11G]; 274 gainI = ee->ee_gainI[headerInfo11G]; 275 break; 276 default: 277 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 278 __func__, chan->channelFlags); 279 return AH_FALSE; 280 } 281 282 HALASSERT(1 <= tempOB && tempOB <= 5); 283 HALASSERT(1 <= tempDB && tempDB <= 5); 284 285 /* Bank 0 Write */ 286 for (i = 0; i < N(ar5212Bank0_5111); i++) 287 rfReg[i] = ar5212Bank0_5111[i][modesIndex]; 288 if (IS_CHAN_2GHZ(chan)) { 289 ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0); 290 ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0); 291 } 292 HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites); 293 294 /* Bank 1 Write */ 295 HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites); 296 297 /* Bank 2 Write */ 298 HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites); 299 300 /* Bank 3 Write */ 301 HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites); 302 303 /* Bank 6 Write */ 304 for (i = 0; i < N(ar5212Bank6_5111); i++) 305 rfReg[i] = ar5212Bank6_5111[i][modesIndex]; 306 if (IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */ 307 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3); 308 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3); 309 } 310 ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0); 311 ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0); 312 /* Set 5212 OB & DB */ 313 ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0); 314 ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0); 315 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites); 316 317 /* Bank 7 Write */ 318 for (i = 0; i < N(ar5212Bank7_5111); i++) 319 rfReg[i] = ar5212Bank7_5111[i][modesIndex]; 320 ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0); 321 ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0); 322 323 if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) { 324 uint32_t rfWaitI, rfWaitS, rfMaxTime; 325 326 rfWaitS = 0x1f; 327 rfWaitI = (IS_CHAN_HALF_RATE(chan)) ? 0x10 : 0x1f; 328 rfMaxTime = 3; 329 ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0); 330 ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0); 331 ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0); 332 333 } 334 335 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites); 336 337 /* Now that we have reprogrammed rfgain value, clear the flag. */ 338 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 339 340 return AH_TRUE; 341 } 342 343 /* 344 * Returns interpolated or the scaled up interpolated value 345 */ 346 static uint16_t 347 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 348 uint16_t targetLeft, uint16_t targetRight) 349 { 350 uint16_t rv; 351 int16_t lRatio; 352 353 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */ 354 if ((targetLeft * targetRight) == 0) 355 return 0; 356 357 if (srcRight != srcLeft) { 358 /* 359 * Note the ratio always need to be scaled, 360 * since it will be a fraction. 361 */ 362 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft); 363 if (lRatio < 0) { 364 /* Return as Left target if value would be negative */ 365 rv = targetLeft; 366 } else if (lRatio > EEP_SCALE) { 367 /* Return as Right target if Ratio is greater than 100% (SCALE) */ 368 rv = targetRight; 369 } else { 370 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) * 371 targetLeft) / EEP_SCALE; 372 } 373 } else { 374 rv = targetLeft; 375 } 376 return rv; 377 } 378 379 /* 380 * Read the transmit power levels from the structures taken from EEPROM 381 * Interpolate read transmit power values for this channel 382 * Organize the transmit power values into a table for writing into the hardware 383 */ 384 static HAL_BOOL 385 ar5111SetPowerTable(struct ath_hal *ah, 386 int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan, 387 uint16_t *rfXpdGain) 388 { 389 struct ath_hal_5212 *ahp = AH5212(ah); 390 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 391 FULL_PCDAC_STRUCT pcdacStruct; 392 int i, j; 393 394 uint16_t *pPcdacValues; 395 int16_t *pScaledUpDbm; 396 int16_t minScaledPwr; 397 int16_t maxScaledPwr; 398 int16_t pwr; 399 uint16_t pcdacMin = 0; 400 uint16_t pcdacMax = PCDAC_STOP; 401 uint16_t pcdacTableIndex; 402 uint16_t scaledPcdac; 403 PCDACS_EEPROM *pSrcStruct; 404 PCDACS_EEPROM eepromPcdacs; 405 406 /* setup the pcdac struct to point to the correct info, based on mode */ 407 switch (chan->channelFlags & CHANNEL_ALL) { 408 case CHANNEL_A: 409 case CHANNEL_T: 410 eepromPcdacs.numChannels = ee->ee_numChannels11a; 411 eepromPcdacs.pChannelList = ee->ee_channels11a; 412 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a; 413 break; 414 case CHANNEL_B: 415 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 416 eepromPcdacs.pChannelList = ee->ee_channels11b; 417 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b; 418 break; 419 case CHANNEL_G: 420 case CHANNEL_108G: 421 eepromPcdacs.numChannels = ee->ee_numChannels2_4; 422 eepromPcdacs.pChannelList = ee->ee_channels11g; 423 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g; 424 break; 425 default: 426 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 427 __func__, chan->channelFlags); 428 return AH_FALSE; 429 } 430 431 pSrcStruct = &eepromPcdacs; 432 433 OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct)); 434 pPcdacValues = pcdacStruct.PcdacValues; 435 pScaledUpDbm = pcdacStruct.PwrValues; 436 437 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */ 438 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++) 439 pPcdacValues[j] = i; 440 441 pcdacStruct.numPcdacValues = j; 442 pcdacStruct.pcdacMin = PCDAC_START; 443 pcdacStruct.pcdacMax = PCDAC_STOP; 444 445 /* Fill out the power values for this channel */ 446 for (j = 0; j < pcdacStruct.numPcdacValues; j++ ) 447 pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel, 448 pPcdacValues[j], pSrcStruct); 449 450 /* Now scale the pcdac values to fit in the 64 entry power table */ 451 minScaledPwr = pScaledUpDbm[0]; 452 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1]; 453 454 /* find minimum and make monotonic */ 455 for (j = 0; j < pcdacStruct.numPcdacValues; j++) { 456 if (minScaledPwr >= pScaledUpDbm[j]) { 457 minScaledPwr = pScaledUpDbm[j]; 458 pcdacMin = j; 459 } 460 /* 461 * Make the full_hsh monotonically increasing otherwise 462 * interpolation algorithm will get fooled gotta start 463 * working from the top, hence i = 63 - j. 464 */ 465 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j); 466 if (i == 0) 467 break; 468 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) { 469 /* 470 * It could be a glitch, so make the power for 471 * this pcdac the same as the power from the 472 * next highest pcdac. 473 */ 474 pScaledUpDbm[i - 1] = pScaledUpDbm[i]; 475 } 476 } 477 478 for (j = 0; j < pcdacStruct.numPcdacValues; j++) 479 if (maxScaledPwr < pScaledUpDbm[j]) { 480 maxScaledPwr = pScaledUpDbm[j]; 481 pcdacMax = j; 482 } 483 484 /* Find the first power level with a pcdac */ 485 pwr = (uint16_t)(PWR_STEP * 486 ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN); 487 488 /* Write all the first pcdac entries based off the pcdacMin */ 489 pcdacTableIndex = 0; 490 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) { 491 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE); 492 ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin; 493 } 494 495 i = 0; 496 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] && 497 pcdacTableIndex < PWR_TABLE_SIZE) { 498 pwr += PWR_STEP; 499 /* stop if dbM > max_power_possible */ 500 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] && 501 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0) 502 i++; 503 /* scale by 2 and add 1 to enable round up or down as needed */ 504 scaledPcdac = (uint16_t)(interpolate(pwr, 505 pScaledUpDbm[i], pScaledUpDbm[i + 1], 506 (uint16_t)(pPcdacValues[i] * 2), 507 (uint16_t)(pPcdacValues[i + 1] * 2)) + 1); 508 509 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE); 510 ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2; 511 if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax) 512 ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax; 513 pcdacTableIndex++; 514 } 515 516 /* Write all the last pcdac entries based off the last valid pcdac */ 517 while (pcdacTableIndex < PWR_TABLE_SIZE) { 518 ahp->ah_pcdacTable[pcdacTableIndex] = 519 ahp->ah_pcdacTable[pcdacTableIndex - 1]; 520 pcdacTableIndex++; 521 } 522 523 /* No power table adjustment for 5111 */ 524 ahp->ah_txPowerIndexOffset = 0; 525 526 return AH_TRUE; 527 } 528 529 /* 530 * Get or interpolate the pcdac value from the calibrated data. 531 */ 532 static uint16_t 533 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue, 534 const PCDACS_EEPROM *pSrcStruct) 535 { 536 uint16_t powerValue; 537 uint16_t lFreq, rFreq; /* left and right frequency values */ 538 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */ 539 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */ 540 uint16_t lPwr = 0, uPwr = 0; /* lower and upper temp pwr values */ 541 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */ 542 543 if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) { 544 /* value was copied from srcStruct */ 545 return powerValue; 546 } 547 548 ar5212GetLowerUpperValues(channel, 549 pSrcStruct->pChannelList, pSrcStruct->numChannels, 550 &lFreq, &rFreq); 551 ar5212GetLowerUpperPcdacs(pcdacValue, 552 lFreq, pSrcStruct, &llPcdac, &ulPcdac); 553 ar5212GetLowerUpperPcdacs(pcdacValue, 554 rFreq, pSrcStruct, &lrPcdac, &urPcdac); 555 556 /* get the power index for the pcdac value */ 557 ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr); 558 ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr); 559 lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr); 560 561 ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr); 562 ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr); 563 rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr); 564 565 return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr); 566 } 567 568 /* 569 * Find the value from the calibrated source data struct 570 */ 571 static HAL_BOOL 572 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue, 573 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue) 574 { 575 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel; 576 int i; 577 578 for (i = 0; i < pSrcStruct->numChannels; i++ ) { 579 if (pChannelData->channelValue == channel) { 580 const uint16_t* pPcdac = pChannelData->PcdacValues; 581 int j; 582 583 for (j = 0; j < pChannelData->numPcdacValues; j++ ) { 584 if (*pPcdac == pcdacValue) { 585 *powerValue = pChannelData->PwrValues[j]; 586 return AH_TRUE; 587 } 588 pPcdac++; 589 } 590 } 591 pChannelData++; 592 } 593 return AH_FALSE; 594 } 595 596 /* 597 * Get the upper and lower pcdac given the channel and the pcdac 598 * used in the search 599 */ 600 static void 601 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, 602 const PCDACS_EEPROM *pSrcStruct, 603 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac) 604 { 605 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel; 606 int i; 607 608 /* Find the channel information */ 609 for (i = 0; i < pSrcStruct->numChannels; i++) { 610 if (pChannelData->channelValue == channel) 611 break; 612 pChannelData++; 613 } 614 ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues, 615 pChannelData->numPcdacValues, 616 pLowerPcdac, pUpperPcdac); 617 } 618 619 static HAL_BOOL 620 ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, 621 int16_t *maxPow, int16_t *minPow) 622 { 623 /* XXX - Get 5111 power limits! */ 624 /* NB: caller will cope */ 625 return AH_FALSE; 626 } 627 628 /* 629 * Adjust NF based on statistical values for 5GHz frequencies. 630 */ 631 static int16_t 632 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) 633 { 634 static const struct { 635 uint16_t freqLow; 636 int16_t adjust; 637 } adjust5111[] = { 638 { 5790, 6 }, /* NB: ordered high -> low */ 639 { 5730, 4 }, 640 { 5690, 3 }, 641 { 5660, 2 }, 642 { 5610, 1 }, 643 { 5530, 0 }, 644 { 5450, 0 }, 645 { 5379, 1 }, 646 { 5209, 3 }, 647 { 3000, 5 }, 648 { 0, 0 }, 649 }; 650 int i; 651 652 for (i = 0; c->channel <= adjust5111[i].freqLow; i++) 653 ; 654 return adjust5111[i].adjust; 655 } 656 657 /* 658 * Free memory for analog bank scratch buffers 659 */ 660 static void 661 ar5111RfDetach(struct ath_hal *ah) 662 { 663 struct ath_hal_5212 *ahp = AH5212(ah); 664 665 HALASSERT(ahp->ah_rfHal != AH_NULL); 666 ath_hal_free(ahp->ah_rfHal); 667 ahp->ah_rfHal = AH_NULL; 668 } 669 670 /* 671 * Allocate memory for analog bank scratch buffers 672 * Scratch Buffer will be reinitialized every reset so no need to zero now 673 */ 674 static HAL_BOOL 675 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status) 676 { 677 struct ath_hal_5212 *ahp = AH5212(ah); 678 struct ar5111State *priv; 679 680 HALASSERT(ah->ah_magic == AR5212_MAGIC); 681 682 HALASSERT(ahp->ah_rfHal == AH_NULL); 683 priv = ath_hal_malloc(sizeof(struct ar5111State)); 684 if (priv == AH_NULL) { 685 HALDEBUG(ah, HAL_DEBUG_ANY, 686 "%s: cannot allocate private state\n", __func__); 687 *status = HAL_ENOMEM; /* XXX */ 688 return AH_FALSE; 689 } 690 priv->base.rfDetach = ar5111RfDetach; 691 priv->base.writeRegs = ar5111WriteRegs; 692 priv->base.getRfBank = ar5111GetRfBank; 693 priv->base.setChannel = ar5111SetChannel; 694 priv->base.setRfRegs = ar5111SetRfRegs; 695 priv->base.setPowerTable = ar5111SetPowerTable; 696 priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower; 697 priv->base.getNfAdjust = ar5111GetNfAdjust; 698 699 ahp->ah_pcdacTable = priv->pcdacTable; 700 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 701 ahp->ah_rfHal = &priv->base; 702 703 return AH_TRUE; 704 } 705 706 static HAL_BOOL 707 ar5111Probe(struct ath_hal *ah) 708 { 709 return IS_RAD5111(ah); 710 } 711 AH_RF(RF5111, ar5111Probe, ar5111RfAttach); 712