Home | History | Annotate | Line # | Download | only in ar5212
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar5111.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 
     24 #include "ah_eeprom_v3.h"
     25 
     26 #include "ar5212/ar5212.h"
     27 #include "ar5212/ar5212reg.h"
     28 #include "ar5212/ar5212phy.h"
     29 
     30 #define AH_5212_5111
     31 #include "ar5212/ar5212.ini"
     32 
     33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     34 
     35 struct ar5111State {
     36 	RF_HAL_FUNCS	base;		/* public state, must be first */
     37 	uint16_t	pcdacTable[PWR_TABLE_SIZE];
     38 
     39 	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
     40 	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
     41 	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
     42 	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
     43 	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
     44 	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
     45 };
     46 #define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
     47 
     48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
     49 		const PCDACS_EEPROM *pSrcStruct);
     50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
     51 		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
     52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
     53 		const PCDACS_EEPROM *pSrcStruct,
     54 		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
     55 
     56 extern void ar5212GetLowerUpperValues(uint16_t value,
     57 		const uint16_t *pList, uint16_t listSize,
     58 		uint16_t *pLowerValue, uint16_t *pUpperValue);
     59 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     60 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     61 
     62 static void
     63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     64 	int writes)
     65 {
     66 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
     67 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
     68 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
     69 }
     70 
     71 /*
     72  * Take the MHz channel value and set the Channel value
     73  *
     74  * ASSUMES: Writes enabled to analog bus
     75  */
     76 static HAL_BOOL
     77 ar5111SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     78 {
     79 #define CI_2GHZ_INDEX_CORRECTION 19
     80 	uint32_t refClk, reg32, data2111;
     81 	int16_t chan5111, chanIEEE;
     82 
     83 	/*
     84 	 * Structure to hold 11b tuning information for 5111/2111
     85 	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
     86 	 */
     87 	typedef struct {
     88 		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
     89 		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
     90 		uint16_t	channel5111;	/* 11a channel for 5111 */
     91 	} CHAN_INFO_2GHZ;
     92 
     93 	static const CHAN_INFO_2GHZ chan2GHzData[] = {
     94 		{ 1, 0x46, 96  },	/* 2312 -19 */
     95 		{ 1, 0x46, 97  },	/* 2317 -18 */
     96 		{ 1, 0x46, 98  },	/* 2322 -17 */
     97 		{ 1, 0x46, 99  },	/* 2327 -16 */
     98 		{ 1, 0x46, 100 },	/* 2332 -15 */
     99 		{ 1, 0x46, 101 },	/* 2337 -14 */
    100 		{ 1, 0x46, 102 },	/* 2342 -13 */
    101 		{ 1, 0x46, 103 },	/* 2347 -12 */
    102 		{ 1, 0x46, 104 },	/* 2352 -11 */
    103 		{ 1, 0x46, 105 },	/* 2357 -10 */
    104 		{ 1, 0x46, 106 },	/* 2362  -9 */
    105 		{ 1, 0x46, 107 },	/* 2367  -8 */
    106 		{ 1, 0x46, 108 },	/* 2372  -7 */
    107 		/* index -6 to 0 are pad to make this a nolookup table */
    108 		{ 1, 0x46, 116 },	/*       -6 */
    109 		{ 1, 0x46, 116 },	/*       -5 */
    110 		{ 1, 0x46, 116 },	/*       -4 */
    111 		{ 1, 0x46, 116 },	/*       -3 */
    112 		{ 1, 0x46, 116 },	/*       -2 */
    113 		{ 1, 0x46, 116 },	/*       -1 */
    114 		{ 1, 0x46, 116 },	/*        0 */
    115 		{ 1, 0x46, 116 },	/* 2412   1 */
    116 		{ 1, 0x46, 117 },	/* 2417   2 */
    117 		{ 1, 0x46, 118 },	/* 2422   3 */
    118 		{ 1, 0x46, 119 },	/* 2427   4 */
    119 		{ 1, 0x46, 120 },	/* 2432   5 */
    120 		{ 1, 0x46, 121 },	/* 2437   6 */
    121 		{ 1, 0x46, 122 },	/* 2442   7 */
    122 		{ 1, 0x46, 123 },	/* 2447   8 */
    123 		{ 1, 0x46, 124 },	/* 2452   9 */
    124 		{ 1, 0x46, 125 },	/* 2457  10 */
    125 		{ 1, 0x46, 126 },	/* 2462  11 */
    126 		{ 1, 0x46, 127 },	/* 2467  12 */
    127 		{ 1, 0x46, 128 },	/* 2472  13 */
    128 		{ 1, 0x44, 124 },	/* 2484  14 */
    129 		{ 1, 0x46, 136 },	/* 2512  15 */
    130 		{ 1, 0x46, 140 },	/* 2532  16 */
    131 		{ 1, 0x46, 144 },	/* 2552  17 */
    132 		{ 1, 0x46, 148 },	/* 2572  18 */
    133 		{ 1, 0x46, 152 },	/* 2592  19 */
    134 		{ 1, 0x46, 156 },	/* 2612  20 */
    135 		{ 1, 0x46, 160 },	/* 2632  21 */
    136 		{ 1, 0x46, 164 },	/* 2652  22 */
    137 		{ 1, 0x46, 168 },	/* 2672  23 */
    138 		{ 1, 0x46, 172 },	/* 2692  24 */
    139 		{ 1, 0x46, 176 },	/* 2712  25 */
    140 		{ 1, 0x46, 180 } 	/* 2732  26 */
    141 	};
    142 
    143 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
    144 
    145 	chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
    146 	if (IS_CHAN_2GHZ(chan)) {
    147 		const CHAN_INFO_2GHZ* ci =
    148 			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
    149 		uint32_t txctl;
    150 
    151 		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
    152 				<< 5)
    153 			 | (ci->refClkSel << 4);
    154 		chan5111 = ci->channel5111;
    155 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
    156 		if (chan->channel == 2484) {
    157 			/* Enable channel spreading for channel 14 */
    158 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    159 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    160 		} else {
    161 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    162 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    163 		}
    164 	} else {
    165 		chan5111 = chanIEEE;	/* no conversion needed */
    166 		data2111 = 0;
    167 	}
    168 
    169 	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
    170 	if (chan5111 >= 145 || (chan5111 & 0x1)) {
    171 		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
    172 		refClk = 1;
    173 	} else {
    174 		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
    175 		refClk = 0;
    176 	}
    177 
    178 	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
    179 	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
    180 	reg32 >>= 8;
    181 	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
    182 
    183 	AH_PRIVATE(ah)->ah_curchan = chan;
    184 	return AH_TRUE;
    185 #undef CI_2GHZ_INDEX_CORRECTION
    186 }
    187 
    188 /*
    189  * Return a reference to the requested RF Bank.
    190  */
    191 static uint32_t *
    192 ar5111GetRfBank(struct ath_hal *ah, int bank)
    193 {
    194 	struct ar5111State *priv = AR5111(ah);
    195 
    196 	HALASSERT(priv != AH_NULL);
    197 	switch (bank) {
    198 	case 0: return priv->Bank0Data;
    199 	case 1: return priv->Bank1Data;
    200 	case 2: return priv->Bank2Data;
    201 	case 3: return priv->Bank3Data;
    202 	case 6: return priv->Bank6Data;
    203 	case 7: return priv->Bank7Data;
    204 	}
    205 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    206 	    __func__, bank);
    207 	return AH_NULL;
    208 }
    209 
    210 /*
    211  * Reads EEPROM header info from device structure and programs
    212  * all rf registers
    213  *
    214  * REQUIRES: Access to the analog rf device
    215  */
    216 static HAL_BOOL
    217 ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
    218 	uint16_t modesIndex, uint16_t *rfXpdGain)
    219 {
    220 	struct ath_hal_5212 *ahp = AH5212(ah);
    221 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    222 	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
    223 	uint16_t tempOB, tempDB;
    224 	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
    225 	int i, regWrites = 0;
    226 
    227 	/* Setup rf parameters */
    228 	switch (chan->channelFlags & CHANNEL_ALL) {
    229 	case CHANNEL_A:
    230 	case CHANNEL_T:
    231 		if (4000 < chan->channel && chan->channel < 5260) {
    232 			tempOB = ee->ee_ob1;
    233 			tempDB = ee->ee_db1;
    234 		} else if (5260 <= chan->channel && chan->channel < 5500) {
    235 			tempOB = ee->ee_ob2;
    236 			tempDB = ee->ee_db2;
    237 		} else if (5500 <= chan->channel && chan->channel < 5725) {
    238 			tempOB = ee->ee_ob3;
    239 			tempDB = ee->ee_db3;
    240 		} else if (chan->channel >= 5725) {
    241 			tempOB = ee->ee_ob4;
    242 			tempDB = ee->ee_db4;
    243 		} else {
    244 			/* XXX when does this happen??? */
    245 			tempOB = tempDB = 0;
    246 		}
    247 		ob2GHz = db2GHz = 0;
    248 
    249 		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
    250 		rfPloSel = ee->ee_xpd[headerInfo11A];
    251 		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
    252 		gainI = ee->ee_gainI[headerInfo11A];
    253 		break;
    254 	case CHANNEL_B:
    255 		tempOB = ee->ee_obFor24;
    256 		tempDB = ee->ee_dbFor24;
    257 		ob2GHz = ee->ee_ob2GHz[0];
    258 		db2GHz = ee->ee_db2GHz[0];
    259 
    260 		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
    261 		rfPloSel = ee->ee_xpd[headerInfo11B];
    262 		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
    263 		gainI = ee->ee_gainI[headerInfo11B];
    264 		break;
    265 	case CHANNEL_G:
    266 		tempOB = ee->ee_obFor24g;
    267 		tempDB = ee->ee_dbFor24g;
    268 		ob2GHz = ee->ee_ob2GHz[1];
    269 		db2GHz = ee->ee_db2GHz[1];
    270 
    271 		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
    272 		rfPloSel = ee->ee_xpd[headerInfo11G];
    273 		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
    274 		gainI = ee->ee_gainI[headerInfo11G];
    275 		break;
    276 	default:
    277 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    278 		    __func__, chan->channelFlags);
    279 		return AH_FALSE;
    280 	}
    281 
    282 	HALASSERT(1 <= tempOB && tempOB <= 5);
    283 	HALASSERT(1 <= tempDB && tempDB <= 5);
    284 
    285 	/* Bank 0 Write */
    286 	for (i = 0; i < N(ar5212Bank0_5111); i++)
    287 		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
    288 	if (IS_CHAN_2GHZ(chan)) {
    289 		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
    290 		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
    291 	}
    292 	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
    293 
    294 	/* Bank 1 Write */
    295 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
    296 
    297 	/* Bank 2 Write */
    298 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
    299 
    300 	/* Bank 3 Write */
    301 	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
    302 
    303 	/* Bank 6 Write */
    304 	for (i = 0; i < N(ar5212Bank6_5111); i++)
    305 		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
    306 	if (IS_CHAN_A(chan)) {		/* NB: CHANNEL_A | CHANNEL_T */
    307 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
    308 		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
    309 	}
    310 	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
    311 	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
    312 	/* Set 5212 OB & DB */
    313 	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
    314 	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
    315 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
    316 
    317 	/* Bank 7 Write */
    318 	for (i = 0; i < N(ar5212Bank7_5111); i++)
    319 		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
    320 	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
    321 	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
    322 
    323 	if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
    324         	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
    325 
    326         	rfWaitS = 0x1f;
    327         	rfWaitI = (IS_CHAN_HALF_RATE(chan)) ?  0x10 : 0x1f;
    328         	rfMaxTime = 3;
    329         	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
    330         	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
    331         	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
    332 
    333 	}
    334 
    335 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
    336 
    337 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    338 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    339 
    340 	return AH_TRUE;
    341 }
    342 
    343 /*
    344  * Returns interpolated or the scaled up interpolated value
    345  */
    346 static uint16_t
    347 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    348 	uint16_t targetLeft, uint16_t targetRight)
    349 {
    350 	uint16_t rv;
    351 	int16_t lRatio;
    352 
    353 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
    354 	if ((targetLeft * targetRight) == 0)
    355 		return 0;
    356 
    357 	if (srcRight != srcLeft) {
    358 		/*
    359 		 * Note the ratio always need to be scaled,
    360 		 * since it will be a fraction.
    361 		 */
    362 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
    363 		if (lRatio < 0) {
    364 		    /* Return as Left target if value would be negative */
    365 		    rv = targetLeft;
    366 		} else if (lRatio > EEP_SCALE) {
    367 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
    368 		    rv = targetRight;
    369 		} else {
    370 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
    371 					targetLeft) / EEP_SCALE;
    372 		}
    373 	} else {
    374 		rv = targetLeft;
    375 	}
    376 	return rv;
    377 }
    378 
    379 /*
    380  * Read the transmit power levels from the structures taken from EEPROM
    381  * Interpolate read transmit power values for this channel
    382  * Organize the transmit power values into a table for writing into the hardware
    383  */
    384 static HAL_BOOL
    385 ar5111SetPowerTable(struct ath_hal *ah,
    386 	int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
    387 	uint16_t *rfXpdGain)
    388 {
    389 	struct ath_hal_5212 *ahp = AH5212(ah);
    390 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    391 	FULL_PCDAC_STRUCT pcdacStruct;
    392 	int i, j;
    393 
    394 	uint16_t     *pPcdacValues;
    395 	int16_t      *pScaledUpDbm;
    396 	int16_t      minScaledPwr;
    397 	int16_t      maxScaledPwr;
    398 	int16_t      pwr;
    399 	uint16_t     pcdacMin = 0;
    400 	uint16_t     pcdacMax = PCDAC_STOP;
    401 	uint16_t     pcdacTableIndex;
    402 	uint16_t     scaledPcdac;
    403 	PCDACS_EEPROM *pSrcStruct;
    404 	PCDACS_EEPROM eepromPcdacs;
    405 
    406 	/* setup the pcdac struct to point to the correct info, based on mode */
    407 	switch (chan->channelFlags & CHANNEL_ALL) {
    408 	case CHANNEL_A:
    409 	case CHANNEL_T:
    410 		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
    411 		eepromPcdacs.pChannelList    = ee->ee_channels11a;
    412 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
    413 		break;
    414 	case CHANNEL_B:
    415 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
    416 		eepromPcdacs.pChannelList    = ee->ee_channels11b;
    417 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
    418 		break;
    419 	case CHANNEL_G:
    420 	case CHANNEL_108G:
    421 		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
    422 		eepromPcdacs.pChannelList    = ee->ee_channels11g;
    423 		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
    424 		break;
    425 	default:
    426 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    427 		    __func__, chan->channelFlags);
    428 		return AH_FALSE;
    429 	}
    430 
    431 	pSrcStruct = &eepromPcdacs;
    432 
    433 	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
    434 	pPcdacValues = pcdacStruct.PcdacValues;
    435 	pScaledUpDbm = pcdacStruct.PwrValues;
    436 
    437 	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
    438 	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
    439 		pPcdacValues[j] = i;
    440 
    441 	pcdacStruct.numPcdacValues = j;
    442 	pcdacStruct.pcdacMin = PCDAC_START;
    443 	pcdacStruct.pcdacMax = PCDAC_STOP;
    444 
    445 	/* Fill out the power values for this channel */
    446 	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
    447 		pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
    448 			pPcdacValues[j], pSrcStruct);
    449 
    450 	/* Now scale the pcdac values to fit in the 64 entry power table */
    451 	minScaledPwr = pScaledUpDbm[0];
    452 	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
    453 
    454 	/* find minimum and make monotonic */
    455 	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
    456 		if (minScaledPwr >= pScaledUpDbm[j]) {
    457 			minScaledPwr = pScaledUpDbm[j];
    458 			pcdacMin = j;
    459 		}
    460 		/*
    461 		 * Make the full_hsh monotonically increasing otherwise
    462 		 * interpolation algorithm will get fooled gotta start
    463 		 * working from the top, hence i = 63 - j.
    464 		 */
    465 		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
    466 		if (i == 0)
    467 			break;
    468 		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
    469 			/*
    470 			 * It could be a glitch, so make the power for
    471 			 * this pcdac the same as the power from the
    472 			 * next highest pcdac.
    473 			 */
    474 			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
    475 		}
    476 	}
    477 
    478 	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
    479 		if (maxScaledPwr < pScaledUpDbm[j]) {
    480 			maxScaledPwr = pScaledUpDbm[j];
    481 			pcdacMax = j;
    482 		}
    483 
    484 	/* Find the first power level with a pcdac */
    485 	pwr = (uint16_t)(PWR_STEP *
    486 		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
    487 
    488 	/* Write all the first pcdac entries based off the pcdacMin */
    489 	pcdacTableIndex = 0;
    490 	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
    491 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
    492 		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
    493 	}
    494 
    495 	i = 0;
    496 	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
    497 	    pcdacTableIndex < PWR_TABLE_SIZE) {
    498 		pwr += PWR_STEP;
    499 		/* stop if dbM > max_power_possible */
    500 		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
    501 		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
    502 			i++;
    503 		/* scale by 2 and add 1 to enable round up or down as needed */
    504 		scaledPcdac = (uint16_t)(interpolate(pwr,
    505 			pScaledUpDbm[i], pScaledUpDbm[i + 1],
    506 			(uint16_t)(pPcdacValues[i] * 2),
    507 			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
    508 
    509 		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
    510 		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
    511 		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
    512 			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
    513 		pcdacTableIndex++;
    514 	}
    515 
    516 	/* Write all the last pcdac entries based off the last valid pcdac */
    517 	while (pcdacTableIndex < PWR_TABLE_SIZE) {
    518 		ahp->ah_pcdacTable[pcdacTableIndex] =
    519 			ahp->ah_pcdacTable[pcdacTableIndex - 1];
    520 		pcdacTableIndex++;
    521 	}
    522 
    523 	/* No power table adjustment for 5111 */
    524 	ahp->ah_txPowerIndexOffset = 0;
    525 
    526 	return AH_TRUE;
    527 }
    528 
    529 /*
    530  * Get or interpolate the pcdac value from the calibrated data.
    531  */
    532 static uint16_t
    533 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
    534 	const PCDACS_EEPROM *pSrcStruct)
    535 {
    536 	uint16_t powerValue;
    537 	uint16_t lFreq, rFreq;		/* left and right frequency values */
    538 	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
    539 	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
    540 	uint16_t lPwr = 0, uPwr = 0;		/* lower and upper temp pwr values */
    541 	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
    542 
    543 	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
    544 		/* value was copied from srcStruct */
    545 		return powerValue;
    546 	}
    547 
    548 	ar5212GetLowerUpperValues(channel,
    549 		pSrcStruct->pChannelList, pSrcStruct->numChannels,
    550 		&lFreq, &rFreq);
    551 	ar5212GetLowerUpperPcdacs(pcdacValue,
    552 		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
    553 	ar5212GetLowerUpperPcdacs(pcdacValue,
    554 		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
    555 
    556 	/* get the power index for the pcdac value */
    557 	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
    558 	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
    559 	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
    560 
    561 	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
    562 	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
    563 	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
    564 
    565 	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
    566 }
    567 
    568 /*
    569  * Find the value from the calibrated source data struct
    570  */
    571 static HAL_BOOL
    572 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
    573 	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
    574 {
    575 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
    576 	int i;
    577 
    578 	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
    579 		if (pChannelData->channelValue == channel) {
    580 			const uint16_t* pPcdac = pChannelData->PcdacValues;
    581 			int j;
    582 
    583 			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
    584 				if (*pPcdac == pcdacValue) {
    585 					*powerValue = pChannelData->PwrValues[j];
    586 					return AH_TRUE;
    587 				}
    588 				pPcdac++;
    589 			}
    590 		}
    591 		pChannelData++;
    592 	}
    593 	return AH_FALSE;
    594 }
    595 
    596 /*
    597  * Get the upper and lower pcdac given the channel and the pcdac
    598  * used in the search
    599  */
    600 static void
    601 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
    602 	const PCDACS_EEPROM *pSrcStruct,
    603 	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
    604 {
    605 	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
    606 	int i;
    607 
    608 	/* Find the channel information */
    609 	for (i = 0; i < pSrcStruct->numChannels; i++) {
    610 		if (pChannelData->channelValue == channel)
    611 			break;
    612 		pChannelData++;
    613 	}
    614 	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
    615 		      pChannelData->numPcdacValues,
    616 		      pLowerPcdac, pUpperPcdac);
    617 }
    618 
    619 static HAL_BOOL
    620 ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    621 	int16_t *maxPow, int16_t *minPow)
    622 {
    623 	/* XXX - Get 5111 power limits! */
    624 	/* NB: caller will cope */
    625 	return AH_FALSE;
    626 }
    627 
    628 /*
    629  * Adjust NF based on statistical values for 5GHz frequencies.
    630  */
    631 static int16_t
    632 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
    633 {
    634 	static const struct {
    635 		uint16_t freqLow;
    636 		int16_t	  adjust;
    637 	} adjust5111[] = {
    638 		{ 5790,	6 },	/* NB: ordered high -> low */
    639 		{ 5730, 4 },
    640 		{ 5690, 3 },
    641 		{ 5660, 2 },
    642 		{ 5610, 1 },
    643 		{ 5530, 0 },
    644 		{ 5450, 0 },
    645 		{ 5379, 1 },
    646 		{ 5209, 3 },
    647 		{ 3000, 5 },
    648 		{    0, 0 },
    649 	};
    650 	int i;
    651 
    652 	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
    653 		;
    654 	return adjust5111[i].adjust;
    655 }
    656 
    657 /*
    658  * Free memory for analog bank scratch buffers
    659  */
    660 static void
    661 ar5111RfDetach(struct ath_hal *ah)
    662 {
    663 	struct ath_hal_5212 *ahp = AH5212(ah);
    664 
    665 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    666 	ath_hal_free(ahp->ah_rfHal);
    667 	ahp->ah_rfHal = AH_NULL;
    668 }
    669 
    670 /*
    671  * Allocate memory for analog bank scratch buffers
    672  * Scratch Buffer will be reinitialized every reset so no need to zero now
    673  */
    674 static HAL_BOOL
    675 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    676 {
    677 	struct ath_hal_5212 *ahp = AH5212(ah);
    678 	struct ar5111State *priv;
    679 
    680 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    681 
    682 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    683 	priv = ath_hal_malloc(sizeof(struct ar5111State));
    684 	if (priv == AH_NULL) {
    685 		HALDEBUG(ah, HAL_DEBUG_ANY,
    686 		    "%s: cannot allocate private state\n", __func__);
    687 		*status = HAL_ENOMEM;		/* XXX */
    688 		return AH_FALSE;
    689 	}
    690 	priv->base.rfDetach		= ar5111RfDetach;
    691 	priv->base.writeRegs		= ar5111WriteRegs;
    692 	priv->base.getRfBank		= ar5111GetRfBank;
    693 	priv->base.setChannel		= ar5111SetChannel;
    694 	priv->base.setRfRegs		= ar5111SetRfRegs;
    695 	priv->base.setPowerTable	= ar5111SetPowerTable;
    696 	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
    697 	priv->base.getNfAdjust		= ar5111GetNfAdjust;
    698 
    699 	ahp->ah_pcdacTable = priv->pcdacTable;
    700 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    701 	ahp->ah_rfHal = &priv->base;
    702 
    703 	return AH_TRUE;
    704 }
    705 
    706 static HAL_BOOL
    707 ar5111Probe(struct ath_hal *ah)
    708 {
    709 	return IS_RAD5111(ah);
    710 }
    711 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
    712