Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_heartbeat.c,v 1.14 2024/08/25 01:14:01 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * heartbeat(9) -- periodic checks to ensure CPUs are making progress
     31  *
     32  * Manual tests to run when changing this file.  Magic numbers are for
     33  * evbarm; adjust for other platforms.  Tests involving cpuctl
     34  * online/offline assume a 2-CPU system -- for full testing on a >2-CPU
     35  * system, offline all but one CPU.
     36  *
     37  * 1.	cpuctl offline 0
     38  *	sleep 20
     39  *	cpuctl online 0
     40  *
     41  * 2.	cpuctl offline 1
     42  *	sleep 20
     43  *	cpuctl online 1
     44  *
     45  * 3.	cpuctl offline 0
     46  *	sysctl -w kern.heartbeat.max_period=5
     47  *	sleep 10
     48  *	sysctl -w kern.heartbeat.max_period=0
     49  *	sleep 10
     50  *	sysctl -w kern.heartbeat.max_period=5
     51  *	sleep 10
     52  *	cpuctl online 0
     53  *
     54  * 4.	sysctl -w debug.crashme_enable=1
     55  *	sysctl -w debug.crashme.spl_spinout=1   # IPL_SOFTCLOCK
     56  *	# verify system panics after 15sec, with a stack trace through
     57  *	# crashme_spl_spinout
     58  *
     59  * 5.	sysctl -w debug.crashme_enable=1
     60  *	sysctl -w debug.crashme.spl_spinout=6   # IPL_SCHED
     61  *	# verify system panics after 15sec, with a stack trace through
     62  *	# crashme_spl_spinout
     63  *
     64  * 6.	cpuctl offline 0
     65  *	sysctl -w debug.crashme_enable=1
     66  *	sysctl -w debug.crashme.spl_spinout=1   # IPL_SOFTCLOCK
     67  *	# verify system panics after 15sec, with a stack trace through
     68  *	# crashme_spl_spinout
     69  *
     70  * 7.	cpuctl offline 0
     71  *	sysctl -w debug.crashme_enable=1
     72  *	sysctl -w debug.crashme.spl_spinout=5   # IPL_VM
     73  *	# verify system panics after 15sec, with a stack trace through
     74  *	# crashme_spl_spinout
     75  *
     76  *	# Not this -- IPL_SCHED and IPL_HIGH spinout on a single CPU
     77  *	# require a hardware watchdog timer.
     78  *	#cpuctl offline 0
     79  *	#sysctl -w debug.crashme_enable
     80  *	#sysctl -w debug.crashme.spl_spinout=6   # IPL_SCHED
     81  *	# hope watchdog timer kicks in
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: kern_heartbeat.c,v 1.14 2024/08/25 01:14:01 riastradh Exp $");
     86 
     87 #ifdef _KERNEL_OPT
     88 #include "opt_ddb.h"
     89 #include "opt_heartbeat.h"
     90 #endif
     91 
     92 #include "heartbeat.h"
     93 
     94 #include <sys/param.h>
     95 #include <sys/types.h>
     96 
     97 #include <sys/atomic.h>
     98 #include <sys/cpu.h>
     99 #include <sys/errno.h>
    100 #include <sys/heartbeat.h>
    101 #include <sys/ipi.h>
    102 #include <sys/kernel.h>
    103 #include <sys/mutex.h>
    104 #include <sys/sysctl.h>
    105 #include <sys/systm.h>
    106 #include <sys/xcall.h>
    107 
    108 #ifdef DDB
    109 #include <ddb/ddb.h>
    110 #endif
    111 
    112 /*
    113  * Global state.
    114  *
    115  *	heartbeat_lock serializes access to heartbeat_max_period_secs
    116  *	and heartbeat_max_period_ticks.  Two separate variables so we
    117  *	can avoid multiplication or division in the heartbeat routine.
    118  *
    119  *	heartbeat_sih is stable after initialization in
    120  *	heartbeat_start.
    121  */
    122 kmutex_t heartbeat_lock			__cacheline_aligned;
    123 unsigned heartbeat_max_period_secs	__read_mostly;
    124 unsigned heartbeat_max_period_ticks	__read_mostly;
    125 
    126 void *heartbeat_sih			__read_mostly;
    127 
    128 /*
    129  * heartbeat_suspend()
    130  *
    131  *	Suspend heartbeat monitoring of the current CPU.
    132  *
    133  *	Called after the current CPU has been marked offline but before
    134  *	it has stopped running, or after IPL has been raised for
    135  *	polling-mode console input.  Nestable (but only 2^32 times, so
    136  *	don't do this in a loop).  Reversed by heartbeat_resume.
    137  *
    138  *	Caller must be bound to the CPU, i.e., curcpu_stable() must be
    139  *	true.  This function does not assert curcpu_stable() since it
    140  *	is used in the ddb entry path, where any assertions risk
    141  *	infinite regress into undebuggable chaos, so callers must be
    142  *	careful.
    143  */
    144 void
    145 heartbeat_suspend(void)
    146 {
    147 	unsigned *p;
    148 
    149 	p = &curcpu()->ci_heartbeat_suspend;
    150 	atomic_store_relaxed(p, *p + 1);
    151 }
    152 
    153 /*
    154  * heartbeat_resume_cpu(ci)
    155  *
    156  *	Resume heartbeat monitoring of ci.
    157  *
    158  *	Called at startup while cold, and whenever heartbeat monitoring
    159  *	is re-enabled after being disabled or the period is changed.
    160  *	When not cold, ci must be the current CPU.
    161  *
    162  *	Must be run at splsched.
    163  */
    164 static void
    165 heartbeat_resume_cpu(struct cpu_info *ci)
    166 {
    167 
    168 	KASSERT(__predict_false(cold) || curcpu_stable());
    169 	KASSERT(__predict_false(cold) || ci == curcpu());
    170 	/* XXX KASSERT IPL_SCHED */
    171 
    172 	ci->ci_heartbeat_count = 0;
    173 	ci->ci_heartbeat_uptime_cache = time_uptime32;
    174 	ci->ci_heartbeat_uptime_stamp = 0;
    175 }
    176 
    177 /*
    178  * heartbeat_resume()
    179  *
    180  *	Resume heartbeat monitoring of the current CPU.
    181  *
    182  *	Called after the current CPU has started running but before it
    183  *	has been marked online, or when ending polling-mode input
    184  *	before IPL is restored.  Reverses heartbeat_suspend.
    185  *
    186  *	Caller must be bound to the CPU, i.e., curcpu_stable() must be
    187  *	true.
    188  */
    189 void
    190 heartbeat_resume(void)
    191 {
    192 	struct cpu_info *ci = curcpu();
    193 	unsigned *p;
    194 	int s;
    195 
    196 	KASSERT(curcpu_stable());
    197 
    198 	/*
    199 	 * Reset the state so nobody spuriously thinks we had a heart
    200 	 * attack as soon as the heartbeat checks resume.
    201 	 */
    202 	s = splsched();
    203 	heartbeat_resume_cpu(ci);
    204 	splx(s);
    205 
    206 	p = &ci->ci_heartbeat_suspend;
    207 	atomic_store_relaxed(p, *p - 1);
    208 }
    209 
    210 /*
    211  * heartbeat_timecounter_suspended()
    212  *
    213  *	True if timecounter heartbeat checks are suspended because the
    214  *	timecounter may not be advancing, false if heartbeat checks
    215  *	should check for timecounter progress.
    216  */
    217 static bool
    218 heartbeat_timecounter_suspended(void)
    219 {
    220 	CPU_INFO_ITERATOR cii;
    221 	struct cpu_info *ci;
    222 
    223 	/*
    224 	 * The timecounter ticks only on the primary CPU.  Check
    225 	 * whether it's suspended.
    226 	 *
    227 	 * XXX Would be nice if we could find the primary CPU without
    228 	 * iterating over all CPUs.
    229 	 */
    230 	for (CPU_INFO_FOREACH(cii, ci)) {
    231 		if (CPU_IS_PRIMARY(ci))
    232 			return atomic_load_relaxed(&ci->ci_heartbeat_suspend);
    233 	}
    234 
    235 	/*
    236 	 * This should be unreachable -- there had better be a primary
    237 	 * CPU in the system!  If not, the timecounter will be busted
    238 	 * anyway.
    239 	 */
    240 	panic("no primary CPU");
    241 }
    242 
    243 /*
    244  * heartbeat_reset_xc(a, b)
    245  *
    246  *	Cross-call handler to reset heartbeat state just prior to
    247  *	enabling heartbeat checks.
    248  */
    249 static void
    250 heartbeat_reset_xc(void *a, void *b)
    251 {
    252 	int s;
    253 
    254 	s = splsched();
    255 	heartbeat_resume_cpu(curcpu());
    256 	splx(s);
    257 }
    258 
    259 /*
    260  * set_max_period(max_period)
    261  *
    262  *	Set the maximum period, in seconds, for heartbeat checks.
    263  *
    264  *	- If max_period is zero, disable them.
    265  *
    266  *	- If the max period was zero and max_period is nonzero, ensure
    267  *	  all CPUs' heartbeat uptime caches are up-to-date before
    268  *	  re-enabling them.
    269  *
    270  *	max_period must be below UINT_MAX/4/hz to avoid arithmetic
    271  *	overflow and give room for slop.
    272  *
    273  *	Caller must hold heartbeat_lock.
    274  */
    275 static void
    276 set_max_period(unsigned max_period)
    277 {
    278 
    279 	KASSERTMSG(max_period <= UINT_MAX/4/hz,
    280 	    "max_period=%u must not exceed UINT_MAX/4/hz=%u (hz=%u)",
    281 	    max_period, UINT_MAX/4/hz, hz);
    282 	KASSERT(mutex_owned(&heartbeat_lock));
    283 
    284 	/*
    285 	 * If we're enabling heartbeat checks, make sure we have a
    286 	 * reasonably up-to-date time_uptime32 cache on all CPUs so we
    287 	 * don't think we had an instant heart attack.
    288 	 */
    289 	if (heartbeat_max_period_secs == 0 && max_period != 0) {
    290 		if (cold) {
    291 			CPU_INFO_ITERATOR cii;
    292 			struct cpu_info *ci;
    293 
    294 			for (CPU_INFO_FOREACH(cii, ci))
    295 				heartbeat_resume_cpu(ci);
    296 		} else {
    297 			const uint64_t ticket =
    298 			    xc_broadcast(0, &heartbeat_reset_xc, NULL, NULL);
    299 			xc_wait(ticket);
    300 		}
    301 	}
    302 
    303 	/*
    304 	 * Once the heartbeat state has been updated on all (online)
    305 	 * CPUs, set the period.  At this point, heartbeat checks can
    306 	 * begin.
    307 	 */
    308 	atomic_store_relaxed(&heartbeat_max_period_secs, max_period);
    309 	atomic_store_relaxed(&heartbeat_max_period_ticks, max_period*hz);
    310 }
    311 
    312 /*
    313  * heartbeat_max_period_ticks(SYSCTLFN_ARGS)
    314  *
    315  *	Sysctl handler for sysctl kern.heartbeat.max_period.  Verifies
    316  *	it lies within a reasonable interval and sets it.
    317  */
    318 static int
    319 heartbeat_max_period_sysctl(SYSCTLFN_ARGS)
    320 {
    321 	struct sysctlnode node;
    322 	unsigned max_period;
    323 	int error;
    324 
    325 	mutex_enter(&heartbeat_lock);
    326 
    327 	max_period = heartbeat_max_period_secs;
    328 	node = *rnode;
    329 	node.sysctl_data = &max_period;
    330 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    331 	if (error || newp == NULL)
    332 		goto out;
    333 
    334 	/*
    335 	 * Ensure there's plenty of slop between heartbeats.
    336 	 */
    337 	if (max_period > UINT_MAX/4/hz) {
    338 		error = EOVERFLOW;
    339 		goto out;
    340 	}
    341 
    342 	/*
    343 	 * Success!  Set the period.  This enables heartbeat checks if
    344 	 * we went from zero period to nonzero period, or disables them
    345 	 * if the other way around.
    346 	 */
    347 	set_max_period(max_period);
    348 	error = 0;
    349 
    350 out:	mutex_exit(&heartbeat_lock);
    351 	return error;
    352 }
    353 
    354 /*
    355  * sysctl_heartbeat_setup()
    356  *
    357  *	Set up the kern.heartbeat.* sysctl subtree.
    358  */
    359 SYSCTL_SETUP(sysctl_heartbeat_setup, "sysctl kern.heartbeat setup")
    360 {
    361 	const struct sysctlnode *rnode;
    362 	int error;
    363 
    364 	mutex_init(&heartbeat_lock, MUTEX_DEFAULT, IPL_NONE);
    365 
    366 	/* kern.heartbeat */
    367 	error = sysctl_createv(NULL, 0, NULL, &rnode,
    368 	    CTLFLAG_PERMANENT,
    369 	    CTLTYPE_NODE, "heartbeat",
    370 	    SYSCTL_DESCR("Kernel heartbeat parameters"),
    371 	    NULL, 0, NULL, 0,
    372 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    373 	if (error) {
    374 		printf("%s: failed to create kern.heartbeat: %d\n",
    375 		    __func__, error);
    376 		return;
    377 	}
    378 
    379 	/* kern.heartbeat.max_period */
    380 	error = sysctl_createv(NULL, 0, &rnode, NULL,
    381 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    382 	    CTLTYPE_INT, "max_period",
    383 	    SYSCTL_DESCR("Max seconds between heartbeats before panic"),
    384 	    &heartbeat_max_period_sysctl, 0, NULL, 0,
    385 	    CTL_CREATE, CTL_EOL);
    386 	if (error) {
    387 		printf("%s: failed to create kern.heartbeat.max_period: %d\n",
    388 		    __func__, error);
    389 		return;
    390 	}
    391 }
    392 
    393 /*
    394  * heartbeat_intr(cookie)
    395  *
    396  *	Soft interrupt handler to update the local CPU's view of the
    397  *	system uptime.  This runs at the same priority level as
    398  *	callouts, so if callouts are stuck on this CPU, it won't run,
    399  *	and eventually another CPU will notice that this one is stuck.
    400  *
    401  *	Don't do spl* here -- keep it to a minimum so if anything goes
    402  *	wrong we don't end up with hard interrupts blocked and unable
    403  *	to detect a missed heartbeat.
    404  */
    405 static void
    406 heartbeat_intr(void *cookie)
    407 {
    408 	unsigned count = atomic_load_relaxed(&curcpu()->ci_heartbeat_count);
    409 	unsigned uptime = time_uptime32;
    410 
    411 	atomic_store_relaxed(&curcpu()->ci_heartbeat_uptime_stamp, count);
    412 	atomic_store_relaxed(&curcpu()->ci_heartbeat_uptime_cache, uptime);
    413 }
    414 
    415 /*
    416  * heartbeat_start()
    417  *
    418  *	Start system heartbeat monitoring.
    419  */
    420 void
    421 heartbeat_start(void)
    422 {
    423 	enum { max_period = HEARTBEAT_MAX_PERIOD_DEFAULT };
    424 
    425 	/*
    426 	 * Ensure the maximum period is small enough that we never have
    427 	 * to worry about 32-bit wraparound even if there's a lot of
    428 	 * slop.  (In fact this is required to be less than
    429 	 * UINT_MAX/4/hz, but that's not a compile-time constant.)
    430 	 */
    431 	__CTASSERT(max_period < UINT_MAX/4);
    432 
    433 	/*
    434 	 * Establish a softint so we can schedule it once ready.  This
    435 	 * should be at the lowest softint priority level so that we
    436 	 * ensure all softint priorities are making progress.
    437 	 */
    438 	heartbeat_sih = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE,
    439 	    &heartbeat_intr, NULL);
    440 
    441 	/*
    442 	 * Now that the softint is established, kick off heartbeat
    443 	 * monitoring with the default period.  This will initialize
    444 	 * the per-CPU state to an up-to-date cache of time_uptime32.
    445 	 */
    446 	mutex_enter(&heartbeat_lock);
    447 	set_max_period(max_period);
    448 	mutex_exit(&heartbeat_lock);
    449 }
    450 
    451 /*
    452  * defibrillator(cookie)
    453  *
    454  *	IPI handler for defibrillation.  If the CPU's heart has stopped
    455  *	beating normally, but the CPU can still execute things,
    456  *	acknowledge the IPI to the doctor and then panic so we at least
    457  *	get a stack trace from whatever the current CPU is stuck doing,
    458  *	if not a core dump.
    459  *
    460  *	(This metaphor is a little stretched, since defibrillation is
    461  *	usually administered when the heart is beating errattically but
    462  *	hasn't stopped, and causes the heart to stop temporarily, and
    463  *	one hopes it is not fatal.  But we're (software) engineers, so
    464  *	we can stretch metaphors like silly putty in a blender.)
    465  */
    466 static void
    467 defibrillator(void *cookie)
    468 {
    469 	bool *ack = cookie;
    470 
    471 	/*
    472 	 * Acknowledge the interrupt so the doctor CPU won't trigger a
    473 	 * new panic for defibrillation timeout.
    474 	 */
    475 	atomic_store_relaxed(ack, true);
    476 
    477 	/*
    478 	 * If a panic is already in progress, we may have interrupted
    479 	 * the logic that prints a stack trace on this CPU -- so let's
    480 	 * not make it worse by giving the misapprehension of a
    481 	 * recursive panic.
    482 	 */
    483 	if (atomic_load_relaxed(&panicstr) != NULL)
    484 		return;
    485 
    486 	panic("%s[%d %s]: heart stopped beating", cpu_name(curcpu()),
    487 	    curlwp->l_lid,
    488 	    curlwp->l_name ? curlwp->l_name : curproc->p_comm);
    489 }
    490 
    491 /*
    492  * defibrillate(ci, unsigned d)
    493  *
    494  *	The patient CPU ci's heart has stopped beating after d seconds.
    495  *	Force the patient CPU ci to panic, or panic on this CPU if the
    496  *	patient CPU doesn't respond within 1sec.
    497  */
    498 static void __noinline
    499 defibrillate(struct cpu_info *ci, unsigned d)
    500 {
    501 	bool ack = false;
    502 	ipi_msg_t msg = {
    503 		.func = &defibrillator,
    504 		.arg = &ack,
    505 	};
    506 	unsigned countdown = 1000; /* 1sec */
    507 
    508 	KASSERT(curcpu_stable());
    509 
    510 	/*
    511 	 * First notify the console that the patient CPU's heart seems
    512 	 * to have stopped beating.
    513 	 */
    514 	printf("%s: found %s heart stopped beating after %u seconds\n",
    515 	    cpu_name(curcpu()), cpu_name(ci), d);
    516 
    517 	/*
    518 	 * Next, give the patient CPU a chance to panic, so we get a
    519 	 * stack trace on that CPU even if we don't get a crash dump.
    520 	 */
    521 	ipi_unicast(&msg, ci);
    522 
    523 	/*
    524 	 * Busy-wait up to 1sec for the patient CPU to print a stack
    525 	 * trace and panic.  If the patient CPU acknowledges the IPI,
    526 	 * just give up and stop here -- the system is coming down soon
    527 	 * and we should avoid getting in the way.
    528 	 */
    529 	while (countdown --> 0) {
    530 		if (atomic_load_relaxed(&ack))
    531 			return;
    532 		DELAY(1000);	/* 1ms */
    533 	}
    534 
    535 	/*
    536 	 * The patient CPU failed to acknowledge the panic request.
    537 	 * Panic now; with any luck, we'll get a crash dump.
    538 	 */
    539 	panic("%s: found %s heart stopped beating and unresponsive",
    540 	    cpu_name(curcpu()), cpu_name(ci));
    541 }
    542 
    543 /*
    544  * select_patient()
    545  *
    546  *	Select another CPU to check the heartbeat of.  Returns NULL if
    547  *	there are no other online CPUs.  Never returns curcpu().
    548  *	Caller must have kpreemption disabled.
    549  */
    550 static struct cpu_info *
    551 select_patient(void)
    552 {
    553 	CPU_INFO_ITERATOR cii;
    554 	struct cpu_info *first = NULL, *patient = NULL, *ci;
    555 	bool passedcur = false;
    556 
    557 	KASSERT(curcpu_stable());
    558 
    559 	/*
    560 	 * In the iteration order of all CPUs, find the next online CPU
    561 	 * after curcpu(), or the first online one if curcpu() is last
    562 	 * in the iteration order.
    563 	 */
    564 	for (CPU_INFO_FOREACH(cii, ci)) {
    565 		if (atomic_load_relaxed(&ci->ci_heartbeat_suspend))
    566 			continue;
    567 		if (passedcur) {
    568 			/*
    569 			 * (...|curcpu()|ci|...)
    570 			 *
    571 			 * Found the patient right after curcpu().
    572 			 */
    573 			KASSERT(patient != ci);
    574 			patient = ci;
    575 			break;
    576 		}
    577 		if (ci == curcpu()) {
    578 			/*
    579 			 * (...|prev|ci=curcpu()|next|...)
    580 			 *
    581 			 * Note that we want next (or first, if there's
    582 			 * nothing after curcpu()).
    583 			 */
    584 			passedcur = true;
    585 			continue;
    586 		}
    587 		if (first == NULL) {
    588 			/*
    589 			 * (ci|...|curcpu()|...)
    590 			 *
    591 			 * Record ci as first in case there's nothing
    592 			 * after curcpu().
    593 			 */
    594 			first = ci;
    595 			continue;
    596 		}
    597 	}
    598 
    599 	/*
    600 	 * If we hit the end, wrap around to the beginning.
    601 	 */
    602 	if (patient == NULL) {
    603 		KASSERT(passedcur);
    604 		patient = first;
    605 	}
    606 
    607 	return patient;
    608 }
    609 
    610 /*
    611  * heartbeat()
    612  *
    613  *	1. Count a heartbeat on the local CPU.
    614  *
    615  *	2. Panic if the system uptime doesn't seem to have advanced in
    616  *	   a while.
    617  *
    618  *	3. Panic if the soft interrupt on this CPU hasn't advanced the
    619  *	   local view of the system uptime.
    620  *
    621  *	4. Schedule the soft interrupt to advance the local view of the
    622  *	   system uptime.
    623  *
    624  *	5. Select another CPU to check the heartbeat of.
    625  *
    626  *	6. Panic if the other CPU hasn't advanced its view of the
    627  *	   system uptime in a while.
    628  */
    629 void
    630 heartbeat(void)
    631 {
    632 	unsigned period_ticks, period_secs;
    633 	unsigned count, uptime, cache, stamp, d;
    634 	struct cpu_info *patient;
    635 
    636 	KASSERT(curcpu_stable());
    637 
    638 	/*
    639 	 * If heartbeat checks are disabled globally, or if they are
    640 	 * suspended locally, or if we're already panicking so it's not
    641 	 * helpful to trigger more panics for more reasons, do nothing.
    642 	 */
    643 	period_ticks = atomic_load_relaxed(&heartbeat_max_period_ticks);
    644 	period_secs = atomic_load_relaxed(&heartbeat_max_period_secs);
    645 	if (__predict_false(period_ticks == 0) ||
    646 	    __predict_false(period_secs == 0) ||
    647 	    __predict_false(curcpu()->ci_heartbeat_suspend) ||
    648 	    __predict_false(panicstr != NULL))
    649 		return;
    650 
    651 	/*
    652 	 * Count a heartbeat on this CPU.
    653 	 */
    654 	count = curcpu()->ci_heartbeat_count++;
    655 
    656 	/*
    657 	 * If the uptime hasn't changed, make sure that we haven't
    658 	 * counted too many of our own heartbeats since the uptime last
    659 	 * changed, and stop here -- we only do the cross-CPU work once
    660 	 * per second.
    661 	 */
    662 	uptime = time_uptime32;
    663 	cache = atomic_load_relaxed(&curcpu()->ci_heartbeat_uptime_cache);
    664 	if (__predict_true(cache == uptime)) {
    665 		/*
    666 		 * Timecounter hasn't advanced by more than a second.
    667 		 * Make sure the timecounter isn't stuck according to
    668 		 * our heartbeats -- unless timecounter heartbeats are
    669 		 * suspended too.
    670 		 *
    671 		 * Our own heartbeat count can't roll back, and
    672 		 * time_uptime32 should be updated before it wraps
    673 		 * around, so d should never go negative; hence no
    674 		 * check for d < UINT_MAX/2.
    675 		 */
    676 		stamp =
    677 		    atomic_load_relaxed(&curcpu()->ci_heartbeat_uptime_stamp);
    678 		d = count - stamp;
    679 		if (__predict_false(d > period_ticks) &&
    680 		    !heartbeat_timecounter_suspended()) {
    681 			panic("%s: time has not advanced in %u heartbeats",
    682 			    cpu_name(curcpu()), d);
    683 		}
    684 		return;
    685 	}
    686 
    687 	/*
    688 	 * If the uptime has changed, make sure that it hasn't changed
    689 	 * so much that softints must be stuck on this CPU.  Since
    690 	 * time_uptime32 is monotonic and our cache of it is updated at
    691 	 * most every UINT_MAX/4/hz sec (hence no concern about
    692 	 * wraparound even after 68 or 136 years), this can't go
    693 	 * negative, hence no check for d < UINT_MAX/2.
    694 	 *
    695 	 * This uses the hard timer interrupt handler on the current
    696 	 * CPU to ensure soft interrupts at all priority levels have
    697 	 * made progress.
    698 	 */
    699 	d = uptime - cache;
    700 	if (__predict_false(d > period_secs)) {
    701 		panic("%s: softints stuck for %u seconds",
    702 		    cpu_name(curcpu()), d);
    703 	}
    704 
    705 	/*
    706 	 * Schedule a softint to update our cache of the system uptime
    707 	 * so the next call to heartbeat, on this or another CPU, can
    708 	 * detect progress on this one.
    709 	 */
    710 	softint_schedule(heartbeat_sih);
    711 
    712 	/*
    713 	 * Select a patient to check the heartbeat of.  If there's no
    714 	 * other online CPU, nothing to do.
    715 	 */
    716 	patient = select_patient();
    717 	if (patient == NULL)
    718 		return;
    719 
    720 	/*
    721 	 * Verify that time is advancing on the patient CPU.  If the
    722 	 * delta exceeds UINT_MAX/2, that means it is already ahead by
    723 	 * a little on the other CPU, and the subtraction went
    724 	 * negative, which is OK.  If the CPU's heartbeats have been
    725 	 * suspended since we selected it, no worries.
    726 	 *
    727 	 * This uses the current CPU to ensure the other CPU has made
    728 	 * progress, even if the other CPU's hard timer interrupt
    729 	 * handler is stuck for some reason.
    730 	 *
    731 	 * XXX Maybe confirm it hasn't gone negative by more than
    732 	 * max_period?
    733 	 */
    734 	d = uptime - atomic_load_relaxed(&patient->ci_heartbeat_uptime_cache);
    735 	if (__predict_false(d > period_secs) &&
    736 	    __predict_false(d < UINT_MAX/2) &&
    737 	    atomic_load_relaxed(&patient->ci_heartbeat_suspend) == 0)
    738 		defibrillate(patient, d);
    739 }
    740 
    741 /*
    742  * heartbeat_dump()
    743  *
    744  *	Print the heartbeat data of all CPUs.  Can be called from ddb.
    745  */
    746 #ifdef DDB
    747 static unsigned
    748 db_read_unsigned(const volatile unsigned *p)
    749 {
    750 	unsigned x;
    751 
    752 	db_read_bytes((db_addr_t)(uintptr_t)p, sizeof(x), (char *)&x);
    753 
    754 	return x;
    755 }
    756 
    757 void
    758 heartbeat_dump(void)
    759 {
    760 	struct cpu_info *ci;
    761 
    762 	db_printf("Heartbeats:\n");
    763 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    764 		db_printf("cpu%u: count %u uptime %u stamp %u suspend %u\n",
    765 		    db_read_unsigned(&ci->ci_index),
    766 		    db_read_unsigned(&ci->ci_heartbeat_count),
    767 		    db_read_unsigned(&ci->ci_heartbeat_uptime_cache),
    768 		    db_read_unsigned(&ci->ci_heartbeat_uptime_stamp),
    769 		    db_read_unsigned(&ci->ci_heartbeat_suspend));
    770 	}
    771 }
    772 #endif
    773