Home | History | Annotate | Line # | Download | only in i2c
      1 /*	$NetBSD: ds1307.c,v 1.44 2025/10/14 09:19:48 tnn Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.44 2025/10/14 09:19:48 tnn Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 #include <dev/sysmon/sysmonvar.h>
     55 
     56 #include "ioconf.h"
     57 
     58 struct dsrtc_model {
     59 	const i2c_addr_t *dm_valid_addrs;
     60 	uint16_t dm_model;
     61 	uint8_t dm_ch_reg;
     62 	uint8_t dm_ch_value;
     63 	uint8_t dm_vbaten_reg;
     64 	uint8_t dm_vbaten_value;
     65 	uint8_t dm_rtc_start;
     66 	uint8_t dm_rtc_size;
     67 	uint8_t dm_nvram_start;
     68 	uint8_t dm_nvram_size;
     69 	uint8_t dm_flags;
     70 #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     71 #define	DSRTC_FLAG_BCD			0x02
     72 #define	DSRTC_FLAG_TEMP			0x04
     73 #define DSRTC_FLAG_VBATEN		0x08
     74 #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     75 };
     76 
     77 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     78 static const struct dsrtc_model ds1307_model = {
     79 	.dm_valid_addrs = ds1307_valid_addrs,
     80 	.dm_model = 1307,
     81 	.dm_ch_reg = DSXXXX_SECONDS,
     82 	.dm_ch_value = DS1307_SECONDS_CH,
     83 	.dm_rtc_start = DS1307_RTC_START,
     84 	.dm_rtc_size = DS1307_RTC_SIZE,
     85 	.dm_nvram_start = DS1307_NVRAM_START,
     86 	.dm_nvram_size = DS1307_NVRAM_SIZE,
     87 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     88 };
     89 
     90 static const struct dsrtc_model ds1339_model = {
     91 	.dm_valid_addrs = ds1307_valid_addrs,
     92 	.dm_model = 1339,
     93 	.dm_rtc_start = DS1339_RTC_START,
     94 	.dm_rtc_size = DS1339_RTC_SIZE,
     95 	.dm_flags = DSRTC_FLAG_BCD,
     96 };
     97 
     98 static const struct dsrtc_model ds1340_model = {
     99 	.dm_valid_addrs = ds1307_valid_addrs,
    100 	.dm_model = 1340,
    101 	.dm_ch_reg = DSXXXX_SECONDS,
    102 	.dm_ch_value = DS1340_SECONDS_EOSC,
    103 	.dm_rtc_start = DS1340_RTC_START,
    104 	.dm_rtc_size = DS1340_RTC_SIZE,
    105 	.dm_flags = DSRTC_FLAG_BCD,
    106 };
    107 
    108 static const struct dsrtc_model ds1672_model = {
    109 	.dm_valid_addrs = ds1307_valid_addrs,
    110 	.dm_model = 1672,
    111 	.dm_rtc_start = DS1672_RTC_START,
    112 	.dm_rtc_size = DS1672_RTC_SIZE,
    113 	.dm_ch_reg = DS1672_CONTROL,
    114 	.dm_ch_value = DS1672_CONTROL_CH,
    115 	.dm_flags = 0,
    116 };
    117 
    118 static const struct dsrtc_model ds3231_model = {
    119 	.dm_valid_addrs = ds1307_valid_addrs,
    120 	.dm_model = 3231,
    121 	.dm_rtc_start = DS3232_RTC_START,
    122 	.dm_rtc_size = DS3232_RTC_SIZE,
    123 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    124 };
    125 
    126 static const struct dsrtc_model ds3232_model = {
    127 	.dm_valid_addrs = ds1307_valid_addrs,
    128 	.dm_model = 3232,
    129 	.dm_rtc_start = DS3232_RTC_START,
    130 	.dm_rtc_size = DS3232_RTC_SIZE,
    131 	.dm_nvram_start = DS3232_NVRAM_START,
    132 	.dm_nvram_size = DS3232_NVRAM_SIZE,
    133 	/*
    134 	 * XXX
    135 	 * the DS3232 likely has the temperature sensor too but I can't
    136 	 * easily verify or test that right now
    137 	 */
    138 	.dm_flags = DSRTC_FLAG_BCD,
    139 };
    140 
    141 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
    142 static const struct dsrtc_model mcp7940_model = {
    143 	.dm_valid_addrs = mcp7940_valid_addrs,
    144 	.dm_model = 7940,
    145 	.dm_rtc_start = DS1307_RTC_START,
    146 	.dm_rtc_size = DS1307_RTC_SIZE,
    147 	.dm_ch_reg = DSXXXX_SECONDS,
    148 	.dm_ch_value = DS1307_SECONDS_CH,
    149 	.dm_vbaten_reg = DSXXXX_DAY,
    150 	.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    151 	.dm_nvram_start = MCP7940_NVRAM_START,
    152 	.dm_nvram_size = MCP7940_NVRAM_SIZE,
    153 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    154 		DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    155 };
    156 
    157 static const struct device_compatible_entry compat_data[] = {
    158 	{ .compat = "dallas,ds1307",		.data = &ds1307_model },
    159 	{ .compat = "maxim,ds1307",		.data = &ds1307_model },
    160 	{ .compat = "i2c-ds1307",		.data = &ds1307_model },
    161 
    162 	{ .compat = "dallas,ds1339",		.data = &ds1339_model },
    163 	{ .compat = "maxim,ds1339",		.data = &ds1339_model },
    164 
    165 	{ .compat = "dallas,ds1340",		.data = &ds1340_model },
    166 	{ .compat = "maxim,ds1340",		.data = &ds1340_model },
    167 
    168 	{ .compat = "dallas,ds1672",		.data = &ds1672_model },
    169 	{ .compat = "maxim,ds1672",		.data = &ds1672_model },
    170 
    171 	{ .compat = "dallas,ds3231",		.data = &ds3231_model },
    172 	{ .compat = "maxim,ds3231",		.data = &ds3231_model },
    173 
    174 	{ .compat = "dallas,ds3232",		.data = &ds3232_model },
    175 	{ .compat = "maxim,ds3232",		.data = &ds3232_model },
    176 
    177 	{ .compat = "microchip,mcp7940",	.data = &mcp7940_model },
    178 
    179 	DEVICE_COMPAT_EOL
    180 };
    181 
    182 struct dsrtc_softc {
    183 	device_t sc_dev;
    184 	i2c_tag_t sc_tag;
    185 	uint8_t sc_address;
    186 	bool sc_open;
    187 	struct dsrtc_model sc_model;
    188 	struct todr_chip_handle sc_todr;
    189 	struct sysmon_envsys *sc_sme;
    190 	envsys_data_t sc_sensor;
    191 	unsigned int sc_base_year;
    192 };
    193 
    194 static void	dsrtc_attach(device_t, device_t, void *);
    195 static int	dsrtc_match(device_t, cfdata_t, void *);
    196 
    197 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    198     dsrtc_match, dsrtc_attach, NULL, NULL);
    199 
    200 dev_type_open(dsrtc_open);
    201 dev_type_close(dsrtc_close);
    202 dev_type_read(dsrtc_read);
    203 dev_type_write(dsrtc_write);
    204 
    205 const struct cdevsw dsrtc_cdevsw = {
    206 	.d_open = dsrtc_open,
    207 	.d_close = dsrtc_close,
    208 	.d_read = dsrtc_read,
    209 	.d_write = dsrtc_write,
    210 	.d_ioctl = noioctl,
    211 	.d_stop = nostop,
    212 	.d_tty = notty,
    213 	.d_poll = nopoll,
    214 	.d_mmap = nommap,
    215 	.d_kqfilter = nokqfilter,
    216 	.d_discard = nodiscard,
    217 	.d_flag = D_OTHER
    218 };
    219 
    220 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    221 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    222 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    223 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    224 
    225 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    226 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    227 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    228 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    229 
    230 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    231 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    232 
    233 static const struct dsrtc_model *
    234 dsrtc_model_by_number(u_int model)
    235 {
    236 	const struct device_compatible_entry *dce;
    237 	const struct dsrtc_model *dm;
    238 
    239 	/* no model given, assume it's a DS1307 */
    240 	if (model == 0)
    241 		return &ds1307_model;
    242 
    243 	for (dce = compat_data; dce->compat != NULL; dce++) {
    244 		dm = dce->data;
    245 		if (dm->dm_model == model)
    246 			return dm;
    247 	}
    248 	return NULL;
    249 }
    250 
    251 static const struct dsrtc_model *
    252 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    253 {
    254 	const struct dsrtc_model *dm = NULL;
    255 	const struct device_compatible_entry *dce;
    256 
    257 	if ((dce = iic_compatible_lookup(ia, compat_data)) != NULL)
    258 		dm = dce->data;
    259 
    260 	return dm;
    261 }
    262 
    263 static bool
    264 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    265 {
    266 
    267 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    268 		if (addr == dm->dm_valid_addrs[i])
    269 			return true;
    270 	}
    271 	return false;
    272 }
    273 
    274 static int
    275 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    276 {
    277 	struct i2c_attach_args *ia = arg;
    278 	const struct dsrtc_model *dm;
    279 	int match_result;
    280 
    281 	if (iic_use_direct_match(ia, cf, compat_data, &match_result))
    282 		return match_result;
    283 
    284 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    285 	if (dm == NULL)
    286 		return 0;
    287 
    288 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    289 		return I2C_MATCH_ADDRESS_ONLY;
    290 
    291 	return 0;
    292 }
    293 
    294 static void
    295 dsrtc_attach(device_t parent, device_t self, void *arg)
    296 {
    297 	struct dsrtc_softc *sc = device_private(self);
    298 	struct i2c_attach_args *ia = arg;
    299 	const struct dsrtc_model *dm;
    300 
    301 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    302 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    303 
    304 	if (dm == NULL) {
    305 		aprint_error(": unable to determine model!\n");
    306 		return;
    307 	}
    308 
    309 	aprint_naive(": Real-time Clock%s\n",
    310 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    311 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    312 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    313 
    314 	sc->sc_tag = ia->ia_tag;
    315 	sc->sc_address = ia->ia_addr;
    316 	sc->sc_model = *dm;
    317 	sc->sc_dev = self;
    318 	sc->sc_open = 0;
    319 	sc->sc_todr.todr_dev = self;
    320 
    321 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    322 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    323 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    324 	} else {
    325 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    326 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    327 	}
    328 
    329 	sc->sc_base_year = device_getprop_uint_default(self, "start-year",
    330 	    POSIX_BASE_YEAR);
    331 
    332 	todr_attach(&sc->sc_todr);
    333 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    334 		int error;
    335 
    336 		sc->sc_sme = sysmon_envsys_create();
    337 		sc->sc_sme->sme_name = device_xname(self);
    338 		sc->sc_sme->sme_cookie = sc;
    339 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    340 
    341 		sc->sc_sensor.units =  ENVSYS_STEMP;
    342 		sc->sc_sensor.state = ENVSYS_SINVALID;
    343 		sc->sc_sensor.flags = 0;
    344 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    345 		    sizeof(sc->sc_sensor.desc));
    346 
    347 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    348 			aprint_error_dev(self, "unable to attach sensor\n");
    349 			goto bad;
    350 		}
    351 
    352 		error = sysmon_envsys_register(sc->sc_sme);
    353 		if (error) {
    354 			aprint_error_dev(self,
    355 			    "error %d registering with sysmon\n", error);
    356 			goto bad;
    357 		}
    358 	}
    359 	return;
    360 bad:
    361 	sysmon_envsys_destroy(sc->sc_sme);
    362 }
    363 
    364 /*ARGSUSED*/
    365 int
    366 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    367 {
    368 	struct dsrtc_softc *sc;
    369 
    370 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    371 		return ENXIO;
    372 
    373 	/* XXX: Locking */
    374 	if (sc->sc_open)
    375 		return EBUSY;
    376 
    377 	sc->sc_open = true;
    378 	return 0;
    379 }
    380 
    381 /*ARGSUSED*/
    382 int
    383 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    384 {
    385 	struct dsrtc_softc *sc;
    386 
    387 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    388 		return ENXIO;
    389 
    390 	sc->sc_open = false;
    391 	return 0;
    392 }
    393 
    394 /*ARGSUSED*/
    395 int
    396 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    397 {
    398 	struct dsrtc_softc *sc;
    399 	int error;
    400 
    401 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    402 		return ENXIO;
    403 
    404 	const struct dsrtc_model * const dm = &sc->sc_model;
    405 	if (uio->uio_offset < 0 || uio->uio_offset >= dm->dm_nvram_size)
    406 		return EINVAL;
    407 
    408 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    409 		return error;
    410 
    411 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    412 		uint8_t ch, cmd;
    413 		const u_int a = uio->uio_offset;
    414 		cmd = a + dm->dm_nvram_start;
    415 		if ((error = iic_exec(sc->sc_tag,
    416 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    417 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    418 			iic_release_bus(sc->sc_tag, 0);
    419 			aprint_error_dev(sc->sc_dev,
    420 			    "%s: read failed at 0x%x: %d\n",
    421 			    __func__, a, error);
    422 			return error;
    423 		}
    424 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    425 			iic_release_bus(sc->sc_tag, 0);
    426 			return error;
    427 		}
    428 	}
    429 
    430 	iic_release_bus(sc->sc_tag, 0);
    431 
    432 	return 0;
    433 }
    434 
    435 /*ARGSUSED*/
    436 int
    437 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    438 {
    439 	struct dsrtc_softc *sc;
    440 	int error;
    441 
    442 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    443 		return ENXIO;
    444 
    445 	const struct dsrtc_model * const dm = &sc->sc_model;
    446 	if (uio->uio_offset >= dm->dm_nvram_size)
    447 		return EINVAL;
    448 
    449 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    450 		return error;
    451 
    452 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    453 		uint8_t cmdbuf[2];
    454 		const u_int a = (int)uio->uio_offset;
    455 		cmdbuf[0] = a + dm->dm_nvram_start;
    456 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    457 			break;
    458 
    459 		if ((error = iic_exec(sc->sc_tag,
    460 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    461 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    462 			aprint_error_dev(sc->sc_dev,
    463 			    "%s: write failed at 0x%x: %d\n",
    464 			    __func__, a, error);
    465 			break;
    466 		}
    467 	}
    468 
    469 	iic_release_bus(sc->sc_tag, 0);
    470 
    471 	return error;
    472 }
    473 
    474 static int
    475 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    476 {
    477 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    478 	struct clock_ymdhms check;
    479 	int retries;
    480 
    481 	memset(dt, 0, sizeof(*dt));
    482 	memset(&check, 0, sizeof(check));
    483 
    484 	/*
    485 	 * Since we don't support Burst Read, we have to read the clock twice
    486 	 * until we get two consecutive identical results.
    487 	 */
    488 	retries = 5;
    489 	do {
    490 		dsrtc_clock_read_ymdhms(sc, dt);
    491 		dsrtc_clock_read_ymdhms(sc, &check);
    492 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    493 
    494 	return 0;
    495 }
    496 
    497 static int
    498 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    499 {
    500 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    501 
    502 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    503 		return -1;
    504 
    505 	return 0;
    506 }
    507 
    508 static int
    509 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    510 {
    511 	struct dsrtc_model * const dm = &sc->sc_model;
    512 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    513 	int error;
    514 
    515 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    516 
    517 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    518 		aprint_error_dev(sc->sc_dev,
    519 		    "%s: failed to acquire I2C bus: %d\n",
    520 		    __func__, error);
    521 		return 0;
    522 	}
    523 
    524 	/* Read each RTC register in order. */
    525 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    526 		cmdbuf[0] = dm->dm_rtc_start + i;
    527 
    528 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    529 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0);
    530 	}
    531 
    532 	/* Done with I2C */
    533 	iic_release_bus(sc->sc_tag, 0);
    534 
    535 	if (error != 0) {
    536 		aprint_error_dev(sc->sc_dev,
    537 		    "%s: failed to read rtc at 0x%x: %d\n",
    538 		    __func__, cmdbuf[0], error);
    539 		return 0;
    540 	}
    541 
    542 	/*
    543 	 * Convert the RTC's register values into something useable
    544 	 */
    545 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    546 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    547 
    548 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    549 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    550 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    551 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    552 			dt->dt_hour += 12;
    553 	} else
    554 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    555 		    DSXXXX_HOURS_24MASK);
    556 
    557 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    558 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    559 
    560 	dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + sc->sc_base_year;
    561 	if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY) {
    562 		dt->dt_year += 100;
    563 	}
    564 
    565 	return 1;
    566 }
    567 
    568 static int
    569 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    570 {
    571 	struct dsrtc_model * const dm = &sc->sc_model;
    572 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    573 	int error;
    574 
    575 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    576 
    577 	/*
    578 	 * Convert our time representation into something the DSXXXX
    579 	 * can understand.
    580 	 */
    581 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    582 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    583 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    584 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    585 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    586 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    587 
    588 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - sc->sc_base_year) % 100);
    589 	if (dt->dt_year - sc->sc_base_year >= 100)
    590 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    591 
    592 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    593 		aprint_error_dev(sc->sc_dev,
    594 		    "%s: failed to acquire I2C bus: %d\n",
    595 		    __func__, error);
    596 		return 0;
    597 	}
    598 
    599 	/* Stop the clock */
    600 	cmdbuf[0] = dm->dm_ch_reg;
    601 
    602 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    603 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    604 		iic_release_bus(sc->sc_tag, 0);
    605 		aprint_error_dev(sc->sc_dev,
    606 		    "%s: failed to read Hold Clock: %d\n",
    607 		    __func__, error);
    608 		return 0;
    609 	}
    610 
    611 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    612 		cmdbuf[1] &= ~dm->dm_ch_value;
    613 	else
    614 		cmdbuf[1] |= dm->dm_ch_value;
    615 
    616 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    617 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    618 		iic_release_bus(sc->sc_tag, 0);
    619 		aprint_error_dev(sc->sc_dev,
    620 		    "%s: failed to write Hold Clock: %d\n",
    621 		    __func__, error);
    622 		return 0;
    623 	}
    624 
    625 	/*
    626 	 * Write registers in reverse order. The last write (to the Seconds
    627 	 * register) will undo the Clock Hold, above.
    628 	 */
    629 	uint8_t op = I2C_OP_WRITE;
    630 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    631 		cmdbuf[0] = dm->dm_rtc_start + i;
    632 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    633 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    634 			bcd[i] |= dm->dm_vbaten_value;
    635 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    636 			op = I2C_OP_WRITE_WITH_STOP;
    637 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    638 				bcd[i] |= dm->dm_ch_value;
    639 		}
    640 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    641 		    cmdbuf, 1, &bcd[i], 1, 0)) != 0) {
    642 			iic_release_bus(sc->sc_tag, 0);
    643 			aprint_error_dev(sc->sc_dev,
    644 			    "%s: failed to write rtc at 0x%x: %d\n",
    645 			    __func__, i, error);
    646 			/* XXX: Clock Hold is likely still asserted! */
    647 			return 0;
    648 		}
    649 	}
    650 	/*
    651 	 * If the clock hold register isn't the same register as seconds,
    652 	 * we need to reenable the clock.
    653 	 */
    654 	if (op != I2C_OP_WRITE_WITH_STOP) {
    655 		cmdbuf[0] = dm->dm_ch_reg;
    656 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    657 			cmdbuf[1] |= dm->dm_ch_value;
    658 		else
    659 			cmdbuf[1] &= ~dm->dm_ch_value;
    660 
    661 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    662 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    663 			iic_release_bus(sc->sc_tag, 0);
    664 			aprint_error_dev(sc->sc_dev,
    665 			    "%s: failed to Hold Clock: %d\n",
    666 			    __func__, error);
    667 			return 0;
    668 		}
    669 	}
    670 
    671 	iic_release_bus(sc->sc_tag, 0);
    672 
    673 	return 1;
    674 }
    675 
    676 static int
    677 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    678 {
    679 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    680 	struct timeval check;
    681 	int retries;
    682 
    683 	memset(tv, 0, sizeof(*tv));
    684 	memset(&check, 0, sizeof(check));
    685 
    686 	/*
    687 	 * Since we don't support Burst Read, we have to read the clock twice
    688 	 * until we get two consecutive identical results.
    689 	 */
    690 	retries = 5;
    691 	do {
    692 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    693 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    694 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    695 
    696 	return 0;
    697 }
    698 
    699 static int
    700 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    701 {
    702 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    703 
    704 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    705 		return -1;
    706 
    707 	return 0;
    708 }
    709 
    710 /*
    711  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    712  * it, since some I2C controllers don't support anything other than single-byte
    713  * transfers.
    714  */
    715 static int
    716 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    717 {
    718 	const struct dsrtc_model * const dm = &sc->sc_model;
    719 	uint8_t buf[4];
    720 	int error;
    721 
    722 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    723 		aprint_error_dev(sc->sc_dev,
    724 		    "%s: failed to acquire I2C bus: %d\n",
    725 		    __func__, error);
    726 		return 0;
    727 	}
    728 
    729 	/* read all registers: */
    730 	uint8_t reg = dm->dm_rtc_start;
    731 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    732 	     &reg, 1, buf, 4, 0);
    733 
    734 	/* Done with I2C */
    735 	iic_release_bus(sc->sc_tag, 0);
    736 
    737 	if (error != 0) {
    738 		aprint_error_dev(sc->sc_dev,
    739 		    "%s: failed to read rtc at 0x%x: %d\n",
    740 		    __func__, reg, error);
    741 		return 0;
    742 	}
    743 
    744 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    745 	*tp = v;
    746 
    747 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    748 	    __func__, v);
    749 
    750 	return 1;
    751 }
    752 
    753 static int
    754 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    755 {
    756 	const struct dsrtc_model * const dm = &sc->sc_model;
    757 	size_t buflen = dm->dm_rtc_size + 2;
    758 	/* XXX: the biggest dm_rtc_size we have now is 7, so we should be ok */
    759 	uint8_t buf[16];
    760 	int error;
    761 
    762 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    763 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    764 
    765 	buf[0] = dm->dm_rtc_start;
    766 	buf[1] = (t >> 0) & 0xff;
    767 	buf[2] = (t >> 8) & 0xff;
    768 	buf[3] = (t >> 16) & 0xff;
    769 	buf[4] = (t >> 24) & 0xff;
    770 	buf[5] = 0;
    771 
    772 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    773 		aprint_error_dev(sc->sc_dev,
    774 		    "%s: failed to acquire I2C bus: %d\n",
    775 		    __func__, error);
    776 		return 0;
    777 	}
    778 
    779 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    780 	    &buf, buflen, NULL, 0, 0);
    781 
    782 	/* Done with I2C */
    783 	iic_release_bus(sc->sc_tag, 0);
    784 
    785 	/* send data */
    786 	if (error != 0) {
    787 		aprint_error_dev(sc->sc_dev,
    788 		    "%s: failed to set time: %d\n",
    789 		    __func__, error);
    790 		return 0;
    791 	}
    792 
    793 	return 1;
    794 }
    795 
    796 static int
    797 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    798 {
    799 	int error, tc;
    800 	uint8_t reg = DS3232_TEMP_MSB;
    801 	uint8_t buf[2];
    802 
    803 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    804 		return ENOTSUP;
    805 
    806 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    807 		aprint_error_dev(sc->sc_dev,
    808 		    "%s: failed to acquire I2C bus: %d\n",
    809 		    __func__, error);
    810 		return 0;
    811 	}
    812 
    813 	/* read temperature registers: */
    814 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    815 	     &reg, 1, buf, 2, 0);
    816 
    817 	/* Done with I2C */
    818 	iic_release_bus(sc->sc_tag, 0);
    819 
    820 	if (error != 0) {
    821 		aprint_error_dev(sc->sc_dev,
    822 		    "%s: failed to read temperature: %d\n",
    823 		    __func__, error);
    824 		return 0;
    825 	}
    826 
    827 	/* convert to microkelvin */
    828 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    829 	*temp = tc + 273150000;
    830 	return 1;
    831 }
    832 
    833 static void
    834 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    835 {
    836 	struct dsrtc_softc *sc = sme->sme_cookie;
    837 	uint32_t temp = 0;	/* XXX gcc */
    838 
    839 	if (dsrtc_read_temp(sc, &temp) == 0) {
    840 		edata->state = ENVSYS_SINVALID;
    841 		return;
    842 	}
    843 
    844 	edata->value_cur = temp;
    845 
    846 	edata->state = ENVSYS_SVALID;
    847 }
    848