/src/lib/libm/arch/mc68881/ |
s_expm1.S | 39 ;.asciz "from: @(#)expm1.s 5.1 (Berkeley) 5/17/90" 43 ENTRY(expm1) function
|
/src/lib/libm/src/ |
s_tanh.c | 30 * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) 33 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) 68 t = expm1(two*fabs(x)); 71 t = expm1(-two*fabs(x));
|
s_expl.c | 67 return expm1(d);
|
e_cosh.c | 58 /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ 60 t = expm1(fabs(x));
|
e_sinh.c | 24 * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) 61 t = expm1(fabs(x));
|
s_expm1.c | 18 /* expm1(x) 30 * 2. Approximating expm1(r) by a special rational function on 56 * expm1(r) = exp(r)-1 is then computed by the following 60 * expm1(r) = r + --- + --- * [--------------------] 64 * expm1(r+c) = expm1(r) + c + expm1(r)*c 65 * ~ expm1(r) + c + r*c 67 * expm1(r+c). Now rearrange the term to avoid optimization 71 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- 132 expm1(double x) function in typeref:typename:double [all...] |
/src/lib/libm/noieee_src/ |
n_tanh.c | 48 * expm1(x) ...exp(x)-1 54 * -expm1(-2x) 56 * expm1(-2x) + 2 59 * expm1(2x) + 2 62 * Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1. 90 return(copysign(one-two/(expm1(x+x)+two),sign)); 92 {t= -expm1(-(x+x)); return(copysign(t/(two-t),sign));}
|
n_sinh.c | 48 * expm1(x) ...return exp(x)-1 54 * expm1(x) + expm1(x)/(expm1(x)+1) 57 * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow) 119 {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));} 124 return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign)); 127 return( expm1(x)*sign );
|
n_expm1.c | 33 static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93"; 37 /* EXPM1(X) 57 * 2. Compute EXPM1(r)=exp(r)-1 by 59 * EXPM1(r=z+c) := z + exp__E(z,c) 61 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 66 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 68 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 72 * EXPM1(INF) is INF, EXPM1(NaN) is NaN 121 expm1(double x) function in typeref:typename:double [all...] |
/src/lib/libm/arch/m68060/ |
s_expm1.S | 4 * FPLSP wrapper for expm1 12 WEAK_ALIAS(expm1, _expm1)
|
makeas.sh | 205 mk _expm1 expm1 00b0 s_expm1
|
/src/tests/lib/libm/ |
t_exp.c | 377 * expm1(3) 382 atf_tc_set_md_var(tc, "descr", "Test expm1(NaN) == NaN"); 389 if (isnan(expm1(x)) == 0) 390 atf_tc_fail_nonfatal("expm1(NaN) != NaN"); 396 atf_tc_set_md_var(tc, "descr", "Test expm1(-Inf) == -1"); 403 if (expm1(x) != -1.0) 404 atf_tc_fail_nonfatal("expm1(-Inf) != -1.0"); 410 atf_tc_set_md_var(tc, "descr", "Test expm1(+Inf) == +Inf"); 416 double y = expm1(x); 419 atf_tc_fail_nonfatal("expm1(+Inf) != +Inf") [all...] |
/src/tests/lib/lua/libm/ |
h_lualibm.c | 46 TEST(expm1(M_PI_4));
|
lualibm.lua | 52 test("expm1(M_PI_4)", lm.expm1(lm.M_PI_4))
|
/src/include/ |
tgmath.h | 156 #define expm1(a) __TG_FN1(expm1, (a)) macro
|
math.h | 296 double expm1(double);
|
/src/lib/lua/libm/ |
libm.c | 123 DFUNC_DBL(expm1) 259 { "expm1", libm_expm1 },
|
/src/lib/libm/ |
Makefile | 492 MLINKS+=exp.3 expf.3 exp.3 expm1.3 exp.3 expm1f.3 \
|
/src/sys/arch/m68k/060sp/dist/ |
fplsp.s | 6818 # EXPM1. # 6897 # because EXPM1 is intended to evaluate exp(X)-1 # 7274 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN 7500 #--entry point for EXPM1(X), here X is denormalized 7710 # y = |X|, sgn = sign(X), and z = expm1(Y), # 7746 #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) 7754 bsr setoxm1 # FP0 IS Z = EXPM1(Y) 7828 # sgn := sign(X), y := 2|X|, z := expm1(Y), and # 7874 #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). 7888 bsr setoxm1 # FP0 IS Z = EXPM1(Y [all...] |
fpsp.s | 6924 # EXPM1. # 7003 # because EXPM1 is intended to evaluate exp(X)-1 # 7380 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN 7606 #--entry point for EXPM1(X), here X is denormalized 7816 # y = |X|, sgn = sign(X), and z = expm1(Y), # 7852 #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) 7860 bsr setoxm1 # FP0 IS Z = EXPM1(Y) 7934 # sgn := sign(X), y := 2|X|, z := expm1(Y), and # 7980 #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). 7994 bsr setoxm1 # FP0 IS Z = EXPM1(Y [all...] |