HomeSort by: relevance | last modified time | path
    Searched refs:expm1 (Results 1 - 20 of 20) sorted by relevancy

  /src/lib/libm/arch/mc68881/
s_expm1.S 39 ;.asciz "from: @(#)expm1.s 5.1 (Berkeley) 5/17/90"
43 ENTRY(expm1) function
  /src/lib/libm/src/
s_tanh.c 30 * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
33 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
68 t = expm1(two*fabs(x));
71 t = expm1(-two*fabs(x));
s_expl.c 67 return expm1(d);
e_cosh.c 58 /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
60 t = expm1(fabs(x));
e_sinh.c 24 * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
61 t = expm1(fabs(x));
s_expm1.c 18 /* expm1(x)
30 * 2. Approximating expm1(r) by a special rational function on
56 * expm1(r) = exp(r)-1 is then computed by the following
60 * expm1(r) = r + --- + --- * [--------------------]
64 * expm1(r+c) = expm1(r) + c + expm1(r)*c
65 * ~ expm1(r) + c + r*c
67 * expm1(r+c). Now rearrange the term to avoid optimization
71 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - ---
132 expm1(double x) function in typeref:typename:double
    [all...]
  /src/lib/libm/noieee_src/
n_tanh.c 48 * expm1(x) ...exp(x)-1
54 * -expm1(-2x)
56 * expm1(-2x) + 2
59 * expm1(2x) + 2
62 * Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
90 return(copysign(one-two/(expm1(x+x)+two),sign));
92 {t= -expm1(-(x+x)); return(copysign(t/(two-t),sign));}
n_sinh.c 48 * expm1(x) ...return exp(x)-1
54 * expm1(x) + expm1(x)/(expm1(x)+1)
57 * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow)
119 {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));}
124 return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign));
127 return( expm1(x)*sign );
n_expm1.c 33 static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
37 /* EXPM1(X)
57 * 2. Compute EXPM1(r)=exp(r)-1 by
59 * EXPM1(r=z+c) := z + exp__E(z,c)
61 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
66 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
68 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
72 * EXPM1(INF) is INF, EXPM1(NaN) is NaN
121 expm1(double x) function in typeref:typename:double
    [all...]
  /src/lib/libm/arch/m68060/
s_expm1.S 4 * FPLSP wrapper for expm1
12 WEAK_ALIAS(expm1, _expm1)
makeas.sh 205 mk _expm1 expm1 00b0 s_expm1
  /src/tests/lib/libm/
t_exp.c 377 * expm1(3)
382 atf_tc_set_md_var(tc, "descr", "Test expm1(NaN) == NaN");
389 if (isnan(expm1(x)) == 0)
390 atf_tc_fail_nonfatal("expm1(NaN) != NaN");
396 atf_tc_set_md_var(tc, "descr", "Test expm1(-Inf) == -1");
403 if (expm1(x) != -1.0)
404 atf_tc_fail_nonfatal("expm1(-Inf) != -1.0");
410 atf_tc_set_md_var(tc, "descr", "Test expm1(+Inf) == +Inf");
416 double y = expm1(x);
419 atf_tc_fail_nonfatal("expm1(+Inf) != +Inf")
    [all...]
  /src/tests/lib/lua/libm/
h_lualibm.c 46 TEST(expm1(M_PI_4));
lualibm.lua 52 test("expm1(M_PI_4)", lm.expm1(lm.M_PI_4))
  /src/include/
tgmath.h 156 #define expm1(a) __TG_FN1(expm1, (a)) macro
math.h 296 double expm1(double);
  /src/lib/lua/libm/
libm.c 123 DFUNC_DBL(expm1)
259 { "expm1", libm_expm1 },
  /src/lib/libm/
Makefile 492 MLINKS+=exp.3 expf.3 exp.3 expm1.3 exp.3 expm1f.3 \
  /src/sys/arch/m68k/060sp/dist/
fplsp.s 6818 # EXPM1. #
6897 # because EXPM1 is intended to evaluate exp(X)-1 #
7274 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
7500 #--entry point for EXPM1(X), here X is denormalized
7710 # y = |X|, sgn = sign(X), and z = expm1(Y), #
7746 #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
7754 bsr setoxm1 # FP0 IS Z = EXPM1(Y)
7828 # sgn := sign(X), y := 2|X|, z := expm1(Y), and #
7874 #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
7888 bsr setoxm1 # FP0 IS Z = EXPM1(Y
    [all...]
fpsp.s 6924 # EXPM1. #
7003 # because EXPM1 is intended to evaluate exp(X)-1 #
7380 #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
7606 #--entry point for EXPM1(X), here X is denormalized
7816 # y = |X|, sgn = sign(X), and z = expm1(Y), #
7852 #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
7860 bsr setoxm1 # FP0 IS Z = EXPM1(Y)
7934 # sgn := sign(X), y := 2|X|, z := expm1(Y), and #
7980 #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
7994 bsr setoxm1 # FP0 IS Z = EXPM1(Y
    [all...]

Completed in 134 milliseconds