Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_descrip.c,v 1.268 2026/01/04 01:32:23 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_descrip.c	8.8 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * File descriptor management.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.268 2026/01/04 01:32:23 riastradh Exp $");
     74 
     75 #include <sys/param.h>
     76 #include <sys/types.h>
     77 
     78 #include <sys/atomic.h>
     79 #include <sys/conf.h>
     80 #include <sys/cpu.h>
     81 #include <sys/event.h>
     82 #include <sys/fcntl.h>
     83 #include <sys/file.h>
     84 #include <sys/filedesc.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/kauth.h>
     87 #include <sys/kernel.h>
     88 #include <sys/kmem.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/pool.h>
     91 #include <sys/proc.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/sdt.h>
     94 #include <sys/socket.h>
     95 #include <sys/socketvar.h>
     96 #include <sys/stat.h>
     97 #include <sys/syscallargs.h>
     98 #include <sys/sysctl.h>
     99 #include <sys/systm.h>
    100 #include <sys/unistd.h>
    101 #include <sys/vnode.h>
    102 
    103 /*
    104  * A list (head) of open files, counter, and lock protecting them.
    105  */
    106 struct filelist		filehead	__cacheline_aligned;
    107 static u_int		nfiles		__cacheline_aligned;
    108 kmutex_t		filelist_lock	__cacheline_aligned;
    109 
    110 static pool_cache_t	filedesc_cache	__read_mostly;
    111 static pool_cache_t	file_cache	__read_mostly;
    112 
    113 static int	file_ctor(void *, void *, int);
    114 static void	file_dtor(void *, void *);
    115 static void	fdfile_ctor(fdfile_t *);
    116 static void	fdfile_dtor(fdfile_t *);
    117 static int	filedesc_ctor(void *, void *, int);
    118 static void	filedesc_dtor(void *, void *);
    119 static int	filedescopen(dev_t, int, int, lwp_t *);
    120 
    121 static int sysctl_kern_file(SYSCTLFN_PROTO);
    122 static int sysctl_kern_file2(SYSCTLFN_PROTO);
    123 static void fill_file(struct file *, const struct file *);
    124 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
    125 		      int, pid_t);
    126 
    127 const struct cdevsw filedesc_cdevsw = {
    128 	.d_open = filedescopen,
    129 	.d_close = noclose,
    130 	.d_read = noread,
    131 	.d_write = nowrite,
    132 	.d_ioctl = noioctl,
    133 	.d_stop = nostop,
    134 	.d_tty = notty,
    135 	.d_poll = nopoll,
    136 	.d_mmap = nommap,
    137 	.d_kqfilter = nokqfilter,
    138 	.d_discard = nodiscard,
    139 	.d_flag = D_OTHER | D_MPSAFE
    140 };
    141 
    142 /* For ease of reading. */
    143 __strong_alias(fd_putvnode,fd_putfile)
    144 __strong_alias(fd_putsock,fd_putfile)
    145 
    146 /*
    147  * Initialize the descriptor system.
    148  */
    149 void
    150 fd_sys_init(void)
    151 {
    152 	static struct sysctllog *clog;
    153 
    154 	mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
    155 
    156 	LIST_INIT(&filehead);
    157 
    158 	file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
    159 	    0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
    160 	KASSERT(file_cache != NULL);
    161 
    162 	filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
    163 	    0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
    164 	    NULL);
    165 	KASSERT(filedesc_cache != NULL);
    166 
    167 	sysctl_createv(&clog, 0, NULL, NULL,
    168 		       CTLFLAG_PERMANENT,
    169 		       CTLTYPE_STRUCT, "file",
    170 		       SYSCTL_DESCR("System open file table"),
    171 		       sysctl_kern_file, 0, NULL, 0,
    172 		       CTL_KERN, KERN_FILE, CTL_EOL);
    173 	sysctl_createv(&clog, 0, NULL, NULL,
    174 		       CTLFLAG_PERMANENT,
    175 		       CTLTYPE_STRUCT, "file2",
    176 		       SYSCTL_DESCR("System open file table"),
    177 		       sysctl_kern_file2, 0, NULL, 0,
    178 		       CTL_KERN, KERN_FILE2, CTL_EOL);
    179 }
    180 
    181 static bool
    182 fd_isused(filedesc_t *fdp, unsigned fd)
    183 {
    184 	u_int off = fd >> NDENTRYSHIFT;
    185 
    186 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    187 
    188 	return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
    189 }
    190 
    191 /*
    192  * Verify that the bitmaps match the descriptor table.
    193  */
    194 static inline void
    195 fd_checkmaps(filedesc_t *fdp)
    196 {
    197 #ifdef DEBUG
    198 	fdtab_t *dt;
    199 	u_int fd;
    200 
    201 	KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
    202 
    203 	dt = fdp->fd_dt;
    204 	if (fdp->fd_refcnt == -1) {
    205 		/*
    206 		 * fd_free tears down the table without maintaining its bitmap.
    207 		 */
    208 		return;
    209 	}
    210 	for (fd = 0; fd < dt->dt_nfiles; fd++) {
    211 		if (fd < NDFDFILE) {
    212 			KASSERT(dt->dt_ff[fd] ==
    213 			    (fdfile_t *)fdp->fd_dfdfile[fd]);
    214 		}
    215 		if (dt->dt_ff[fd] == NULL) {
    216 			KASSERT(!fd_isused(fdp, fd));
    217 		} else if (dt->dt_ff[fd]->ff_file != NULL) {
    218 			KASSERT(fd_isused(fdp, fd));
    219 		}
    220 	}
    221 #endif
    222 }
    223 
    224 static int
    225 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
    226 {
    227 	int i, off, maxoff;
    228 	uint32_t sub;
    229 
    230 	KASSERT(mutex_owned(&fdp->fd_lock));
    231 
    232 	fd_checkmaps(fdp);
    233 
    234 	if (want > bits)
    235 		return -1;
    236 
    237 	off = want >> NDENTRYSHIFT;
    238 	i = want & NDENTRYMASK;
    239 	if (i) {
    240 		sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
    241 		if (sub != ~0)
    242 			goto found;
    243 		off++;
    244 	}
    245 
    246 	maxoff = NDLOSLOTS(bits);
    247 	while (off < maxoff) {
    248 		if ((sub = bitmap[off]) != ~0)
    249 			goto found;
    250 		off++;
    251 	}
    252 
    253 	return -1;
    254 
    255  found:
    256 	return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
    257 }
    258 
    259 static int
    260 fd_last_set(filedesc_t *fd, int last)
    261 {
    262 	int off, i;
    263 	fdfile_t **ff = fd->fd_dt->dt_ff;
    264 	uint32_t *bitmap = fd->fd_lomap;
    265 
    266 	KASSERT(mutex_owned(&fd->fd_lock));
    267 
    268 	fd_checkmaps(fd);
    269 
    270 	off = (last - 1) >> NDENTRYSHIFT;
    271 
    272 	while (off >= 0 && !bitmap[off])
    273 		off--;
    274 
    275 	if (off < 0)
    276 		return -1;
    277 
    278 	i = ((off + 1) << NDENTRYSHIFT) - 1;
    279 	if (i >= last)
    280 		i = last - 1;
    281 
    282 	/* XXX should use bitmap */
    283 	while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
    284 		i--;
    285 
    286 	return i;
    287 }
    288 
    289 static inline void
    290 fd_used(filedesc_t *fdp, unsigned fd)
    291 {
    292 	u_int off = fd >> NDENTRYSHIFT;
    293 	fdfile_t *ff;
    294 
    295 	ff = fdp->fd_dt->dt_ff[fd];
    296 
    297 	KASSERT(mutex_owned(&fdp->fd_lock));
    298 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
    299 	KASSERT(ff != NULL);
    300 	KASSERT(ff->ff_file == NULL);
    301 	KASSERT(!ff->ff_allocated);
    302 
    303 	ff->ff_allocated = true;
    304 	fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
    305 	if (__predict_false(fdp->fd_lomap[off] == ~0)) {
    306 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    307 		    (1U << (off & NDENTRYMASK))) == 0);
    308 		fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
    309 	}
    310 
    311 	if ((int)fd > fdp->fd_lastfile) {
    312 		fdp->fd_lastfile = fd;
    313 	}
    314 
    315 	fd_checkmaps(fdp);
    316 }
    317 
    318 static inline void
    319 fd_unused(filedesc_t *fdp, unsigned fd)
    320 {
    321 	u_int off = fd >> NDENTRYSHIFT;
    322 	fdfile_t *ff;
    323 
    324 	ff = fdp->fd_dt->dt_ff[fd];
    325 
    326 	KASSERT(mutex_owned(&fdp->fd_lock));
    327 	KASSERT(ff != NULL);
    328 	KASSERT(ff->ff_file == NULL);
    329 	KASSERT(ff->ff_allocated);
    330 
    331 	if (fd < fdp->fd_freefile) {
    332 		fdp->fd_freefile = fd;
    333 	}
    334 
    335 	if (fdp->fd_lomap[off] == ~0) {
    336 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    337 		    (1U << (off & NDENTRYMASK))) != 0);
    338 		fdp->fd_himap[off >> NDENTRYSHIFT] &=
    339 		    ~(1U << (off & NDENTRYMASK));
    340 	}
    341 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
    342 	fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
    343 	ff->ff_allocated = false;
    344 
    345 	KASSERT(fd <= fdp->fd_lastfile);
    346 	if (fd == fdp->fd_lastfile) {
    347 		fdp->fd_lastfile = fd_last_set(fdp, fd);
    348 	}
    349 	fd_checkmaps(fdp);
    350 }
    351 
    352 /*
    353  * Look up the file structure corresponding to a file descriptor
    354  * and return the file, holding a reference on the descriptor.
    355  */
    356 file_t *
    357 fd_getfile(unsigned fd)
    358 {
    359 	filedesc_t *fdp;
    360 	fdfile_t *ff;
    361 	file_t *fp;
    362 	fdtab_t *dt;
    363 
    364 	/*
    365 	 * Look up the fdfile structure representing this descriptor.
    366 	 * We are doing this unlocked.  See fd_tryexpand().
    367 	 */
    368 	fdp = curlwp->l_fd;
    369 	dt = atomic_load_consume(&fdp->fd_dt);
    370 	if (__predict_false(fd >= dt->dt_nfiles)) {
    371 		return NULL;
    372 	}
    373 	ff = dt->dt_ff[fd];
    374 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    375 	if (__predict_false(ff == NULL)) {
    376 		return NULL;
    377 	}
    378 
    379 	/* Now get a reference to the descriptor. */
    380 	if (fdp->fd_refcnt == 1) {
    381 		/*
    382 		 * Single threaded: don't need to worry about concurrent
    383 		 * access (other than earlier calls to kqueue, which may
    384 		 * hold a reference to the descriptor).
    385 		 */
    386 		ff->ff_refcnt++;
    387 	} else {
    388 		/*
    389 		 * Multi threaded: issue a memory barrier to ensure that we
    390 		 * acquire the file pointer _after_ adding a reference.  If
    391 		 * no memory barrier, we could fetch a stale pointer.
    392 		 *
    393 		 * In particular, we must coordinate the following four
    394 		 * memory operations:
    395 		 *
    396 		 *	A. fd_close store ff->ff_file = NULL
    397 		 *	B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    398 		 *	C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
    399 		 *	D. fd_getfile load fp = ff->ff_file
    400 		 *
    401 		 * If the order is D;A;B;C:
    402 		 *
    403 		 *	1. D: fp = ff->ff_file
    404 		 *	2. A: ff->ff_file = NULL
    405 		 *	3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    406 		 *	4. C: atomic_inc_uint(&ff->ff_refcnt)
    407 		 *
    408 		 * then fd_close determines that there are no more
    409 		 * references and decides to free fp immediately, at
    410 		 * the same that fd_getfile ends up with an fp that's
    411 		 * about to be freed.  *boom*
    412 		 *
    413 		 * By making B a release operation in fd_close, and by
    414 		 * making C an acquire operation in fd_getfile, since
    415 		 * they are atomic operations on the same object, which
    416 		 * has a total modification order, we guarantee either:
    417 		 *
    418 		 *	- B happens before C.  Then since A is
    419 		 *	  sequenced before B in fd_close, and C is
    420 		 *	  sequenced before D in fd_getfile, we
    421 		 *	  guarantee A happens before D, so fd_getfile
    422 		 *	  reads a null fp and safely fails.
    423 		 *
    424 		 *	- C happens before B.  Then fd_getfile may read
    425 		 *	  null or nonnull, but either way, fd_close
    426 		 *	  will safely wait for references to drain.
    427 		 */
    428 		atomic_inc_uint(&ff->ff_refcnt);
    429 		membar_acquire();
    430 	}
    431 
    432 	/*
    433 	 * If the file is not open or is being closed then put the
    434 	 * reference back.
    435 	 */
    436 	fp = atomic_load_consume(&ff->ff_file);
    437 	if (__predict_true(fp != NULL)) {
    438 		return fp;
    439 	}
    440 	fd_putfile(fd);
    441 	return NULL;
    442 }
    443 
    444 /*
    445  * Release a reference to a file descriptor acquired with fd_getfile().
    446  */
    447 void
    448 fd_putfile(unsigned fd)
    449 {
    450 	filedesc_t *fdp;
    451 	fdfile_t *ff;
    452 	u_int u, v;
    453 
    454 	fdp = curlwp->l_fd;
    455 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    456 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    457 
    458 	KASSERT(ff != NULL);
    459 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    460 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    461 
    462 	if (fdp->fd_refcnt == 1) {
    463 		/*
    464 		 * Single threaded: don't need to worry about concurrent
    465 		 * access (other than earlier calls to kqueue, which may
    466 		 * hold a reference to the descriptor).
    467 		 */
    468 		if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
    469 			fd_close(fd);
    470 			return;
    471 		}
    472 		ff->ff_refcnt--;
    473 		return;
    474 	}
    475 
    476 	/*
    477 	 * Ensure that any use of the file is complete and globally
    478 	 * visible before dropping the final reference.  If no membar,
    479 	 * the current CPU could still access memory associated with
    480 	 * the file after it has been freed or recycled by another
    481 	 * CPU.
    482 	 */
    483 	membar_release();
    484 
    485 	/*
    486 	 * Be optimistic and start out with the assumption that no other
    487 	 * threads are trying to close the descriptor.  If the CAS fails,
    488 	 * we lost a race and/or it's being closed.
    489 	 */
    490 	for (u = ff->ff_refcnt & FR_MASK;; u = v) {
    491 		v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
    492 		if (__predict_true(u == v)) {
    493 			return;
    494 		}
    495 		if (__predict_false((v & FR_CLOSING) != 0)) {
    496 			break;
    497 		}
    498 	}
    499 
    500 	/* Another thread is waiting to close the file: join it. */
    501 	(void)fd_close(fd);
    502 }
    503 
    504 /*
    505  * Convenience wrapper around fd_getfile() that returns reference
    506  * to a vnode.
    507  */
    508 int
    509 fd_getvnode(unsigned fd, file_t **fpp)
    510 {
    511 	vnode_t *vp;
    512 	file_t *fp;
    513 
    514 	fp = fd_getfile(fd);
    515 	if (__predict_false(fp == NULL)) {
    516 		return SET_ERROR(EBADF);
    517 	}
    518 	if (__predict_false(fp->f_type != DTYPE_VNODE)) {
    519 		fd_putfile(fd);
    520 		return SET_ERROR(EINVAL);
    521 	}
    522 	vp = fp->f_vnode;
    523 	if (__predict_false(vp->v_type == VBAD)) {
    524 		/* XXX Is this case really necessary? */
    525 		fd_putfile(fd);
    526 		return SET_ERROR(EBADF);
    527 	}
    528 	*fpp = fp;
    529 	return 0;
    530 }
    531 
    532 /*
    533  * Convenience wrapper around fd_getfile() that returns reference
    534  * to a socket.
    535  */
    536 int
    537 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
    538 {
    539 	*fp = fd_getfile(fd);
    540 	if (__predict_false(*fp == NULL)) {
    541 		return SET_ERROR(EBADF);
    542 	}
    543 	if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
    544 		fd_putfile(fd);
    545 		return SET_ERROR(ENOTSOCK);
    546 	}
    547 	*sop = (*fp)->f_socket;
    548 	return 0;
    549 }
    550 
    551 int
    552 fd_getsock(unsigned fd, struct socket **sop)
    553 {
    554 	file_t *fp;
    555 	return fd_getsock1(fd, sop, &fp);
    556 }
    557 
    558 /*
    559  * Look up the file structure corresponding to a file descriptor
    560  * and return it with a reference held on the file, not the
    561  * descriptor.
    562  *
    563  * This is heavyweight and only used when accessing descriptors
    564  * from a foreign process.  The caller must ensure that `p' does
    565  * not exit or fork across this call.
    566  *
    567  * To release the file (not descriptor) reference, use closef().
    568  */
    569 file_t *
    570 fd_getfile2(proc_t *p, unsigned fd)
    571 {
    572 	filedesc_t *fdp;
    573 	fdfile_t *ff;
    574 	file_t *fp;
    575 	fdtab_t *dt;
    576 
    577 	fdp = p->p_fd;
    578 	mutex_enter(&fdp->fd_lock);
    579 	dt = fdp->fd_dt;
    580 	if (fd >= dt->dt_nfiles) {
    581 		mutex_exit(&fdp->fd_lock);
    582 		return NULL;
    583 	}
    584 	if ((ff = dt->dt_ff[fd]) == NULL) {
    585 		mutex_exit(&fdp->fd_lock);
    586 		return NULL;
    587 	}
    588 	if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
    589 		mutex_exit(&fdp->fd_lock);
    590 		return NULL;
    591 	}
    592 	mutex_enter(&fp->f_lock);
    593 	fp->f_count++;
    594 	mutex_exit(&fp->f_lock);
    595 	mutex_exit(&fdp->fd_lock);
    596 
    597 	return fp;
    598 }
    599 
    600 /*
    601  * Internal form of close.  Must be called with a reference to the
    602  * descriptor, and will drop the reference.  When all descriptor
    603  * references are dropped, releases the descriptor slot and a single
    604  * reference to the file structure.
    605  */
    606 int
    607 fd_close(unsigned fd)
    608 {
    609 	struct flock lf;
    610 	filedesc_t *fdp;
    611 	fdfile_t *ff;
    612 	file_t *fp;
    613 	proc_t *p;
    614 	lwp_t *l;
    615 	u_int refcnt;
    616 
    617 	l = curlwp;
    618 	p = l->l_proc;
    619 	fdp = l->l_fd;
    620 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    621 
    622 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    623 
    624 	mutex_enter(&fdp->fd_lock);
    625 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    626 	fp = atomic_load_consume(&ff->ff_file);
    627 	if (__predict_false(fp == NULL)) {
    628 		/*
    629 		 * Another user of the file is already closing, and is
    630 		 * waiting for other users of the file to drain.  Release
    631 		 * our reference, and wake up the closer.
    632 		 */
    633 		membar_release();
    634 		atomic_dec_uint(&ff->ff_refcnt);
    635 		cv_broadcast(&ff->ff_closing);
    636 		mutex_exit(&fdp->fd_lock);
    637 
    638 		/*
    639 		 * An application error, so pretend that the descriptor
    640 		 * was already closed.  We can't safely wait for it to
    641 		 * be closed without potentially deadlocking.
    642 		 */
    643 		return SET_ERROR(EBADF);
    644 	}
    645 	KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
    646 
    647 	/*
    648 	 * There may be multiple users of this file within the process.
    649 	 * Notify existing and new users that the file is closing.  This
    650 	 * will prevent them from adding additional uses to this file
    651 	 * while we are closing it.
    652 	 */
    653 	atomic_store_relaxed(&ff->ff_file, NULL);
    654 	ff->ff_exclose = false;
    655 	ff->ff_foclose = false;
    656 
    657 	/*
    658 	 * We expect the caller to hold a descriptor reference - drop it.
    659 	 * The reference count may increase beyond zero at this point due
    660 	 * to an erroneous descriptor reference by an application, but
    661 	 * fd_getfile() will notice that the file is being closed and drop
    662 	 * the reference again.
    663 	 */
    664 	if (fdp->fd_refcnt == 1) {
    665 		/* Single threaded. */
    666 		refcnt = --(ff->ff_refcnt);
    667 	} else {
    668 		/* Multi threaded. */
    669 		membar_release();
    670 		refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
    671 		membar_acquire();
    672 	}
    673 	if (__predict_false(refcnt != 0)) {
    674 		/*
    675 		 * Wait for other references to drain.  This is typically
    676 		 * an application error - the descriptor is being closed
    677 		 * while still in use.
    678 		 * (Or just a threaded application trying to unblock its
    679 		 * thread that sleeps in (say) accept()).
    680 		 */
    681 		atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
    682 
    683 		/*
    684 		 * Remove any knotes attached to the file.  A knote
    685 		 * attached to the descriptor can hold references on it.
    686 		 */
    687 		mutex_exit(&fdp->fd_lock);
    688 		if (!SLIST_EMPTY(&ff->ff_knlist)) {
    689 			knote_fdclose(fd);
    690 		}
    691 
    692 		/*
    693 		 * Since the file system code doesn't know which fd
    694 		 * each request came from (think dup()), we have to
    695 		 * ask it to return ERESTART for any long-term blocks.
    696 		 * The re-entry through read/write/etc will detect the
    697 		 * closed fd and return EBAFD.
    698 		 * Blocked partial writes may return a short length.
    699 		 */
    700 		(*fp->f_ops->fo_restart)(fp);
    701 		mutex_enter(&fdp->fd_lock);
    702 
    703 		/*
    704 		 * We need to see the count drop to zero at least once,
    705 		 * in order to ensure that all pre-existing references
    706 		 * have been drained.  New references past this point are
    707 		 * of no interest.
    708 		 * XXX (dsl) this may need to call fo_restart() after a
    709 		 * timeout to guarantee that all the system calls exit.
    710 		 */
    711 		while ((ff->ff_refcnt & FR_MASK) != 0) {
    712 			cv_wait(&ff->ff_closing, &fdp->fd_lock);
    713 		}
    714 		atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
    715 	} else {
    716 		/* If no references, there must be no knotes. */
    717 		KASSERT(SLIST_EMPTY(&ff->ff_knlist));
    718 	}
    719 
    720 	/*
    721 	 * POSIX record locking dictates that any close releases ALL
    722 	 * locks owned by this process.  This is handled by setting
    723 	 * a flag in the unlock to free ONLY locks obeying POSIX
    724 	 * semantics, and not to free BSD-style file locks.
    725 	 * If the descriptor was in a message, POSIX-style locks
    726 	 * aren't passed with the descriptor.
    727 	 */
    728 	if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
    729 	    fp->f_ops->fo_advlock != NULL) {
    730 		lf.l_whence = SEEK_SET;
    731 		lf.l_start = 0;
    732 		lf.l_len = 0;
    733 		lf.l_type = F_UNLCK;
    734 		mutex_exit(&fdp->fd_lock);
    735 		(void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
    736 		mutex_enter(&fdp->fd_lock);
    737 	}
    738 
    739 	/* Free descriptor slot. */
    740 	fd_unused(fdp, fd);
    741 	mutex_exit(&fdp->fd_lock);
    742 
    743 	/* Now drop reference to the file itself. */
    744 	return closef(fp);
    745 }
    746 
    747 /*
    748  * Duplicate a file descriptor.
    749  */
    750 int
    751 fd_dup(file_t *fp, int minfd, int *newp, bool exclose, bool foclose)
    752 {
    753 	proc_t *p = curproc;
    754 	int error;
    755 
    756 	while ((error = fd_alloc(p, minfd, newp)) != 0) {
    757 		if (error != ENOSPC) {
    758 			return error;
    759 		}
    760 		fd_tryexpand(p);
    761 	}
    762 
    763 	fd_set_exclose(curlwp, *newp, exclose);
    764 	fd_set_foclose(curlwp, *newp, foclose);
    765 	fd_affix(p, fp, *newp);
    766 	return 0;
    767 }
    768 
    769 /*
    770  * dup2 operation.
    771  */
    772 int
    773 fd_dup2(file_t *fp, unsigned newfd, int flags)
    774 {
    775 	filedesc_t *fdp = curlwp->l_fd;
    776 	fdfile_t *ff;
    777 	fdtab_t *dt;
    778 
    779 	if (flags & ~(O_CLOEXEC|O_CLOFORK|O_NONBLOCK|O_NOSIGPIPE))
    780 		return SET_ERROR(EINVAL);
    781 	/*
    782 	 * Ensure there are enough slots in the descriptor table,
    783 	 * and allocate an fdfile_t up front in case we need it.
    784 	 */
    785 	while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
    786 		fd_tryexpand(curproc);
    787 	}
    788 	ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
    789 	fdfile_ctor(ff);
    790 
    791 	/*
    792 	 * If there is already a file open, close it.  If the file is
    793 	 * half open, wait for it to be constructed before closing it.
    794 	 * XXX Potential for deadlock here?
    795 	 */
    796 	mutex_enter(&fdp->fd_lock);
    797 	while (fd_isused(fdp, newfd)) {
    798 		mutex_exit(&fdp->fd_lock);
    799 		if (fd_getfile(newfd) != NULL) {
    800 			(void)fd_close(newfd);
    801 		} else {
    802 			/*
    803 			 * Crummy, but unlikely to happen.
    804 			 * Can occur if we interrupt another
    805 			 * thread while it is opening a file.
    806 			 */
    807 			kpause("dup2", false, 1, NULL);
    808 		}
    809 		mutex_enter(&fdp->fd_lock);
    810 	}
    811 	dt = fdp->fd_dt;
    812 	if (dt->dt_ff[newfd] == NULL) {
    813 		KASSERT(newfd >= NDFDFILE);
    814 		dt->dt_ff[newfd] = ff;
    815 		ff = NULL;
    816 	}
    817 	fd_used(fdp, newfd);
    818 	mutex_exit(&fdp->fd_lock);
    819 
    820 	fd_set_exclose(curlwp, newfd, (flags & O_CLOEXEC) != 0);
    821 	fd_set_foclose(curlwp, newfd, (flags & O_CLOFORK) != 0);
    822 	fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
    823 	/* Slot is now allocated.  Insert copy of the file. */
    824 	fd_affix(curproc, fp, newfd);
    825 	if (ff != NULL) {
    826 		cv_destroy(&ff->ff_closing);
    827 		kmem_free(ff, sizeof(*ff));
    828 	}
    829 	return 0;
    830 }
    831 
    832 /*
    833  * Drop reference to a file structure.
    834  */
    835 int
    836 closef(file_t *fp)
    837 {
    838 	struct flock lf;
    839 	int error;
    840 
    841 	/*
    842 	 * Drop reference.  If referenced elsewhere it's still open
    843 	 * and we have nothing more to do.
    844 	 */
    845 	mutex_enter(&fp->f_lock);
    846 	KASSERT(fp->f_count > 0);
    847 	if (--fp->f_count > 0) {
    848 		mutex_exit(&fp->f_lock);
    849 		return 0;
    850 	}
    851 	KASSERT(fp->f_count == 0);
    852 	mutex_exit(&fp->f_lock);
    853 
    854 	/* We held the last reference - release locks, close and free. */
    855 	if (fp->f_ops->fo_advlock == NULL) {
    856 		KASSERT((fp->f_flag & FHASLOCK) == 0);
    857 	} else if (fp->f_flag & FHASLOCK) {
    858 		lf.l_whence = SEEK_SET;
    859 		lf.l_start = 0;
    860 		lf.l_len = 0;
    861 		lf.l_type = F_UNLCK;
    862 		(void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
    863 	}
    864 	if (fp->f_ops != NULL) {
    865 		error = (*fp->f_ops->fo_close)(fp);
    866 
    867 		/*
    868 		 * .fo_close is final, so real errors are frowned on
    869 		 * (but allowed and passed on to close(2)), and
    870 		 * ERESTART is absolutely forbidden because the file
    871 		 * descriptor is gone and there is no chance to retry.
    872 		 */
    873 		KASSERTMSG(error != ERESTART,
    874 		    "file %p f_ops %p fo_close %p returned ERESTART",
    875 		    fp, fp->f_ops, fp->f_ops->fo_close);
    876 	} else {
    877 		error = 0;
    878 	}
    879 	KASSERT(fp->f_count == 0);
    880 	KASSERT(fp->f_cred != NULL);
    881 	pool_cache_put(file_cache, fp);
    882 
    883 	return error;
    884 }
    885 
    886 /*
    887  * Allocate a file descriptor for the process.
    888  *
    889  * Future idea for experimentation: replace all of this with radixtree.
    890  */
    891 int
    892 fd_alloc(proc_t *p, int want, int *result)
    893 {
    894 	filedesc_t *fdp = p->p_fd;
    895 	int i, lim, last, error, hi;
    896 	u_int off;
    897 	fdtab_t *dt;
    898 
    899 	KASSERT(p == curproc || p == &proc0);
    900 
    901 	/*
    902 	 * Search for a free descriptor starting at the higher
    903 	 * of want or fd_freefile.
    904 	 */
    905 	mutex_enter(&fdp->fd_lock);
    906 	fd_checkmaps(fdp);
    907 	dt = fdp->fd_dt;
    908 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
    909 	lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
    910 	last = uimin(dt->dt_nfiles, lim);
    911 
    912 	for (;;) {
    913 		if ((i = want) < fdp->fd_freefile)
    914 			i = fdp->fd_freefile;
    915 		off = i >> NDENTRYSHIFT;
    916 		hi = fd_next_zero(fdp, fdp->fd_himap, off,
    917 		    (last + NDENTRIES - 1) >> NDENTRYSHIFT);
    918 		if (hi == -1)
    919 			break;
    920 		i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
    921 		    hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
    922 		if (i == -1) {
    923 			/*
    924 			 * Free file descriptor in this block was
    925 			 * below want, try again with higher want.
    926 			 */
    927 			want = (hi + 1) << NDENTRYSHIFT;
    928 			continue;
    929 		}
    930 		i += (hi << NDENTRYSHIFT);
    931 		if (i >= last) {
    932 			break;
    933 		}
    934 		if (dt->dt_ff[i] == NULL) {
    935 			KASSERT(i >= NDFDFILE);
    936 			dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
    937 			fdfile_ctor(dt->dt_ff[i]);
    938 		}
    939 		KASSERT(dt->dt_ff[i]->ff_file == NULL);
    940 		fd_used(fdp, i);
    941 		if (want <= fdp->fd_freefile) {
    942 			fdp->fd_freefile = i;
    943 		}
    944 		*result = i;
    945 		KASSERT(i >= NDFDFILE ||
    946 		    dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
    947 		fd_checkmaps(fdp);
    948 		mutex_exit(&fdp->fd_lock);
    949 		return 0;
    950 	}
    951 
    952 	/* No space in current array.  Let the caller expand and retry. */
    953 	error = (dt->dt_nfiles >= lim) ? SET_ERROR(EMFILE) : SET_ERROR(ENOSPC);
    954 	mutex_exit(&fdp->fd_lock);
    955 	return error;
    956 }
    957 
    958 /*
    959  * Allocate memory for a descriptor table.
    960  */
    961 static fdtab_t *
    962 fd_dtab_alloc(int n)
    963 {
    964 	fdtab_t *dt;
    965 	size_t sz;
    966 
    967 	KASSERT(n > NDFILE);
    968 
    969 	sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
    970 	dt = kmem_alloc(sz, KM_SLEEP);
    971 #ifdef DIAGNOSTIC
    972 	memset(dt, 0xff, sz);
    973 #endif
    974 	dt->dt_nfiles = n;
    975 	dt->dt_link = NULL;
    976 	return dt;
    977 }
    978 
    979 /*
    980  * Free a descriptor table, and all tables linked for deferred free.
    981  */
    982 static void
    983 fd_dtab_free(fdtab_t *dt)
    984 {
    985 	fdtab_t *next;
    986 	size_t sz;
    987 
    988 	do {
    989 		next = dt->dt_link;
    990 		KASSERT(dt->dt_nfiles > NDFILE);
    991 		sz = sizeof(*dt) +
    992 		    (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
    993 #ifdef DIAGNOSTIC
    994 		memset(dt, 0xff, sz);
    995 #endif
    996 		kmem_free(dt, sz);
    997 		dt = next;
    998 	} while (dt != NULL);
    999 }
   1000 
   1001 /*
   1002  * Allocate descriptor bitmap.
   1003  */
   1004 static void
   1005 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
   1006 {
   1007 	uint8_t *ptr;
   1008 	size_t szlo, szhi;
   1009 
   1010 	KASSERT(n > NDENTRIES);
   1011 
   1012 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1013 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1014 	ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
   1015 	*lo = (uint32_t *)ptr;
   1016 	*hi = (uint32_t *)(ptr + szlo);
   1017 }
   1018 
   1019 /*
   1020  * Free descriptor bitmap.
   1021  */
   1022 static void
   1023 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
   1024 {
   1025 	size_t szlo, szhi;
   1026 
   1027 	KASSERT(n > NDENTRIES);
   1028 
   1029 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1030 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1031 	KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
   1032 	kmem_free(lo, szlo + szhi);
   1033 }
   1034 
   1035 /*
   1036  * Expand a process' descriptor table.
   1037  */
   1038 void
   1039 fd_tryexpand(proc_t *p)
   1040 {
   1041 	filedesc_t *fdp;
   1042 	int i, numfiles, oldnfiles;
   1043 	fdtab_t *newdt, *dt;
   1044 	uint32_t *newhimap, *newlomap;
   1045 
   1046 	KASSERT(p == curproc || p == &proc0);
   1047 
   1048 	fdp = p->p_fd;
   1049 	newhimap = NULL;
   1050 	newlomap = NULL;
   1051 	oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
   1052 
   1053 	if (oldnfiles < NDEXTENT)
   1054 		numfiles = NDEXTENT;
   1055 	else
   1056 		numfiles = 2 * oldnfiles;
   1057 
   1058 	newdt = fd_dtab_alloc(numfiles);
   1059 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1060 		fd_map_alloc(numfiles, &newlomap, &newhimap);
   1061 	}
   1062 
   1063 	mutex_enter(&fdp->fd_lock);
   1064 	dt = fdp->fd_dt;
   1065 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1066 	if (dt->dt_nfiles != oldnfiles) {
   1067 		/* fdp changed; caller must retry */
   1068 		mutex_exit(&fdp->fd_lock);
   1069 		fd_dtab_free(newdt);
   1070 		if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1071 			fd_map_free(numfiles, newlomap, newhimap);
   1072 		}
   1073 		return;
   1074 	}
   1075 
   1076 	/* Copy the existing descriptor table and zero the new portion. */
   1077 	i = sizeof(fdfile_t *) * oldnfiles;
   1078 	memcpy(newdt->dt_ff, dt->dt_ff, i);
   1079 	memset((uint8_t *)newdt->dt_ff + i, 0,
   1080 	    numfiles * sizeof(fdfile_t *) - i);
   1081 
   1082 	/*
   1083 	 * Link old descriptor array into list to be discarded.  We defer
   1084 	 * freeing until the last reference to the descriptor table goes
   1085 	 * away (usually process exit).  This allows us to do lockless
   1086 	 * lookups in fd_getfile().
   1087 	 */
   1088 	if (oldnfiles > NDFILE) {
   1089 		if (fdp->fd_refcnt > 1) {
   1090 			newdt->dt_link = dt;
   1091 		} else {
   1092 			fd_dtab_free(dt);
   1093 		}
   1094 	}
   1095 
   1096 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1097 		i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
   1098 		memcpy(newhimap, fdp->fd_himap, i);
   1099 		memset((uint8_t *)newhimap + i, 0,
   1100 		    NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
   1101 
   1102 		i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
   1103 		memcpy(newlomap, fdp->fd_lomap, i);
   1104 		memset((uint8_t *)newlomap + i, 0,
   1105 		    NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
   1106 
   1107 		if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
   1108 			fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
   1109 		}
   1110 		fdp->fd_himap = newhimap;
   1111 		fdp->fd_lomap = newlomap;
   1112 	}
   1113 
   1114 	/*
   1115 	 * All other modifications must become globally visible before
   1116 	 * the change to fd_dt.  See fd_getfile().
   1117 	 */
   1118 	atomic_store_release(&fdp->fd_dt, newdt);
   1119 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1120 	fd_checkmaps(fdp);
   1121 	mutex_exit(&fdp->fd_lock);
   1122 }
   1123 
   1124 /*
   1125  * Create a new open file structure and allocate a file descriptor
   1126  * for the current process.
   1127  */
   1128 int
   1129 fd_allocfile(file_t **resultfp, int *resultfd)
   1130 {
   1131 	proc_t *p = curproc;
   1132 	kauth_cred_t cred;
   1133 	file_t *fp;
   1134 	int error;
   1135 
   1136 	while ((error = fd_alloc(p, 0, resultfd)) != 0) {
   1137 		if (error != ENOSPC) {
   1138 			return error;
   1139 		}
   1140 		fd_tryexpand(p);
   1141 	}
   1142 
   1143 	fp = pool_cache_get(file_cache, PR_WAITOK);
   1144 	if (fp == NULL) {
   1145 		fd_abort(p, NULL, *resultfd);
   1146 		return SET_ERROR(ENFILE);
   1147 	}
   1148 	KASSERT(fp->f_count == 0);
   1149 	KASSERT(fp->f_msgcount == 0);
   1150 	KASSERT(fp->f_unpcount == 0);
   1151 
   1152 	/* Replace cached credentials if not what we need. */
   1153 	cred = curlwp->l_cred;
   1154 	if (__predict_false(cred != fp->f_cred)) {
   1155 		kauth_cred_free(fp->f_cred);
   1156 		fp->f_cred = kauth_cred_hold(cred);
   1157 	}
   1158 
   1159 	/*
   1160 	 * Don't allow recycled files to be scanned.
   1161 	 * See uipc_usrreq.c.
   1162 	 */
   1163 	if (__predict_false((fp->f_flag & FSCAN) != 0)) {
   1164 		mutex_enter(&fp->f_lock);
   1165 		atomic_and_uint(&fp->f_flag, ~FSCAN);
   1166 		mutex_exit(&fp->f_lock);
   1167 	}
   1168 
   1169 	fp->f_advice = 0;
   1170 	fp->f_offset = 0;
   1171 	*resultfp = fp;
   1172 
   1173 	return 0;
   1174 }
   1175 
   1176 /*
   1177  * Successful creation of a new descriptor: make visible to the process.
   1178  */
   1179 void
   1180 fd_affix(proc_t *p, file_t *fp, unsigned fd)
   1181 {
   1182 	fdfile_t *ff;
   1183 	filedesc_t *fdp;
   1184 	fdtab_t *dt;
   1185 
   1186 	KASSERT(p == curproc || p == &proc0);
   1187 
   1188 	/* Add a reference to the file structure. */
   1189 	mutex_enter(&fp->f_lock);
   1190 	fp->f_count++;
   1191 	mutex_exit(&fp->f_lock);
   1192 
   1193 	/*
   1194 	 * Insert the new file into the descriptor slot.
   1195 	 */
   1196 	fdp = p->p_fd;
   1197 	dt = atomic_load_consume(&fdp->fd_dt);
   1198 	ff = dt->dt_ff[fd];
   1199 
   1200 	KASSERT(ff != NULL);
   1201 	KASSERT(ff->ff_file == NULL);
   1202 	KASSERT(ff->ff_allocated);
   1203 	KASSERT(fd_isused(fdp, fd));
   1204 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1205 
   1206 	/* No need to lock in order to make file initially visible. */
   1207 	atomic_store_release(&ff->ff_file, fp);
   1208 }
   1209 
   1210 /*
   1211  * Abort creation of a new descriptor: free descriptor slot and file.
   1212  */
   1213 void
   1214 fd_abort(proc_t *p, file_t *fp, unsigned fd)
   1215 {
   1216 	filedesc_t *fdp;
   1217 	fdfile_t *ff;
   1218 
   1219 	KASSERT(p == curproc || p == &proc0);
   1220 
   1221 	fdp = p->p_fd;
   1222 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1223 	ff->ff_exclose = false;
   1224 	ff->ff_foclose = false;
   1225 
   1226 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1227 
   1228 	mutex_enter(&fdp->fd_lock);
   1229 	KASSERT(fd_isused(fdp, fd));
   1230 	fd_unused(fdp, fd);
   1231 	mutex_exit(&fdp->fd_lock);
   1232 
   1233 	if (fp != NULL) {
   1234 		KASSERT(fp->f_count == 0);
   1235 		KASSERT(fp->f_cred != NULL);
   1236 		pool_cache_put(file_cache, fp);
   1237 	}
   1238 }
   1239 
   1240 static int
   1241 file_ctor(void *arg, void *obj, int flags)
   1242 {
   1243 	/*
   1244 	 * It's easy to exhaust the open file limit on a system with many
   1245 	 * CPUs due to caching.  Allow a bit of leeway to reduce the element
   1246 	 * of surprise.
   1247 	 */
   1248 	u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
   1249 	file_t *fp = obj;
   1250 
   1251 	memset(fp, 0, sizeof(*fp));
   1252 
   1253 	mutex_enter(&filelist_lock);
   1254 	if (__predict_false(nfiles >= slop + maxfiles)) {
   1255 		mutex_exit(&filelist_lock);
   1256 		tablefull("file", "increase kern.maxfiles or MAXFILES");
   1257 		return SET_ERROR(ENFILE);
   1258 	}
   1259 	nfiles++;
   1260 	LIST_INSERT_HEAD(&filehead, fp, f_list);
   1261 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1262 	fp->f_cred = kauth_cred_hold(curlwp->l_cred);
   1263 	mutex_exit(&filelist_lock);
   1264 
   1265 	return 0;
   1266 }
   1267 
   1268 static void
   1269 file_dtor(void *arg, void *obj)
   1270 {
   1271 	file_t *fp = obj;
   1272 
   1273 	mutex_enter(&filelist_lock);
   1274 	nfiles--;
   1275 	LIST_REMOVE(fp, f_list);
   1276 	mutex_exit(&filelist_lock);
   1277 
   1278 	KASSERT(fp->f_count == 0);
   1279 	kauth_cred_free(fp->f_cred);
   1280 	mutex_destroy(&fp->f_lock);
   1281 }
   1282 
   1283 static void
   1284 fdfile_ctor(fdfile_t *ff)
   1285 {
   1286 
   1287 	memset(ff, 0, sizeof(*ff));
   1288 	cv_init(&ff->ff_closing, "fdclose");
   1289 }
   1290 
   1291 static void
   1292 fdfile_dtor(fdfile_t *ff)
   1293 {
   1294 
   1295 	cv_destroy(&ff->ff_closing);
   1296 }
   1297 
   1298 file_t *
   1299 fgetdummy(void)
   1300 {
   1301 	file_t *fp;
   1302 
   1303 	fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
   1304 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1305 	return fp;
   1306 }
   1307 
   1308 void
   1309 fputdummy(file_t *fp)
   1310 {
   1311 
   1312 	mutex_destroy(&fp->f_lock);
   1313 	kmem_free(fp, sizeof(*fp));
   1314 }
   1315 
   1316 /*
   1317  * Create an initial filedesc structure.
   1318  */
   1319 filedesc_t *
   1320 fd_init(filedesc_t *fdp)
   1321 {
   1322 #ifdef DIAGNOSTIC
   1323 	unsigned fd;
   1324 #endif
   1325 
   1326 	if (__predict_true(fdp == NULL)) {
   1327 		fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1328 	} else {
   1329 		KASSERT(fdp == &filedesc0);
   1330 		filedesc_ctor(NULL, fdp, PR_WAITOK);
   1331 	}
   1332 
   1333 #ifdef DIAGNOSTIC
   1334 	KASSERT(fdp->fd_lastfile == -1);
   1335 	KASSERT(fdp->fd_lastkqfile == -1);
   1336 	KASSERT(fdp->fd_knhash == NULL);
   1337 	KASSERT(fdp->fd_freefile == 0);
   1338 	KASSERT(fdp->fd_exclose == false);
   1339 	KASSERT(fdp->fd_foclose == false);
   1340 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1341 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1342 	for (fd = 0; fd < NDFDFILE; fd++) {
   1343 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
   1344 		    (fdfile_t *)fdp->fd_dfdfile[fd]);
   1345 	}
   1346 	for (fd = NDFDFILE; fd < NDFILE; fd++) {
   1347 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
   1348 	}
   1349 	KASSERT(fdp->fd_himap == fdp->fd_dhimap);
   1350 	KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
   1351 #endif	/* DIAGNOSTIC */
   1352 
   1353 	fdp->fd_refcnt = 1;
   1354 	fd_checkmaps(fdp);
   1355 
   1356 	return fdp;
   1357 }
   1358 
   1359 /*
   1360  * Initialize a file descriptor table.
   1361  */
   1362 static int
   1363 filedesc_ctor(void *arg, void *obj, int flag)
   1364 {
   1365 	filedesc_t *fdp = obj;
   1366 	fdfile_t **ffp;
   1367 	int i;
   1368 
   1369 	memset(fdp, 0, sizeof(*fdp));
   1370 	mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
   1371 	fdp->fd_lastfile = -1;
   1372 	fdp->fd_lastkqfile = -1;
   1373 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1374 	fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
   1375 	fdp->fd_himap = fdp->fd_dhimap;
   1376 	fdp->fd_lomap = fdp->fd_dlomap;
   1377 
   1378 	CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
   1379 	for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
   1380 		fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
   1381 	}
   1382 
   1383 	return 0;
   1384 }
   1385 
   1386 static void
   1387 filedesc_dtor(void *arg, void *obj)
   1388 {
   1389 	filedesc_t *fdp = obj;
   1390 	int i;
   1391 
   1392 	for (i = 0; i < NDFDFILE; i++) {
   1393 		fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
   1394 	}
   1395 
   1396 	mutex_destroy(&fdp->fd_lock);
   1397 }
   1398 
   1399 /*
   1400  * Make p share curproc's filedesc structure.
   1401  */
   1402 void
   1403 fd_share(struct proc *p)
   1404 {
   1405 	filedesc_t *fdp;
   1406 
   1407 	fdp = curlwp->l_fd;
   1408 	p->p_fd = fdp;
   1409 	atomic_inc_uint(&fdp->fd_refcnt);
   1410 }
   1411 
   1412 /*
   1413  * Acquire a hold on a filedesc structure.
   1414  */
   1415 void
   1416 fd_hold(lwp_t *l)
   1417 {
   1418 	filedesc_t *fdp = l->l_fd;
   1419 
   1420 	atomic_inc_uint(&fdp->fd_refcnt);
   1421 }
   1422 
   1423 /*
   1424  * Copy a filedesc structure.
   1425  */
   1426 filedesc_t *
   1427 fd_copy(void)
   1428 {
   1429 	filedesc_t *newfdp, *fdp;
   1430 	fdfile_t *ff, **ffp, **nffp, *ff2;
   1431 	int i, j, numfiles, lastfile, newlast;
   1432 	file_t *fp;
   1433 	fdtab_t *newdt;
   1434 
   1435 	fdp = curproc->p_fd;
   1436 	newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1437 	newfdp->fd_refcnt = 1;
   1438 
   1439 #ifdef DIAGNOSTIC
   1440 	KASSERT(newfdp->fd_lastfile == -1);
   1441 	KASSERT(newfdp->fd_lastkqfile == -1);
   1442 	KASSERT(newfdp->fd_knhash == NULL);
   1443 	KASSERT(newfdp->fd_freefile == 0);
   1444 	KASSERT(newfdp->fd_exclose == false);
   1445 	KASSERT(newfdp->fd_foclose == false);
   1446 	KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1447 	KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1448 	for (i = 0; i < NDFDFILE; i++) {
   1449 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
   1450 		    (fdfile_t *)&newfdp->fd_dfdfile[i]);
   1451 	}
   1452 	for (i = NDFDFILE; i < NDFILE; i++) {
   1453 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
   1454 	}
   1455 #endif	/* DIAGNOSTIC */
   1456 
   1457 	mutex_enter(&fdp->fd_lock);
   1458 	fd_checkmaps(fdp);
   1459 	numfiles = fdp->fd_dt->dt_nfiles;
   1460 	lastfile = fdp->fd_lastfile;
   1461 
   1462 	/*
   1463 	 * If the number of open files fits in the internal arrays
   1464 	 * of the open file structure, use them, otherwise allocate
   1465 	 * additional memory for the number of descriptors currently
   1466 	 * in use.
   1467 	 */
   1468 	if (lastfile < NDFILE) {
   1469 		i = NDFILE;
   1470 		newdt = newfdp->fd_dt;
   1471 		KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1472 	} else {
   1473 		/*
   1474 		 * Compute the smallest multiple of NDEXTENT needed
   1475 		 * for the file descriptors currently in use,
   1476 		 * allowing the table to shrink.
   1477 		 */
   1478 		i = numfiles;
   1479 		while (i >= 2 * NDEXTENT && i > lastfile * 2) {
   1480 			i /= 2;
   1481 		}
   1482 		KASSERT(i > NDFILE);
   1483 		newdt = fd_dtab_alloc(i);
   1484 		newfdp->fd_dt = newdt;
   1485 		memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
   1486 		    NDFDFILE * sizeof(fdfile_t **));
   1487 		memset(newdt->dt_ff + NDFDFILE, 0,
   1488 		    (i - NDFDFILE) * sizeof(fdfile_t **));
   1489 	}
   1490 	if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
   1491 		newfdp->fd_himap = newfdp->fd_dhimap;
   1492 		newfdp->fd_lomap = newfdp->fd_dlomap;
   1493 	} else {
   1494 		fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
   1495 		KASSERT(i >= NDENTRIES * NDENTRIES);
   1496 		memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
   1497 		memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
   1498 	}
   1499 	newfdp->fd_freefile = fdp->fd_freefile;
   1500 	newfdp->fd_exclose = fdp->fd_exclose;
   1501 	newfdp->fd_foclose = false;	/* no close-on-fork will be copied */
   1502 
   1503 	ffp = fdp->fd_dt->dt_ff;
   1504 	nffp = newdt->dt_ff;
   1505 	newlast = -1;
   1506 	for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
   1507 		KASSERT(i >= NDFDFILE ||
   1508 		    *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
   1509 		ff = *ffp;
   1510 		if (ff == NULL ||
   1511 		    (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   1512 			/* Descriptor unused, or descriptor half open. */
   1513 			KASSERT(!fd_isused(newfdp, i));
   1514 			continue;
   1515 		}
   1516 		if (__predict_false(ff->ff_foclose ||
   1517 				    fp->f_type == DTYPE_KQUEUE)) {
   1518 			/* kqueue descriptors cannot be copied. */
   1519 			/* close-on-fork descriptors aren't either */
   1520 			if (i < newfdp->fd_freefile) {
   1521 				newfdp->fd_freefile = i;
   1522 			}
   1523 			continue;
   1524 		}
   1525 		/* It's active: add a reference to the file. */
   1526 		mutex_enter(&fp->f_lock);
   1527 		fp->f_count++;
   1528 		mutex_exit(&fp->f_lock);
   1529 
   1530 		/* Allocate an fdfile_t to represent it. */
   1531 		if (i >= NDFDFILE) {
   1532 			ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
   1533 			fdfile_ctor(ff2);
   1534 			*nffp = ff2;
   1535 		} else {
   1536 			ff2 = newdt->dt_ff[i];
   1537 		}
   1538 		ff2->ff_file = fp;
   1539 		ff2->ff_exclose = ff->ff_exclose;
   1540 		ff2->ff_foclose = false;
   1541 		ff2->ff_allocated = true;
   1542 
   1543 		/* Fix up bitmaps. */
   1544 		j = i >> NDENTRYSHIFT;
   1545 		KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
   1546 		newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
   1547 		if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
   1548 			KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
   1549 			    (1U << (j & NDENTRYMASK))) == 0);
   1550 			newfdp->fd_himap[j >> NDENTRYSHIFT] |=
   1551 			    1U << (j & NDENTRYMASK);
   1552 		}
   1553 		newlast = i;
   1554 	}
   1555 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
   1556 	newfdp->fd_lastfile = newlast;
   1557 	fd_checkmaps(newfdp);
   1558 	mutex_exit(&fdp->fd_lock);
   1559 
   1560 	return newfdp;
   1561 }
   1562 
   1563 /*
   1564  * Release a filedesc structure.
   1565  */
   1566 void
   1567 fd_free(void)
   1568 {
   1569 	fdfile_t *ff;
   1570 	file_t *fp;
   1571 	int fd, nf;
   1572 	fdtab_t *dt;
   1573 	lwp_t * const l = curlwp;
   1574 	filedesc_t * const fdp = l->l_fd;
   1575 	const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
   1576 
   1577 	KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
   1578 	    (fdfile_t *)fdp->fd_dfdfile[0]);
   1579 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1580 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1581 
   1582 	membar_release();
   1583 	if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
   1584 		return;
   1585 	membar_acquire();
   1586 
   1587 	/*
   1588 	 * Close any files that the process holds open.
   1589 	 */
   1590 	dt = fdp->fd_dt;
   1591 	fd_checkmaps(fdp);
   1592 #ifdef DEBUG
   1593 	fdp->fd_refcnt = -1; /* see fd_checkmaps */
   1594 #endif
   1595 	for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
   1596 		ff = dt->dt_ff[fd];
   1597 		KASSERT(fd >= NDFDFILE ||
   1598 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1599 		if (ff == NULL)
   1600 			continue;
   1601 		if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
   1602 			/*
   1603 			 * Must use fd_close() here if there is
   1604 			 * a reference from kqueue or we might have posix
   1605 			 * advisory locks.
   1606 			 */
   1607 			if (__predict_true(ff->ff_refcnt == 0) &&
   1608 			    (noadvlock || fp->f_type != DTYPE_VNODE)) {
   1609 				ff->ff_file = NULL;
   1610 				ff->ff_exclose = false;
   1611 				ff->ff_foclose = false;
   1612 				ff->ff_allocated = false;
   1613 				closef(fp);
   1614 			} else {
   1615 				ff->ff_refcnt++;
   1616 				fd_close(fd);
   1617 			}
   1618 		}
   1619 		KASSERT(ff->ff_refcnt == 0);
   1620 		KASSERT(ff->ff_file == NULL);
   1621 		KASSERT(!ff->ff_exclose);
   1622 		KASSERT(!ff->ff_foclose);
   1623 		KASSERT(!ff->ff_allocated);
   1624 		if (fd >= NDFDFILE) {
   1625 			cv_destroy(&ff->ff_closing);
   1626 			kmem_free(ff, sizeof(*ff));
   1627 			dt->dt_ff[fd] = NULL;
   1628 		}
   1629 	}
   1630 
   1631 	/*
   1632 	 * Clean out the descriptor table for the next user and return
   1633 	 * to the cache.
   1634 	 */
   1635 	if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
   1636 		fd_dtab_free(fdp->fd_dt);
   1637 		/* Otherwise, done above. */
   1638 		memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
   1639 		    (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
   1640 		fdp->fd_dt = &fdp->fd_dtbuiltin;
   1641 	}
   1642 	if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
   1643 		KASSERT(fdp->fd_himap != fdp->fd_dhimap);
   1644 		KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
   1645 		fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
   1646 	}
   1647 	if (__predict_false(fdp->fd_knhash != NULL)) {
   1648 		hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
   1649 		fdp->fd_knhash = NULL;
   1650 		fdp->fd_knhashmask = 0;
   1651 	} else {
   1652 		KASSERT(fdp->fd_knhashmask == 0);
   1653 	}
   1654 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1655 	fdp->fd_lastkqfile = -1;
   1656 	fdp->fd_lastfile = -1;
   1657 	fdp->fd_freefile = 0;
   1658 	fdp->fd_exclose = false;
   1659 	fdp->fd_foclose = false;
   1660 	memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
   1661 	    offsetof(filedesc_t, fd_startzero));
   1662 	fdp->fd_himap = fdp->fd_dhimap;
   1663 	fdp->fd_lomap = fdp->fd_dlomap;
   1664 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1665 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1666 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1667 #ifdef DEBUG
   1668 	fdp->fd_refcnt = 0; /* see fd_checkmaps */
   1669 #endif
   1670 	fd_checkmaps(fdp);
   1671 	pool_cache_put(filedesc_cache, fdp);
   1672 }
   1673 
   1674 /*
   1675  * File Descriptor pseudo-device driver (/dev/fd/).
   1676  *
   1677  * Opening minor device N dup()s the file (if any) connected to file
   1678  * descriptor N belonging to the calling process.  Note that this driver
   1679  * consists of only the ``open()'' routine, because all subsequent
   1680  * references to this file will be direct to the other driver.
   1681  */
   1682 static int
   1683 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
   1684 {
   1685 
   1686 	/*
   1687 	 * XXX Kludge: set dupfd to contain the value of the
   1688 	 * the file descriptor being sought for duplication. The error
   1689 	 * return ensures that the vnode for this device will be released
   1690 	 * by vn_open. Open will detect this special error and take the
   1691 	 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
   1692 	 * will simply report the error.
   1693 	 */
   1694 	l->l_dupfd = minor(dev);	/* XXX */
   1695 	return SET_ERROR(EDUPFD);
   1696 }
   1697 
   1698 /*
   1699  * Duplicate the specified descriptor to a free descriptor.
   1700  *
   1701  * old is the original fd.
   1702  * moveit is true if we should move rather than duplicate.
   1703  * flags are the open flags (converted from O_* to F*).
   1704  * newp returns the new fd on success.
   1705  *
   1706  * These two cases are produced by the EDUPFD and EMOVEFD magic
   1707  * errnos, but in the interest of removing that regrettable interface,
   1708  * vn_open has been changed to intercept them. Now vn_open returns
   1709  * either a vnode or a filehandle, and the filehandle is accompanied
   1710  * by a boolean that says whether we should dup (moveit == false) or
   1711  * move (moveit == true) the fd.
   1712  *
   1713  * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
   1714  * move case is used by cloner devices that allocate a fd of their
   1715  * own (a layering violation that should go away eventually) that
   1716  * then needs to be put in the place open() expects it.
   1717  */
   1718 int
   1719 fd_dupopen(int old, bool moveit, int flags, int *newp)
   1720 {
   1721 	filedesc_t *fdp;
   1722 	fdfile_t *ff;
   1723 	file_t *fp;
   1724 	fdtab_t *dt;
   1725 	int error;
   1726 
   1727 	if ((fp = fd_getfile(old)) == NULL) {
   1728 		return SET_ERROR(EBADF);
   1729 	}
   1730 	fdp = curlwp->l_fd;
   1731 	dt = atomic_load_consume(&fdp->fd_dt);
   1732 	ff = dt->dt_ff[old];
   1733 
   1734 	/*
   1735 	 * There are two cases of interest here.
   1736 	 *
   1737 	 * 1. moveit == false (used to be the EDUPFD magic errno):
   1738 	 *    simply dup (old) to file descriptor (new) and return.
   1739 	 *
   1740 	 * 2. moveit == true (used to be the EMOVEFD magic errno):
   1741 	 *    steal away the file structure from (old) and store it in
   1742 	 *    (new).  (old) is effectively closed by this operation.
   1743 	 */
   1744 	if (moveit == false) {
   1745 		/*
   1746 		 * Check that the mode the file is being opened for is a
   1747 		 * subset of the mode of the existing descriptor.
   1748 		 */
   1749 		if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
   1750 			error = SET_ERROR(EACCES);
   1751 			goto out;
   1752 		}
   1753 
   1754 		/* Copy it. */
   1755 		error = fd_dup(fp, 0, newp, ff->ff_exclose, ff->ff_foclose);
   1756 	} else {
   1757 		/* Copy it. */
   1758 		error = fd_dup(fp, 0, newp, ff->ff_exclose, ff->ff_foclose);
   1759 		if (error != 0) {
   1760 			goto out;
   1761 		}
   1762 
   1763 		/* Steal away the file pointer from 'old'. */
   1764 		(void)fd_close(old);
   1765 		return 0;
   1766 	}
   1767 
   1768 out:
   1769 	fd_putfile(old);
   1770 	return error;
   1771 }
   1772 
   1773 /*
   1774  * Close open files on exec.
   1775  */
   1776 void
   1777 fd_closeexec(void)
   1778 {
   1779 	proc_t *p;
   1780 	filedesc_t *fdp;
   1781 	fdfile_t *ff;
   1782 	lwp_t *l;
   1783 	fdtab_t *dt;
   1784 	int fd;
   1785 
   1786 	l = curlwp;
   1787 	p = l->l_proc;
   1788 	fdp = p->p_fd;
   1789 
   1790 	if (fdp->fd_refcnt > 1) {
   1791 		/*
   1792 		 * Always unshare fd table on any exec
   1793 		 */
   1794 		fdp = fd_copy();
   1795 		fd_free();
   1796 		p->p_fd = fdp;
   1797 		l->l_fd = fdp;
   1798 	}
   1799 
   1800 	/*
   1801 	 * If there are no "close-on" fd's nothing more to do
   1802 	 */
   1803 	if (!(fdp->fd_exclose || fdp->fd_foclose))
   1804 		return;
   1805 
   1806 	fdp->fd_exclose = false;	/* there will be none when done */
   1807 	fdp->fd_foclose = false;
   1808 
   1809 	dt = atomic_load_consume(&fdp->fd_dt);
   1810 
   1811 	for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
   1812 		if ((ff = dt->dt_ff[fd]) == NULL) {
   1813 			KASSERT(fd >= NDFDFILE);
   1814 			continue;
   1815 		}
   1816 		KASSERT(fd >= NDFDFILE ||
   1817 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1818 		if (ff->ff_file == NULL)
   1819 			continue;
   1820 		if (ff->ff_exclose) {
   1821 			/*
   1822 			 * We need a reference to close the file.
   1823 			 * No other threads can see the fdfile_t at
   1824 			 * this point, so don't bother locking.
   1825 			 */
   1826 			KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
   1827 			ff->ff_refcnt++;
   1828 			fd_close(fd);
   1829 		} else if (ff->ff_foclose) {
   1830 			/*
   1831 			 * https://austingroupbugs.net/view.php?id=1851
   1832 			 * (not yet approved, but probably will be: 202507)
   1833 			 * FD_CLOFORK should not be preserved across exec
   1834 			 */
   1835 			ff->ff_foclose = false;
   1836 		}
   1837 	}
   1838 }
   1839 
   1840 
   1841 /*
   1842  * Sets descriptor owner. If the owner is a process, 'pgid'
   1843  * is set to positive value, process ID. If the owner is process group,
   1844  * 'pgid' is set to -pg_id.
   1845  */
   1846 int
   1847 fsetown(pid_t *pgid, u_long cmd, const void *data)
   1848 {
   1849 	pid_t id = *(const pid_t *)data;
   1850 	int error;
   1851 
   1852 	if (id <= INT_MIN)
   1853 		return SET_ERROR(EINVAL);
   1854 
   1855 	switch (cmd) {
   1856 	case TIOCSPGRP:
   1857 		if (id < 0)
   1858 			return SET_ERROR(EINVAL);
   1859 		id = -id;
   1860 		break;
   1861 	default:
   1862 		break;
   1863 	}
   1864 	if (id > 0) {
   1865 		mutex_enter(&proc_lock);
   1866 		error = proc_find(id) ? 0 : SET_ERROR(ESRCH);
   1867 		mutex_exit(&proc_lock);
   1868 	} else if (id < 0) {
   1869 		error = pgid_in_session(curproc, -id);
   1870 	} else {
   1871 		error = 0;
   1872 	}
   1873 	if (!error) {
   1874 		*pgid = id;
   1875 	}
   1876 	return error;
   1877 }
   1878 
   1879 void
   1880 fd_set_exclose(struct lwp *l, int fd, bool exclose)
   1881 {
   1882 	filedesc_t *fdp = l->l_fd;
   1883 	fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1884 
   1885 	ff->ff_exclose = exclose;
   1886 	if (exclose)
   1887 		fdp->fd_exclose = true;
   1888 }
   1889 
   1890 void
   1891 fd_set_foclose(struct lwp *l, int fd, bool foclose)
   1892 {
   1893 	filedesc_t *fdp = l->l_fd;
   1894 	fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1895 
   1896 	ff->ff_foclose = foclose;
   1897 	if (foclose)
   1898 		fdp->fd_foclose = true;
   1899 }
   1900 
   1901 /*
   1902  * Return descriptor owner information. If the value is positive,
   1903  * it's process ID. If it's negative, it's process group ID and
   1904  * needs the sign removed before use.
   1905  */
   1906 int
   1907 fgetown(pid_t pgid, u_long cmd, void *data)
   1908 {
   1909 
   1910 	switch (cmd) {
   1911 	case TIOCGPGRP:
   1912 		KASSERT(pgid > INT_MIN);
   1913 		*(int *)data = -pgid;
   1914 		break;
   1915 	default:
   1916 		*(int *)data = pgid;
   1917 		break;
   1918 	}
   1919 	return 0;
   1920 }
   1921 
   1922 /*
   1923  * Send signal to descriptor owner, either process or process group.
   1924  */
   1925 void
   1926 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
   1927 {
   1928 	ksiginfo_t ksi;
   1929 
   1930 	KASSERT(!cpu_intr_p());
   1931 
   1932 	if (pgid == 0) {
   1933 		return;
   1934 	}
   1935 
   1936 	KSI_INIT(&ksi);
   1937 	ksi.ksi_signo = signo;
   1938 	ksi.ksi_code = code;
   1939 	ksi.ksi_band = band;
   1940 
   1941 	mutex_enter(&proc_lock);
   1942 	if (pgid > 0) {
   1943 		struct proc *p1;
   1944 
   1945 		p1 = proc_find(pgid);
   1946 		if (p1 != NULL) {
   1947 			kpsignal(p1, &ksi, fdescdata);
   1948 		}
   1949 	} else {
   1950 		struct pgrp *pgrp;
   1951 
   1952 		KASSERT(pgid < 0 && pgid > INT_MIN);
   1953 		pgrp = pgrp_find(-pgid);
   1954 		if (pgrp != NULL) {
   1955 			kpgsignal(pgrp, &ksi, fdescdata, 0);
   1956 		}
   1957 	}
   1958 	mutex_exit(&proc_lock);
   1959 }
   1960 
   1961 int
   1962 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
   1963 	 void *data)
   1964 {
   1965 
   1966 	fp->f_flag = flag & FMASK;
   1967 	fd_set_exclose(curlwp, fd, (flag & O_CLOEXEC) != 0);
   1968 	fd_set_foclose(curlwp, fd, (flag & O_CLOFORK) != 0);
   1969 	fp->f_type = DTYPE_MISC;
   1970 	fp->f_ops = fops;
   1971 	fp->f_data = data;
   1972 	curlwp->l_dupfd = fd;
   1973 	fd_affix(curproc, fp, fd);
   1974 
   1975 	return SET_ERROR(EMOVEFD);
   1976 }
   1977 
   1978 int
   1979 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
   1980 {
   1981 
   1982 	if (cmd == F_SETFL)
   1983 		return 0;
   1984 
   1985 	return SET_ERROR(EOPNOTSUPP);
   1986 }
   1987 
   1988 int
   1989 fnullop_poll(file_t *fp, int which)
   1990 {
   1991 
   1992 	return 0;
   1993 }
   1994 
   1995 int
   1996 fnullop_kqfilter(file_t *fp, struct knote *kn)
   1997 {
   1998 
   1999 	return SET_ERROR(EOPNOTSUPP);
   2000 }
   2001 
   2002 void
   2003 fnullop_restart(file_t *fp)
   2004 {
   2005 
   2006 }
   2007 
   2008 int
   2009 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
   2010 	    kauth_cred_t cred, int flags)
   2011 {
   2012 
   2013 	return SET_ERROR(EOPNOTSUPP);
   2014 }
   2015 
   2016 int
   2017 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
   2018 	     kauth_cred_t cred, int flags)
   2019 {
   2020 
   2021 	return SET_ERROR(EOPNOTSUPP);
   2022 }
   2023 
   2024 int
   2025 fbadop_ioctl(file_t *fp, u_long com, void *data)
   2026 {
   2027 
   2028 	return SET_ERROR(EOPNOTSUPP);
   2029 }
   2030 
   2031 int
   2032 fbadop_stat(file_t *fp, struct stat *sb)
   2033 {
   2034 
   2035 	return SET_ERROR(EOPNOTSUPP);
   2036 }
   2037 
   2038 int
   2039 fbadop_close(file_t *fp)
   2040 {
   2041 
   2042 	return SET_ERROR(EOPNOTSUPP);
   2043 }
   2044 
   2045 /*
   2046  * sysctl routines pertaining to file descriptors
   2047  */
   2048 
   2049 /* Initialized in sysctl_init() for now... */
   2050 extern kmutex_t sysctl_file_marker_lock;
   2051 static u_int sysctl_file_marker = 1;
   2052 
   2053 /*
   2054  * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
   2055  */
   2056 static void
   2057 sysctl_file_marker_reset(void)
   2058 {
   2059 	struct proc *p;
   2060 
   2061 	PROCLIST_FOREACH(p, &allproc) {
   2062 		struct filedesc *fd = p->p_fd;
   2063 		fdtab_t *dt;
   2064 		u_int i;
   2065 
   2066 		mutex_enter(&fd->fd_lock);
   2067 		dt = fd->fd_dt;
   2068 		for (i = 0; i < dt->dt_nfiles; i++) {
   2069 			struct file *fp;
   2070 			fdfile_t *ff;
   2071 
   2072 			if ((ff = dt->dt_ff[i]) == NULL) {
   2073 				continue;
   2074 			}
   2075 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2076 				continue;
   2077 			}
   2078 			fp->f_marker = 0;
   2079 		}
   2080 		mutex_exit(&fd->fd_lock);
   2081 	}
   2082 }
   2083 
   2084 /*
   2085  * sysctl helper routine for kern.file pseudo-subtree.
   2086  */
   2087 static int
   2088 sysctl_kern_file(SYSCTLFN_ARGS)
   2089 {
   2090 	const bool allowaddr = get_expose_address(curproc);
   2091 	struct filelist flist;
   2092 	int error;
   2093 	size_t buflen;
   2094 	struct file *fp, fbuf;
   2095 	char *start, *where;
   2096 	struct proc *p;
   2097 
   2098 	start = where = oldp;
   2099 	buflen = *oldlenp;
   2100 
   2101 	if (where == NULL) {
   2102 		/*
   2103 		 * overestimate by 10 files
   2104 		 */
   2105 		*oldlenp = sizeof(filehead) + (nfiles + 10) *
   2106 		    sizeof(struct file);
   2107 		return 0;
   2108 	}
   2109 
   2110 	/*
   2111 	 * first sysctl_copyout filehead
   2112 	 */
   2113 	if (buflen < sizeof(filehead)) {
   2114 		*oldlenp = 0;
   2115 		return 0;
   2116 	}
   2117 	sysctl_unlock();
   2118 	if (allowaddr) {
   2119 		memcpy(&flist, &filehead, sizeof(flist));
   2120 	} else {
   2121 		memset(&flist, 0, sizeof(flist));
   2122 	}
   2123 	error = sysctl_copyout(l, &flist, where, sizeof(flist));
   2124 	if (error) {
   2125 		sysctl_relock();
   2126 		return error;
   2127 	}
   2128 	buflen -= sizeof(flist);
   2129 	where += sizeof(flist);
   2130 
   2131 	/*
   2132 	 * followed by an array of file structures
   2133 	 */
   2134 	mutex_enter(&sysctl_file_marker_lock);
   2135 	mutex_enter(&proc_lock);
   2136 	PROCLIST_FOREACH(p, &allproc) {
   2137 		struct filedesc *fd;
   2138 		fdtab_t *dt;
   2139 		u_int i;
   2140 
   2141 		if (p->p_stat == SIDL) {
   2142 			/* skip embryonic processes */
   2143 			continue;
   2144 		}
   2145 		mutex_enter(p->p_lock);
   2146 		error = kauth_authorize_process(l->l_cred,
   2147 		    KAUTH_PROCESS_CANSEE, p,
   2148 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2149 		    NULL, NULL);
   2150 		mutex_exit(p->p_lock);
   2151 		if (error != 0) {
   2152 			/*
   2153 			 * Don't leak kauth retval if we're silently
   2154 			 * skipping this entry.
   2155 			 */
   2156 			error = 0;
   2157 			continue;
   2158 		}
   2159 
   2160 		/*
   2161 		 * Grab a hold on the process.
   2162 		 */
   2163 		if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2164 			continue;
   2165 		}
   2166 		mutex_exit(&proc_lock);
   2167 
   2168 		fd = p->p_fd;
   2169 		mutex_enter(&fd->fd_lock);
   2170 		dt = fd->fd_dt;
   2171 		for (i = 0; i < dt->dt_nfiles; i++) {
   2172 			fdfile_t *ff;
   2173 
   2174 			if ((ff = dt->dt_ff[i]) == NULL) {
   2175 				continue;
   2176 			}
   2177 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2178 				continue;
   2179 			}
   2180 
   2181 			mutex_enter(&fp->f_lock);
   2182 
   2183 			if ((fp->f_count == 0) ||
   2184 			    (fp->f_marker == sysctl_file_marker)) {
   2185 				mutex_exit(&fp->f_lock);
   2186 				continue;
   2187 			}
   2188 
   2189 			/* Check that we have enough space. */
   2190 			if (buflen < sizeof(struct file)) {
   2191 				*oldlenp = where - start;
   2192 				mutex_exit(&fp->f_lock);
   2193 				error = SET_ERROR(ENOMEM);
   2194 				break;
   2195 			}
   2196 
   2197 			fill_file(&fbuf, fp);
   2198 			mutex_exit(&fp->f_lock);
   2199 			error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
   2200 			if (error) {
   2201 				break;
   2202 			}
   2203 			buflen -= sizeof(struct file);
   2204 			where += sizeof(struct file);
   2205 
   2206 			fp->f_marker = sysctl_file_marker;
   2207 		}
   2208 		mutex_exit(&fd->fd_lock);
   2209 
   2210 		/*
   2211 		 * Release reference to process.
   2212 		 */
   2213 		mutex_enter(&proc_lock);
   2214 		rw_exit(&p->p_reflock);
   2215 
   2216 		if (error)
   2217 			break;
   2218 	}
   2219 
   2220 	sysctl_file_marker++;
   2221 	/* Reset all markers if wrapped. */
   2222 	if (sysctl_file_marker == 0) {
   2223 		sysctl_file_marker_reset();
   2224 		sysctl_file_marker++;
   2225 	}
   2226 
   2227 	mutex_exit(&proc_lock);
   2228 	mutex_exit(&sysctl_file_marker_lock);
   2229 
   2230 	*oldlenp = where - start;
   2231 	sysctl_relock();
   2232 	return error;
   2233 }
   2234 
   2235 /*
   2236  * sysctl helper function for kern.file2
   2237  */
   2238 static int
   2239 sysctl_kern_file2(SYSCTLFN_ARGS)
   2240 {
   2241 	struct proc *p;
   2242 	struct file *fp;
   2243 	struct filedesc *fd;
   2244 	struct kinfo_file kf;
   2245 	char *dp;
   2246 	u_int i, op;
   2247 	size_t len, needed, elem_size, out_size;
   2248 	int error, arg, elem_count;
   2249 	fdfile_t *ff;
   2250 	fdtab_t *dt;
   2251 
   2252 	if (namelen == 1 && name[0] == CTL_QUERY)
   2253 		return sysctl_query(SYSCTLFN_CALL(rnode));
   2254 
   2255 	if (namelen != 4)
   2256 		return SET_ERROR(EINVAL);
   2257 
   2258 	error = 0;
   2259 	dp = oldp;
   2260 	len = (oldp != NULL) ? *oldlenp : 0;
   2261 	op = name[0];
   2262 	arg = name[1];
   2263 	elem_size = name[2];
   2264 	elem_count = name[3];
   2265 	out_size = MIN(sizeof(kf), elem_size);
   2266 	needed = 0;
   2267 
   2268 	if (elem_size < 1 || elem_count < 0)
   2269 		return SET_ERROR(EINVAL);
   2270 
   2271 	switch (op) {
   2272 	case KERN_FILE_BYFILE:
   2273 	case KERN_FILE_BYPID:
   2274 		/*
   2275 		 * We're traversing the process list in both cases; the BYFILE
   2276 		 * case does additional work of keeping track of files already
   2277 		 * looked at.
   2278 		 */
   2279 
   2280 		/* doesn't use arg so it must be zero */
   2281 		if ((op == KERN_FILE_BYFILE) && (arg != 0))
   2282 			return SET_ERROR(EINVAL);
   2283 
   2284 		if ((op == KERN_FILE_BYPID) && (arg < -1))
   2285 			/* -1 means all processes */
   2286 			return SET_ERROR(EINVAL);
   2287 
   2288 		sysctl_unlock();
   2289 		if (op == KERN_FILE_BYFILE)
   2290 			mutex_enter(&sysctl_file_marker_lock);
   2291 		mutex_enter(&proc_lock);
   2292 		PROCLIST_FOREACH(p, &allproc) {
   2293 			if (p->p_stat == SIDL) {
   2294 				/* skip embryonic processes */
   2295 				continue;
   2296 			}
   2297 			if (arg > 0 && p->p_pid != arg) {
   2298 				/* pick only the one we want */
   2299 				/* XXX want 0 to mean "kernel files" */
   2300 				continue;
   2301 			}
   2302 			mutex_enter(p->p_lock);
   2303 			error = kauth_authorize_process(l->l_cred,
   2304 			    KAUTH_PROCESS_CANSEE, p,
   2305 			    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2306 			    NULL, NULL);
   2307 			mutex_exit(p->p_lock);
   2308 			if (error != 0) {
   2309 				/*
   2310 				 * Don't leak kauth retval if we're silently
   2311 				 * skipping this entry.
   2312 				 */
   2313 				error = 0;
   2314 				continue;
   2315 			}
   2316 
   2317 			/*
   2318 			 * Grab a hold on the process.
   2319 			 */
   2320 			if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2321 				continue;
   2322 			}
   2323 			mutex_exit(&proc_lock);
   2324 
   2325 			fd = p->p_fd;
   2326 			mutex_enter(&fd->fd_lock);
   2327 			dt = fd->fd_dt;
   2328 			for (i = 0; i < dt->dt_nfiles; i++) {
   2329 				if ((ff = dt->dt_ff[i]) == NULL) {
   2330 					continue;
   2331 				}
   2332 				if ((fp = atomic_load_consume(&ff->ff_file)) ==
   2333 				    NULL) {
   2334 					continue;
   2335 				}
   2336 
   2337 				if ((op == KERN_FILE_BYFILE) &&
   2338 				    (fp->f_marker == sysctl_file_marker)) {
   2339 					continue;
   2340 				}
   2341 				if (len >= elem_size && elem_count > 0) {
   2342 					mutex_enter(&fp->f_lock);
   2343 					fill_file2(&kf, fp, ff, i, p->p_pid);
   2344 					mutex_exit(&fp->f_lock);
   2345 					mutex_exit(&fd->fd_lock);
   2346 					error = sysctl_copyout(l,
   2347 					    &kf, dp, out_size);
   2348 					mutex_enter(&fd->fd_lock);
   2349 					if (error)
   2350 						break;
   2351 					dp += elem_size;
   2352 					len -= elem_size;
   2353 				}
   2354 				if (op == KERN_FILE_BYFILE)
   2355 					fp->f_marker = sysctl_file_marker;
   2356 				needed += elem_size;
   2357 				if (elem_count > 0 && elem_count != INT_MAX)
   2358 					elem_count--;
   2359 			}
   2360 			mutex_exit(&fd->fd_lock);
   2361 
   2362 			/*
   2363 			 * Release reference to process.
   2364 			 */
   2365 			mutex_enter(&proc_lock);
   2366 			rw_exit(&p->p_reflock);
   2367 		}
   2368 		if (op == KERN_FILE_BYFILE) {
   2369 			sysctl_file_marker++;
   2370 
   2371 			/* Reset all markers if wrapped. */
   2372 			if (sysctl_file_marker == 0) {
   2373 				sysctl_file_marker_reset();
   2374 				sysctl_file_marker++;
   2375 			}
   2376 		}
   2377 		mutex_exit(&proc_lock);
   2378 		if (op == KERN_FILE_BYFILE)
   2379 			mutex_exit(&sysctl_file_marker_lock);
   2380 		sysctl_relock();
   2381 		break;
   2382 	default:
   2383 		return SET_ERROR(EINVAL);
   2384 	}
   2385 
   2386 	if (oldp == NULL)
   2387 		needed += KERN_FILESLOP * elem_size;
   2388 	*oldlenp = needed;
   2389 
   2390 	return error;
   2391 }
   2392 
   2393 static void
   2394 fill_file(struct file *fp, const struct file *fpsrc)
   2395 {
   2396 	const bool allowaddr = get_expose_address(curproc);
   2397 
   2398 	memset(fp, 0, sizeof(*fp));
   2399 
   2400 	fp->f_offset = fpsrc->f_offset;
   2401 	COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
   2402 	COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
   2403 	COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
   2404 	COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
   2405 	fp->f_flag = fpsrc->f_flag;
   2406 	fp->f_marker = fpsrc->f_marker;
   2407 	fp->f_type = fpsrc->f_type;
   2408 	fp->f_advice = fpsrc->f_advice;
   2409 	fp->f_count = fpsrc->f_count;
   2410 	fp->f_msgcount = fpsrc->f_msgcount;
   2411 	fp->f_unpcount = fpsrc->f_unpcount;
   2412 	COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
   2413 }
   2414 
   2415 static void
   2416 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
   2417 	  int i, pid_t pid)
   2418 {
   2419 	const bool allowaddr = get_expose_address(curproc);
   2420 
   2421 	memset(kp, 0, sizeof(*kp));
   2422 
   2423 	COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
   2424 	kp->ki_flag =		fp->f_flag;
   2425 	kp->ki_iflags =		0;
   2426 	kp->ki_ftype =		fp->f_type;
   2427 	kp->ki_count =		fp->f_count;
   2428 	kp->ki_msgcount =	fp->f_msgcount;
   2429 	COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
   2430 	kp->ki_fuid =		kauth_cred_geteuid(fp->f_cred);
   2431 	kp->ki_fgid =		kauth_cred_getegid(fp->f_cred);
   2432 	COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
   2433 	kp->ki_foffset =	fp->f_offset;
   2434 	COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
   2435 
   2436 	/* vnode information to glue this file to something */
   2437 	if (fp->f_type == DTYPE_VNODE) {
   2438 		struct vnode *vp = fp->f_vnode;
   2439 
   2440 		COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
   2441 		    allowaddr);
   2442 		kp->ki_vsize =	vp->v_size;
   2443 		kp->ki_vtype =	vp->v_type;
   2444 		kp->ki_vtag =	vp->v_tag;
   2445 		COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
   2446 		    allowaddr);
   2447 	}
   2448 
   2449 	/* process information when retrieved via KERN_FILE_BYPID */
   2450 	if (ff != NULL) {
   2451 		kp->ki_pid =		pid;
   2452 		kp->ki_fd =		i;
   2453 		kp->ki_ofileflags =	(ff->ff_exclose ? FD_CLOEXEC : 0) |
   2454 					(ff->ff_foclose ? FD_CLOFORK : 0);
   2455 		kp->ki_usecount =	ff->ff_refcnt;
   2456 	}
   2457 }
   2458