Home | History | Annotate | Line # | Download | only in smumgr
      1 /*	$NetBSD: amdgpu_fiji_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2015 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_fiji_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $");
     28 
     29 #include "pp_debug.h"
     30 #include "smumgr.h"
     31 #include "smu7_dyn_defaults.h"
     32 #include "smu73.h"
     33 #include "smu_ucode_xfer_vi.h"
     34 #include "fiji_smumgr.h"
     35 #include "fiji_ppsmc.h"
     36 #include "smu73_discrete.h"
     37 #include "ppatomctrl.h"
     38 #include "smu/smu_7_1_3_d.h"
     39 #include "smu/smu_7_1_3_sh_mask.h"
     40 #include "gmc/gmc_8_1_d.h"
     41 #include "gmc/gmc_8_1_sh_mask.h"
     42 #include "oss/oss_3_0_d.h"
     43 #include "gca/gfx_8_0_d.h"
     44 #include "bif/bif_5_0_d.h"
     45 #include "bif/bif_5_0_sh_mask.h"
     46 #include "dce/dce_10_0_d.h"
     47 #include "dce/dce_10_0_sh_mask.h"
     48 #include "hardwaremanager.h"
     49 #include "cgs_common.h"
     50 #include "atombios.h"
     51 #include "pppcielanes.h"
     52 #include "hwmgr.h"
     53 #include "smu7_hwmgr.h"
     54 
     55 
     56 #define AVFS_EN_MSB                                        1568
     57 #define AVFS_EN_LSB                                        1568
     58 
     59 #define FIJI_SMC_SIZE 0x20000
     60 
     61 #define POWERTUNE_DEFAULT_SET_MAX    1
     62 #define VDDC_VDDCI_DELTA            300
     63 #define MC_CG_ARB_FREQ_F1           0x0b
     64 
     65 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
     66  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
     67  */
     68 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
     69 				{600, 1050, 3, 0}, {600, 1050, 6, 1} };
     70 
     71 /* [FF, SS] type, [] 4 voltage ranges, and
     72  * [Floor Freq, Boundary Freq, VID min , VID max]
     73  */
     74 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
     75 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
     76 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
     77 
     78 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
     79  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
     80  */
     81 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
     82 				{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
     83 
     84 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
     85 		/*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
     86 		{1,               0xF,             0xFD,
     87 		/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
     88 		0x19,        5,               45}
     89 };
     90 
     91 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
     92 		/*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
     93 		/* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
     94 		{ 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     95 		{ 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     96 		{ 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     97 		{ 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     98 		{ 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     99 		{ 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
    100 		{ 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
    101 		{ 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
    102 };
    103 
    104 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
    105 {
    106 	int result = 0;
    107 
    108 	/* Wait for smc boot up */
    109 	/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    110 		RCU_UC_EVENTS, boot_seq_done, 0); */
    111 
    112 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    113 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    114 
    115 	result = smu7_upload_smu_firmware_image(hwmgr);
    116 	if (result)
    117 		return result;
    118 
    119 	/* Clear status */
    120 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    121 			ixSMU_STATUS, 0);
    122 
    123 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    124 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    125 
    126 	/* De-assert reset */
    127 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    128 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    129 
    130 	/* Wait for ROM firmware to initialize interrupt hendler */
    131 	/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
    132 			SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
    133 
    134 	/* Set SMU Auto Start */
    135 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    136 			SMU_INPUT_DATA, AUTO_START, 1);
    137 
    138 	/* Clear firmware interrupt enable flag */
    139 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    140 			ixFIRMWARE_FLAGS, 0);
    141 
    142 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
    143 			INTERRUPTS_ENABLED, 1);
    144 
    145 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
    146 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
    147 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
    148 
    149 	/* Wait for done bit to be set */
    150 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    151 			SMU_STATUS, SMU_DONE, 0);
    152 
    153 	/* Check pass/failed indicator */
    154 	if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    155 			SMU_STATUS, SMU_PASS) != 1) {
    156 		PP_ASSERT_WITH_CODE(false,
    157 				"SMU Firmware start failed!", return -1);
    158 	}
    159 
    160 	/* Wait for firmware to initialize */
    161 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
    162 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    163 
    164 	return result;
    165 }
    166 
    167 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
    168 {
    169 	int result = 0;
    170 
    171 	/* wait for smc boot up */
    172 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    173 			RCU_UC_EVENTS, boot_seq_done, 0);
    174 
    175 	/* Clear firmware interrupt enable flag */
    176 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    177 			ixFIRMWARE_FLAGS, 0);
    178 
    179 	/* Assert reset */
    180 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    181 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    182 
    183 	result = smu7_upload_smu_firmware_image(hwmgr);
    184 	if (result)
    185 		return result;
    186 
    187 	/* Set smc instruct start point at 0x0 */
    188 	smu7_program_jump_on_start(hwmgr);
    189 
    190 	/* Enable clock */
    191 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    192 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    193 
    194 	/* De-assert reset */
    195 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    196 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    197 
    198 	/* Wait for firmware to initialize */
    199 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
    200 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    201 
    202 	return result;
    203 }
    204 
    205 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
    206 {
    207 	int result = 0;
    208 	struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
    209 
    210 	if (0 != smu_data->avfs_btc_param) {
    211 		if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
    212 				PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) {
    213 			pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
    214 			result = -EINVAL;
    215 		}
    216 	}
    217 	/* Soft-Reset to reset the engine before loading uCode */
    218 	 /* halt */
    219 	cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
    220 	/* reset everything */
    221 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
    222 	/* clear reset */
    223 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
    224 
    225 	return result;
    226 }
    227 
    228 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
    229 {
    230 	int32_t vr_config;
    231 	uint32_t table_start;
    232 	uint32_t level_addr, vr_config_addr;
    233 	uint32_t level_size = sizeof(avfs_graphics_level);
    234 
    235 	PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
    236 			SMU7_FIRMWARE_HEADER_LOCATION +
    237 			offsetof(SMU73_Firmware_Header, DpmTable),
    238 			&table_start, 0x40000),
    239 			"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
    240 			"communicate starting address of DPM table",
    241 			return -1;);
    242 
    243 	/* Default value for vr_config =
    244 	 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
    245 	vr_config = 0x01000500;   /* Real value:0x50001 */
    246 
    247 	vr_config_addr = table_start +
    248 			offsetof(SMU73_Discrete_DpmTable, VRConfig);
    249 
    250 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
    251 			(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
    252 			"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
    253 			"vr_config value over to SMC",
    254 			return -1;);
    255 
    256 	level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
    257 
    258 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
    259 			(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
    260 			"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
    261 			return -1;);
    262 
    263 	return 0;
    264 }
    265 
    266 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
    267 {
    268 	if (!hwmgr->avfs_supported)
    269 		return 0;
    270 
    271 	PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
    272 			"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
    273 			" table over to SMU",
    274 			return -EINVAL);
    275 	PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
    276 			"[AVFS][fiji_avfs_event_mgr] Could not setup "
    277 			"Pwr Virus for AVFS ",
    278 			return -EINVAL);
    279 	PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
    280 			"[AVFS][fiji_avfs_event_mgr] Failure at "
    281 			"fiji_start_avfs_btc. AVFS Disabled",
    282 			return -EINVAL);
    283 
    284 	return 0;
    285 }
    286 
    287 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
    288 {
    289 	int result = 0;
    290 	struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
    291 
    292 	/* Only start SMC if SMC RAM is not running */
    293 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
    294 		/* Check if SMU is running in protected mode */
    295 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
    296 				CGS_IND_REG__SMC,
    297 				SMU_FIRMWARE, SMU_MODE)) {
    298 			result = fiji_start_smu_in_non_protection_mode(hwmgr);
    299 			if (result)
    300 				return result;
    301 		} else {
    302 			result = fiji_start_smu_in_protection_mode(hwmgr);
    303 			if (result)
    304 				return result;
    305 		}
    306 		if (fiji_avfs_event_mgr(hwmgr))
    307 			hwmgr->avfs_supported = false;
    308 	}
    309 
    310 	/* Setup SoftRegsStart here for register lookup in case
    311 	 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
    312 	 */
    313 	smu7_read_smc_sram_dword(hwmgr,
    314 			SMU7_FIRMWARE_HEADER_LOCATION +
    315 			offsetof(SMU73_Firmware_Header, SoftRegisters),
    316 			&(priv->smu7_data.soft_regs_start), 0x40000);
    317 
    318 	result = smu7_request_smu_load_fw(hwmgr);
    319 
    320 	return result;
    321 }
    322 
    323 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
    324 {
    325 
    326 	uint32_t efuse = 0;
    327 	uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
    328 
    329 	if (!hwmgr->not_vf)
    330 		return false;
    331 
    332 	if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
    333 			mask, &efuse)) {
    334 		if (efuse)
    335 			return true;
    336 	}
    337 	return false;
    338 }
    339 
    340 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
    341 {
    342 	struct fiji_smumgr *fiji_priv = NULL;
    343 
    344 	fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
    345 
    346 	if (fiji_priv == NULL)
    347 		return -ENOMEM;
    348 
    349 	hwmgr->smu_backend = fiji_priv;
    350 
    351 	if (smu7_init(hwmgr)) {
    352 		kfree(fiji_priv);
    353 		return -EINVAL;
    354 	}
    355 
    356 	return 0;
    357 }
    358 
    359 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
    360 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
    361 		uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
    362 {
    363 	uint32_t i;
    364 	uint16_t vddci;
    365 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    366 	*voltage = *mvdd = 0;
    367 
    368 
    369 	/* clock - voltage dependency table is empty table */
    370 	if (dep_table->count == 0)
    371 		return -EINVAL;
    372 
    373 	for (i = 0; i < dep_table->count; i++) {
    374 		/* find first sclk bigger than request */
    375 		if (dep_table->entries[i].clk >= clock) {
    376 			*voltage |= (dep_table->entries[i].vddc *
    377 					VOLTAGE_SCALE) << VDDC_SHIFT;
    378 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    379 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    380 						VOLTAGE_SCALE) << VDDCI_SHIFT;
    381 			else if (dep_table->entries[i].vddci)
    382 				*voltage |= (dep_table->entries[i].vddci *
    383 						VOLTAGE_SCALE) << VDDCI_SHIFT;
    384 			else {
    385 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    386 						(dep_table->entries[i].vddc -
    387 								VDDC_VDDCI_DELTA));
    388 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    389 			}
    390 
    391 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    392 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
    393 					VOLTAGE_SCALE;
    394 			else if (dep_table->entries[i].mvdd)
    395 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
    396 					VOLTAGE_SCALE;
    397 
    398 			*voltage |= 1 << PHASES_SHIFT;
    399 			return 0;
    400 		}
    401 	}
    402 
    403 	/* sclk is bigger than max sclk in the dependence table */
    404 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
    405 
    406 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    407 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    408 				VOLTAGE_SCALE) << VDDCI_SHIFT;
    409 	else if (dep_table->entries[i-1].vddci) {
    410 		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    411 				(dep_table->entries[i].vddc -
    412 						VDDC_VDDCI_DELTA));
    413 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    414 	}
    415 
    416 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    417 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
    418 	else if (dep_table->entries[i].mvdd)
    419 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
    420 
    421 	return 0;
    422 }
    423 
    424 
    425 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
    426 {
    427 	uint32_t tmp;
    428 	tmp = raw_setting * 4096 / 100;
    429 	return (uint16_t)tmp;
    430 }
    431 
    432 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
    433 {
    434 	switch (line) {
    435 	case SMU7_I2CLineID_DDC1:
    436 		*scl = SMU7_I2C_DDC1CLK;
    437 		*sda = SMU7_I2C_DDC1DATA;
    438 		break;
    439 	case SMU7_I2CLineID_DDC2:
    440 		*scl = SMU7_I2C_DDC2CLK;
    441 		*sda = SMU7_I2C_DDC2DATA;
    442 		break;
    443 	case SMU7_I2CLineID_DDC3:
    444 		*scl = SMU7_I2C_DDC3CLK;
    445 		*sda = SMU7_I2C_DDC3DATA;
    446 		break;
    447 	case SMU7_I2CLineID_DDC4:
    448 		*scl = SMU7_I2C_DDC4CLK;
    449 		*sda = SMU7_I2C_DDC4DATA;
    450 		break;
    451 	case SMU7_I2CLineID_DDC5:
    452 		*scl = SMU7_I2C_DDC5CLK;
    453 		*sda = SMU7_I2C_DDC5DATA;
    454 		break;
    455 	case SMU7_I2CLineID_DDC6:
    456 		*scl = SMU7_I2C_DDC6CLK;
    457 		*sda = SMU7_I2C_DDC6DATA;
    458 		break;
    459 	case SMU7_I2CLineID_SCLSDA:
    460 		*scl = SMU7_I2C_SCL;
    461 		*sda = SMU7_I2C_SDA;
    462 		break;
    463 	case SMU7_I2CLineID_DDCVGA:
    464 		*scl = SMU7_I2C_DDCVGACLK;
    465 		*sda = SMU7_I2C_DDCVGADATA;
    466 		break;
    467 	default:
    468 		*scl = 0;
    469 		*sda = 0;
    470 		break;
    471 	}
    472 }
    473 
    474 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
    475 {
    476 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    477 	struct phm_ppt_v1_information *table_info =
    478 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
    479 
    480 	if (table_info &&
    481 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
    482 			table_info->cac_dtp_table->usPowerTuneDataSetID)
    483 		smu_data->power_tune_defaults =
    484 				&fiji_power_tune_data_set_array
    485 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
    486 	else
    487 		smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
    488 
    489 }
    490 
    491 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
    492 {
    493 
    494 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    495 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    496 
    497 	SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
    498 
    499 	struct phm_ppt_v1_information *table_info =
    500 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    501 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
    502 	struct pp_advance_fan_control_parameters *fan_table =
    503 			&hwmgr->thermal_controller.advanceFanControlParameters;
    504 	uint8_t uc_scl, uc_sda;
    505 
    506 	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
    507 	 * as requested by SMC team
    508 	 */
    509 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
    510 			(uint16_t)(cac_dtp_table->usTDP * 128));
    511 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
    512 			(uint16_t)(cac_dtp_table->usTDP * 128));
    513 
    514 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
    515 			"Target Operating Temp is out of Range!",
    516 			);
    517 
    518 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
    519 	dpm_table->GpuTjHyst = 8;
    520 
    521 	dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
    522 
    523 	/* The following are for new Fiji Multi-input fan/thermal control */
    524 	dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
    525 			cac_dtp_table->usTargetOperatingTemp * 256);
    526 	dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
    527 			cac_dtp_table->usTemperatureLimitHotspot * 256);
    528 	dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
    529 			cac_dtp_table->usTemperatureLimitLiquid1 * 256);
    530 	dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
    531 			cac_dtp_table->usTemperatureLimitLiquid2 * 256);
    532 	dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
    533 			cac_dtp_table->usTemperatureLimitVrVddc * 256);
    534 	dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
    535 			cac_dtp_table->usTemperatureLimitVrMvdd * 256);
    536 	dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
    537 			cac_dtp_table->usTemperatureLimitPlx * 256);
    538 
    539 	dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
    540 			scale_fan_gain_settings(fan_table->usFanGainEdge));
    541 	dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
    542 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
    543 	dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
    544 			scale_fan_gain_settings(fan_table->usFanGainLiquid));
    545 	dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
    546 			scale_fan_gain_settings(fan_table->usFanGainVrVddc));
    547 	dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
    548 			scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
    549 	dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
    550 			scale_fan_gain_settings(fan_table->usFanGainPlx));
    551 	dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
    552 			scale_fan_gain_settings(fan_table->usFanGainHbm));
    553 
    554 	dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
    555 	dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
    556 	dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
    557 	dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
    558 
    559 	get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
    560 	dpm_table->Liquid_I2C_LineSCL = uc_scl;
    561 	dpm_table->Liquid_I2C_LineSDA = uc_sda;
    562 
    563 	get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
    564 	dpm_table->Vr_I2C_LineSCL = uc_scl;
    565 	dpm_table->Vr_I2C_LineSDA = uc_sda;
    566 
    567 	get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
    568 	dpm_table->Plx_I2C_LineSCL = uc_scl;
    569 	dpm_table->Plx_I2C_LineSDA = uc_sda;
    570 
    571 	return 0;
    572 }
    573 
    574 
    575 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
    576 {
    577 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    578 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    579 
    580 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
    581 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
    582 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
    583 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
    584 
    585 	return 0;
    586 }
    587 
    588 
    589 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
    590 {
    591 	uint16_t tdc_limit;
    592 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    593 	struct phm_ppt_v1_information *table_info =
    594 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    595 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    596 
    597 	/* TDC number of fraction bits are changed from 8 to 7
    598 	 * for Fiji as requested by SMC team
    599 	 */
    600 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
    601 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
    602 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
    603 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
    604 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
    605 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
    606 
    607 	return 0;
    608 }
    609 
    610 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
    611 {
    612 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    613 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    614 	uint32_t temp;
    615 
    616 	if (smu7_read_smc_sram_dword(hwmgr,
    617 			fuse_table_offset +
    618 			offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
    619 			(uint32_t *)&temp, SMC_RAM_END))
    620 		PP_ASSERT_WITH_CODE(false,
    621 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
    622 				return -EINVAL);
    623 	else {
    624 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
    625 		smu_data->power_tune_table.LPMLTemperatureMin =
    626 				(uint8_t)((temp >> 16) & 0xff);
    627 		smu_data->power_tune_table.LPMLTemperatureMax =
    628 				(uint8_t)((temp >> 8) & 0xff);
    629 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
    630 	}
    631 	return 0;
    632 }
    633 
    634 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
    635 {
    636 	int i;
    637 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    638 
    639 	/* Currently not used. Set all to zero. */
    640 	for (i = 0; i < 16; i++)
    641 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
    642 
    643 	return 0;
    644 }
    645 
    646 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
    647 {
    648 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    649 
    650 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
    651 			usFanOutputSensitivity & (1 << 15)) ||
    652 			0 == hwmgr->thermal_controller.advanceFanControlParameters.
    653 			usFanOutputSensitivity)
    654 		hwmgr->thermal_controller.advanceFanControlParameters.
    655 		usFanOutputSensitivity = hwmgr->thermal_controller.
    656 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
    657 
    658 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
    659 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
    660 					advanceFanControlParameters.usFanOutputSensitivity);
    661 	return 0;
    662 }
    663 
    664 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
    665 {
    666 	int i;
    667 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    668 
    669 	/* Currently not used. Set all to zero. */
    670 	for (i = 0; i < 16; i++)
    671 		smu_data->power_tune_table.GnbLPML[i] = 0;
    672 
    673 	return 0;
    674 }
    675 
    676 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
    677 {
    678 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    679 	struct phm_ppt_v1_information *table_info =
    680 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    681 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
    682 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
    683 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
    684 
    685 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
    686 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
    687 
    688 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
    689 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
    690 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
    691 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
    692 
    693 	return 0;
    694 }
    695 
    696 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
    697 {
    698 	uint32_t pm_fuse_table_offset;
    699 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    700 
    701 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    702 			PHM_PlatformCaps_PowerContainment)) {
    703 		if (smu7_read_smc_sram_dword(hwmgr,
    704 				SMU7_FIRMWARE_HEADER_LOCATION +
    705 				offsetof(SMU73_Firmware_Header, PmFuseTable),
    706 				&pm_fuse_table_offset, SMC_RAM_END))
    707 			PP_ASSERT_WITH_CODE(false,
    708 					"Attempt to get pm_fuse_table_offset Failed!",
    709 					return -EINVAL);
    710 
    711 		/* DW6 */
    712 		if (fiji_populate_svi_load_line(hwmgr))
    713 			PP_ASSERT_WITH_CODE(false,
    714 					"Attempt to populate SviLoadLine Failed!",
    715 					return -EINVAL);
    716 		/* DW7 */
    717 		if (fiji_populate_tdc_limit(hwmgr))
    718 			PP_ASSERT_WITH_CODE(false,
    719 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
    720 		/* DW8 */
    721 		if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
    722 			PP_ASSERT_WITH_CODE(false,
    723 					"Attempt to populate TdcWaterfallCtl, "
    724 					"LPMLTemperature Min and Max Failed!",
    725 					return -EINVAL);
    726 
    727 		/* DW9-DW12 */
    728 		if (0 != fiji_populate_temperature_scaler(hwmgr))
    729 			PP_ASSERT_WITH_CODE(false,
    730 					"Attempt to populate LPMLTemperatureScaler Failed!",
    731 					return -EINVAL);
    732 
    733 		/* DW13-DW14 */
    734 		if (fiji_populate_fuzzy_fan(hwmgr))
    735 			PP_ASSERT_WITH_CODE(false,
    736 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
    737 					return -EINVAL);
    738 
    739 		/* DW15-DW18 */
    740 		if (fiji_populate_gnb_lpml(hwmgr))
    741 			PP_ASSERT_WITH_CODE(false,
    742 					"Attempt to populate GnbLPML Failed!",
    743 					return -EINVAL);
    744 
    745 		/* DW20 */
    746 		if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
    747 			PP_ASSERT_WITH_CODE(false,
    748 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
    749 					"Sidd Failed!", return -EINVAL);
    750 
    751 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
    752 				(uint8_t *)&smu_data->power_tune_table,
    753 				sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
    754 			PP_ASSERT_WITH_CODE(false,
    755 					"Attempt to download PmFuseTable Failed!",
    756 					return -EINVAL);
    757 	}
    758 	return 0;
    759 }
    760 
    761 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
    762 		struct SMU73_Discrete_DpmTable *table)
    763 {
    764 	uint32_t count;
    765 	uint8_t index;
    766 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    767 	struct phm_ppt_v1_information *table_info =
    768 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    769 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
    770 			table_info->vddc_lookup_table;
    771 	/* tables is already swapped, so in order to use the value from it,
    772 	 * we need to swap it back.
    773 	 * We are populating vddc CAC data to BapmVddc table
    774 	 * in split and merged mode
    775 	 */
    776 
    777 	for (count = 0; count < lookup_table->count; count++) {
    778 		index = phm_get_voltage_index(lookup_table,
    779 				data->vddc_voltage_table.entries[count].value);
    780 		table->BapmVddcVidLoSidd[count] =
    781 			convert_to_vid(lookup_table->entries[index].us_cac_low);
    782 		table->BapmVddcVidHiSidd[count] =
    783 			convert_to_vid(lookup_table->entries[index].us_cac_high);
    784 	}
    785 
    786 	return 0;
    787 }
    788 
    789 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
    790 		struct SMU73_Discrete_DpmTable *table)
    791 {
    792 	int result;
    793 
    794 	result = fiji_populate_cac_table(hwmgr, table);
    795 	PP_ASSERT_WITH_CODE(0 == result,
    796 			"can not populate CAC voltage tables to SMC",
    797 			return -EINVAL);
    798 
    799 	return 0;
    800 }
    801 
    802 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
    803 		struct SMU73_Discrete_Ulv *state)
    804 {
    805 	int result = 0;
    806 
    807 	struct phm_ppt_v1_information *table_info =
    808 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    809 
    810 	state->CcPwrDynRm = 0;
    811 	state->CcPwrDynRm1 = 0;
    812 
    813 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
    814 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
    815 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
    816 
    817 	state->VddcPhase = 1;
    818 
    819 	if (!result) {
    820 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
    821 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
    822 		CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
    823 	}
    824 	return result;
    825 }
    826 
    827 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
    828 		struct SMU73_Discrete_DpmTable *table)
    829 {
    830 	return fiji_populate_ulv_level(hwmgr, &table->Ulv);
    831 }
    832 
    833 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
    834 		struct SMU73_Discrete_DpmTable *table)
    835 {
    836 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    837 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    838 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    839 	int i;
    840 
    841 	/* Index (dpm_table->pcie_speed_table.count)
    842 	 * is reserved for PCIE boot level. */
    843 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
    844 		table->LinkLevel[i].PcieGenSpeed  =
    845 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
    846 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
    847 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
    848 		table->LinkLevel[i].EnabledForActivity = 1;
    849 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
    850 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
    851 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
    852 	}
    853 
    854 	smu_data->smc_state_table.LinkLevelCount =
    855 			(uint8_t)dpm_table->pcie_speed_table.count;
    856 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
    857 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
    858 
    859 	return 0;
    860 }
    861 
    862 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
    863 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
    864 {
    865 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    866 	struct pp_atomctrl_clock_dividers_vi dividers;
    867 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
    868 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
    869 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
    870 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
    871 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
    872 	uint32_t ref_clock;
    873 	uint32_t ref_divider;
    874 	uint32_t fbdiv;
    875 	int result;
    876 
    877 	/* get the engine clock dividers for this clock value */
    878 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
    879 
    880 	PP_ASSERT_WITH_CODE(result == 0,
    881 			"Error retrieving Engine Clock dividers from VBIOS.",
    882 			return result);
    883 
    884 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
    885 	ref_clock = atomctrl_get_reference_clock(hwmgr);
    886 	ref_divider = 1 + dividers.uc_pll_ref_div;
    887 
    888 	/* low 14 bits is fraction and high 12 bits is divider */
    889 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
    890 
    891 	/* SPLL_FUNC_CNTL setup */
    892 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
    893 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
    894 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
    895 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
    896 
    897 	/* SPLL_FUNC_CNTL_3 setup*/
    898 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
    899 			SPLL_FB_DIV, fbdiv);
    900 
    901 	/* set to use fractional accumulation*/
    902 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
    903 			SPLL_DITHEN, 1);
    904 
    905 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    906 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
    907 		struct pp_atomctrl_internal_ss_info ssInfo;
    908 
    909 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
    910 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
    911 				vco_freq, &ssInfo)) {
    912 			/*
    913 			 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
    914 			 * ss_info.speed_spectrum_rate -- in unit of khz
    915 			 *
    916 			 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
    917 			 */
    918 			uint32_t clk_s = ref_clock * 5 /
    919 					(ref_divider * ssInfo.speed_spectrum_rate);
    920 			/* clkv = 2 * D * fbdiv / NS */
    921 			uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
    922 					fbdiv / (clk_s * 10000);
    923 
    924 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
    925 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
    926 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
    927 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
    928 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
    929 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
    930 		}
    931 	}
    932 
    933 	sclk->SclkFrequency        = clock;
    934 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
    935 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
    936 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
    937 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
    938 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
    939 
    940 	return 0;
    941 }
    942 
    943 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
    944 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
    945 {
    946 	int result;
    947 	/* PP_Clocks minClocks; */
    948 	uint32_t mvdd;
    949 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    950 	struct phm_ppt_v1_information *table_info =
    951 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    952 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
    953 
    954 	result = fiji_calculate_sclk_params(hwmgr, clock, level);
    955 
    956 	if (hwmgr->od_enabled)
    957 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
    958 	else
    959 		vdd_dep_table = table_info->vdd_dep_on_sclk;
    960 
    961 	/* populate graphics levels */
    962 	result = fiji_get_dependency_volt_by_clk(hwmgr,
    963 			vdd_dep_table, clock,
    964 			(uint32_t *)(&level->MinVoltage), &mvdd);
    965 	PP_ASSERT_WITH_CODE((0 == result),
    966 			"can not find VDDC voltage value for "
    967 			"VDDC engine clock dependency table",
    968 			return result);
    969 
    970 	level->SclkFrequency = clock;
    971 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
    972 	level->CcPwrDynRm = 0;
    973 	level->CcPwrDynRm1 = 0;
    974 	level->EnabledForActivity = 0;
    975 	level->EnabledForThrottle = 1;
    976 	level->UpHyst = data->current_profile_setting.sclk_up_hyst;
    977 	level->DownHyst = data->current_profile_setting.sclk_down_hyst;
    978 	level->VoltageDownHyst = 0;
    979 	level->PowerThrottle = 0;
    980 
    981 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
    982 
    983 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
    984 		level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
    985 								hwmgr->display_config->min_core_set_clock_in_sr);
    986 
    987 
    988 	/* Default to slow, highest DPM level will be
    989 	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
    990 	 */
    991 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
    992 
    993 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
    994 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
    995 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
    996 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
    997 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
    998 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
    999 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
   1000 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
   1001 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
   1002 
   1003 	return 0;
   1004 }
   1005 
   1006 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
   1007 {
   1008 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1009 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1010 
   1011 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1012 	struct phm_ppt_v1_information *table_info =
   1013 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1014 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
   1015 	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
   1016 	int result = 0;
   1017 	uint32_t array = smu_data->smu7_data.dpm_table_start +
   1018 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
   1019 	uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
   1020 			SMU73_MAX_LEVELS_GRAPHICS;
   1021 	struct SMU73_Discrete_GraphicsLevel *levels =
   1022 			smu_data->smc_state_table.GraphicsLevel;
   1023 	uint32_t i, max_entry;
   1024 	uint8_t hightest_pcie_level_enabled = 0,
   1025 			lowest_pcie_level_enabled = 0,
   1026 			mid_pcie_level_enabled = 0,
   1027 			count = 0;
   1028 
   1029 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
   1030 		result = fiji_populate_single_graphic_level(hwmgr,
   1031 				dpm_table->sclk_table.dpm_levels[i].value,
   1032 				&levels[i]);
   1033 		if (result)
   1034 			return result;
   1035 
   1036 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
   1037 		if (i > 1)
   1038 			levels[i].DeepSleepDivId = 0;
   1039 	}
   1040 
   1041 	/* Only enable level 0 for now.*/
   1042 	levels[0].EnabledForActivity = 1;
   1043 
   1044 	/* set highest level watermark to high */
   1045 	levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
   1046 			PPSMC_DISPLAY_WATERMARK_HIGH;
   1047 
   1048 	smu_data->smc_state_table.GraphicsDpmLevelCount =
   1049 			(uint8_t)dpm_table->sclk_table.count;
   1050 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
   1051 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
   1052 
   1053 	if (pcie_table != NULL) {
   1054 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
   1055 				"There must be 1 or more PCIE levels defined in PPTable.",
   1056 				return -EINVAL);
   1057 		max_entry = pcie_entry_cnt - 1;
   1058 		for (i = 0; i < dpm_table->sclk_table.count; i++)
   1059 			levels[i].pcieDpmLevel =
   1060 					(uint8_t) ((i < max_entry) ? i : max_entry);
   1061 	} else {
   1062 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
   1063 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1064 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
   1065 			hightest_pcie_level_enabled++;
   1066 
   1067 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
   1068 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1069 						(1 << lowest_pcie_level_enabled)) == 0))
   1070 			lowest_pcie_level_enabled++;
   1071 
   1072 		while ((count < hightest_pcie_level_enabled) &&
   1073 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1074 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
   1075 			count++;
   1076 
   1077 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
   1078 				hightest_pcie_level_enabled ?
   1079 						(lowest_pcie_level_enabled + 1 + count) :
   1080 						hightest_pcie_level_enabled;
   1081 
   1082 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
   1083 		for (i = 2; i < dpm_table->sclk_table.count; i++)
   1084 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
   1085 
   1086 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
   1087 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
   1088 
   1089 		/* set pcieDpmLevel to mid_pcie_level_enabled */
   1090 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
   1091 	}
   1092 	/* level count will send to smc once at init smc table and never change */
   1093 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
   1094 			(uint32_t)array_size, SMC_RAM_END);
   1095 
   1096 	return result;
   1097 }
   1098 
   1099 
   1100 /**
   1101  * MCLK Frequency Ratio
   1102  * SEQ_CG_RESP  Bit[31:24] - 0x0
   1103  * Bit[27:24] \96 DDR3 Frequency ratio
   1104  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
   1105  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
   1106  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
   1107  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
   1108  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
   1109  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
   1110  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
   1111  * 400 < 0x7 <= 450MHz,       800 < 0xF
   1112  */
   1113 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
   1114 {
   1115 	if (mem_clock <= 10000)
   1116 		return 0x0;
   1117 	if (mem_clock <= 15000)
   1118 		return 0x1;
   1119 	if (mem_clock <= 20000)
   1120 		return 0x2;
   1121 	if (mem_clock <= 25000)
   1122 		return 0x3;
   1123 	if (mem_clock <= 30000)
   1124 		return 0x4;
   1125 	if (mem_clock <= 35000)
   1126 		return 0x5;
   1127 	if (mem_clock <= 40000)
   1128 		return 0x6;
   1129 	if (mem_clock <= 45000)
   1130 		return 0x7;
   1131 	if (mem_clock <= 50000)
   1132 		return 0x8;
   1133 	if (mem_clock <= 55000)
   1134 		return 0x9;
   1135 	if (mem_clock <= 60000)
   1136 		return 0xa;
   1137 	if (mem_clock <= 65000)
   1138 		return 0xb;
   1139 	if (mem_clock <= 70000)
   1140 		return 0xc;
   1141 	if (mem_clock <= 75000)
   1142 		return 0xd;
   1143 	if (mem_clock <= 80000)
   1144 		return 0xe;
   1145 	/* mem_clock > 800MHz */
   1146 	return 0xf;
   1147 }
   1148 
   1149 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
   1150     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
   1151 {
   1152 	struct pp_atomctrl_memory_clock_param mem_param;
   1153 	int result;
   1154 
   1155 	result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
   1156 	PP_ASSERT_WITH_CODE((0 == result),
   1157 			"Failed to get Memory PLL Dividers.",
   1158 			);
   1159 
   1160 	/* Save the result data to outpupt memory level structure */
   1161 	mclk->MclkFrequency   = clock;
   1162 	mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
   1163 	mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
   1164 
   1165 	return result;
   1166 }
   1167 
   1168 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
   1169 		uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
   1170 {
   1171 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1172 	struct phm_ppt_v1_information *table_info =
   1173 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1174 	int result = 0;
   1175 	uint32_t mclk_stutter_mode_threshold = 60000;
   1176 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
   1177 
   1178 	if (hwmgr->od_enabled)
   1179 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
   1180 	else
   1181 		vdd_dep_table = table_info->vdd_dep_on_mclk;
   1182 
   1183 	if (vdd_dep_table) {
   1184 		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1185 				vdd_dep_table, clock,
   1186 				(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
   1187 		PP_ASSERT_WITH_CODE((0 == result),
   1188 				"can not find MinVddc voltage value from memory "
   1189 				"VDDC voltage dependency table", return result);
   1190 	}
   1191 
   1192 	mem_level->EnabledForThrottle = 1;
   1193 	mem_level->EnabledForActivity = 0;
   1194 	mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
   1195 	mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
   1196 	mem_level->VoltageDownHyst = 0;
   1197 	mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
   1198 	mem_level->StutterEnable = false;
   1199 
   1200 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1201 
   1202 	/* enable stutter mode if all the follow condition applied
   1203 	 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
   1204 	 * &(data->DisplayTiming.numExistingDisplays));
   1205 	 */
   1206 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
   1207 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
   1208 
   1209 	if (mclk_stutter_mode_threshold &&
   1210 		(clock <= mclk_stutter_mode_threshold) &&
   1211 		(!data->is_uvd_enabled) &&
   1212 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
   1213 				STUTTER_ENABLE) & 0x1))
   1214 		mem_level->StutterEnable = true;
   1215 
   1216 	result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
   1217 	if (!result) {
   1218 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
   1219 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
   1220 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
   1221 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
   1222 	}
   1223 	return result;
   1224 }
   1225 
   1226 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
   1227 {
   1228 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1229 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1230 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1231 	int result;
   1232 	/* populate MCLK dpm table to SMU7 */
   1233 	uint32_t array = smu_data->smu7_data.dpm_table_start +
   1234 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
   1235 	uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
   1236 			SMU73_MAX_LEVELS_MEMORY;
   1237 	struct SMU73_Discrete_MemoryLevel *levels =
   1238 			smu_data->smc_state_table.MemoryLevel;
   1239 	uint32_t i;
   1240 
   1241 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
   1242 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
   1243 				"can not populate memory level as memory clock is zero",
   1244 				return -EINVAL);
   1245 		result = fiji_populate_single_memory_level(hwmgr,
   1246 				dpm_table->mclk_table.dpm_levels[i].value,
   1247 				&levels[i]);
   1248 		if (result)
   1249 			return result;
   1250 	}
   1251 
   1252 	/* Only enable level 0 for now. */
   1253 	levels[0].EnabledForActivity = 1;
   1254 
   1255 	/* in order to prevent MC activity from stutter mode to push DPM up.
   1256 	 * the UVD change complements this by putting the MCLK in
   1257 	 * a higher state by default such that we are not effected by
   1258 	 * up threshold or and MCLK DPM latency.
   1259 	 */
   1260 	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
   1261 	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
   1262 
   1263 	smu_data->smc_state_table.MemoryDpmLevelCount =
   1264 			(uint8_t)dpm_table->mclk_table.count;
   1265 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
   1266 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
   1267 	/* set highest level watermark to high */
   1268 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
   1269 			PPSMC_DISPLAY_WATERMARK_HIGH;
   1270 
   1271 	/* level count will send to smc once at init smc table and never change */
   1272 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
   1273 			(uint32_t)array_size, SMC_RAM_END);
   1274 
   1275 	return result;
   1276 }
   1277 
   1278 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
   1279 		uint32_t mclk, SMIO_Pattern *smio_pat)
   1280 {
   1281 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1282 	struct phm_ppt_v1_information *table_info =
   1283 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1284 	uint32_t i = 0;
   1285 
   1286 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
   1287 		/* find mvdd value which clock is more than request */
   1288 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
   1289 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
   1290 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
   1291 				break;
   1292 			}
   1293 		}
   1294 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
   1295 				"MVDD Voltage is outside the supported range.",
   1296 				return -EINVAL);
   1297 	} else
   1298 		return -EINVAL;
   1299 
   1300 	return 0;
   1301 }
   1302 
   1303 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
   1304 		SMU73_Discrete_DpmTable *table)
   1305 {
   1306 	int result = 0;
   1307 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1308 	struct phm_ppt_v1_information *table_info =
   1309 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1310 	struct pp_atomctrl_clock_dividers_vi dividers;
   1311 	SMIO_Pattern vol_level;
   1312 	uint32_t mvdd;
   1313 	uint16_t us_mvdd;
   1314 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
   1315 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
   1316 
   1317 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
   1318 
   1319 	if (!data->sclk_dpm_key_disabled) {
   1320 		/* Get MinVoltage and Frequency from DPM0,
   1321 		 * already converted to SMC_UL */
   1322 		table->ACPILevel.SclkFrequency =
   1323 				data->dpm_table.sclk_table.dpm_levels[0].value;
   1324 		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1325 				table_info->vdd_dep_on_sclk,
   1326 				table->ACPILevel.SclkFrequency,
   1327 				(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
   1328 		PP_ASSERT_WITH_CODE((0 == result),
   1329 				"Cannot find ACPI VDDC voltage value " \
   1330 				"in Clock Dependency Table",
   1331 				);
   1332 	} else {
   1333 		table->ACPILevel.SclkFrequency =
   1334 				data->vbios_boot_state.sclk_bootup_value;
   1335 		table->ACPILevel.MinVoltage =
   1336 				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
   1337 	}
   1338 
   1339 	/* get the engine clock dividers for this clock value */
   1340 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
   1341 			table->ACPILevel.SclkFrequency,  &dividers);
   1342 	PP_ASSERT_WITH_CODE(result == 0,
   1343 			"Error retrieving Engine Clock dividers from VBIOS.",
   1344 			return result);
   1345 
   1346 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
   1347 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1348 	table->ACPILevel.DeepSleepDivId = 0;
   1349 
   1350 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
   1351 			SPLL_PWRON, 0);
   1352 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
   1353 			SPLL_RESET, 1);
   1354 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
   1355 			SCLK_MUX_SEL, 4);
   1356 
   1357 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
   1358 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
   1359 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
   1360 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
   1361 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
   1362 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
   1363 	table->ACPILevel.CcPwrDynRm = 0;
   1364 	table->ACPILevel.CcPwrDynRm1 = 0;
   1365 
   1366 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
   1367 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
   1368 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
   1369 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
   1370 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
   1371 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
   1372 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
   1373 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
   1374 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
   1375 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
   1376 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
   1377 
   1378 	if (!data->mclk_dpm_key_disabled) {
   1379 		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
   1380 		table->MemoryACPILevel.MclkFrequency =
   1381 				data->dpm_table.mclk_table.dpm_levels[0].value;
   1382 		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1383 				table_info->vdd_dep_on_mclk,
   1384 				table->MemoryACPILevel.MclkFrequency,
   1385 			(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
   1386 		PP_ASSERT_WITH_CODE((0 == result),
   1387 				"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
   1388 				);
   1389 	} else {
   1390 		table->MemoryACPILevel.MclkFrequency =
   1391 				data->vbios_boot_state.mclk_bootup_value;
   1392 		table->MemoryACPILevel.MinVoltage =
   1393 				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
   1394 	}
   1395 
   1396 	us_mvdd = 0;
   1397 	if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
   1398 			(data->mclk_dpm_key_disabled))
   1399 		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
   1400 	else {
   1401 		if (!fiji_populate_mvdd_value(hwmgr,
   1402 				data->dpm_table.mclk_table.dpm_levels[0].value,
   1403 				&vol_level))
   1404 			us_mvdd = vol_level.Voltage;
   1405 	}
   1406 
   1407 	table->MemoryACPILevel.MinMvdd =
   1408 			PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
   1409 
   1410 	table->MemoryACPILevel.EnabledForThrottle = 0;
   1411 	table->MemoryACPILevel.EnabledForActivity = 0;
   1412 	table->MemoryACPILevel.UpHyst = 0;
   1413 	table->MemoryACPILevel.DownHyst = 100;
   1414 	table->MemoryACPILevel.VoltageDownHyst = 0;
   1415 	table->MemoryACPILevel.ActivityLevel =
   1416 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
   1417 
   1418 	table->MemoryACPILevel.StutterEnable = false;
   1419 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
   1420 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
   1421 
   1422 	return result;
   1423 }
   1424 
   1425 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
   1426 		SMU73_Discrete_DpmTable *table)
   1427 {
   1428 	int result = -EINVAL;
   1429 	uint8_t count;
   1430 	struct pp_atomctrl_clock_dividers_vi dividers;
   1431 	struct phm_ppt_v1_information *table_info =
   1432 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1433 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1434 			table_info->mm_dep_table;
   1435 
   1436 	table->VceLevelCount = (uint8_t)(mm_table->count);
   1437 	table->VceBootLevel = 0;
   1438 
   1439 	for (count = 0; count < table->VceLevelCount; count++) {
   1440 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
   1441 		table->VceLevel[count].MinVoltage = 0;
   1442 		table->VceLevel[count].MinVoltage |=
   1443 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
   1444 		table->VceLevel[count].MinVoltage |=
   1445 				((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
   1446 						VOLTAGE_SCALE) << VDDCI_SHIFT;
   1447 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1448 
   1449 		/*retrieve divider value for VBIOS */
   1450 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1451 				table->VceLevel[count].Frequency, &dividers);
   1452 		PP_ASSERT_WITH_CODE((0 == result),
   1453 				"can not find divide id for VCE engine clock",
   1454 				return result);
   1455 
   1456 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
   1457 
   1458 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
   1459 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
   1460 	}
   1461 	return result;
   1462 }
   1463 
   1464 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
   1465 		SMU73_Discrete_DpmTable *table)
   1466 {
   1467 	int result = -EINVAL;
   1468 	uint8_t count;
   1469 	struct pp_atomctrl_clock_dividers_vi dividers;
   1470 	struct phm_ppt_v1_information *table_info =
   1471 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1472 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1473 			table_info->mm_dep_table;
   1474 
   1475 	table->AcpLevelCount = (uint8_t)(mm_table->count);
   1476 	table->AcpBootLevel = 0;
   1477 
   1478 	for (count = 0; count < table->AcpLevelCount; count++) {
   1479 		table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
   1480 		table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
   1481 				VOLTAGE_SCALE) << VDDC_SHIFT;
   1482 		table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
   1483 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1484 		table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1485 
   1486 		/* retrieve divider value for VBIOS */
   1487 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1488 				table->AcpLevel[count].Frequency, &dividers);
   1489 		PP_ASSERT_WITH_CODE((0 == result),
   1490 				"can not find divide id for engine clock", return result);
   1491 
   1492 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
   1493 
   1494 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
   1495 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
   1496 	}
   1497 	return result;
   1498 }
   1499 
   1500 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
   1501 		int32_t eng_clock, int32_t mem_clock,
   1502 		struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
   1503 {
   1504 	uint32_t dram_timing;
   1505 	uint32_t dram_timing2;
   1506 	uint32_t burstTime;
   1507 	ULONG trrds, trrdl;
   1508 	int result;
   1509 
   1510 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
   1511 			eng_clock, mem_clock);
   1512 	PP_ASSERT_WITH_CODE(result == 0,
   1513 			"Error calling VBIOS to set DRAM_TIMING.", return result);
   1514 
   1515 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
   1516 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
   1517 	burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
   1518 
   1519 	trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
   1520 	trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
   1521 
   1522 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
   1523 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
   1524 	arb_regs->McArbBurstTime   = (uint8_t)burstTime;
   1525 	arb_regs->TRRDS            = (uint8_t)trrds;
   1526 	arb_regs->TRRDL            = (uint8_t)trrdl;
   1527 
   1528 	return 0;
   1529 }
   1530 
   1531 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
   1532 {
   1533 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1534 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1535 	struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
   1536 	uint32_t i, j;
   1537 	int result = 0;
   1538 
   1539 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
   1540 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
   1541 			result = fiji_populate_memory_timing_parameters(hwmgr,
   1542 					data->dpm_table.sclk_table.dpm_levels[i].value,
   1543 					data->dpm_table.mclk_table.dpm_levels[j].value,
   1544 					&arb_regs.entries[i][j]);
   1545 			if (result)
   1546 				break;
   1547 		}
   1548 	}
   1549 
   1550 	if (!result)
   1551 		result = smu7_copy_bytes_to_smc(
   1552 				hwmgr,
   1553 				smu_data->smu7_data.arb_table_start,
   1554 				(uint8_t *)&arb_regs,
   1555 				sizeof(SMU73_Discrete_MCArbDramTimingTable),
   1556 				SMC_RAM_END);
   1557 	return result;
   1558 }
   1559 
   1560 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
   1561 		struct SMU73_Discrete_DpmTable *table)
   1562 {
   1563 	int result = -EINVAL;
   1564 	uint8_t count;
   1565 	struct pp_atomctrl_clock_dividers_vi dividers;
   1566 	struct phm_ppt_v1_information *table_info =
   1567 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1568 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1569 			table_info->mm_dep_table;
   1570 
   1571 	table->UvdLevelCount = (uint8_t)(mm_table->count);
   1572 	table->UvdBootLevel = 0;
   1573 
   1574 	for (count = 0; count < table->UvdLevelCount; count++) {
   1575 		table->UvdLevel[count].MinVoltage = 0;
   1576 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
   1577 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
   1578 		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
   1579 				VOLTAGE_SCALE) << VDDC_SHIFT;
   1580 		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
   1581 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1582 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1583 
   1584 		/* retrieve divider value for VBIOS */
   1585 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1586 				table->UvdLevel[count].VclkFrequency, &dividers);
   1587 		PP_ASSERT_WITH_CODE((0 == result),
   1588 				"can not find divide id for Vclk clock", return result);
   1589 
   1590 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
   1591 
   1592 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1593 				table->UvdLevel[count].DclkFrequency, &dividers);
   1594 		PP_ASSERT_WITH_CODE((0 == result),
   1595 				"can not find divide id for Dclk clock", return result);
   1596 
   1597 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
   1598 
   1599 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
   1600 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
   1601 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
   1602 
   1603 	}
   1604 	return result;
   1605 }
   1606 
   1607 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
   1608 		struct SMU73_Discrete_DpmTable *table)
   1609 {
   1610 	int result __unused = 0;
   1611 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1612 
   1613 	table->GraphicsBootLevel = 0;
   1614 	table->MemoryBootLevel = 0;
   1615 
   1616 	/* find boot level from dpm table */
   1617 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
   1618 			data->vbios_boot_state.sclk_bootup_value,
   1619 			(uint32_t *)&(table->GraphicsBootLevel));
   1620 
   1621 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
   1622 			data->vbios_boot_state.mclk_bootup_value,
   1623 			(uint32_t *)&(table->MemoryBootLevel));
   1624 
   1625 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
   1626 			VOLTAGE_SCALE;
   1627 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
   1628 			VOLTAGE_SCALE;
   1629 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
   1630 			VOLTAGE_SCALE;
   1631 
   1632 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
   1633 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
   1634 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
   1635 
   1636 	return 0;
   1637 }
   1638 
   1639 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
   1640 {
   1641 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1642 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1643 	struct phm_ppt_v1_information *table_info =
   1644 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1645 	uint8_t count, level;
   1646 
   1647 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
   1648 	for (level = 0; level < count; level++) {
   1649 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
   1650 				data->vbios_boot_state.sclk_bootup_value) {
   1651 			smu_data->smc_state_table.GraphicsBootLevel = level;
   1652 			break;
   1653 		}
   1654 	}
   1655 
   1656 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
   1657 	for (level = 0; level < count; level++) {
   1658 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
   1659 				data->vbios_boot_state.mclk_bootup_value) {
   1660 			smu_data->smc_state_table.MemoryBootLevel = level;
   1661 			break;
   1662 		}
   1663 	}
   1664 
   1665 	return 0;
   1666 }
   1667 
   1668 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
   1669 {
   1670 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
   1671 			volt_with_cks, value;
   1672 	uint16_t clock_freq_u16;
   1673 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1674 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
   1675 			volt_offset = 0;
   1676 	struct phm_ppt_v1_information *table_info =
   1677 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1678 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
   1679 			table_info->vdd_dep_on_sclk;
   1680 
   1681 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
   1682 
   1683 	/* Read SMU_Eefuse to read and calculate RO and determine
   1684 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
   1685 	 */
   1686 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1687 			ixSMU_EFUSE_0 + (146 * 4));
   1688 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1689 			ixSMU_EFUSE_0 + (148 * 4));
   1690 	efuse &= 0xFF000000;
   1691 	efuse = efuse >> 24;
   1692 	efuse2 &= 0xF;
   1693 
   1694 	if (efuse2 == 1)
   1695 		ro = (2300 - 1350) * efuse / 255 + 1350;
   1696 	else
   1697 		ro = (2500 - 1000) * efuse / 255 + 1000;
   1698 
   1699 	if (ro >= 1660)
   1700 		type = 0;
   1701 	else
   1702 		type = 1;
   1703 
   1704 	/* Populate Stretch amount */
   1705 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
   1706 
   1707 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
   1708 	for (i = 0; i < sclk_table->count; i++) {
   1709 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
   1710 				sclk_table->entries[i].cks_enable << i;
   1711 		volt_without_cks = (uint32_t)((14041 *
   1712 			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
   1713 			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
   1714 		volt_with_cks = (uint32_t)((13946 *
   1715 			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
   1716 			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
   1717 		if (volt_without_cks >= volt_with_cks)
   1718 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
   1719 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
   1720 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
   1721 	}
   1722 
   1723 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1724 			STRETCH_ENABLE, 0x0);
   1725 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1726 			masterReset, 0x1);
   1727 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1728 			staticEnable, 0x1);
   1729 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1730 			masterReset, 0x0);
   1731 
   1732 	/* Populate CKS Lookup Table */
   1733 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
   1734 		stretch_amount2 = 0;
   1735 	else if (stretch_amount == 3 || stretch_amount == 4)
   1736 		stretch_amount2 = 1;
   1737 	else {
   1738 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   1739 				PHM_PlatformCaps_ClockStretcher);
   1740 		PP_ASSERT_WITH_CODE(false,
   1741 				"Stretch Amount in PPTable not supported",
   1742 				return -EINVAL);
   1743 	}
   1744 
   1745 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1746 			ixPWR_CKS_CNTL);
   1747 	value &= 0xFFC2FF87;
   1748 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
   1749 			fiji_clock_stretcher_lookup_table[stretch_amount2][0];
   1750 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
   1751 			fiji_clock_stretcher_lookup_table[stretch_amount2][1];
   1752 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
   1753 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
   1754 			SclkFrequency) / 100);
   1755 	if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
   1756 			clock_freq_u16 &&
   1757 	    fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
   1758 			clock_freq_u16) {
   1759 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
   1760 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
   1761 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
   1762 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
   1763 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
   1764 		value |= (fiji_clock_stretch_amount_conversion
   1765 				[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
   1766 				 [stretch_amount]) << 3;
   1767 	}
   1768 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
   1769 			CKS_LOOKUPTableEntry[0].minFreq);
   1770 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
   1771 			CKS_LOOKUPTableEntry[0].maxFreq);
   1772 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
   1773 			fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
   1774 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
   1775 			(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
   1776 
   1777 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1778 			ixPWR_CKS_CNTL, value);
   1779 
   1780 	/* Populate DDT Lookup Table */
   1781 	for (i = 0; i < 4; i++) {
   1782 		/* Assign the minimum and maximum VID stored
   1783 		 * in the last row of Clock Stretcher Voltage Table.
   1784 		 */
   1785 		smu_data->smc_state_table.ClockStretcherDataTable.
   1786 		ClockStretcherDataTableEntry[i].minVID =
   1787 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
   1788 		smu_data->smc_state_table.ClockStretcherDataTable.
   1789 		ClockStretcherDataTableEntry[i].maxVID =
   1790 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
   1791 		/* Loop through each SCLK and check the frequency
   1792 		 * to see if it lies within the frequency for clock stretcher.
   1793 		 */
   1794 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
   1795 			cks_setting = 0;
   1796 			clock_freq = PP_SMC_TO_HOST_UL(
   1797 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
   1798 			/* Check the allowed frequency against the sclk level[j].
   1799 			 *  Sclk's endianness has already been converted,
   1800 			 *  and it's in 10Khz unit,
   1801 			 *  as opposed to Data table, which is in Mhz unit.
   1802 			 */
   1803 			if (clock_freq >=
   1804 					(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
   1805 				cks_setting |= 0x2;
   1806 				if (clock_freq <
   1807 						(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
   1808 					cks_setting |= 0x1;
   1809 			}
   1810 			smu_data->smc_state_table.ClockStretcherDataTable.
   1811 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
   1812 		}
   1813 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
   1814 				ClockStretcherDataTable.
   1815 				ClockStretcherDataTableEntry[i].setting);
   1816 	}
   1817 
   1818 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
   1819 	value &= 0xFFFFFFFE;
   1820 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
   1821 
   1822 	return 0;
   1823 }
   1824 
   1825 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
   1826 		struct SMU73_Discrete_DpmTable *table)
   1827 {
   1828 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1829 	uint16_t config;
   1830 
   1831 	config = VR_MERGED_WITH_VDDC;
   1832 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
   1833 
   1834 	/* Set Vddc Voltage Controller */
   1835 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
   1836 		config = VR_SVI2_PLANE_1;
   1837 		table->VRConfig |= config;
   1838 	} else {
   1839 		PP_ASSERT_WITH_CODE(false,
   1840 				"VDDC should be on SVI2 control in merged mode!",
   1841 				);
   1842 	}
   1843 	/* Set Vddci Voltage Controller */
   1844 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
   1845 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
   1846 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1847 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
   1848 		config = VR_SMIO_PATTERN_1;
   1849 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1850 	} else {
   1851 		config = VR_STATIC_VOLTAGE;
   1852 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1853 	}
   1854 	/* Set Mvdd Voltage Controller */
   1855 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
   1856 		config = VR_SVI2_PLANE_2;
   1857 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1858 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
   1859 		config = VR_SMIO_PATTERN_2;
   1860 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1861 	} else {
   1862 		config = VR_STATIC_VOLTAGE;
   1863 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1864 	}
   1865 
   1866 	return 0;
   1867 }
   1868 
   1869 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
   1870 {
   1871 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1872 	uint32_t tmp;
   1873 	int result;
   1874 
   1875 	/* This is a read-modify-write on the first byte of the ARB table.
   1876 	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
   1877 	 * is the field 'current'.
   1878 	 * This solution is ugly, but we never write the whole table only
   1879 	 * individual fields in it.
   1880 	 * In reality this field should not be in that structure
   1881 	 * but in a soft register.
   1882 	 */
   1883 	result = smu7_read_smc_sram_dword(hwmgr,
   1884 			smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
   1885 
   1886 	if (result)
   1887 		return result;
   1888 
   1889 	tmp &= 0x00FFFFFF;
   1890 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
   1891 
   1892 	return smu7_write_smc_sram_dword(hwmgr,
   1893 			smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
   1894 }
   1895 
   1896 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
   1897 {
   1898 	pp_atomctrl_voltage_table param_led_dpm;
   1899 	int result = 0;
   1900 	u32 mask = 0;
   1901 
   1902 	result = atomctrl_get_voltage_table_v3(hwmgr,
   1903 					       VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
   1904 					       &param_led_dpm);
   1905 	if (result == 0) {
   1906 		int i, j;
   1907 		u32 tmp = param_led_dpm.mask_low;
   1908 
   1909 		for (i = 0, j = 0; i < 32; i++) {
   1910 			if (tmp & 1) {
   1911 				mask |= (i << (8 * j));
   1912 				if (++j >= 3)
   1913 					break;
   1914 			}
   1915 			tmp >>= 1;
   1916 		}
   1917 	}
   1918 	if (mask)
   1919 		smum_send_msg_to_smc_with_parameter(hwmgr,
   1920 						    PPSMC_MSG_LedConfig,
   1921 						    mask);
   1922 	return 0;
   1923 }
   1924 
   1925 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
   1926 {
   1927 	int result;
   1928 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1929 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1930 	struct phm_ppt_v1_information *table_info =
   1931 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1932 	struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
   1933 	uint8_t i;
   1934 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
   1935 
   1936 	fiji_initialize_power_tune_defaults(hwmgr);
   1937 
   1938 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
   1939 		fiji_populate_smc_voltage_tables(hwmgr, table);
   1940 
   1941 	table->SystemFlags = 0;
   1942 
   1943 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1944 			PHM_PlatformCaps_AutomaticDCTransition))
   1945 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
   1946 
   1947 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1948 			PHM_PlatformCaps_StepVddc))
   1949 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
   1950 
   1951 	if (data->is_memory_gddr5)
   1952 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
   1953 
   1954 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
   1955 		result = fiji_populate_ulv_state(hwmgr, table);
   1956 		PP_ASSERT_WITH_CODE(0 == result,
   1957 				"Failed to initialize ULV state!", return result);
   1958 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1959 				ixCG_ULV_PARAMETER, 0x40035);
   1960 	}
   1961 
   1962 	result = fiji_populate_smc_link_level(hwmgr, table);
   1963 	PP_ASSERT_WITH_CODE(0 == result,
   1964 			"Failed to initialize Link Level!", return result);
   1965 
   1966 	result = fiji_populate_all_graphic_levels(hwmgr);
   1967 	PP_ASSERT_WITH_CODE(0 == result,
   1968 			"Failed to initialize Graphics Level!", return result);
   1969 
   1970 	result = fiji_populate_all_memory_levels(hwmgr);
   1971 	PP_ASSERT_WITH_CODE(0 == result,
   1972 			"Failed to initialize Memory Level!", return result);
   1973 
   1974 	result = fiji_populate_smc_acpi_level(hwmgr, table);
   1975 	PP_ASSERT_WITH_CODE(0 == result,
   1976 			"Failed to initialize ACPI Level!", return result);
   1977 
   1978 	result = fiji_populate_smc_vce_level(hwmgr, table);
   1979 	PP_ASSERT_WITH_CODE(0 == result,
   1980 			"Failed to initialize VCE Level!", return result);
   1981 
   1982 	result = fiji_populate_smc_acp_level(hwmgr, table);
   1983 	PP_ASSERT_WITH_CODE(0 == result,
   1984 			"Failed to initialize ACP Level!", return result);
   1985 
   1986 	/* Since only the initial state is completely set up at this point
   1987 	 * (the other states are just copies of the boot state) we only
   1988 	 * need to populate the  ARB settings for the initial state.
   1989 	 */
   1990 	result = fiji_program_memory_timing_parameters(hwmgr);
   1991 	PP_ASSERT_WITH_CODE(0 == result,
   1992 			"Failed to Write ARB settings for the initial state.", return result);
   1993 
   1994 	result = fiji_populate_smc_uvd_level(hwmgr, table);
   1995 	PP_ASSERT_WITH_CODE(0 == result,
   1996 			"Failed to initialize UVD Level!", return result);
   1997 
   1998 	result = fiji_populate_smc_boot_level(hwmgr, table);
   1999 	PP_ASSERT_WITH_CODE(0 == result,
   2000 			"Failed to initialize Boot Level!", return result);
   2001 
   2002 	result = fiji_populate_smc_initailial_state(hwmgr);
   2003 	PP_ASSERT_WITH_CODE(0 == result,
   2004 			"Failed to initialize Boot State!", return result);
   2005 
   2006 	result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
   2007 	PP_ASSERT_WITH_CODE(0 == result,
   2008 			"Failed to populate BAPM Parameters!", return result);
   2009 
   2010 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2011 			PHM_PlatformCaps_ClockStretcher)) {
   2012 		result = fiji_populate_clock_stretcher_data_table(hwmgr);
   2013 		PP_ASSERT_WITH_CODE(0 == result,
   2014 				"Failed to populate Clock Stretcher Data Table!",
   2015 				return result);
   2016 	}
   2017 
   2018 	table->GraphicsVoltageChangeEnable  = 1;
   2019 	table->GraphicsThermThrottleEnable  = 1;
   2020 	table->GraphicsInterval = 1;
   2021 	table->VoltageInterval  = 1;
   2022 	table->ThermalInterval  = 1;
   2023 	table->TemperatureLimitHigh =
   2024 			table_info->cac_dtp_table->usTargetOperatingTemp *
   2025 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2026 	table->TemperatureLimitLow  =
   2027 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
   2028 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2029 	table->MemoryVoltageChangeEnable = 1;
   2030 	table->MemoryInterval = 1;
   2031 	table->VoltageResponseTime = 0;
   2032 	table->PhaseResponseTime = 0;
   2033 	table->MemoryThermThrottleEnable = 1;
   2034 	table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
   2035 	table->PCIeGenInterval = 1;
   2036 	table->VRConfig = 0;
   2037 
   2038 	result = fiji_populate_vr_config(hwmgr, table);
   2039 	PP_ASSERT_WITH_CODE(0 == result,
   2040 			"Failed to populate VRConfig setting!", return result);
   2041 	data->vr_config = table->VRConfig;
   2042 	table->ThermGpio = 17;
   2043 	table->SclkStepSize = 0x4000;
   2044 
   2045 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
   2046 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2047 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2048 				PHM_PlatformCaps_RegulatorHot);
   2049 	} else {
   2050 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
   2051 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2052 				PHM_PlatformCaps_RegulatorHot);
   2053 	}
   2054 
   2055 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
   2056 			&gpio_pin)) {
   2057 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2058 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2059 				PHM_PlatformCaps_AutomaticDCTransition);
   2060 	} else {
   2061 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
   2062 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2063 				PHM_PlatformCaps_AutomaticDCTransition);
   2064 	}
   2065 
   2066 	/* Thermal Output GPIO */
   2067 	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
   2068 			&gpio_pin)) {
   2069 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2070 				PHM_PlatformCaps_ThermalOutGPIO);
   2071 
   2072 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2073 
   2074 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
   2075 		 * since VBIOS will program this register to set 'inactive state',
   2076 		 * driver can then determine 'active state' from this and
   2077 		 * program SMU with correct polarity
   2078 		 */
   2079 		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
   2080 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
   2081 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
   2082 
   2083 		/* if required, combine VRHot/PCC with thermal out GPIO */
   2084 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2085 				PHM_PlatformCaps_RegulatorHot) &&
   2086 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2087 					PHM_PlatformCaps_CombinePCCWithThermalSignal))
   2088 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
   2089 	} else {
   2090 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2091 				PHM_PlatformCaps_ThermalOutGPIO);
   2092 		table->ThermOutGpio = 17;
   2093 		table->ThermOutPolarity = 1;
   2094 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
   2095 	}
   2096 
   2097 	for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
   2098 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
   2099 
   2100 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
   2101 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
   2102 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
   2103 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
   2104 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
   2105 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
   2106 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
   2107 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
   2108 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
   2109 
   2110 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
   2111 	result = smu7_copy_bytes_to_smc(hwmgr,
   2112 			smu_data->smu7_data.dpm_table_start +
   2113 			offsetof(SMU73_Discrete_DpmTable, SystemFlags),
   2114 			(uint8_t *)&(table->SystemFlags),
   2115 			sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
   2116 			SMC_RAM_END);
   2117 	PP_ASSERT_WITH_CODE(0 == result,
   2118 			"Failed to upload dpm data to SMC memory!", return result);
   2119 
   2120 	result = fiji_init_arb_table_index(hwmgr);
   2121 	PP_ASSERT_WITH_CODE(0 == result,
   2122 			"Failed to upload arb data to SMC memory!", return result);
   2123 
   2124 	result = fiji_populate_pm_fuses(hwmgr);
   2125 	PP_ASSERT_WITH_CODE(0 == result,
   2126 			"Failed to  populate PM fuses to SMC memory!", return result);
   2127 
   2128 	result = fiji_setup_dpm_led_config(hwmgr);
   2129 	PP_ASSERT_WITH_CODE(0 == result,
   2130 			    "Failed to setup dpm led config", return result);
   2131 
   2132 	return 0;
   2133 }
   2134 
   2135 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
   2136 {
   2137 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2138 
   2139 	SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
   2140 	uint32_t duty100;
   2141 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
   2142 	uint16_t fdo_min, slope1, slope2;
   2143 	uint32_t reference_clock;
   2144 	int res;
   2145 	uint64_t tmp64;
   2146 
   2147 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
   2148 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2149 			PHM_PlatformCaps_MicrocodeFanControl);
   2150 		return 0;
   2151 	}
   2152 
   2153 	if (smu_data->smu7_data.fan_table_start == 0) {
   2154 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2155 				PHM_PlatformCaps_MicrocodeFanControl);
   2156 		return 0;
   2157 	}
   2158 
   2159 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
   2160 			CG_FDO_CTRL1, FMAX_DUTY100);
   2161 
   2162 	if (duty100 == 0) {
   2163 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2164 				PHM_PlatformCaps_MicrocodeFanControl);
   2165 		return 0;
   2166 	}
   2167 
   2168 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
   2169 			usPWMMin * duty100;
   2170 	do_div(tmp64, 10000);
   2171 	fdo_min = (uint16_t)tmp64;
   2172 
   2173 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
   2174 			hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
   2175 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
   2176 			hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
   2177 
   2178 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
   2179 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
   2180 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
   2181 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
   2182 
   2183 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
   2184 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
   2185 
   2186 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->
   2187 			thermal_controller.advanceFanControlParameters.usTMin) / 100);
   2188 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->
   2189 			thermal_controller.advanceFanControlParameters.usTMed) / 100);
   2190 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->
   2191 			thermal_controller.advanceFanControlParameters.usTMax) / 100);
   2192 
   2193 	fan_table.Slope1 = cpu_to_be16(slope1);
   2194 	fan_table.Slope2 = cpu_to_be16(slope2);
   2195 
   2196 	fan_table.FdoMin = cpu_to_be16(fdo_min);
   2197 
   2198 	fan_table.HystDown = cpu_to_be16(hwmgr->
   2199 			thermal_controller.advanceFanControlParameters.ucTHyst);
   2200 
   2201 	fan_table.HystUp = cpu_to_be16(1);
   2202 
   2203 	fan_table.HystSlope = cpu_to_be16(1);
   2204 
   2205 	fan_table.TempRespLim = cpu_to_be16(5);
   2206 
   2207 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
   2208 
   2209 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
   2210 			thermal_controller.advanceFanControlParameters.ulCycleDelay *
   2211 			reference_clock) / 1600);
   2212 
   2213 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
   2214 
   2215 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
   2216 			hwmgr->device, CGS_IND_REG__SMC,
   2217 			CG_MULT_THERMAL_CTRL, TEMP_SEL);
   2218 
   2219 	res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
   2220 			(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
   2221 			SMC_RAM_END);
   2222 
   2223 	if (!res && hwmgr->thermal_controller.
   2224 			advanceFanControlParameters.ucMinimumPWMLimit)
   2225 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
   2226 				PPSMC_MSG_SetFanMinPwm,
   2227 				hwmgr->thermal_controller.
   2228 				advanceFanControlParameters.ucMinimumPWMLimit);
   2229 
   2230 	if (!res && hwmgr->thermal_controller.
   2231 			advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
   2232 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
   2233 				PPSMC_MSG_SetFanSclkTarget,
   2234 				hwmgr->thermal_controller.
   2235 				advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
   2236 
   2237 	if (res)
   2238 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2239 				PHM_PlatformCaps_MicrocodeFanControl);
   2240 
   2241 	return 0;
   2242 }
   2243 
   2244 
   2245 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
   2246 {
   2247 	if (!hwmgr->avfs_supported)
   2248 		return 0;
   2249 
   2250 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
   2251 
   2252 	return 0;
   2253 }
   2254 
   2255 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
   2256 {
   2257 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2258 
   2259 	if (data->need_update_smu7_dpm_table &
   2260 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
   2261 		return fiji_program_memory_timing_parameters(hwmgr);
   2262 
   2263 	return 0;
   2264 }
   2265 
   2266 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
   2267 {
   2268 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2269 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2270 
   2271 	int result = 0;
   2272 	uint32_t low_sclk_interrupt_threshold = 0;
   2273 
   2274 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2275 			PHM_PlatformCaps_SclkThrottleLowNotification)
   2276 		&& (data->low_sclk_interrupt_threshold != 0)) {
   2277 		low_sclk_interrupt_threshold =
   2278 				data->low_sclk_interrupt_threshold;
   2279 
   2280 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
   2281 
   2282 		result = smu7_copy_bytes_to_smc(
   2283 				hwmgr,
   2284 				smu_data->smu7_data.dpm_table_start +
   2285 				offsetof(SMU73_Discrete_DpmTable,
   2286 					LowSclkInterruptThreshold),
   2287 				(uint8_t *)&low_sclk_interrupt_threshold,
   2288 				sizeof(uint32_t),
   2289 				SMC_RAM_END);
   2290 	}
   2291 	result = fiji_program_mem_timing_parameters(hwmgr);
   2292 	PP_ASSERT_WITH_CODE((result == 0),
   2293 			"Failed to program memory timing parameters!",
   2294 			);
   2295 	return result;
   2296 }
   2297 
   2298 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
   2299 {
   2300 	switch (type) {
   2301 	case SMU_SoftRegisters:
   2302 		switch (member) {
   2303 		case HandshakeDisables:
   2304 			return offsetof(SMU73_SoftRegisters, HandshakeDisables);
   2305 		case VoltageChangeTimeout:
   2306 			return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
   2307 		case AverageGraphicsActivity:
   2308 			return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
   2309 		case AverageMemoryActivity:
   2310 			return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
   2311 		case PreVBlankGap:
   2312 			return offsetof(SMU73_SoftRegisters, PreVBlankGap);
   2313 		case VBlankTimeout:
   2314 			return offsetof(SMU73_SoftRegisters, VBlankTimeout);
   2315 		case UcodeLoadStatus:
   2316 			return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
   2317 		case DRAM_LOG_ADDR_H:
   2318 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
   2319 		case DRAM_LOG_ADDR_L:
   2320 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
   2321 		case DRAM_LOG_PHY_ADDR_H:
   2322 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
   2323 		case DRAM_LOG_PHY_ADDR_L:
   2324 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
   2325 		case DRAM_LOG_BUFF_SIZE:
   2326 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
   2327 		}
   2328 		break;
   2329 	case SMU_Discrete_DpmTable:
   2330 		switch (member) {
   2331 		case UvdBootLevel:
   2332 			return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
   2333 		case VceBootLevel:
   2334 			return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
   2335 		case LowSclkInterruptThreshold:
   2336 			return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
   2337 		}
   2338 		break;
   2339 	}
   2340 	pr_warn("can't get the offset of type %x member %x\n", type, member);
   2341 	return 0;
   2342 }
   2343 
   2344 static uint32_t fiji_get_mac_definition(uint32_t value)
   2345 {
   2346 	switch (value) {
   2347 	case SMU_MAX_LEVELS_GRAPHICS:
   2348 		return SMU73_MAX_LEVELS_GRAPHICS;
   2349 	case SMU_MAX_LEVELS_MEMORY:
   2350 		return SMU73_MAX_LEVELS_MEMORY;
   2351 	case SMU_MAX_LEVELS_LINK:
   2352 		return SMU73_MAX_LEVELS_LINK;
   2353 	case SMU_MAX_ENTRIES_SMIO:
   2354 		return SMU73_MAX_ENTRIES_SMIO;
   2355 	case SMU_MAX_LEVELS_VDDC:
   2356 		return SMU73_MAX_LEVELS_VDDC;
   2357 	case SMU_MAX_LEVELS_VDDGFX:
   2358 		return SMU73_MAX_LEVELS_VDDGFX;
   2359 	case SMU_MAX_LEVELS_VDDCI:
   2360 		return SMU73_MAX_LEVELS_VDDCI;
   2361 	case SMU_MAX_LEVELS_MVDD:
   2362 		return SMU73_MAX_LEVELS_MVDD;
   2363 	}
   2364 
   2365 	pr_warn("can't get the mac of %x\n", value);
   2366 	return 0;
   2367 }
   2368 
   2369 
   2370 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
   2371 {
   2372 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2373 	uint32_t mm_boot_level_offset, mm_boot_level_value;
   2374 	struct phm_ppt_v1_information *table_info =
   2375 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   2376 
   2377 	smu_data->smc_state_table.UvdBootLevel = 0;
   2378 	if (table_info->mm_dep_table->count > 0)
   2379 		smu_data->smc_state_table.UvdBootLevel =
   2380 				(uint8_t) (table_info->mm_dep_table->count - 1);
   2381 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
   2382 						UvdBootLevel);
   2383 	mm_boot_level_offset /= 4;
   2384 	mm_boot_level_offset *= 4;
   2385 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
   2386 			CGS_IND_REG__SMC, mm_boot_level_offset);
   2387 	mm_boot_level_value &= 0x00FFFFFF;
   2388 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
   2389 	cgs_write_ind_register(hwmgr->device,
   2390 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
   2391 
   2392 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2393 			PHM_PlatformCaps_UVDDPM) ||
   2394 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2395 			PHM_PlatformCaps_StablePState))
   2396 		smum_send_msg_to_smc_with_parameter(hwmgr,
   2397 				PPSMC_MSG_UVDDPM_SetEnabledMask,
   2398 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
   2399 	return 0;
   2400 }
   2401 
   2402 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
   2403 {
   2404 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2405 	uint32_t mm_boot_level_offset, mm_boot_level_value;
   2406 	struct phm_ppt_v1_information *table_info =
   2407 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   2408 
   2409 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2410 					PHM_PlatformCaps_StablePState))
   2411 		smu_data->smc_state_table.VceBootLevel =
   2412 			(uint8_t) (table_info->mm_dep_table->count - 1);
   2413 	else
   2414 		smu_data->smc_state_table.VceBootLevel = 0;
   2415 
   2416 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
   2417 					offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
   2418 	mm_boot_level_offset /= 4;
   2419 	mm_boot_level_offset *= 4;
   2420 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
   2421 			CGS_IND_REG__SMC, mm_boot_level_offset);
   2422 	mm_boot_level_value &= 0xFF00FFFF;
   2423 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
   2424 	cgs_write_ind_register(hwmgr->device,
   2425 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
   2426 
   2427 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
   2428 		smum_send_msg_to_smc_with_parameter(hwmgr,
   2429 				PPSMC_MSG_VCEDPM_SetEnabledMask,
   2430 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
   2431 	return 0;
   2432 }
   2433 
   2434 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
   2435 {
   2436 	switch (type) {
   2437 	case SMU_UVD_TABLE:
   2438 		fiji_update_uvd_smc_table(hwmgr);
   2439 		break;
   2440 	case SMU_VCE_TABLE:
   2441 		fiji_update_vce_smc_table(hwmgr);
   2442 		break;
   2443 	default:
   2444 		break;
   2445 	}
   2446 	return 0;
   2447 }
   2448 
   2449 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
   2450 {
   2451 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2452 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2453 	uint32_t tmp;
   2454 	int result;
   2455 	bool error = false;
   2456 
   2457 	result = smu7_read_smc_sram_dword(hwmgr,
   2458 			SMU7_FIRMWARE_HEADER_LOCATION +
   2459 			offsetof(SMU73_Firmware_Header, DpmTable),
   2460 			&tmp, SMC_RAM_END);
   2461 
   2462 	if (0 == result)
   2463 		smu_data->smu7_data.dpm_table_start = tmp;
   2464 
   2465 	error |= (0 != result);
   2466 
   2467 	result = smu7_read_smc_sram_dword(hwmgr,
   2468 			SMU7_FIRMWARE_HEADER_LOCATION +
   2469 			offsetof(SMU73_Firmware_Header, SoftRegisters),
   2470 			&tmp, SMC_RAM_END);
   2471 
   2472 	if (!result) {
   2473 		data->soft_regs_start = tmp;
   2474 		smu_data->smu7_data.soft_regs_start = tmp;
   2475 	}
   2476 
   2477 	error |= (0 != result);
   2478 
   2479 	result = smu7_read_smc_sram_dword(hwmgr,
   2480 			SMU7_FIRMWARE_HEADER_LOCATION +
   2481 			offsetof(SMU73_Firmware_Header, mcRegisterTable),
   2482 			&tmp, SMC_RAM_END);
   2483 
   2484 	if (!result)
   2485 		smu_data->smu7_data.mc_reg_table_start = tmp;
   2486 
   2487 	result = smu7_read_smc_sram_dword(hwmgr,
   2488 			SMU7_FIRMWARE_HEADER_LOCATION +
   2489 			offsetof(SMU73_Firmware_Header, FanTable),
   2490 			&tmp, SMC_RAM_END);
   2491 
   2492 	if (!result)
   2493 		smu_data->smu7_data.fan_table_start = tmp;
   2494 
   2495 	error |= (0 != result);
   2496 
   2497 	result = smu7_read_smc_sram_dword(hwmgr,
   2498 			SMU7_FIRMWARE_HEADER_LOCATION +
   2499 			offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
   2500 			&tmp, SMC_RAM_END);
   2501 
   2502 	if (!result)
   2503 		smu_data->smu7_data.arb_table_start = tmp;
   2504 
   2505 	error |= (0 != result);
   2506 
   2507 	result = smu7_read_smc_sram_dword(hwmgr,
   2508 			SMU7_FIRMWARE_HEADER_LOCATION +
   2509 			offsetof(SMU73_Firmware_Header, Version),
   2510 			&tmp, SMC_RAM_END);
   2511 
   2512 	if (!result)
   2513 		hwmgr->microcode_version_info.SMC = tmp;
   2514 
   2515 	error |= (0 != result);
   2516 
   2517 	return error ? -1 : 0;
   2518 }
   2519 
   2520 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
   2521 {
   2522 
   2523 	/* Program additional LP registers
   2524 	 * that are no longer programmed by VBIOS
   2525 	 */
   2526 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
   2527 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
   2528 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
   2529 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
   2530 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
   2531 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
   2532 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
   2533 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
   2534 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
   2535 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
   2536 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
   2537 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
   2538 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
   2539 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
   2540 
   2541 	return 0;
   2542 }
   2543 
   2544 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
   2545 {
   2546 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
   2547 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
   2548 			? true : false;
   2549 }
   2550 
   2551 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
   2552 				void *profile_setting)
   2553 {
   2554 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2555 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
   2556 			(hwmgr->smu_backend);
   2557 	struct profile_mode_setting *setting;
   2558 	struct SMU73_Discrete_GraphicsLevel *levels =
   2559 			smu_data->smc_state_table.GraphicsLevel;
   2560 	uint32_t array = smu_data->smu7_data.dpm_table_start +
   2561 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
   2562 
   2563 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
   2564 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
   2565 	struct SMU73_Discrete_MemoryLevel *mclk_levels =
   2566 			smu_data->smc_state_table.MemoryLevel;
   2567 	uint32_t i;
   2568 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
   2569 
   2570 	if (profile_setting == NULL)
   2571 		return -EINVAL;
   2572 
   2573 	setting = (struct profile_mode_setting *)profile_setting;
   2574 
   2575 	if (setting->bupdate_sclk) {
   2576 		if (!data->sclk_dpm_key_disabled)
   2577 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
   2578 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
   2579 			if (levels[i].ActivityLevel !=
   2580 				cpu_to_be16(setting->sclk_activity)) {
   2581 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
   2582 
   2583 				clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2584 						+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
   2585 				offset = clk_activity_offset & ~0x3;
   2586 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2587 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
   2588 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2589 
   2590 			}
   2591 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
   2592 				levels[i].DownHyst != setting->sclk_down_hyst) {
   2593 				levels[i].UpHyst = setting->sclk_up_hyst;
   2594 				levels[i].DownHyst = setting->sclk_down_hyst;
   2595 				up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2596 						+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
   2597 				down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2598 						+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
   2599 				offset = up_hyst_offset & ~0x3;
   2600 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2601 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
   2602 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
   2603 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2604 			}
   2605 		}
   2606 		if (!data->sclk_dpm_key_disabled)
   2607 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
   2608 	}
   2609 
   2610 	if (setting->bupdate_mclk) {
   2611 		if (!data->mclk_dpm_key_disabled)
   2612 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
   2613 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
   2614 			if (mclk_levels[i].ActivityLevel !=
   2615 				cpu_to_be16(setting->mclk_activity)) {
   2616 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
   2617 
   2618 				clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2619 						+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
   2620 				offset = clk_activity_offset & ~0x3;
   2621 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2622 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
   2623 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2624 
   2625 			}
   2626 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
   2627 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
   2628 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
   2629 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
   2630 				up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2631 						+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
   2632 				down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2633 						+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
   2634 				offset = up_hyst_offset & ~0x3;
   2635 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2636 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
   2637 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
   2638 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2639 			}
   2640 		}
   2641 		if (!data->mclk_dpm_key_disabled)
   2642 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
   2643 	}
   2644 	return 0;
   2645 }
   2646 
   2647 const struct pp_smumgr_func fiji_smu_funcs = {
   2648 	.name = "fiji_smu",
   2649 	.smu_init = &fiji_smu_init,
   2650 	.smu_fini = &smu7_smu_fini,
   2651 	.start_smu = &fiji_start_smu,
   2652 	.check_fw_load_finish = &smu7_check_fw_load_finish,
   2653 	.request_smu_load_fw = &smu7_reload_firmware,
   2654 	.request_smu_load_specific_fw = NULL,
   2655 	.send_msg_to_smc = &smu7_send_msg_to_smc,
   2656 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
   2657 	.download_pptable_settings = NULL,
   2658 	.upload_pptable_settings = NULL,
   2659 	.update_smc_table = fiji_update_smc_table,
   2660 	.get_offsetof = fiji_get_offsetof,
   2661 	.process_firmware_header = fiji_process_firmware_header,
   2662 	.init_smc_table = fiji_init_smc_table,
   2663 	.update_sclk_threshold = fiji_update_sclk_threshold,
   2664 	.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
   2665 	.thermal_avfs_enable = fiji_thermal_avfs_enable,
   2666 	.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
   2667 	.populate_all_memory_levels = fiji_populate_all_memory_levels,
   2668 	.get_mac_definition = fiji_get_mac_definition,
   2669 	.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
   2670 	.is_dpm_running = fiji_is_dpm_running,
   2671 	.is_hw_avfs_present = fiji_is_hw_avfs_present,
   2672 	.update_dpm_settings = fiji_update_dpm_settings,
   2673 };
   2674