Home | History | Annotate | Line # | Download | only in smumgr
      1 /*	$NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2016 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  * Author: Huang Rui <ray.huang (at) amd.com>
     25  *
     26  */
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $");
     29 
     30 #include "pp_debug.h"
     31 #include <linux/types.h>
     32 #include <linux/kernel.h>
     33 #include <linux/pci.h>
     34 #include <linux/slab.h>
     35 #include <linux/gfp.h>
     36 
     37 #include "smumgr.h"
     38 #include "iceland_smumgr.h"
     39 
     40 #include "ppsmc.h"
     41 
     42 #include "cgs_common.h"
     43 
     44 #include "smu7_dyn_defaults.h"
     45 #include "smu7_hwmgr.h"
     46 #include "hardwaremanager.h"
     47 #include "ppatomctrl.h"
     48 #include "atombios.h"
     49 #include "pppcielanes.h"
     50 #include "pp_endian.h"
     51 #include "processpptables.h"
     52 
     53 
     54 #include "smu/smu_7_1_1_d.h"
     55 #include "smu/smu_7_1_1_sh_mask.h"
     56 #include "smu71_discrete.h"
     57 
     58 #include "smu_ucode_xfer_vi.h"
     59 #include "gmc/gmc_8_1_d.h"
     60 #include "gmc/gmc_8_1_sh_mask.h"
     61 #include "bif/bif_5_0_d.h"
     62 #include "bif/bif_5_0_sh_mask.h"
     63 #include "dce/dce_10_0_d.h"
     64 #include "dce/dce_10_0_sh_mask.h"
     65 
     66 
     67 #define ICELAND_SMC_SIZE               0x20000
     68 
     69 #define POWERTUNE_DEFAULT_SET_MAX    1
     70 #define MC_CG_ARB_FREQ_F1           0x0b
     71 #define VDDC_VDDCI_DELTA            200
     72 
     73 #define DEVICE_ID_VI_ICELAND_M_6900	0x6900
     74 #define DEVICE_ID_VI_ICELAND_M_6901	0x6901
     75 #define DEVICE_ID_VI_ICELAND_M_6902	0x6902
     76 #define DEVICE_ID_VI_ICELAND_M_6903	0x6903
     77 
     78 static const struct iceland_pt_defaults defaults_iceland = {
     79 	/*
     80 	 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
     81 	 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
     82 	 */
     83 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
     84 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
     85 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
     86 };
     87 
     88 /* 35W - XT, XTL */
     89 static const struct iceland_pt_defaults defaults_icelandxt = {
     90 	/*
     91 	 * sviLoadLIneEn, SviLoadLineVddC,
     92 	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
     93 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
     94 	 * BAPM_TEMP_GRADIENT
     95 	 */
     96 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
     97 	{ 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
     98 	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
     99 };
    100 
    101 /* 25W - PRO, LE */
    102 static const struct iceland_pt_defaults defaults_icelandpro = {
    103 	/*
    104 	 * sviLoadLIneEn, SviLoadLineVddC,
    105 	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
    106 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
    107 	 * BAPM_TEMP_GRADIENT
    108 	 */
    109 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
    110 	{ 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
    111 	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
    112 };
    113 
    114 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
    115 {
    116 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    117 				  SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    118 
    119 	return 0;
    120 }
    121 
    122 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
    123 {
    124 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    125 				  SMC_SYSCON_RESET_CNTL,
    126 				  rst_reg, 1);
    127 }
    128 
    129 
    130 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
    131 {
    132 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    133 				  SMC_SYSCON_CLOCK_CNTL_0,
    134 				  ck_disable, 1);
    135 }
    136 
    137 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
    138 {
    139 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    140 				  SMC_SYSCON_CLOCK_CNTL_0,
    141 				  ck_disable, 0);
    142 }
    143 
    144 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
    145 {
    146 	/* set smc instruct start point at 0x0 */
    147 	smu7_program_jump_on_start(hwmgr);
    148 
    149 	/* enable smc clock */
    150 	iceland_start_smc_clock(hwmgr);
    151 
    152 	/* de-assert reset */
    153 	iceland_start_smc(hwmgr);
    154 
    155 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
    156 				 INTERRUPTS_ENABLED, 1);
    157 
    158 	return 0;
    159 }
    160 
    161 
    162 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
    163 					uint32_t length, const uint8_t *src,
    164 					uint32_t limit, uint32_t start_addr)
    165 {
    166 	uint32_t byte_count = length;
    167 	uint32_t data;
    168 
    169 	PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
    170 
    171 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
    172 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
    173 
    174 	while (byte_count >= 4) {
    175 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
    176 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
    177 		src += 4;
    178 		byte_count -= 4;
    179 	}
    180 
    181 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
    182 
    183 	PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
    184 
    185 	return 0;
    186 }
    187 
    188 
    189 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
    190 {
    191 	uint32_t val;
    192 	struct cgs_firmware_info info = {0};
    193 
    194 	if (hwmgr == NULL || hwmgr->device == NULL)
    195 		return -EINVAL;
    196 
    197 	/* load SMC firmware */
    198 	cgs_get_firmware_info(hwmgr->device,
    199 		smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
    200 
    201 	if (info.image_size & 3) {
    202 		pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
    203 		return -EINVAL;
    204 	}
    205 
    206 	if (info.image_size > ICELAND_SMC_SIZE) {
    207 		pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
    208 		return -EINVAL;
    209 	}
    210 	hwmgr->smu_version = info.version;
    211 	/* wait for smc boot up */
    212 	PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    213 					 RCU_UC_EVENTS, boot_seq_done, 0);
    214 
    215 	/* clear firmware interrupt enable flag */
    216 	val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    217 				    ixSMC_SYSCON_MISC_CNTL);
    218 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    219 			       ixSMC_SYSCON_MISC_CNTL, val | 1);
    220 
    221 	/* stop smc clock */
    222 	iceland_stop_smc_clock(hwmgr);
    223 
    224 	/* reset smc */
    225 	iceland_reset_smc(hwmgr);
    226 	iceland_upload_smc_firmware_data(hwmgr, info.image_size,
    227 				(uint8_t *)info.kptr, ICELAND_SMC_SIZE,
    228 				info.ucode_start_address);
    229 
    230 	return 0;
    231 }
    232 
    233 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
    234 						uint32_t firmwareType)
    235 {
    236 	return 0;
    237 }
    238 
    239 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
    240 {
    241 	struct iceland_smumgr *priv = hwmgr->smu_backend;
    242 	int result;
    243 
    244 	if (!smu7_is_smc_ram_running(hwmgr)) {
    245 		result = iceland_smu_upload_firmware_image(hwmgr);
    246 		if (result)
    247 			return result;
    248 
    249 		iceland_smu_start_smc(hwmgr);
    250 	}
    251 
    252 	/* Setup SoftRegsStart here to visit the register UcodeLoadStatus
    253 	 * to check fw loading state
    254 	 */
    255 	smu7_read_smc_sram_dword(hwmgr,
    256 			SMU71_FIRMWARE_HEADER_LOCATION +
    257 			offsetof(SMU71_Firmware_Header, SoftRegisters),
    258 			&(priv->smu7_data.soft_regs_start), 0x40000);
    259 
    260 	result = smu7_request_smu_load_fw(hwmgr);
    261 
    262 	return result;
    263 }
    264 
    265 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
    266 {
    267 	struct iceland_smumgr *iceland_priv = NULL;
    268 
    269 	iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
    270 
    271 	if (iceland_priv == NULL)
    272 		return -ENOMEM;
    273 
    274 	hwmgr->smu_backend = iceland_priv;
    275 
    276 	if (smu7_init(hwmgr)) {
    277 		kfree(iceland_priv);
    278 		return -EINVAL;
    279 	}
    280 
    281 	return 0;
    282 }
    283 
    284 
    285 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
    286 {
    287 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    288 	struct amdgpu_device *adev = hwmgr->adev;
    289 	uint32_t dev_id;
    290 
    291 	dev_id = adev->pdev->device;
    292 
    293 	switch (dev_id) {
    294 	case DEVICE_ID_VI_ICELAND_M_6900:
    295 	case DEVICE_ID_VI_ICELAND_M_6903:
    296 		smu_data->power_tune_defaults = &defaults_icelandxt;
    297 		break;
    298 
    299 	case DEVICE_ID_VI_ICELAND_M_6901:
    300 	case DEVICE_ID_VI_ICELAND_M_6902:
    301 		smu_data->power_tune_defaults = &defaults_icelandpro;
    302 		break;
    303 	default:
    304 		smu_data->power_tune_defaults = &defaults_iceland;
    305 		pr_warn("Unknown V.I. Device ID.\n");
    306 		break;
    307 	}
    308 	return;
    309 }
    310 
    311 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
    312 {
    313 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    314 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    315 
    316 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
    317 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
    318 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
    319 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
    320 
    321 	return 0;
    322 }
    323 
    324 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
    325 {
    326 	uint16_t tdc_limit;
    327 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    328 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    329 
    330 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
    331 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
    332 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
    333 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
    334 			defaults->tdc_vddc_throttle_release_limit_perc;
    335 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
    336 
    337 	return 0;
    338 }
    339 
    340 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
    341 {
    342 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    343 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    344 	uint32_t temp;
    345 
    346 	if (smu7_read_smc_sram_dword(hwmgr,
    347 			fuse_table_offset +
    348 			offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
    349 			(uint32_t *)&temp, SMC_RAM_END))
    350 		PP_ASSERT_WITH_CODE(false,
    351 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
    352 				return -EINVAL);
    353 	else
    354 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
    355 
    356 	return 0;
    357 }
    358 
    359 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
    360 {
    361 	return 0;
    362 }
    363 
    364 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
    365 {
    366 	int i;
    367 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    368 
    369 	/* Currently not used. Set all to zero. */
    370 	for (i = 0; i < 8; i++)
    371 		smu_data->power_tune_table.GnbLPML[i] = 0;
    372 
    373 	return 0;
    374 }
    375 
    376 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
    377 {
    378 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    379 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
    380 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
    381 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
    382 
    383 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
    384 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
    385 
    386 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
    387 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
    388 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
    389 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
    390 
    391 	return 0;
    392 }
    393 
    394 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
    395 {
    396 	int i;
    397 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    398 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
    399 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
    400 
    401 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
    402 			    "The CAC Leakage table does not exist!", return -EINVAL);
    403 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
    404 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
    405 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
    406 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
    407 
    408 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
    409 		for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
    410 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
    411 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
    412 		}
    413 	} else {
    414 		PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
    415 	}
    416 
    417 	return 0;
    418 }
    419 
    420 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
    421 {
    422 	int i;
    423 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    424 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
    425 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    426 
    427 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
    428 		"There should never be more than 8 entries for VddcVid!!!",
    429 		return -EINVAL);
    430 
    431 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
    432 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
    433 	}
    434 
    435 	return 0;
    436 }
    437 
    438 
    439 
    440 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
    441 {
    442 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    443 	uint32_t pm_fuse_table_offset;
    444 
    445 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    446 			PHM_PlatformCaps_PowerContainment)) {
    447 		if (smu7_read_smc_sram_dword(hwmgr,
    448 				SMU71_FIRMWARE_HEADER_LOCATION +
    449 				offsetof(SMU71_Firmware_Header, PmFuseTable),
    450 				&pm_fuse_table_offset, SMC_RAM_END))
    451 			PP_ASSERT_WITH_CODE(false,
    452 					"Attempt to get pm_fuse_table_offset Failed!",
    453 					return -EINVAL);
    454 
    455 		/* DW0 - DW3 */
    456 		if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
    457 			PP_ASSERT_WITH_CODE(false,
    458 					"Attempt to populate bapm vddc vid Failed!",
    459 					return -EINVAL);
    460 
    461 		/* DW4 - DW5 */
    462 		if (iceland_populate_vddc_vid(hwmgr))
    463 			PP_ASSERT_WITH_CODE(false,
    464 					"Attempt to populate vddc vid Failed!",
    465 					return -EINVAL);
    466 
    467 		/* DW6 */
    468 		if (iceland_populate_svi_load_line(hwmgr))
    469 			PP_ASSERT_WITH_CODE(false,
    470 					"Attempt to populate SviLoadLine Failed!",
    471 					return -EINVAL);
    472 		/* DW7 */
    473 		if (iceland_populate_tdc_limit(hwmgr))
    474 			PP_ASSERT_WITH_CODE(false,
    475 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
    476 		/* DW8 */
    477 		if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
    478 			PP_ASSERT_WITH_CODE(false,
    479 					"Attempt to populate TdcWaterfallCtl, "
    480 					"LPMLTemperature Min and Max Failed!",
    481 					return -EINVAL);
    482 
    483 		/* DW9-DW12 */
    484 		if (0 != iceland_populate_temperature_scaler(hwmgr))
    485 			PP_ASSERT_WITH_CODE(false,
    486 					"Attempt to populate LPMLTemperatureScaler Failed!",
    487 					return -EINVAL);
    488 
    489 		/* DW13-DW16 */
    490 		if (iceland_populate_gnb_lpml(hwmgr))
    491 			PP_ASSERT_WITH_CODE(false,
    492 					"Attempt to populate GnbLPML Failed!",
    493 					return -EINVAL);
    494 
    495 		/* DW18 */
    496 		if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
    497 			PP_ASSERT_WITH_CODE(false,
    498 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
    499 					return -EINVAL);
    500 
    501 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
    502 				(uint8_t *)&smu_data->power_tune_table,
    503 				sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
    504 			PP_ASSERT_WITH_CODE(false,
    505 					"Attempt to download PmFuseTable Failed!",
    506 					return -EINVAL);
    507 	}
    508 	return 0;
    509 }
    510 
    511 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
    512 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
    513 	uint32_t clock, uint32_t *vol)
    514 {
    515 	uint32_t i = 0;
    516 
    517 	/* clock - voltage dependency table is empty table */
    518 	if (allowed_clock_voltage_table->count == 0)
    519 		return -EINVAL;
    520 
    521 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
    522 		/* find first sclk bigger than request */
    523 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
    524 			*vol = allowed_clock_voltage_table->entries[i].v;
    525 			return 0;
    526 		}
    527 	}
    528 
    529 	/* sclk is bigger than max sclk in the dependence table */
    530 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
    531 
    532 	return 0;
    533 }
    534 
    535 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
    536 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
    537 		uint16_t *lo)
    538 {
    539 	uint16_t v_index;
    540 	bool vol_found = false;
    541 	*hi = tab->value * VOLTAGE_SCALE;
    542 	*lo = tab->value * VOLTAGE_SCALE;
    543 
    544 	/* SCLK/VDDC Dependency Table has to exist. */
    545 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
    546 			"The SCLK/VDDC Dependency Table does not exist.",
    547 			return -EINVAL);
    548 
    549 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
    550 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
    551 		return 0;
    552 	}
    553 
    554 	/*
    555 	 * Since voltage in the sclk/vddc dependency table is not
    556 	 * necessarily in ascending order because of ELB voltage
    557 	 * patching, loop through entire list to find exact voltage.
    558 	 */
    559 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
    560 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
    561 			vol_found = true;
    562 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
    563 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
    564 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
    565 			} else {
    566 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
    567 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
    568 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
    569 			}
    570 			break;
    571 		}
    572 	}
    573 
    574 	/*
    575 	 * If voltage is not found in the first pass, loop again to
    576 	 * find the best match, equal or higher value.
    577 	 */
    578 	if (!vol_found) {
    579 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
    580 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
    581 				vol_found = true;
    582 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
    583 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
    584 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
    585 				} else {
    586 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
    587 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
    588 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
    589 				}
    590 				break;
    591 			}
    592 		}
    593 
    594 		if (!vol_found)
    595 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
    596 	}
    597 
    598 	return 0;
    599 }
    600 
    601 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
    602 		pp_atomctrl_voltage_table_entry *tab,
    603 		SMU71_Discrete_VoltageLevel *smc_voltage_tab)
    604 {
    605 	int result;
    606 
    607 	result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
    608 			&smc_voltage_tab->StdVoltageHiSidd,
    609 			&smc_voltage_tab->StdVoltageLoSidd);
    610 	if (0 != result) {
    611 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
    612 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
    613 	}
    614 
    615 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
    616 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
    617 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
    618 
    619 	return 0;
    620 }
    621 
    622 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
    623 			SMU71_Discrete_DpmTable *table)
    624 {
    625 	unsigned int count;
    626 	int result;
    627 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    628 
    629 	table->VddcLevelCount = data->vddc_voltage_table.count;
    630 	for (count = 0; count < table->VddcLevelCount; count++) {
    631 		result = iceland_populate_smc_voltage_table(hwmgr,
    632 				&(data->vddc_voltage_table.entries[count]),
    633 				&(table->VddcLevel[count]));
    634 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
    635 
    636 		/* GPIO voltage control */
    637 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
    638 			table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
    639 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
    640 			table->VddcLevel[count].Smio = 0;
    641 	}
    642 
    643 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
    644 
    645 	return 0;
    646 }
    647 
    648 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
    649 			SMU71_Discrete_DpmTable *table)
    650 {
    651 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    652 	uint32_t count;
    653 	int result;
    654 
    655 	table->VddciLevelCount = data->vddci_voltage_table.count;
    656 
    657 	for (count = 0; count < table->VddciLevelCount; count++) {
    658 		result = iceland_populate_smc_voltage_table(hwmgr,
    659 				&(data->vddci_voltage_table.entries[count]),
    660 				&(table->VddciLevel[count]));
    661 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
    662 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
    663 			table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
    664 		else
    665 			table->VddciLevel[count].Smio |= 0;
    666 	}
    667 
    668 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
    669 
    670 	return 0;
    671 }
    672 
    673 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
    674 			SMU71_Discrete_DpmTable *table)
    675 {
    676 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    677 	uint32_t count;
    678 	int result;
    679 
    680 	table->MvddLevelCount = data->mvdd_voltage_table.count;
    681 
    682 	for (count = 0; count < table->VddciLevelCount; count++) {
    683 		result = iceland_populate_smc_voltage_table(hwmgr,
    684 				&(data->mvdd_voltage_table.entries[count]),
    685 				&table->MvddLevel[count]);
    686 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
    687 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
    688 			table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
    689 		else
    690 			table->MvddLevel[count].Smio |= 0;
    691 	}
    692 
    693 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
    694 
    695 	return 0;
    696 }
    697 
    698 
    699 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
    700 	SMU71_Discrete_DpmTable *table)
    701 {
    702 	int result;
    703 
    704 	result = iceland_populate_smc_vddc_table(hwmgr, table);
    705 	PP_ASSERT_WITH_CODE(0 == result,
    706 			"can not populate VDDC voltage table to SMC", return -EINVAL);
    707 
    708 	result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
    709 	PP_ASSERT_WITH_CODE(0 == result,
    710 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
    711 
    712 	result = iceland_populate_smc_mvdd_table(hwmgr, table);
    713 	PP_ASSERT_WITH_CODE(0 == result,
    714 			"can not populate MVDD voltage table to SMC", return -EINVAL);
    715 
    716 	return 0;
    717 }
    718 
    719 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
    720 		struct SMU71_Discrete_Ulv *state)
    721 {
    722 	uint32_t voltage_response_time, ulv_voltage;
    723 	int result;
    724 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    725 
    726 	state->CcPwrDynRm = 0;
    727 	state->CcPwrDynRm1 = 0;
    728 
    729 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
    730 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
    731 
    732 	if (ulv_voltage == 0) {
    733 		data->ulv_supported = false;
    734 		return 0;
    735 	}
    736 
    737 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
    738 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
    739 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
    740 			state->VddcOffset = 0;
    741 		else
    742 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
    743 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
    744 	} else {
    745 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
    746 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
    747 			state->VddcOffsetVid = 0;
    748 		else  /* used in SVI2 Mode */
    749 			state->VddcOffsetVid = (uint8_t)(
    750 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
    751 						* VOLTAGE_VID_OFFSET_SCALE2
    752 						/ VOLTAGE_VID_OFFSET_SCALE1);
    753 	}
    754 	state->VddcPhase = 1;
    755 
    756 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
    757 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
    758 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
    759 
    760 	return 0;
    761 }
    762 
    763 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
    764 		 SMU71_Discrete_Ulv *ulv_level)
    765 {
    766 	return iceland_populate_ulv_level(hwmgr, ulv_level);
    767 }
    768 
    769 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
    770 {
    771 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    772 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    773 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    774 	uint32_t i;
    775 
    776 	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
    777 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
    778 		table->LinkLevel[i].PcieGenSpeed  =
    779 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
    780 		table->LinkLevel[i].PcieLaneCount =
    781 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
    782 		table->LinkLevel[i].EnabledForActivity =
    783 			1;
    784 		table->LinkLevel[i].SPC =
    785 			(uint8_t)(data->pcie_spc_cap & 0xff);
    786 		table->LinkLevel[i].DownThreshold =
    787 			PP_HOST_TO_SMC_UL(5);
    788 		table->LinkLevel[i].UpThreshold =
    789 			PP_HOST_TO_SMC_UL(30);
    790 	}
    791 
    792 	smu_data->smc_state_table.LinkLevelCount =
    793 		(uint8_t)dpm_table->pcie_speed_table.count;
    794 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
    795 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
    796 
    797 	return 0;
    798 }
    799 
    800 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
    801 		uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
    802 {
    803 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    804 	pp_atomctrl_clock_dividers_vi dividers;
    805 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
    806 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
    807 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
    808 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
    809 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
    810 	uint32_t    reference_clock;
    811 	uint32_t reference_divider;
    812 	uint32_t fbdiv;
    813 	int result;
    814 
    815 	/* get the engine clock dividers for this clock value*/
    816 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
    817 
    818 	PP_ASSERT_WITH_CODE(result == 0,
    819 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
    820 
    821 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
    822 	reference_clock = atomctrl_get_reference_clock(hwmgr);
    823 
    824 	reference_divider = 1 + dividers.uc_pll_ref_div;
    825 
    826 	/* low 14 bits is fraction and high 12 bits is divider*/
    827 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
    828 
    829 	/* SPLL_FUNC_CNTL setup*/
    830 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
    831 		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
    832 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
    833 		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
    834 
    835 	/* SPLL_FUNC_CNTL_3 setup*/
    836 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
    837 		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
    838 
    839 	/* set to use fractional accumulation*/
    840 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
    841 		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
    842 
    843 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    844 			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
    845 		pp_atomctrl_internal_ss_info ss_info;
    846 
    847 		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
    848 		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
    849 			/*
    850 			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
    851 			* ss_info.speed_spectrum_rate -- in unit of khz
    852 			*/
    853 			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
    854 			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
    855 
    856 			/* clkv = 2 * D * fbdiv / NS */
    857 			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
    858 
    859 			cg_spll_spread_spectrum =
    860 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
    861 			cg_spll_spread_spectrum =
    862 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
    863 			cg_spll_spread_spectrum_2 =
    864 				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
    865 		}
    866 	}
    867 
    868 	sclk->SclkFrequency        = engine_clock;
    869 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
    870 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
    871 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
    872 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
    873 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
    874 
    875 	return 0;
    876 }
    877 
    878 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
    879 				const struct phm_phase_shedding_limits_table *pl,
    880 					uint32_t sclk, uint32_t *p_shed)
    881 {
    882 	unsigned int i;
    883 
    884 	/* use the minimum phase shedding */
    885 	*p_shed = 1;
    886 
    887 	for (i = 0; i < pl->count; i++) {
    888 		if (sclk < pl->entries[i].Sclk) {
    889 			*p_shed = i;
    890 			break;
    891 		}
    892 	}
    893 	return 0;
    894 }
    895 
    896 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
    897 						uint32_t engine_clock,
    898 				SMU71_Discrete_GraphicsLevel *graphic_level)
    899 {
    900 	int result;
    901 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    902 
    903 	result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
    904 
    905 	/* populate graphics levels*/
    906 	result = iceland_get_dependency_volt_by_clk(hwmgr,
    907 		hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
    908 		&graphic_level->MinVddc);
    909 	PP_ASSERT_WITH_CODE((0 == result),
    910 		"can not find VDDC voltage value for VDDC engine clock dependency table", return result);
    911 
    912 	/* SCLK frequency in units of 10KHz*/
    913 	graphic_level->SclkFrequency = engine_clock;
    914 	graphic_level->MinVddcPhases = 1;
    915 
    916 	if (data->vddc_phase_shed_control)
    917 		iceland_populate_phase_value_based_on_sclk(hwmgr,
    918 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
    919 				engine_clock,
    920 				&graphic_level->MinVddcPhases);
    921 
    922 	/* Indicates maximum activity level for this performance level. 50% for now*/
    923 	graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
    924 
    925 	graphic_level->CcPwrDynRm = 0;
    926 	graphic_level->CcPwrDynRm1 = 0;
    927 	/* this level can be used if activity is high enough.*/
    928 	graphic_level->EnabledForActivity = 0;
    929 	/* this level can be used for throttling.*/
    930 	graphic_level->EnabledForThrottle = 1;
    931 	graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
    932 	graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
    933 	graphic_level->VoltageDownHyst = 0;
    934 	graphic_level->PowerThrottle = 0;
    935 
    936 	data->display_timing.min_clock_in_sr =
    937 			hwmgr->display_config->min_core_set_clock_in_sr;
    938 
    939 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    940 			PHM_PlatformCaps_SclkDeepSleep))
    941 		graphic_level->DeepSleepDivId =
    942 				smu7_get_sleep_divider_id_from_clock(engine_clock,
    943 						data->display_timing.min_clock_in_sr);
    944 
    945 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
    946 	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
    947 
    948 	if (0 == result) {
    949 		graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
    950 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
    951 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
    952 		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
    953 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
    954 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
    955 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
    956 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
    957 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
    958 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
    959 	}
    960 
    961 	return result;
    962 }
    963 
    964 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
    965 {
    966 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    967 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    968 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    969 	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
    970 				offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
    971 
    972 	uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
    973 						SMU71_MAX_LEVELS_GRAPHICS;
    974 
    975 	SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
    976 
    977 	uint32_t i;
    978 	uint8_t highest_pcie_level_enabled = 0;
    979 	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
    980 	uint8_t count = 0;
    981 	int result = 0;
    982 
    983 	memset(levels, 0x00, level_array_size);
    984 
    985 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
    986 		result = iceland_populate_single_graphic_level(hwmgr,
    987 					dpm_table->sclk_table.dpm_levels[i].value,
    988 					&(smu_data->smc_state_table.GraphicsLevel[i]));
    989 		if (result != 0)
    990 			return result;
    991 
    992 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
    993 		if (i > 1)
    994 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
    995 	}
    996 
    997 	/* Only enable level 0 for now. */
    998 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
    999 
   1000 	/* set highest level watermark to high */
   1001 	if (dpm_table->sclk_table.count > 1)
   1002 		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
   1003 			PPSMC_DISPLAY_WATERMARK_HIGH;
   1004 
   1005 	smu_data->smc_state_table.GraphicsDpmLevelCount =
   1006 		(uint8_t)dpm_table->sclk_table.count;
   1007 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
   1008 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
   1009 
   1010 	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1011 				(1 << (highest_pcie_level_enabled + 1))) != 0) {
   1012 		highest_pcie_level_enabled++;
   1013 	}
   1014 
   1015 	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1016 		(1 << lowest_pcie_level_enabled)) == 0) {
   1017 		lowest_pcie_level_enabled++;
   1018 	}
   1019 
   1020 	while ((count < highest_pcie_level_enabled) &&
   1021 			((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1022 				(1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
   1023 		count++;
   1024 	}
   1025 
   1026 	mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
   1027 		(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
   1028 
   1029 
   1030 	/* set pcieDpmLevel to highest_pcie_level_enabled*/
   1031 	for (i = 2; i < dpm_table->sclk_table.count; i++) {
   1032 		smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
   1033 	}
   1034 
   1035 	/* set pcieDpmLevel to lowest_pcie_level_enabled*/
   1036 	smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
   1037 
   1038 	/* set pcieDpmLevel to mid_pcie_level_enabled*/
   1039 	smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
   1040 
   1041 	/* level count will send to smc once at init smc table and never change*/
   1042 	result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
   1043 				(uint8_t *)levels, (uint32_t)level_array_size,
   1044 								SMC_RAM_END);
   1045 
   1046 	return result;
   1047 }
   1048 
   1049 static int iceland_calculate_mclk_params(
   1050 		struct pp_hwmgr *hwmgr,
   1051 		uint32_t memory_clock,
   1052 		SMU71_Discrete_MemoryLevel *mclk,
   1053 		bool strobe_mode,
   1054 		bool dllStateOn
   1055 		)
   1056 {
   1057 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1058 
   1059 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
   1060 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
   1061 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
   1062 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
   1063 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
   1064 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
   1065 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
   1066 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
   1067 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
   1068 
   1069 	pp_atomctrl_memory_clock_param mpll_param;
   1070 	int result;
   1071 
   1072 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
   1073 				memory_clock, &mpll_param, strobe_mode);
   1074 	PP_ASSERT_WITH_CODE(0 == result,
   1075 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
   1076 
   1077 	/* MPLL_FUNC_CNTL setup*/
   1078 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
   1079 
   1080 	/* MPLL_FUNC_CNTL_1 setup*/
   1081 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1082 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
   1083 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1084 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
   1085 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1086 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
   1087 
   1088 	/* MPLL_AD_FUNC_CNTL setup*/
   1089 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
   1090 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
   1091 
   1092 	if (data->is_memory_gddr5) {
   1093 		/* MPLL_DQ_FUNC_CNTL setup*/
   1094 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
   1095 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
   1096 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
   1097 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
   1098 	}
   1099 
   1100 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1101 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
   1102 		/*
   1103 		 ************************************
   1104 		 Fref = Reference Frequency
   1105 		 NF = Feedback divider ratio
   1106 		 NR = Reference divider ratio
   1107 		 Fnom = Nominal VCO output frequency = Fref * NF / NR
   1108 		 Fs = Spreading Rate
   1109 		 D = Percentage down-spread / 2
   1110 		 Fint = Reference input frequency to PFD = Fref / NR
   1111 		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
   1112 		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
   1113 		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
   1114 		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
   1115 		 *************************************
   1116 		 */
   1117 		pp_atomctrl_internal_ss_info ss_info;
   1118 		uint32_t freq_nom;
   1119 		uint32_t tmp;
   1120 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
   1121 
   1122 		/* for GDDR5 for all modes and DDR3 */
   1123 		if (1 == mpll_param.qdr)
   1124 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
   1125 		else
   1126 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
   1127 
   1128 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
   1129 		tmp = (freq_nom / reference_clock);
   1130 		tmp = tmp * tmp;
   1131 
   1132 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
   1133 			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
   1134 			/* ss.Info.speed_spectrum_rate -- in unit of khz */
   1135 			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
   1136 			/*     = reference_clock * 5 / speed_spectrum_rate */
   1137 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
   1138 
   1139 			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
   1140 			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
   1141 			uint32_t clkv =
   1142 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
   1143 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
   1144 
   1145 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
   1146 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
   1147 		}
   1148 	}
   1149 
   1150 	/* MCLK_PWRMGT_CNTL setup */
   1151 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1152 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
   1153 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1154 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
   1155 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1156 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
   1157 
   1158 
   1159 	/* Save the result data to outpupt memory level structure */
   1160 	mclk->MclkFrequency   = memory_clock;
   1161 	mclk->MpllFuncCntl    = mpll_func_cntl;
   1162 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
   1163 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
   1164 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
   1165 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
   1166 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
   1167 	mclk->DllCntl         = dll_cntl;
   1168 	mclk->MpllSs1         = mpll_ss1;
   1169 	mclk->MpllSs2         = mpll_ss2;
   1170 
   1171 	return 0;
   1172 }
   1173 
   1174 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
   1175 		bool strobe_mode)
   1176 {
   1177 	uint8_t mc_para_index;
   1178 
   1179 	if (strobe_mode) {
   1180 		if (memory_clock < 12500) {
   1181 			mc_para_index = 0x00;
   1182 		} else if (memory_clock > 47500) {
   1183 			mc_para_index = 0x0f;
   1184 		} else {
   1185 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
   1186 		}
   1187 	} else {
   1188 		if (memory_clock < 65000) {
   1189 			mc_para_index = 0x00;
   1190 		} else if (memory_clock > 135000) {
   1191 			mc_para_index = 0x0f;
   1192 		} else {
   1193 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
   1194 		}
   1195 	}
   1196 
   1197 	return mc_para_index;
   1198 }
   1199 
   1200 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
   1201 {
   1202 	uint8_t mc_para_index;
   1203 
   1204 	if (memory_clock < 10000) {
   1205 		mc_para_index = 0;
   1206 	} else if (memory_clock >= 80000) {
   1207 		mc_para_index = 0x0f;
   1208 	} else {
   1209 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
   1210 	}
   1211 
   1212 	return mc_para_index;
   1213 }
   1214 
   1215 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
   1216 					uint32_t memory_clock, uint32_t *p_shed)
   1217 {
   1218 	unsigned int i;
   1219 
   1220 	*p_shed = 1;
   1221 
   1222 	for (i = 0; i < pl->count; i++) {
   1223 		if (memory_clock < pl->entries[i].Mclk) {
   1224 			*p_shed = i;
   1225 			break;
   1226 		}
   1227 	}
   1228 
   1229 	return 0;
   1230 }
   1231 
   1232 static int iceland_populate_single_memory_level(
   1233 		struct pp_hwmgr *hwmgr,
   1234 		uint32_t memory_clock,
   1235 		SMU71_Discrete_MemoryLevel *memory_level
   1236 		)
   1237 {
   1238 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1239 	int result = 0;
   1240 	bool dll_state_on;
   1241 	uint32_t mclk_edc_wr_enable_threshold = 40000;
   1242 	uint32_t mclk_edc_enable_threshold = 40000;
   1243 	uint32_t mclk_strobe_mode_threshold = 40000;
   1244 
   1245 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
   1246 		result = iceland_get_dependency_volt_by_clk(hwmgr,
   1247 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
   1248 		PP_ASSERT_WITH_CODE((0 == result),
   1249 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
   1250 	}
   1251 
   1252 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
   1253 		memory_level->MinVddci = memory_level->MinVddc;
   1254 	} else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
   1255 		result = iceland_get_dependency_volt_by_clk(hwmgr,
   1256 				hwmgr->dyn_state.vddci_dependency_on_mclk,
   1257 				memory_clock,
   1258 				&memory_level->MinVddci);
   1259 		PP_ASSERT_WITH_CODE((0 == result),
   1260 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
   1261 	}
   1262 
   1263 	memory_level->MinVddcPhases = 1;
   1264 
   1265 	if (data->vddc_phase_shed_control) {
   1266 		iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
   1267 				memory_clock, &memory_level->MinVddcPhases);
   1268 	}
   1269 
   1270 	memory_level->EnabledForThrottle = 1;
   1271 	memory_level->EnabledForActivity = 0;
   1272 	memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
   1273 	memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
   1274 	memory_level->VoltageDownHyst = 0;
   1275 
   1276 	/* Indicates maximum activity level for this performance level.*/
   1277 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
   1278 	memory_level->StutterEnable = 0;
   1279 	memory_level->StrobeEnable = 0;
   1280 	memory_level->EdcReadEnable = 0;
   1281 	memory_level->EdcWriteEnable = 0;
   1282 	memory_level->RttEnable = 0;
   1283 
   1284 	/* default set to low watermark. Highest level will be set to high later.*/
   1285 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1286 
   1287 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
   1288 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
   1289 
   1290 	/* stutter mode not support on iceland */
   1291 
   1292 	/* decide strobe mode*/
   1293 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
   1294 		(memory_clock <= mclk_strobe_mode_threshold);
   1295 
   1296 	/* decide EDC mode and memory clock ratio*/
   1297 	if (data->is_memory_gddr5) {
   1298 		memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
   1299 					memory_level->StrobeEnable);
   1300 
   1301 		if ((mclk_edc_enable_threshold != 0) &&
   1302 				(memory_clock > mclk_edc_enable_threshold)) {
   1303 			memory_level->EdcReadEnable = 1;
   1304 		}
   1305 
   1306 		if ((mclk_edc_wr_enable_threshold != 0) &&
   1307 				(memory_clock > mclk_edc_wr_enable_threshold)) {
   1308 			memory_level->EdcWriteEnable = 1;
   1309 		}
   1310 
   1311 		if (memory_level->StrobeEnable) {
   1312 			if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
   1313 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
   1314 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
   1315 			else
   1316 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
   1317 		} else
   1318 			dll_state_on = data->dll_default_on;
   1319 	} else {
   1320 		memory_level->StrobeRatio =
   1321 			iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
   1322 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
   1323 	}
   1324 
   1325 	result = iceland_calculate_mclk_params(hwmgr,
   1326 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
   1327 
   1328 	if (0 == result) {
   1329 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
   1330 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
   1331 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
   1332 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
   1333 		/* MCLK frequency in units of 10KHz*/
   1334 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
   1335 		/* Indicates maximum activity level for this performance level.*/
   1336 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
   1337 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
   1338 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
   1339 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
   1340 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
   1341 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
   1342 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
   1343 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
   1344 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
   1345 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
   1346 	}
   1347 
   1348 	return result;
   1349 }
   1350 
   1351 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
   1352 {
   1353 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1354 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1355 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1356 	int result;
   1357 
   1358 	/* populate MCLK dpm table to SMU7 */
   1359 	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
   1360 	uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
   1361 	SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
   1362 	uint32_t i;
   1363 
   1364 	memset(levels, 0x00, level_array_size);
   1365 
   1366 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
   1367 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
   1368 			"can not populate memory level as memory clock is zero", return -EINVAL);
   1369 		result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
   1370 			&(smu_data->smc_state_table.MemoryLevel[i]));
   1371 		if (0 != result) {
   1372 			return result;
   1373 		}
   1374 	}
   1375 
   1376 	/* Only enable level 0 for now.*/
   1377 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
   1378 
   1379 	/*
   1380 	* in order to prevent MC activity from stutter mode to push DPM up.
   1381 	* the UVD change complements this by putting the MCLK in a higher state
   1382 	* by default such that we are not effected by up threshold or and MCLK DPM latency.
   1383 	*/
   1384 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
   1385 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
   1386 
   1387 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
   1388 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
   1389 	/* set highest level watermark to high*/
   1390 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
   1391 
   1392 	/* level count will send to smc once at init smc table and never change*/
   1393 	result = smu7_copy_bytes_to_smc(hwmgr,
   1394 		level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
   1395 		SMC_RAM_END);
   1396 
   1397 	return result;
   1398 }
   1399 
   1400 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
   1401 					SMU71_Discrete_VoltageLevel *voltage)
   1402 {
   1403 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1404 
   1405 	uint32_t i = 0;
   1406 
   1407 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
   1408 		/* find mvdd value which clock is more than request */
   1409 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
   1410 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
   1411 				/* Always round to higher voltage. */
   1412 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
   1413 				break;
   1414 			}
   1415 		}
   1416 
   1417 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
   1418 			"MVDD Voltage is outside the supported range.", return -EINVAL);
   1419 
   1420 	} else {
   1421 		return -EINVAL;
   1422 	}
   1423 
   1424 	return 0;
   1425 }
   1426 
   1427 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
   1428 	SMU71_Discrete_DpmTable *table)
   1429 {
   1430 	int result = 0;
   1431 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1432 	struct pp_atomctrl_clock_dividers_vi dividers;
   1433 	uint32_t vddc_phase_shed_control = 0;
   1434 
   1435 	SMU71_Discrete_VoltageLevel voltage_level;
   1436 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
   1437 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
   1438 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
   1439 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
   1440 
   1441 
   1442 	/* The ACPI state should not do DPM on DC (or ever).*/
   1443 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
   1444 
   1445 	if (data->acpi_vddc)
   1446 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
   1447 	else
   1448 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
   1449 
   1450 	table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
   1451 	/* assign zero for now*/
   1452 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
   1453 
   1454 	/* get the engine clock dividers for this clock value*/
   1455 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
   1456 		table->ACPILevel.SclkFrequency,  &dividers);
   1457 
   1458 	PP_ASSERT_WITH_CODE(result == 0,
   1459 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
   1460 
   1461 	/* divider ID for required SCLK*/
   1462 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
   1463 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1464 	table->ACPILevel.DeepSleepDivId = 0;
   1465 
   1466 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
   1467 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
   1468 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
   1469 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
   1470 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
   1471 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
   1472 
   1473 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
   1474 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
   1475 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
   1476 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
   1477 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
   1478 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
   1479 	table->ACPILevel.CcPwrDynRm = 0;
   1480 	table->ACPILevel.CcPwrDynRm1 = 0;
   1481 
   1482 
   1483 	/* For various features to be enabled/disabled while this level is active.*/
   1484 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
   1485 	/* SCLK frequency in units of 10KHz*/
   1486 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
   1487 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
   1488 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
   1489 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
   1490 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
   1491 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
   1492 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
   1493 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
   1494 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
   1495 
   1496 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
   1497 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
   1498 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
   1499 
   1500 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
   1501 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
   1502 	else {
   1503 		if (data->acpi_vddci != 0)
   1504 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
   1505 		else
   1506 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
   1507 	}
   1508 
   1509 	if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
   1510 		table->MemoryACPILevel.MinMvdd =
   1511 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
   1512 	else
   1513 		table->MemoryACPILevel.MinMvdd = 0;
   1514 
   1515 	/* Force reset on DLL*/
   1516 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1517 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
   1518 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1519 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
   1520 
   1521 	/* Disable DLL in ACPIState*/
   1522 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1523 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
   1524 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1525 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
   1526 
   1527 	/* Enable DLL bypass signal*/
   1528 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
   1529 		DLL_CNTL, MRDCK0_BYPASS, 0);
   1530 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
   1531 		DLL_CNTL, MRDCK1_BYPASS, 0);
   1532 
   1533 	table->MemoryACPILevel.DllCntl            =
   1534 		PP_HOST_TO_SMC_UL(dll_cntl);
   1535 	table->MemoryACPILevel.MclkPwrmgtCntl     =
   1536 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
   1537 	table->MemoryACPILevel.MpllAdFuncCntl     =
   1538 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
   1539 	table->MemoryACPILevel.MpllDqFuncCntl     =
   1540 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
   1541 	table->MemoryACPILevel.MpllFuncCntl       =
   1542 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
   1543 	table->MemoryACPILevel.MpllFuncCntl_1     =
   1544 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
   1545 	table->MemoryACPILevel.MpllFuncCntl_2     =
   1546 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
   1547 	table->MemoryACPILevel.MpllSs1            =
   1548 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
   1549 	table->MemoryACPILevel.MpllSs2            =
   1550 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
   1551 
   1552 	table->MemoryACPILevel.EnabledForThrottle = 0;
   1553 	table->MemoryACPILevel.EnabledForActivity = 0;
   1554 	table->MemoryACPILevel.UpHyst = 0;
   1555 	table->MemoryACPILevel.DownHyst = 100;
   1556 	table->MemoryACPILevel.VoltageDownHyst = 0;
   1557 	/* Indicates maximum activity level for this performance level.*/
   1558 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
   1559 
   1560 	table->MemoryACPILevel.StutterEnable = 0;
   1561 	table->MemoryACPILevel.StrobeEnable = 0;
   1562 	table->MemoryACPILevel.EdcReadEnable = 0;
   1563 	table->MemoryACPILevel.EdcWriteEnable = 0;
   1564 	table->MemoryACPILevel.RttEnable = 0;
   1565 
   1566 	return result;
   1567 }
   1568 
   1569 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
   1570 					SMU71_Discrete_DpmTable *table)
   1571 {
   1572 	return 0;
   1573 }
   1574 
   1575 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
   1576 		SMU71_Discrete_DpmTable *table)
   1577 {
   1578 	return 0;
   1579 }
   1580 
   1581 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
   1582 		SMU71_Discrete_DpmTable *table)
   1583 {
   1584 	return 0;
   1585 }
   1586 
   1587 static int iceland_populate_memory_timing_parameters(
   1588 		struct pp_hwmgr *hwmgr,
   1589 		uint32_t engine_clock,
   1590 		uint32_t memory_clock,
   1591 		struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
   1592 		)
   1593 {
   1594 	uint32_t dramTiming;
   1595 	uint32_t dramTiming2;
   1596 	uint32_t burstTime;
   1597 	int result;
   1598 
   1599 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
   1600 				engine_clock, memory_clock);
   1601 
   1602 	PP_ASSERT_WITH_CODE(result == 0,
   1603 		"Error calling VBIOS to set DRAM_TIMING.", return result);
   1604 
   1605 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
   1606 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
   1607 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
   1608 
   1609 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
   1610 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
   1611 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
   1612 
   1613 	return 0;
   1614 }
   1615 
   1616 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
   1617 {
   1618 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1619 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1620 	int result = 0;
   1621 	SMU71_Discrete_MCArbDramTimingTable  arb_regs;
   1622 	uint32_t i, j;
   1623 
   1624 	memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
   1625 
   1626 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
   1627 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
   1628 			result = iceland_populate_memory_timing_parameters
   1629 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
   1630 				 data->dpm_table.mclk_table.dpm_levels[j].value,
   1631 				 &arb_regs.entries[i][j]);
   1632 
   1633 			if (0 != result) {
   1634 				break;
   1635 			}
   1636 		}
   1637 	}
   1638 
   1639 	if (0 == result) {
   1640 		result = smu7_copy_bytes_to_smc(
   1641 				hwmgr,
   1642 				smu_data->smu7_data.arb_table_start,
   1643 				(uint8_t *)&arb_regs,
   1644 				sizeof(SMU71_Discrete_MCArbDramTimingTable),
   1645 				SMC_RAM_END
   1646 				);
   1647 	}
   1648 
   1649 	return result;
   1650 }
   1651 
   1652 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
   1653 			SMU71_Discrete_DpmTable *table)
   1654 {
   1655 	int result = 0;
   1656 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1657 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1658 	table->GraphicsBootLevel = 0;
   1659 	table->MemoryBootLevel = 0;
   1660 
   1661 	/* find boot level from dpm table*/
   1662 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
   1663 			data->vbios_boot_state.sclk_bootup_value,
   1664 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
   1665 
   1666 	if (0 != result) {
   1667 		smu_data->smc_state_table.GraphicsBootLevel = 0;
   1668 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
   1669 		result = 0;
   1670 	}
   1671 
   1672 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
   1673 		data->vbios_boot_state.mclk_bootup_value,
   1674 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
   1675 
   1676 	if (0 != result) {
   1677 		smu_data->smc_state_table.MemoryBootLevel = 0;
   1678 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
   1679 		result = 0;
   1680 	}
   1681 
   1682 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
   1683 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
   1684 		table->BootVddci = table->BootVddc;
   1685 	else
   1686 		table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
   1687 
   1688 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
   1689 
   1690 	return result;
   1691 }
   1692 
   1693 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
   1694 				 SMU71_Discrete_MCRegisters *mc_reg_table)
   1695 {
   1696 	const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
   1697 
   1698 	uint32_t i, j;
   1699 
   1700 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
   1701 		if (smu_data->mc_reg_table.validflag & 1<<j) {
   1702 			PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
   1703 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
   1704 			mc_reg_table->address[i].s0 =
   1705 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
   1706 			mc_reg_table->address[i].s1 =
   1707 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
   1708 			i++;
   1709 		}
   1710 	}
   1711 
   1712 	mc_reg_table->last = (uint8_t)i;
   1713 
   1714 	return 0;
   1715 }
   1716 
   1717 /*convert register values from driver to SMC format */
   1718 static void iceland_convert_mc_registers(
   1719 	const struct iceland_mc_reg_entry *entry,
   1720 	SMU71_Discrete_MCRegisterSet *data,
   1721 	uint32_t num_entries, uint32_t valid_flag)
   1722 {
   1723 	uint32_t i, j;
   1724 
   1725 	for (i = 0, j = 0; j < num_entries; j++) {
   1726 		if (valid_flag & 1<<j) {
   1727 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
   1728 			i++;
   1729 		}
   1730 	}
   1731 }
   1732 
   1733 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
   1734 		const uint32_t memory_clock,
   1735 		SMU71_Discrete_MCRegisterSet *mc_reg_table_data
   1736 		)
   1737 {
   1738 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1739 	uint32_t i = 0;
   1740 
   1741 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
   1742 		if (memory_clock <=
   1743 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
   1744 			break;
   1745 		}
   1746 	}
   1747 
   1748 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
   1749 		--i;
   1750 
   1751 	iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
   1752 				mc_reg_table_data, smu_data->mc_reg_table.last,
   1753 				smu_data->mc_reg_table.validflag);
   1754 
   1755 	return 0;
   1756 }
   1757 
   1758 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
   1759 		SMU71_Discrete_MCRegisters *mc_regs)
   1760 {
   1761 	int result = 0;
   1762 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1763 	int res;
   1764 	uint32_t i;
   1765 
   1766 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
   1767 		res = iceland_convert_mc_reg_table_entry_to_smc(
   1768 				hwmgr,
   1769 				data->dpm_table.mclk_table.dpm_levels[i].value,
   1770 				&mc_regs->data[i]
   1771 				);
   1772 
   1773 		if (0 != res)
   1774 			result = res;
   1775 	}
   1776 
   1777 	return result;
   1778 }
   1779 
   1780 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
   1781 {
   1782 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1783 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1784 	uint32_t address;
   1785 	int32_t result;
   1786 
   1787 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
   1788 		return 0;
   1789 
   1790 
   1791 	memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
   1792 
   1793 	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
   1794 
   1795 	if (result != 0)
   1796 		return result;
   1797 
   1798 
   1799 	address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
   1800 
   1801 	return  smu7_copy_bytes_to_smc(hwmgr, address,
   1802 				 (uint8_t *)&smu_data->mc_regs.data[0],
   1803 				sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
   1804 				SMC_RAM_END);
   1805 }
   1806 
   1807 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
   1808 {
   1809 	int result;
   1810 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1811 
   1812 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
   1813 	result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
   1814 	PP_ASSERT_WITH_CODE(0 == result,
   1815 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
   1816 
   1817 	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
   1818 	PP_ASSERT_WITH_CODE(0 == result,
   1819 		"Failed to initialize MCRegTable for driver state!", return result;);
   1820 
   1821 	return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
   1822 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
   1823 }
   1824 
   1825 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
   1826 {
   1827 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1828 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1829 	uint8_t count, level;
   1830 
   1831 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
   1832 
   1833 	for (level = 0; level < count; level++) {
   1834 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
   1835 			 >= data->vbios_boot_state.sclk_bootup_value) {
   1836 			smu_data->smc_state_table.GraphicsBootLevel = level;
   1837 			break;
   1838 		}
   1839 	}
   1840 
   1841 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
   1842 
   1843 	for (level = 0; level < count; level++) {
   1844 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
   1845 			>= data->vbios_boot_state.mclk_bootup_value) {
   1846 			smu_data->smc_state_table.MemoryBootLevel = level;
   1847 			break;
   1848 		}
   1849 	}
   1850 
   1851 	return 0;
   1852 }
   1853 
   1854 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
   1855 {
   1856 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1857 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1858 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
   1859 	SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
   1860 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
   1861 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
   1862 	const uint16_t *def1, *def2;
   1863 	int i, j, k;
   1864 
   1865 
   1866 	/*
   1867 	 * TDP number of fraction bits are changed from 8 to 7 for Iceland
   1868 	 * as requested by SMC team
   1869 	 */
   1870 
   1871 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
   1872 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
   1873 
   1874 
   1875 	dpm_table->DTETjOffset = 0;
   1876 
   1877 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
   1878 	dpm_table->GpuTjHyst = 8;
   1879 
   1880 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
   1881 
   1882 	/* The following are for new Iceland Multi-input fan/thermal control */
   1883 	if (NULL != ppm) {
   1884 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
   1885 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
   1886 	} else {
   1887 		dpm_table->PPM_PkgPwrLimit = 0;
   1888 		dpm_table->PPM_TemperatureLimit = 0;
   1889 	}
   1890 
   1891 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
   1892 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
   1893 
   1894 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
   1895 	def1 = defaults->bapmti_r;
   1896 	def2 = defaults->bapmti_rc;
   1897 
   1898 	for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
   1899 		for (j = 0; j < SMU71_DTE_SOURCES; j++) {
   1900 			for (k = 0; k < SMU71_DTE_SINKS; k++) {
   1901 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
   1902 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
   1903 				def1++;
   1904 				def2++;
   1905 			}
   1906 		}
   1907 	}
   1908 
   1909 	return 0;
   1910 }
   1911 
   1912 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
   1913 					    SMU71_Discrete_DpmTable *tab)
   1914 {
   1915 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1916 
   1917 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
   1918 		tab->SVI2Enable |= VDDC_ON_SVI2;
   1919 
   1920 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
   1921 		tab->SVI2Enable |= VDDCI_ON_SVI2;
   1922 	else
   1923 		tab->MergedVddci = 1;
   1924 
   1925 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
   1926 		tab->SVI2Enable |= MVDD_ON_SVI2;
   1927 
   1928 	PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
   1929 		(tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
   1930 
   1931 	return 0;
   1932 }
   1933 
   1934 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
   1935 {
   1936 	int result;
   1937 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1938 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1939 	SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
   1940 
   1941 
   1942 	iceland_initialize_power_tune_defaults(hwmgr);
   1943 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
   1944 
   1945 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
   1946 		iceland_populate_smc_voltage_tables(hwmgr, table);
   1947 	}
   1948 
   1949 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1950 			PHM_PlatformCaps_AutomaticDCTransition))
   1951 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
   1952 
   1953 
   1954 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1955 			PHM_PlatformCaps_StepVddc))
   1956 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
   1957 
   1958 	if (data->is_memory_gddr5)
   1959 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
   1960 
   1961 
   1962 	if (data->ulv_supported) {
   1963 		result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
   1964 		PP_ASSERT_WITH_CODE(0 == result,
   1965 			"Failed to initialize ULV state!", return result;);
   1966 
   1967 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1968 			ixCG_ULV_PARAMETER, 0x40035);
   1969 	}
   1970 
   1971 	result = iceland_populate_smc_link_level(hwmgr, table);
   1972 	PP_ASSERT_WITH_CODE(0 == result,
   1973 		"Failed to initialize Link Level!", return result;);
   1974 
   1975 	result = iceland_populate_all_graphic_levels(hwmgr);
   1976 	PP_ASSERT_WITH_CODE(0 == result,
   1977 		"Failed to initialize Graphics Level!", return result;);
   1978 
   1979 	result = iceland_populate_all_memory_levels(hwmgr);
   1980 	PP_ASSERT_WITH_CODE(0 == result,
   1981 		"Failed to initialize Memory Level!", return result;);
   1982 
   1983 	result = iceland_populate_smc_acpi_level(hwmgr, table);
   1984 	PP_ASSERT_WITH_CODE(0 == result,
   1985 		"Failed to initialize ACPI Level!", return result;);
   1986 
   1987 	result = iceland_populate_smc_vce_level(hwmgr, table);
   1988 	PP_ASSERT_WITH_CODE(0 == result,
   1989 		"Failed to initialize VCE Level!", return result;);
   1990 
   1991 	result = iceland_populate_smc_acp_level(hwmgr, table);
   1992 	PP_ASSERT_WITH_CODE(0 == result,
   1993 		"Failed to initialize ACP Level!", return result;);
   1994 
   1995 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
   1996 	/* need to populate the  ARB settings for the initial state. */
   1997 	result = iceland_program_memory_timing_parameters(hwmgr);
   1998 	PP_ASSERT_WITH_CODE(0 == result,
   1999 		"Failed to Write ARB settings for the initial state.", return result;);
   2000 
   2001 	result = iceland_populate_smc_uvd_level(hwmgr, table);
   2002 	PP_ASSERT_WITH_CODE(0 == result,
   2003 		"Failed to initialize UVD Level!", return result;);
   2004 
   2005 	table->GraphicsBootLevel = 0;
   2006 	table->MemoryBootLevel = 0;
   2007 
   2008 	result = iceland_populate_smc_boot_level(hwmgr, table);
   2009 	PP_ASSERT_WITH_CODE(0 == result,
   2010 		"Failed to initialize Boot Level!", return result;);
   2011 
   2012 	result = iceland_populate_smc_initial_state(hwmgr);
   2013 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
   2014 
   2015 	result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
   2016 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
   2017 
   2018 	table->GraphicsVoltageChangeEnable  = 1;
   2019 	table->GraphicsThermThrottleEnable  = 1;
   2020 	table->GraphicsInterval = 1;
   2021 	table->VoltageInterval  = 1;
   2022 	table->ThermalInterval  = 1;
   2023 
   2024 	table->TemperatureLimitHigh =
   2025 		(data->thermal_temp_setting.temperature_high *
   2026 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
   2027 	table->TemperatureLimitLow =
   2028 		(data->thermal_temp_setting.temperature_low *
   2029 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
   2030 
   2031 	table->MemoryVoltageChangeEnable  = 1;
   2032 	table->MemoryInterval  = 1;
   2033 	table->VoltageResponseTime  = 0;
   2034 	table->PhaseResponseTime  = 0;
   2035 	table->MemoryThermThrottleEnable  = 1;
   2036 	table->PCIeBootLinkLevel = 0;
   2037 	table->PCIeGenInterval = 1;
   2038 
   2039 	result = iceland_populate_smc_svi2_config(hwmgr, table);
   2040 	PP_ASSERT_WITH_CODE(0 == result,
   2041 		"Failed to populate SVI2 setting!", return result);
   2042 
   2043 	table->ThermGpio  = 17;
   2044 	table->SclkStepSize = 0x4000;
   2045 
   2046 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
   2047 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
   2048 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
   2049 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
   2050 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
   2051 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
   2052 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
   2053 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
   2054 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
   2055 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
   2056 
   2057 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
   2058 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
   2059 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
   2060 
   2061 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
   2062 	result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
   2063 										offsetof(SMU71_Discrete_DpmTable, SystemFlags),
   2064 										(uint8_t *)&(table->SystemFlags),
   2065 										sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
   2066 										SMC_RAM_END);
   2067 
   2068 	PP_ASSERT_WITH_CODE(0 == result,
   2069 		"Failed to upload dpm data to SMC memory!", return result;);
   2070 
   2071 	/* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
   2072 	result = smu7_copy_bytes_to_smc(hwmgr,
   2073 			smu_data->smu7_data.ulv_setting_starts,
   2074 			(uint8_t *)&(smu_data->ulv_setting),
   2075 			sizeof(SMU71_Discrete_Ulv),
   2076 			SMC_RAM_END);
   2077 
   2078 
   2079 	result = iceland_populate_initial_mc_reg_table(hwmgr);
   2080 	PP_ASSERT_WITH_CODE((0 == result),
   2081 		"Failed to populate initialize MC Reg table!", return result);
   2082 
   2083 	result = iceland_populate_pm_fuses(hwmgr);
   2084 	PP_ASSERT_WITH_CODE(0 == result,
   2085 			"Failed to  populate PM fuses to SMC memory!", return result);
   2086 
   2087 	return 0;
   2088 }
   2089 
   2090 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
   2091 {
   2092 	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
   2093 	SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
   2094 	uint32_t duty100;
   2095 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
   2096 	uint16_t fdo_min, slope1, slope2;
   2097 	uint32_t reference_clock;
   2098 	int res __unused;
   2099 	uint64_t tmp64;
   2100 
   2101 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
   2102 		return 0;
   2103 
   2104 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
   2105 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2106 			PHM_PlatformCaps_MicrocodeFanControl);
   2107 		return 0;
   2108 	}
   2109 
   2110 	if (0 == smu7_data->fan_table_start) {
   2111 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
   2112 		return 0;
   2113 	}
   2114 
   2115 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
   2116 
   2117 	if (0 == duty100) {
   2118 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
   2119 		return 0;
   2120 	}
   2121 
   2122 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
   2123 	do_div(tmp64, 10000);
   2124 	fdo_min = (uint16_t)tmp64;
   2125 
   2126 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
   2127 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
   2128 
   2129 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
   2130 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
   2131 
   2132 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
   2133 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
   2134 
   2135 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
   2136 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
   2137 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
   2138 
   2139 	fan_table.Slope1 = cpu_to_be16(slope1);
   2140 	fan_table.Slope2 = cpu_to_be16(slope2);
   2141 
   2142 	fan_table.FdoMin = cpu_to_be16(fdo_min);
   2143 
   2144 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
   2145 
   2146 	fan_table.HystUp = cpu_to_be16(1);
   2147 
   2148 	fan_table.HystSlope = cpu_to_be16(1);
   2149 
   2150 	fan_table.TempRespLim = cpu_to_be16(5);
   2151 
   2152 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
   2153 
   2154 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
   2155 
   2156 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
   2157 
   2158 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
   2159 
   2160 	/* fan_table.FanControl_GL_Flag = 1; */
   2161 
   2162 	res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
   2163 
   2164 	return 0;
   2165 }
   2166 
   2167 
   2168 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
   2169 {
   2170 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2171 
   2172 	if (data->need_update_smu7_dpm_table &
   2173 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
   2174 		return iceland_program_memory_timing_parameters(hwmgr);
   2175 
   2176 	return 0;
   2177 }
   2178 
   2179 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
   2180 {
   2181 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2182 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   2183 
   2184 	int result = 0;
   2185 	uint32_t low_sclk_interrupt_threshold = 0;
   2186 
   2187 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2188 			PHM_PlatformCaps_SclkThrottleLowNotification)
   2189 		&& (data->low_sclk_interrupt_threshold != 0)) {
   2190 		low_sclk_interrupt_threshold =
   2191 				data->low_sclk_interrupt_threshold;
   2192 
   2193 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
   2194 
   2195 		result = smu7_copy_bytes_to_smc(
   2196 				hwmgr,
   2197 				smu_data->smu7_data.dpm_table_start +
   2198 				offsetof(SMU71_Discrete_DpmTable,
   2199 					LowSclkInterruptThreshold),
   2200 				(uint8_t *)&low_sclk_interrupt_threshold,
   2201 				sizeof(uint32_t),
   2202 				SMC_RAM_END);
   2203 	}
   2204 
   2205 	result = iceland_update_and_upload_mc_reg_table(hwmgr);
   2206 
   2207 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
   2208 
   2209 	result = iceland_program_mem_timing_parameters(hwmgr);
   2210 	PP_ASSERT_WITH_CODE((result == 0),
   2211 			"Failed to program memory timing parameters!",
   2212 			);
   2213 
   2214 	return result;
   2215 }
   2216 
   2217 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
   2218 {
   2219 	switch (type) {
   2220 	case SMU_SoftRegisters:
   2221 		switch (member) {
   2222 		case HandshakeDisables:
   2223 			return offsetof(SMU71_SoftRegisters, HandshakeDisables);
   2224 		case VoltageChangeTimeout:
   2225 			return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
   2226 		case AverageGraphicsActivity:
   2227 			return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
   2228 		case AverageMemoryActivity:
   2229 			return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
   2230 		case PreVBlankGap:
   2231 			return offsetof(SMU71_SoftRegisters, PreVBlankGap);
   2232 		case VBlankTimeout:
   2233 			return offsetof(SMU71_SoftRegisters, VBlankTimeout);
   2234 		case UcodeLoadStatus:
   2235 			return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
   2236 		case DRAM_LOG_ADDR_H:
   2237 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
   2238 		case DRAM_LOG_ADDR_L:
   2239 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
   2240 		case DRAM_LOG_PHY_ADDR_H:
   2241 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
   2242 		case DRAM_LOG_PHY_ADDR_L:
   2243 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
   2244 		case DRAM_LOG_BUFF_SIZE:
   2245 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
   2246 		}
   2247 		break;
   2248 	case SMU_Discrete_DpmTable:
   2249 		switch (member) {
   2250 		case LowSclkInterruptThreshold:
   2251 			return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
   2252 		}
   2253 		break;
   2254 	}
   2255 	pr_warn("can't get the offset of type %x member %x\n", type, member);
   2256 	return 0;
   2257 }
   2258 
   2259 static uint32_t iceland_get_mac_definition(uint32_t value)
   2260 {
   2261 	switch (value) {
   2262 	case SMU_MAX_LEVELS_GRAPHICS:
   2263 		return SMU71_MAX_LEVELS_GRAPHICS;
   2264 	case SMU_MAX_LEVELS_MEMORY:
   2265 		return SMU71_MAX_LEVELS_MEMORY;
   2266 	case SMU_MAX_LEVELS_LINK:
   2267 		return SMU71_MAX_LEVELS_LINK;
   2268 	case SMU_MAX_ENTRIES_SMIO:
   2269 		return SMU71_MAX_ENTRIES_SMIO;
   2270 	case SMU_MAX_LEVELS_VDDC:
   2271 		return SMU71_MAX_LEVELS_VDDC;
   2272 	case SMU_MAX_LEVELS_VDDCI:
   2273 		return SMU71_MAX_LEVELS_VDDCI;
   2274 	case SMU_MAX_LEVELS_MVDD:
   2275 		return SMU71_MAX_LEVELS_MVDD;
   2276 	}
   2277 
   2278 	pr_warn("can't get the mac of %x\n", value);
   2279 	return 0;
   2280 }
   2281 
   2282 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
   2283 {
   2284 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2285 	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
   2286 
   2287 	uint32_t tmp;
   2288 	int result;
   2289 	bool error = false;
   2290 
   2291 	result = smu7_read_smc_sram_dword(hwmgr,
   2292 				SMU71_FIRMWARE_HEADER_LOCATION +
   2293 				offsetof(SMU71_Firmware_Header, DpmTable),
   2294 				&tmp, SMC_RAM_END);
   2295 
   2296 	if (0 == result) {
   2297 		smu7_data->dpm_table_start = tmp;
   2298 	}
   2299 
   2300 	error |= (0 != result);
   2301 
   2302 	result = smu7_read_smc_sram_dword(hwmgr,
   2303 				SMU71_FIRMWARE_HEADER_LOCATION +
   2304 				offsetof(SMU71_Firmware_Header, SoftRegisters),
   2305 				&tmp, SMC_RAM_END);
   2306 
   2307 	if (0 == result) {
   2308 		data->soft_regs_start = tmp;
   2309 		smu7_data->soft_regs_start = tmp;
   2310 	}
   2311 
   2312 	error |= (0 != result);
   2313 
   2314 
   2315 	result = smu7_read_smc_sram_dword(hwmgr,
   2316 				SMU71_FIRMWARE_HEADER_LOCATION +
   2317 				offsetof(SMU71_Firmware_Header, mcRegisterTable),
   2318 				&tmp, SMC_RAM_END);
   2319 
   2320 	if (0 == result) {
   2321 		smu7_data->mc_reg_table_start = tmp;
   2322 	}
   2323 
   2324 	result = smu7_read_smc_sram_dword(hwmgr,
   2325 				SMU71_FIRMWARE_HEADER_LOCATION +
   2326 				offsetof(SMU71_Firmware_Header, FanTable),
   2327 				&tmp, SMC_RAM_END);
   2328 
   2329 	if (0 == result) {
   2330 		smu7_data->fan_table_start = tmp;
   2331 	}
   2332 
   2333 	error |= (0 != result);
   2334 
   2335 	result = smu7_read_smc_sram_dword(hwmgr,
   2336 				SMU71_FIRMWARE_HEADER_LOCATION +
   2337 				offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
   2338 				&tmp, SMC_RAM_END);
   2339 
   2340 	if (0 == result) {
   2341 		smu7_data->arb_table_start = tmp;
   2342 	}
   2343 
   2344 	error |= (0 != result);
   2345 
   2346 
   2347 	result = smu7_read_smc_sram_dword(hwmgr,
   2348 				SMU71_FIRMWARE_HEADER_LOCATION +
   2349 				offsetof(SMU71_Firmware_Header, Version),
   2350 				&tmp, SMC_RAM_END);
   2351 
   2352 	if (0 == result) {
   2353 		hwmgr->microcode_version_info.SMC = tmp;
   2354 	}
   2355 
   2356 	error |= (0 != result);
   2357 
   2358 	result = smu7_read_smc_sram_dword(hwmgr,
   2359 				SMU71_FIRMWARE_HEADER_LOCATION +
   2360 				offsetof(SMU71_Firmware_Header, UlvSettings),
   2361 				&tmp, SMC_RAM_END);
   2362 
   2363 	if (0 == result) {
   2364 		smu7_data->ulv_setting_starts = tmp;
   2365 	}
   2366 
   2367 	error |= (0 != result);
   2368 
   2369 	return error ? 1 : 0;
   2370 }
   2371 
   2372 /*---------------------------MC----------------------------*/
   2373 
   2374 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
   2375 {
   2376 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
   2377 }
   2378 
   2379 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
   2380 {
   2381 	bool result = true;
   2382 
   2383 	switch (in_reg) {
   2384 	case  mmMC_SEQ_RAS_TIMING:
   2385 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
   2386 		break;
   2387 
   2388 	case  mmMC_SEQ_DLL_STBY:
   2389 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
   2390 		break;
   2391 
   2392 	case  mmMC_SEQ_G5PDX_CMD0:
   2393 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
   2394 		break;
   2395 
   2396 	case  mmMC_SEQ_G5PDX_CMD1:
   2397 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
   2398 		break;
   2399 
   2400 	case  mmMC_SEQ_G5PDX_CTRL:
   2401 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
   2402 		break;
   2403 
   2404 	case mmMC_SEQ_CAS_TIMING:
   2405 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
   2406 		break;
   2407 
   2408 	case mmMC_SEQ_MISC_TIMING:
   2409 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
   2410 		break;
   2411 
   2412 	case mmMC_SEQ_MISC_TIMING2:
   2413 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
   2414 		break;
   2415 
   2416 	case mmMC_SEQ_PMG_DVS_CMD:
   2417 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
   2418 		break;
   2419 
   2420 	case mmMC_SEQ_PMG_DVS_CTL:
   2421 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
   2422 		break;
   2423 
   2424 	case mmMC_SEQ_RD_CTL_D0:
   2425 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
   2426 		break;
   2427 
   2428 	case mmMC_SEQ_RD_CTL_D1:
   2429 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
   2430 		break;
   2431 
   2432 	case mmMC_SEQ_WR_CTL_D0:
   2433 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
   2434 		break;
   2435 
   2436 	case mmMC_SEQ_WR_CTL_D1:
   2437 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
   2438 		break;
   2439 
   2440 	case mmMC_PMG_CMD_EMRS:
   2441 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
   2442 		break;
   2443 
   2444 	case mmMC_PMG_CMD_MRS:
   2445 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
   2446 		break;
   2447 
   2448 	case mmMC_PMG_CMD_MRS1:
   2449 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
   2450 		break;
   2451 
   2452 	case mmMC_SEQ_PMG_TIMING:
   2453 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
   2454 		break;
   2455 
   2456 	case mmMC_PMG_CMD_MRS2:
   2457 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
   2458 		break;
   2459 
   2460 	case mmMC_SEQ_WR_CTL_2:
   2461 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
   2462 		break;
   2463 
   2464 	default:
   2465 		result = false;
   2466 		break;
   2467 	}
   2468 
   2469 	return result;
   2470 }
   2471 
   2472 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
   2473 {
   2474 	uint32_t i;
   2475 	uint16_t address;
   2476 
   2477 	for (i = 0; i < table->last; i++) {
   2478 		table->mc_reg_address[i].s0 =
   2479 			iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
   2480 			? address : table->mc_reg_address[i].s1;
   2481 	}
   2482 	return 0;
   2483 }
   2484 
   2485 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
   2486 					struct iceland_mc_reg_table *ni_table)
   2487 {
   2488 	uint8_t i, j;
   2489 
   2490 	PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2491 		"Invalid VramInfo table.", return -EINVAL);
   2492 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
   2493 		"Invalid VramInfo table.", return -EINVAL);
   2494 
   2495 	for (i = 0; i < table->last; i++) {
   2496 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
   2497 	}
   2498 	ni_table->last = table->last;
   2499 
   2500 	for (i = 0; i < table->num_entries; i++) {
   2501 		ni_table->mc_reg_table_entry[i].mclk_max =
   2502 			table->mc_reg_table_entry[i].mclk_max;
   2503 		for (j = 0; j < table->last; j++) {
   2504 			ni_table->mc_reg_table_entry[i].mc_data[j] =
   2505 				table->mc_reg_table_entry[i].mc_data[j];
   2506 		}
   2507 	}
   2508 
   2509 	ni_table->num_entries = table->num_entries;
   2510 
   2511 	return 0;
   2512 }
   2513 
   2514 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
   2515 					struct iceland_mc_reg_table *table)
   2516 {
   2517 	uint8_t i, j, k;
   2518 	uint32_t temp_reg;
   2519 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2520 
   2521 	for (i = 0, j = table->last; i < table->last; i++) {
   2522 		PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2523 			"Invalid VramInfo table.", return -EINVAL);
   2524 
   2525 		switch (table->mc_reg_address[i].s1) {
   2526 
   2527 		case mmMC_SEQ_MISC1:
   2528 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
   2529 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
   2530 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
   2531 			for (k = 0; k < table->num_entries; k++) {
   2532 				table->mc_reg_table_entry[k].mc_data[j] =
   2533 					((temp_reg & 0xffff0000)) |
   2534 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
   2535 			}
   2536 			j++;
   2537 
   2538 			PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2539 				"Invalid VramInfo table.", return -EINVAL);
   2540 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
   2541 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
   2542 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
   2543 			for (k = 0; k < table->num_entries; k++) {
   2544 				table->mc_reg_table_entry[k].mc_data[j] =
   2545 					(temp_reg & 0xffff0000) |
   2546 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
   2547 
   2548 				if (!data->is_memory_gddr5) {
   2549 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
   2550 				}
   2551 			}
   2552 			j++;
   2553 
   2554 			if (!data->is_memory_gddr5) {
   2555 				PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2556 					"Invalid VramInfo table.", return -EINVAL);
   2557 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
   2558 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
   2559 				for (k = 0; k < table->num_entries; k++) {
   2560 					table->mc_reg_table_entry[k].mc_data[j] =
   2561 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
   2562 				}
   2563 				j++;
   2564 			}
   2565 
   2566 			break;
   2567 
   2568 		case mmMC_SEQ_RESERVE_M:
   2569 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
   2570 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
   2571 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
   2572 			for (k = 0; k < table->num_entries; k++) {
   2573 				table->mc_reg_table_entry[k].mc_data[j] =
   2574 					(temp_reg & 0xffff0000) |
   2575 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
   2576 			}
   2577 			j++;
   2578 			break;
   2579 
   2580 		default:
   2581 			break;
   2582 		}
   2583 
   2584 	}
   2585 
   2586 	table->last = j;
   2587 
   2588 	return 0;
   2589 }
   2590 
   2591 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
   2592 {
   2593 	uint8_t i, j;
   2594 	for (i = 0; i < table->last; i++) {
   2595 		for (j = 1; j < table->num_entries; j++) {
   2596 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
   2597 				table->mc_reg_table_entry[j].mc_data[i]) {
   2598 				table->validflag |= (1<<i);
   2599 				break;
   2600 			}
   2601 		}
   2602 	}
   2603 
   2604 	return 0;
   2605 }
   2606 
   2607 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
   2608 {
   2609 	int result;
   2610 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   2611 	pp_atomctrl_mc_reg_table *table;
   2612 	struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
   2613 	uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
   2614 
   2615 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
   2616 
   2617 	if (NULL == table)
   2618 		return -ENOMEM;
   2619 
   2620 	/* Program additional LP registers that are no longer programmed by VBIOS */
   2621 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
   2622 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
   2623 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
   2624 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
   2625 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
   2626 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
   2627 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
   2628 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
   2629 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
   2630 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
   2631 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
   2632 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
   2633 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
   2634 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
   2635 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
   2636 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
   2637 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
   2638 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
   2639 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
   2640 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
   2641 
   2642 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
   2643 
   2644 	if (0 == result)
   2645 		result = iceland_copy_vbios_smc_reg_table(table, ni_table);
   2646 
   2647 	if (0 == result) {
   2648 		iceland_set_s0_mc_reg_index(ni_table);
   2649 		result = iceland_set_mc_special_registers(hwmgr, ni_table);
   2650 	}
   2651 
   2652 	if (0 == result)
   2653 		iceland_set_valid_flag(ni_table);
   2654 
   2655 	kfree(table);
   2656 
   2657 	return result;
   2658 }
   2659 
   2660 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
   2661 {
   2662 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
   2663 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
   2664 			? true : false;
   2665 }
   2666 
   2667 const struct pp_smumgr_func iceland_smu_funcs = {
   2668 	.name = "iceland_smu",
   2669 	.smu_init = &iceland_smu_init,
   2670 	.smu_fini = &smu7_smu_fini,
   2671 	.start_smu = &iceland_start_smu,
   2672 	.check_fw_load_finish = &smu7_check_fw_load_finish,
   2673 	.request_smu_load_fw = &smu7_request_smu_load_fw,
   2674 	.request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
   2675 	.send_msg_to_smc = &smu7_send_msg_to_smc,
   2676 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
   2677 	.download_pptable_settings = NULL,
   2678 	.upload_pptable_settings = NULL,
   2679 	.get_offsetof = iceland_get_offsetof,
   2680 	.process_firmware_header = iceland_process_firmware_header,
   2681 	.init_smc_table = iceland_init_smc_table,
   2682 	.update_sclk_threshold = iceland_update_sclk_threshold,
   2683 	.thermal_setup_fan_table = iceland_thermal_setup_fan_table,
   2684 	.populate_all_graphic_levels = iceland_populate_all_graphic_levels,
   2685 	.populate_all_memory_levels = iceland_populate_all_memory_levels,
   2686 	.get_mac_definition = iceland_get_mac_definition,
   2687 	.initialize_mc_reg_table = iceland_initialize_mc_reg_table,
   2688 	.is_dpm_running = iceland_is_dpm_running,
   2689 };
   2690 
   2691