OpenGrok
Home
Sort by:
relevance
|
last modified time
|
path
Full Search
in project(s):
src
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:log1p
(Results
1 - 22
of
22
) sorted by relevancy
/src/lib/libm/noieee_src/
n_atanh.c
44
*
log1p
(x) ...return log(1+x)
49
* atanh(x) = --- * log(1 + -------) = 0.5 *
log1p
(2 * --------)
81
return( z*
log1p
(x+x) );
n_acosh.c
47
*
log1p
(x) ...return log(1+x)
53
* acosh(x) :=
log1p
(x)+ln2, if (x > 1.0E20); else
54
* acosh(x) :=
log1p
( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
97
/* return
log1p
(x) + log(2) if x is large */
98
if(x>big) {t=
log1p
(x)+ln2lo; return(t+ln2hi);}
101
return(
log1p
(t*(t+sqrt(x+1.0))));
n_asinh.c
48
*
log1p
(x) ...return log(1+x)
55
* := sign(x)*(
log1p
(x)+ln2)) if sqrt(1+x*x)=x, else
56
* := sign(x)*
log1p
(|x| + |x|/(1/|x| + sqrt(1+(1/|x|)^2)) )
96
s=one/t; return(copysign(
log1p
(t+t/(s+sqrt(one+s*s))),x)); }
98
{s=
log1p
(t)+ln2lo; return(copysign(s+ln2hi,x));}
n_log1p.c
36
static char sccsid[] = "@(#)
log1p
.c 8.1 (Berkeley) 6/4/93";
40
/*
LOG1P
(x)
83
*
log1p
(x) is NaN with signal if x < -1;
log1p
(NaN) is NaN with no signal;
84
*
log1p
(INF) is +INF;
log1p
(-1) is -INF with signal;
85
* only
log1p
(0)=0 is exact for finite argument.
88
*
log1p
(x) returns the exact log(1+x) nearly rounded. In a test run
122
__weak_alias(
log1p
, _log1p)
124
log1p
(double x
[
all
...]
n_lgamma.c
242
case 0: r -=
log1p
(x); /* FALLTHROUGH */
268
r -= rr.b; r -=
log1p
(x);
/src/lib/libm/arch/mc68881/
s_log1p.S
39
;.asciz "from: @(#)
log1p
.s 5.1 (Berkeley) 5/17/90"
43
WEAK_ALIAS(
log1p
, _log1p)
/src/lib/libm/src/
e_atanh.c
23
* atanh(x) = --- * log(1 + -------) = 0.5 *
log1p
(2 * --------)
27
* atanh(x) = 0.5*
log1p
(2x+2x*x/(1-x))
59
t = 0.5*
log1p
(t+t*x/(one-x));
61
t = 0.5*
log1p
((x+x)/(one-x));
e_acosh.c
25
* acosh(x) :=
log1p
(t+sqrt(2.0*t+t*t)); where t=x-1.
60
return
log1p
(t+sqrt(2.0*t+t*t));
s_asinh.c
26
* := sign(x)*
log1p
(|x| + x^2/(1 + sqrt(1+x^2)))
55
w =
log1p
(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
s_log1p.c
18
/* double
log1p
(double x)
32
* 2. Approximation of
log1p
(f).
50
*
log1p
(f) = f - (hfsq - s*(hfsq+R)).
52
* 3. Finally,
log1p
(x) = k*ln2 +
log1p
(f).
59
*
log1p
(x) is NaN with signal if x < -1 (including -INF) ;
60
*
log1p
(+INF) is +INF;
log1p
(-1) is -INF with signal;
61
*
log1p
(NaN) is that NaN with no signal.
74
* algorithm can be used to compute
log1p
(x) to within a few ULP
[
all
...]
namespace.h
70
#define
log1p
_log1p
macro
/src/lib/libm/arch/m68060/
s_log1p.S
4
* FPLSP wrapper for
log1p
12
WEAK_ALIAS(
log1p
, _log1p)
makeas.sh
215
mk _log1p
log1p
0140 s_log1p
/src/lib/libm/arch/i387/
s_log1p.S
18
* The
log1p
() function is provided to compute an accurate value of
26
*
log1p
() is implemented by testing the range of the argument.
28
* Else, we compute
log1p
(x) = ln(2)*ld(1 + x) the traditional way
42
WEAK_ALIAS(
log1p
, _log1p)
/src/tests/lib/libm/
t_log.c
309
*
log1p
(3)
315
atf_tc_set_md_var(tc, "descr", "Test
log1p
/f/l on invalid inputs");
323
CHECK_NAN(i,
log1p
, log1pf_invalid[i]);
328
CHECK_NAN(i,
log1p
, log1p_invalid[i]);
340
atf_tc_set_md_var(tc, "descr", "Test
log1p
/f/l on -1");
346
CHECK_EQ(0,
log1p
, -1., -HUGE_VAL);
353
atf_tc_set_md_var(tc, "descr", "Test
log1p
/f/l exact cases");
359
CHECK_EQ(0,
log1p
, -DBL_MIN, -DBL_MIN);
363
CHECK_EQ(1,
log1p
, -0., 0);
367
CHECK_EQ(2,
log1p
, +0., 0)
[
all
...]
/src/lib/libm/complex/
catrig.c
131
* log(A + sqrt(A*A-1)) =
log1p
((A-1) + sqrt((A-1)*(A+1)))
198
* rx =
log1p
(Am1 + sqrt(Am1*(A+1)))
212
*rx =
log1p
(Am1 + sqrt(Am1 * (A + 1)));
223
*rx =
log1p
((y - 1) + sqrt((y - 1) * (y + 1)));
579
* =
log1p
(4*x / |z-1|^2) / 4
640
rx =
log1p
(4 * ax / sum_squares(ax - 1, ay)) / 4;
/src/tests/lib/lua/libm/
h_lualibm.c
69
TEST(
log1p
(M_PI));
lualibm.lua
75
test("
log1p
(M_PI)", lm.
log1p
(lm.M_PI))
/src/include/
tgmath.h
171
#define
log1p
(a) __TG_FN1(
log1p
, (a))
macro
math.h
298
double
log1p
(double);
/src/lib/lua/libm/
libm.c
142
DFUNC_DBL(
log1p
)
280
{ "
log1p
", libm_log1p },
/src/lib/libm/
Makefile
500
log.3
log1p
.3 \
Completed in 18 milliseconds
Indexes created Sat Oct 18 08:10:09 GMT 2025