Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: subr_prof.c,v 1.52 2026/01/04 03:20:46 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)subr_prof.c	8.4 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_prof.c,v 1.52 2026/01/04 03:20:46 riastradh Exp $");
     36 
     37 #ifdef _KERNEL_OPT
     38 #include "opt_gprof.h"
     39 #include "opt_multiprocessor.h"
     40 #endif
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 
     45 #include <sys/cpu.h>
     46 #include <sys/kernel.h>
     47 #include <sys/mount.h>
     48 #include <sys/proc.h>
     49 #include <sys/sdt.h>
     50 #include <sys/syscallargs.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/systm.h>
     53 
     54 #ifdef GPROF
     55 #include <sys/gmon.h>
     56 #include <sys/malloc.h>
     57 #include <sys/xcall.h>
     58 
     59 MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
     60 
     61 static int sysctl_kern_profiling(SYSCTLFN_ARGS);
     62 #ifdef MULTIPROCESSOR
     63 void _gmonparam_merge(struct gmonparam *, struct gmonparam *);
     64 #endif
     65 
     66 /*
     67  * Froms is actually a bunch of unsigned shorts indexing tos
     68  */
     69 struct gmonparam _gmonparam = { .state = GMON_PROF_OFF };
     70 
     71 /* Actual start of the kernel text segment. */
     72 extern char kernel_text[];
     73 
     74 extern char etext[];
     75 
     76 
     77 void
     78 kmstartup(void)
     79 {
     80 	char *cp;
     81 	struct gmonparam *p = &_gmonparam;
     82 	unsigned long size;
     83 	/*
     84 	 * Round lowpc and highpc to multiples of the density we're using
     85 	 * so the rest of the scaling (here and in gprof) stays in ints.
     86 	 */
     87 	p->lowpc = rounddown(((u_long)kernel_text),
     88 		HISTFRACTION * sizeof(HISTCOUNTER));
     89 	p->highpc = roundup((u_long)etext,
     90 		HISTFRACTION * sizeof(HISTCOUNTER));
     91 	p->textsize = p->highpc - p->lowpc;
     92 	printf("Profiling kernel, textsize=%ld [%lx..%lx]\n",
     93 	       p->textsize, p->lowpc, p->highpc);
     94 	p->kcountsize = p->textsize / HISTFRACTION;
     95 	p->hashfraction = HASHFRACTION;
     96 	p->fromssize = p->textsize / HASHFRACTION;
     97 	p->tolimit = p->textsize * ARCDENSITY / 100;
     98 	if (p->tolimit < MINARCS)
     99 		p->tolimit = MINARCS;
    100 	else if (p->tolimit > MAXARCS)
    101 		p->tolimit = MAXARCS;
    102 	p->tossize = p->tolimit * sizeof(struct tostruct);
    103 
    104 	size = p->kcountsize + p->fromssize + p->tossize;
    105 #ifdef MULTIPROCESSOR
    106 	CPU_INFO_ITERATOR cii;
    107 	struct cpu_info *ci;
    108 	for (CPU_INFO_FOREACH(cii, ci)) {
    109 		p = malloc(sizeof(struct gmonparam) + size, M_GPROF,
    110 		    M_NOWAIT | M_ZERO);
    111 		if (p == NULL) {
    112 			printf("No memory for profiling on %s\n",
    113 			    cpu_name(ci));
    114 			/* cannot profile on this cpu */
    115 			continue;
    116 		}
    117 		memcpy(p, &_gmonparam, sizeof(_gmonparam));
    118 		ci->ci_gmon = p;
    119 
    120 		/*
    121 		 * To allow profiling to be controlled only by the global
    122 		 * _gmonparam.state, set the default value for each CPU to
    123 		 * GMON_PROF_ON. If _gmonparam.state is not ON, mcount will
    124 		 * not be executed.
    125 		 * This is For compatibility of the kgmon(8) kmem interface.
    126 		 */
    127 		p->state = GMON_PROF_ON;
    128 
    129 		cp = (char *)(p + 1);
    130 		p->tos = (struct tostruct *)cp;
    131 		p->kcount = (u_short *)(cp + p->tossize);
    132 		p->froms = (u_short *)(cp + p->tossize + p->kcountsize);
    133 	}
    134 
    135 	sysctl_createv(NULL, 0, NULL, NULL,
    136 	    0, CTLTYPE_NODE, "percpu",
    137 	    SYSCTL_DESCR("per cpu profiling information"),
    138 	    NULL, 0, NULL, 0,
    139 	    CTL_KERN, KERN_PROF, GPROF_PERCPU, CTL_EOL);
    140 
    141 	for (CPU_INFO_FOREACH(cii, ci)) {
    142 		if (ci->ci_gmon == NULL)
    143 			continue;
    144 
    145 		sysctl_createv(NULL, 0, NULL, NULL,
    146 		    0, CTLTYPE_NODE, cpu_name(ci),
    147 		    NULL,
    148 		    NULL, 0, NULL, 0,
    149 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci), CTL_EOL);
    150 
    151 		sysctl_createv(NULL, 0, NULL, NULL,
    152 		    CTLFLAG_READWRITE, CTLTYPE_INT, "state",
    153 		    SYSCTL_DESCR("Profiling state"),
    154 		    sysctl_kern_profiling, 0, (void *)ci, 0,
    155 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
    156 		    GPROF_STATE, CTL_EOL);
    157 		sysctl_createv(NULL, 0, NULL, NULL,
    158 		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "count",
    159 		    SYSCTL_DESCR("Array of statistical program counters"),
    160 		    sysctl_kern_profiling, 0, (void *)ci, 0,
    161 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
    162 		    GPROF_COUNT, CTL_EOL);
    163 		sysctl_createv(NULL, 0, NULL, NULL,
    164 		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "froms",
    165 		    SYSCTL_DESCR("Array indexed by program counter of "
    166 		    "call-from points"),
    167 		    sysctl_kern_profiling, 0, (void *)ci, 0,
    168 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
    169 		    GPROF_FROMS, CTL_EOL);
    170 		sysctl_createv(NULL, 0, NULL, NULL,
    171 		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "tos",
    172 		    SYSCTL_DESCR("Array of structures describing "
    173 		    "destination of calls and their counts"),
    174 		    sysctl_kern_profiling, 0, (void *)ci, 0,
    175 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
    176 		    GPROF_TOS, CTL_EOL);
    177 		sysctl_createv(NULL, 0, NULL, NULL,
    178 		    CTLFLAG_READWRITE, CTLTYPE_STRUCT, "gmonparam",
    179 		    SYSCTL_DESCR("Structure giving the sizes of the above "
    180 		    "arrays"),
    181 		    sysctl_kern_profiling, 0, (void *)ci, 0,
    182 		    CTL_KERN, KERN_PROF, GPROF_PERCPU, cpu_index(ci),
    183 		    GPROF_GMONPARAM, CTL_EOL);
    184 	}
    185 
    186 	/*
    187 	 * For minimal compatibility of the kgmon(8) kmem interface,
    188 	 * the _gmonparam and cpu0:ci_gmon share buffers.
    189 	 */
    190 	p = curcpu()->ci_gmon;
    191 	if (p != NULL) {
    192 		_gmonparam.tos = p->tos;
    193 		_gmonparam.kcount = p->kcount;
    194 		_gmonparam.froms = p->froms;
    195 	}
    196 #else /* MULTIPROCESSOR */
    197 	cp = malloc(size, M_GPROF, M_NOWAIT | M_ZERO);
    198 	if (cp == 0) {
    199 		printf("No memory for profiling.\n");
    200 		return;
    201 	}
    202 	p->tos = (struct tostruct *)cp;
    203 	cp += p->tossize;
    204 	p->kcount = (u_short *)cp;
    205 	cp += p->kcountsize;
    206 	p->froms = (u_short *)cp;
    207 #endif /* MULTIPROCESSOR */
    208 }
    209 
    210 #ifdef MULTIPROCESSOR
    211 static void
    212 prof_set_state_xc(void *arg1, void *arg2 __unused)
    213 {
    214 	int state = PTRTOUINT64(arg1);
    215 	struct gmonparam *gp = curcpu()->ci_gmon;
    216 
    217 	if (gp != NULL)
    218 		gp->state = state;
    219 }
    220 #endif /* MULTIPROCESSOR */
    221 
    222 /*
    223  * Return kernel profiling information.
    224  */
    225 /*
    226  * sysctl helper routine for kern.profiling subtree.  enables/disables
    227  * kernel profiling and gives out copies of the profiling data.
    228  */
    229 static int
    230 sysctl_kern_profiling(SYSCTLFN_ARGS)
    231 {
    232 	struct sysctlnode node = *rnode;
    233 	struct gmonparam *gp;
    234 	int error;
    235 #ifdef MULTIPROCESSOR
    236 	CPU_INFO_ITERATOR cii;
    237 	struct cpu_info *ci, *target_ci;
    238 	uint64_t where;
    239 	int state;
    240 	bool prof_on, do_merge;
    241 
    242 	target_ci = (struct cpu_info *)rnode->sysctl_data;
    243 	do_merge = (oldp != NULL) && (target_ci == NULL) &&
    244 	    ((node.sysctl_num == GPROF_COUNT) ||
    245 	    (node.sysctl_num == GPROF_FROMS) ||
    246 	    (node.sysctl_num == GPROF_TOS));
    247 
    248 	if (do_merge) {
    249 		/* kern.profiling.{count,froms,tos} */
    250 		unsigned long size;
    251 		char *cp;
    252 
    253 		/* allocate temporary gmonparam, and merge results of all CPU */
    254 		size = _gmonparam.kcountsize + _gmonparam.fromssize +
    255 		    _gmonparam.tossize;
    256 		gp = malloc(sizeof(struct gmonparam) + size, M_GPROF,
    257 		    M_NOWAIT | M_ZERO);
    258 		if (gp == NULL)
    259 			return SET_ERROR(ENOMEM);
    260 		memcpy(gp, &_gmonparam, sizeof(_gmonparam));
    261 		cp = (char *)(gp + 1);
    262 		gp->tos = (struct tostruct *)cp;
    263 		gp->kcount = (u_short *)(cp + gp->tossize);
    264 		gp->froms = (u_short *)(cp + gp->tossize + gp->kcountsize);
    265 
    266 		for (CPU_INFO_FOREACH(cii, ci)) {
    267 			if (ci->ci_gmon == NULL)
    268 				continue;
    269 			_gmonparam_merge(gp, ci->ci_gmon);
    270 		}
    271 	} else if (target_ci != NULL) {
    272 		/* kern.profiling.percpu.* */
    273 		gp = target_ci->ci_gmon;
    274 	} else {
    275 		/* kern.profiling.{state,gmonparam} */
    276 		gp = &_gmonparam;
    277 	}
    278 #else /* MULTIPROCESSOR */
    279 	gp = &_gmonparam;
    280 #endif
    281 
    282 	switch (node.sysctl_num) {
    283 	case GPROF_STATE:
    284 #ifdef MULTIPROCESSOR
    285 		/*
    286 		 * if _gmonparam.state is OFF, the state of each CPU is
    287 		 * considered to be OFF, even if it is actually ON.
    288 		 */
    289 		if (_gmonparam.state == GMON_PROF_OFF ||
    290 		    gp->state == GMON_PROF_OFF)
    291 			state = GMON_PROF_OFF;
    292 		else
    293 			state = GMON_PROF_ON;
    294 		node.sysctl_data = &state;
    295 #else
    296 		node.sysctl_data = &gp->state;
    297 #endif
    298 		break;
    299 	case GPROF_COUNT:
    300 		node.sysctl_data = gp->kcount;
    301 		node.sysctl_size = gp->kcountsize;
    302 		break;
    303 	case GPROF_FROMS:
    304 		node.sysctl_data = gp->froms;
    305 		node.sysctl_size = gp->fromssize;
    306 		break;
    307 	case GPROF_TOS:
    308 		node.sysctl_data = gp->tos;
    309 		node.sysctl_size = gp->tossize;
    310 		break;
    311 	case GPROF_GMONPARAM:
    312 		node.sysctl_data = gp;
    313 		node.sysctl_size = sizeof(*gp);
    314 		break;
    315 	default:
    316 		return SET_ERROR(EOPNOTSUPP);
    317 	}
    318 
    319 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    320 	if (error || newp == NULL)
    321 		goto done;
    322 
    323 #ifdef MULTIPROCESSOR
    324 	switch (node.sysctl_num) {
    325 	case GPROF_STATE:
    326 		if (target_ci != NULL) {
    327 			where = xc_unicast(0, prof_set_state_xc,
    328 			    UINT64TOPTR(state), NULL, target_ci);
    329 			xc_wait(where);
    330 
    331 			/* if even one CPU being profiled, enable perfclock. */
    332 			prof_on = false;
    333 			for (CPU_INFO_FOREACH(cii, ci)) {
    334 				if (ci->ci_gmon == NULL)
    335 					continue;
    336 				if (ci->ci_gmon->state != GMON_PROF_OFF) {
    337 					prof_on = true;
    338 					break;
    339 				}
    340 			}
    341 			mutex_spin_enter(&proc0.p_stmutex);
    342 			if (prof_on)
    343 				startprofclock(&proc0);
    344 			else
    345 				stopprofclock(&proc0);
    346 			mutex_spin_exit(&proc0.p_stmutex);
    347 
    348 			if (prof_on) {
    349 				_gmonparam.state = GMON_PROF_ON;
    350 			} else {
    351 				_gmonparam.state = GMON_PROF_OFF;
    352 				/*
    353 				 * when _gmonparam.state and all CPU gmon state
    354 				 * are OFF, all CPU states should be ON so that
    355 				 * the entire CPUs profiling can be controlled
    356 				 * by _gmonparam.state only.
    357 				 */
    358 				for (CPU_INFO_FOREACH(cii, ci)) {
    359 					if (ci->ci_gmon == NULL)
    360 						continue;
    361 					ci->ci_gmon->state = GMON_PROF_ON;
    362 				}
    363 			}
    364 		} else {
    365 			_gmonparam.state = state;
    366 			where = xc_broadcast(0, prof_set_state_xc,
    367 			    UINT64TOPTR(state), NULL);
    368 			xc_wait(where);
    369 
    370 			mutex_spin_enter(&proc0.p_stmutex);
    371 			if (state == GMON_PROF_OFF)
    372 				stopprofclock(&proc0);
    373 			else
    374 				startprofclock(&proc0);
    375 			mutex_spin_exit(&proc0.p_stmutex);
    376 		}
    377 		break;
    378 	case GPROF_COUNT:
    379 		/*
    380 		 * if 'kern.profiling.{count,froms,tos}' is written, the same
    381 		 * data will be written to 'kern.profiling.percpu.cpuN.xxx'
    382 		 */
    383 		if (target_ci == NULL) {
    384 			for (CPU_INFO_FOREACH(cii, ci)) {
    385 				if (ci->ci_gmon == NULL)
    386 					continue;
    387 				memmove(ci->ci_gmon->kcount, gp->kcount,
    388 				    newlen);
    389 			}
    390 		}
    391 		break;
    392 	case GPROF_FROMS:
    393 		if (target_ci == NULL) {
    394 			for (CPU_INFO_FOREACH(cii, ci)) {
    395 				if (ci->ci_gmon == NULL)
    396 					continue;
    397 				memmove(ci->ci_gmon->froms, gp->froms, newlen);
    398 			}
    399 		}
    400 		break;
    401 	case GPROF_TOS:
    402 		if (target_ci == NULL) {
    403 			for (CPU_INFO_FOREACH(cii, ci)) {
    404 				if (ci->ci_gmon == NULL)
    405 					continue;
    406 				memmove(ci->ci_gmon->tos, gp->tos, newlen);
    407 			}
    408 		}
    409 		break;
    410 	}
    411 #else
    412 	if (node.sysctl_num == GPROF_STATE) {
    413 		mutex_spin_enter(&proc0.p_stmutex);
    414 		if (gp->state == GMON_PROF_OFF)
    415 			stopprofclock(&proc0);
    416 		else
    417 			startprofclock(&proc0);
    418 		mutex_spin_exit(&proc0.p_stmutex);
    419 	}
    420 #endif
    421 
    422  done:
    423 #ifdef MULTIPROCESSOR
    424 	if (do_merge)
    425 		free(gp, M_GPROF);
    426 #endif
    427 	return error;
    428 }
    429 
    430 SYSCTL_SETUP(sysctl_kern_gprof_setup, "sysctl kern.profiling subtree setup")
    431 {
    432 
    433 	sysctl_createv(clog, 0, NULL, NULL,
    434 		       CTLFLAG_PERMANENT,
    435 		       CTLTYPE_NODE, "profiling",
    436 		       SYSCTL_DESCR("Profiling information (available)"),
    437 		       NULL, 0, NULL, 0,
    438 		       CTL_KERN, KERN_PROF, CTL_EOL);
    439 
    440 	sysctl_createv(clog, 0, NULL, NULL,
    441 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    442 		       CTLTYPE_INT, "state",
    443 		       SYSCTL_DESCR("Profiling state"),
    444 		       sysctl_kern_profiling, 0, NULL, 0,
    445 		       CTL_KERN, KERN_PROF, GPROF_STATE, CTL_EOL);
    446 	sysctl_createv(clog, 0, NULL, NULL,
    447 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    448 		       CTLTYPE_STRUCT, "count",
    449 		       SYSCTL_DESCR("Array of statistical program counters"),
    450 		       sysctl_kern_profiling, 0, NULL, 0,
    451 		       CTL_KERN, KERN_PROF, GPROF_COUNT, CTL_EOL);
    452 	sysctl_createv(clog, 0, NULL, NULL,
    453 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    454 		       CTLTYPE_STRUCT, "froms",
    455 		       SYSCTL_DESCR("Array indexed by program counter of "
    456 				    "call-from points"),
    457 		       sysctl_kern_profiling, 0, NULL, 0,
    458 		       CTL_KERN, KERN_PROF, GPROF_FROMS, CTL_EOL);
    459 	sysctl_createv(clog, 0, NULL, NULL,
    460 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    461 		       CTLTYPE_STRUCT, "tos",
    462 		       SYSCTL_DESCR("Array of structures describing "
    463 				    "destination of calls and their counts"),
    464 		       sysctl_kern_profiling, 0, NULL, 0,
    465 		       CTL_KERN, KERN_PROF, GPROF_TOS, CTL_EOL);
    466 	sysctl_createv(clog, 0, NULL, NULL,
    467 		       CTLFLAG_PERMANENT,
    468 		       CTLTYPE_STRUCT, "gmonparam",
    469 		       SYSCTL_DESCR("Structure giving the sizes of the above "
    470 				    "arrays"),
    471 		       sysctl_kern_profiling, 0, NULL, 0,
    472 		       CTL_KERN, KERN_PROF, GPROF_GMONPARAM, CTL_EOL);
    473 }
    474 #endif /* GPROF */
    475 
    476 /*
    477  * Profiling system call.
    478  *
    479  * The scale factor is a fixed point number with 16 bits of fraction, so that
    480  * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
    481  */
    482 /* ARGSUSED */
    483 int
    484 sys_profil(struct lwp *l, const struct sys_profil_args *uap, register_t *retval)
    485 {
    486 	/* {
    487 		syscallarg(char *) samples;
    488 		syscallarg(size_t) size;
    489 		syscallarg(u_long) offset;
    490 		syscallarg(u_int) scale;
    491 	} */
    492 	struct proc *p = l->l_proc;
    493 	struct uprof *upp;
    494 
    495 	if (SCARG(uap, scale) > (1 << 16))
    496 		return SET_ERROR(EINVAL);
    497 	if (SCARG(uap, scale) == 0) {
    498 		mutex_spin_enter(&p->p_stmutex);
    499 		stopprofclock(p);
    500 		mutex_spin_exit(&p->p_stmutex);
    501 		return 0;
    502 	}
    503 	upp = &p->p_stats->p_prof;
    504 
    505 	/* Block profile interrupts while changing state. */
    506 	mutex_spin_enter(&p->p_stmutex);
    507 	upp->pr_off = SCARG(uap, offset);
    508 	upp->pr_scale = SCARG(uap, scale);
    509 	upp->pr_base = SCARG(uap, samples);
    510 	upp->pr_size = SCARG(uap, size);
    511 	startprofclock(p);
    512 	mutex_spin_exit(&p->p_stmutex);
    513 
    514 	return 0;
    515 }
    516 
    517 /*
    518  * Scale is a fixed-point number with the binary point 16 bits
    519  * into the value, and is <= 1.0.  pc is at most 32 bits, so the
    520  * intermediate result is at most 48 bits.
    521  */
    522 #define	PC_TO_INDEX(pc, prof) \
    523 	((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
    524 	    (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
    525 
    526 /*
    527  * Collect user-level profiling statistics; called on a profiling tick,
    528  * when a process is running in user-mode.  This routine may be called
    529  * from an interrupt context.  We schedule an AST that will vector us
    530  * to trap() with a context in which copyin and copyout will work.
    531  * Trap will then call addupc_task().
    532  *
    533  * XXX We could use ufetch/ustore here if the profile buffers were
    534  * wired.
    535  *
    536  * Note that we may (rarely) not get around to the AST soon enough, and
    537  * lose profile ticks when the next tick overwrites this one, but in this
    538  * case the system is overloaded and the profile is probably already
    539  * inaccurate.
    540  */
    541 void
    542 addupc_intr(struct lwp *l, u_long pc)
    543 {
    544 	struct uprof *prof;
    545 	struct proc *p;
    546 	u_int i;
    547 
    548 	p = l->l_proc;
    549 
    550 	KASSERT(mutex_owned(&p->p_stmutex));
    551 
    552 	prof = &p->p_stats->p_prof;
    553 	if (pc < prof->pr_off ||
    554 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
    555 		return;			/* out of range; ignore */
    556 
    557 	mutex_spin_exit(&p->p_stmutex);
    558 
    559 	/* XXXSMP */
    560 	prof->pr_addr = pc;
    561 	prof->pr_ticks++;
    562 	cpu_need_proftick(l);
    563 
    564 	mutex_spin_enter(&p->p_stmutex);
    565 }
    566 
    567 /*
    568  * Much like before, but we can afford to take faults here.  If the
    569  * update fails, we simply turn off profiling.
    570  */
    571 void
    572 addupc_task(struct lwp *l, u_long pc, u_int ticks)
    573 {
    574 	struct uprof *prof;
    575 	struct proc *p;
    576 	void *addr;
    577 	int error;
    578 	u_int i;
    579 	u_short v;
    580 
    581 	p = l->l_proc;
    582 
    583 	if (ticks == 0)
    584 		return;
    585 
    586 	mutex_spin_enter(&p->p_stmutex);
    587 	prof = &p->p_stats->p_prof;
    588 
    589 	/* Testing P_PROFIL may be unnecessary, but is certainly safe. */
    590 	if ((p->p_stflag & PST_PROFIL) == 0 || pc < prof->pr_off ||
    591 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size) {
    592 		mutex_spin_exit(&p->p_stmutex);
    593 		return;
    594 	}
    595 
    596 	addr = prof->pr_base + i;
    597 	mutex_spin_exit(&p->p_stmutex);
    598 	if ((error = copyin(addr, (void *)&v, sizeof(v))) == 0) {
    599 		v += ticks;
    600 		error = copyout((void *)&v, addr, sizeof(v));
    601 	}
    602 	if (error != 0) {
    603 		mutex_spin_enter(&p->p_stmutex);
    604 		stopprofclock(p);
    605 		mutex_spin_exit(&p->p_stmutex);
    606 	}
    607 }
    608