Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_sig.c,v 1.413 2026/01/04 01:41:34 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.413 2026/01/04 01:41:34 riastradh Exp $");
     74 
     75 #include "opt_compat_netbsd.h"
     76 #include "opt_compat_netbsd32.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_dtrace.h"
     79 #include "opt_execfmt.h"
     80 #include "opt_pax.h"
     81 #include "opt_ptrace.h"
     82 
     83 #define	SIGPROP		/* include signal properties table */
     84 
     85 #include <sys/param.h>
     86 #include <sys/types.h>
     87 
     88 #include <sys/acct.h>
     89 #include <sys/atomic.h>
     90 #include <sys/callout.h>
     91 #include <sys/compat_stub.h>
     92 #include <sys/cpu.h>
     93 #include <sys/exec.h>
     94 #include <sys/exec_elf.h>
     95 #include <sys/file.h>
     96 #include <sys/filedesc.h>
     97 #include <sys/kauth.h>
     98 #include <sys/ktrace.h>
     99 #include <sys/module.h>
    100 #include <sys/pool.h>
    101 #include <sys/proc.h>
    102 #include <sys/ptrace.h>
    103 #include <sys/sdt.h>
    104 #include <sys/signalvar.h>
    105 #include <sys/syslog.h>
    106 #include <sys/systm.h>
    107 #include <sys/ucontext.h>
    108 #include <sys/wait.h>
    109 
    110 #ifdef PAX_SEGVGUARD
    111 #include <sys/pax.h>
    112 #endif /* PAX_SEGVGUARD */
    113 
    114 #include <uvm/uvm_extern.h>
    115 
    116 /* Many hard-coded assumptions that there are <= 4 x 32bit signal mask bits */
    117 __CTASSERT(NSIG <= 128);
    118 
    119 #define	SIGQUEUE_MAX	32
    120 static pool_cache_t	sigacts_cache	__read_mostly;
    121 static pool_cache_t	ksiginfo_cache	__read_mostly;
    122 static callout_t	proc_stop_ch	__cacheline_aligned;
    123 
    124 sigset_t		contsigmask	__cacheline_aligned;
    125 sigset_t		stopsigmask	__cacheline_aligned;
    126 static sigset_t		vforksigmask	__cacheline_aligned;
    127 sigset_t		sigcantmask	__cacheline_aligned;
    128 
    129 static void	proc_stop(struct proc *, int);
    130 static void	proc_stop_done(struct proc *, int);
    131 static void	proc_stop_callout(void *);
    132 static int	sigchecktrace(void);
    133 static int	sigpost(struct lwp *, sig_t, int, int);
    134 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    135 static int	sigunwait(struct proc *, const ksiginfo_t *);
    136 static void	sigswitch(int, int, bool);
    137 static void	sigswitch_unlock_and_switch_away(struct lwp *);
    138 
    139 static void	sigacts_poolpage_free(struct pool *, void *);
    140 static void	*sigacts_poolpage_alloc(struct pool *, int);
    141 
    142 /*
    143  * DTrace SDT provider definitions
    144  */
    145 SDT_PROVIDER_DECLARE(proc);
    146 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    147     "struct lwp *", 	/* target thread */
    148     "struct proc *", 	/* target process */
    149     "int");		/* signal */
    150 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    151     "struct lwp *",	/* target thread */
    152     "struct proc *",	/* target process */
    153     "int");  		/* signal */
    154 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    155     "int", 		/* signal */
    156     "ksiginfo_t *", 	/* signal info */
    157     "void (*)(void)");	/* handler address */
    158 
    159 
    160 static struct pool_allocator sigactspool_allocator = {
    161 	.pa_alloc = sigacts_poolpage_alloc,
    162 	.pa_free = sigacts_poolpage_free
    163 };
    164 
    165 #ifdef DEBUG
    166 int	kern_logsigexit = 1;
    167 #else
    168 int	kern_logsigexit = 0;
    169 #endif
    170 
    171 static const char logcoredump[] =
    172     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    173 static const char lognocoredump[] =
    174     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    175 
    176 static kauth_listener_t signal_listener;
    177 
    178 static int
    179 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    180     void *arg0, void *arg1, void *arg2, void *arg3)
    181 {
    182 	struct proc *p;
    183 	int result, signum;
    184 
    185 	result = KAUTH_RESULT_DEFER;
    186 	p = arg0;
    187 	signum = (int)(unsigned long)arg1;
    188 
    189 	if (action != KAUTH_PROCESS_SIGNAL)
    190 		return result;
    191 
    192 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    193 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    194 		result = KAUTH_RESULT_ALLOW;
    195 
    196 	return result;
    197 }
    198 
    199 static int
    200 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
    201 {
    202 	memset(obj, 0, sizeof(struct sigacts));
    203 	return 0;
    204 }
    205 
    206 /*
    207  * signal_init:
    208  *
    209  *	Initialize global signal-related data structures.
    210  */
    211 void
    212 signal_init(void)
    213 {
    214 
    215 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    216 
    217 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    218 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    219 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
    220 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    221 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    222 
    223 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    224 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    225 
    226 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    227 	    signal_listener_cb, NULL);
    228 }
    229 
    230 /*
    231  * sigacts_poolpage_alloc:
    232  *
    233  *	Allocate a page for the sigacts memory pool.
    234  */
    235 static void *
    236 sigacts_poolpage_alloc(struct pool *pp, int flags)
    237 {
    238 
    239 	return (void *)uvm_km_alloc(kernel_map,
    240 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    241 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    242 	    | UVM_KMF_WIRED);
    243 }
    244 
    245 /*
    246  * sigacts_poolpage_free:
    247  *
    248  *	Free a page on behalf of the sigacts memory pool.
    249  */
    250 static void
    251 sigacts_poolpage_free(struct pool *pp, void *v)
    252 {
    253 
    254 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    255 }
    256 
    257 /*
    258  * sigactsinit:
    259  *
    260  *	Create an initial sigacts structure, using the same signal state
    261  *	as of specified process.  If 'share' is set, share the sigacts by
    262  *	holding a reference, otherwise just copy it from parent.
    263  */
    264 struct sigacts *
    265 sigactsinit(struct proc *pp, int share)
    266 {
    267 	struct sigacts *ps = pp->p_sigacts, *ps2;
    268 
    269 	if (__predict_false(share)) {
    270 		atomic_inc_uint(&ps->sa_refcnt);
    271 		return ps;
    272 	}
    273 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    274 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    275 	ps2->sa_refcnt = 1;
    276 
    277 	mutex_enter(&ps->sa_mutex);
    278 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    279 	mutex_exit(&ps->sa_mutex);
    280 	return ps2;
    281 }
    282 
    283 /*
    284  * sigactsunshare:
    285  *
    286  *	Make this process not share its sigacts, maintaining all signal state.
    287  */
    288 void
    289 sigactsunshare(struct proc *p)
    290 {
    291 	struct sigacts *ps, *oldps = p->p_sigacts;
    292 
    293 	if (__predict_true(oldps->sa_refcnt == 1))
    294 		return;
    295 
    296 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    297 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    298 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    299 	ps->sa_refcnt = 1;
    300 
    301 	p->p_sigacts = ps;
    302 	sigactsfree(oldps);
    303 }
    304 
    305 /*
    306  * sigactsfree;
    307  *
    308  *	Release a sigacts structure.
    309  */
    310 void
    311 sigactsfree(struct sigacts *ps)
    312 {
    313 
    314 	membar_release();
    315 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    316 		membar_acquire();
    317 		mutex_destroy(&ps->sa_mutex);
    318 		pool_cache_put(sigacts_cache, ps);
    319 	}
    320 }
    321 
    322 /*
    323  * siginit:
    324  *
    325  *	Initialize signal state for process 0; set to ignore signals that
    326  *	are ignored by default and disable the signal stack.  Locking not
    327  *	required as the system is still cold.
    328  */
    329 void
    330 siginit(struct proc *p)
    331 {
    332 	struct lwp *l;
    333 	struct sigacts *ps;
    334 	int signo, prop;
    335 
    336 	ps = p->p_sigacts;
    337 	sigemptyset(&contsigmask);
    338 	sigemptyset(&stopsigmask);
    339 	sigemptyset(&vforksigmask);
    340 	sigemptyset(&sigcantmask);
    341 	for (signo = 1; signo < NSIG; signo++) {
    342 		prop = sigprop[signo];
    343 		if (prop & SA_CONT)
    344 			sigaddset(&contsigmask, signo);
    345 		if (prop & SA_STOP)
    346 			sigaddset(&stopsigmask, signo);
    347 		if (prop & SA_STOP && signo != SIGSTOP)
    348 			sigaddset(&vforksigmask, signo);
    349 		if (prop & SA_CANTMASK)
    350 			sigaddset(&sigcantmask, signo);
    351 		if (prop & SA_IGNORE && signo != SIGCONT)
    352 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    353 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    354 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    355 	}
    356 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    357 	p->p_sflag &= ~PS_NOCLDSTOP;
    358 
    359 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    360 	sigemptyset(&p->p_sigpend.sp_set);
    361 
    362 	/*
    363 	 * Reset per LWP state.
    364 	 */
    365 	l = LIST_FIRST(&p->p_lwps);
    366 	l->l_sigwaited = NULL;
    367 	l->l_sigstk = SS_INIT;
    368 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    369 	sigemptyset(&l->l_sigpend.sp_set);
    370 
    371 	/* One reference. */
    372 	ps->sa_refcnt = 1;
    373 }
    374 
    375 /*
    376  * execsigs:
    377  *
    378  *	Reset signals for an exec of the specified process.
    379  */
    380 void
    381 execsigs(struct proc *p)
    382 {
    383 	struct sigacts *ps;
    384 	struct lwp *l;
    385 	int signo, prop;
    386 	sigset_t tset;
    387 	ksiginfoq_t kq;
    388 
    389 	KASSERT(p->p_nlwps == 1);
    390 
    391 	sigactsunshare(p);
    392 	ps = p->p_sigacts;
    393 
    394 	/*
    395 	 * Reset caught signals.  Held signals remain held through
    396 	 * l->l_sigmask (unless they were caught, and are now ignored
    397 	 * by default).
    398 	 *
    399 	 * No need to lock yet, the process has only one LWP and
    400 	 * at this point the sigacts are private to the process.
    401 	 */
    402 	sigemptyset(&tset);
    403 	for (signo = 1; signo < NSIG; signo++) {
    404 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    405 			prop = sigprop[signo];
    406 			if (prop & SA_IGNORE) {
    407 				if ((prop & SA_CONT) == 0)
    408 					sigaddset(&p->p_sigctx.ps_sigignore,
    409 					    signo);
    410 				sigaddset(&tset, signo);
    411 			}
    412 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    413 		}
    414 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    415 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    416 	}
    417 	ksiginfo_queue_init(&kq);
    418 
    419 	mutex_enter(p->p_lock);
    420 	sigclearall(p, &tset, &kq);
    421 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    422 
    423 	/*
    424 	 * Reset no zombies if child dies flag as Solaris does.
    425 	 */
    426 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    427 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    428 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    429 
    430 	/*
    431 	 * Reset per-LWP state.
    432 	 */
    433 	l = LIST_FIRST(&p->p_lwps);
    434 	l->l_sigwaited = NULL;
    435 	l->l_sigstk = SS_INIT;
    436 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    437 	sigemptyset(&l->l_sigpend.sp_set);
    438 	mutex_exit(p->p_lock);
    439 
    440 	ksiginfo_queue_drain(&kq);
    441 }
    442 
    443 /*
    444  * ksiginfo_alloc:
    445  *
    446  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    447  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    448  *	has not been queued somewhere, then just return it.  Additionally,
    449  *	if the existing ksiginfo_t does not contain any information beyond
    450  *	the signal number, then just return it.
    451  */
    452 ksiginfo_t *
    453 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    454 {
    455 	ksiginfo_t *kp;
    456 
    457 	if (ok != NULL) {
    458 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    459 		    KSI_FROMPOOL)
    460 			return ok;
    461 		if (KSI_EMPTY_P(ok))
    462 			return ok;
    463 	}
    464 
    465 	kp = pool_cache_get(ksiginfo_cache, flags);
    466 	if (kp == NULL) {
    467 #ifdef DIAGNOSTIC
    468 		printf("Out of memory allocating ksiginfo for pid %d\n",
    469 		    p->p_pid);
    470 #endif
    471 		return NULL;
    472 	}
    473 
    474 	if (ok != NULL) {
    475 		memcpy(kp, ok, sizeof(*kp));
    476 		kp->ksi_flags &= ~KSI_QUEUED;
    477 	} else
    478 		KSI_INIT_EMPTY(kp);
    479 
    480 	kp->ksi_flags |= KSI_FROMPOOL;
    481 
    482 	return kp;
    483 }
    484 
    485 /*
    486  * ksiginfo_free:
    487  *
    488  *	If the given ksiginfo_t is from the pool and has not been queued,
    489  *	then free it.
    490  */
    491 void
    492 ksiginfo_free(ksiginfo_t *kp)
    493 {
    494 
    495 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    496 		return;
    497 	pool_cache_put(ksiginfo_cache, kp);
    498 }
    499 
    500 /*
    501  * ksiginfo_queue_drain:
    502  *
    503  *	Drain a non-empty ksiginfo_t queue.
    504  */
    505 void
    506 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    507 {
    508 	ksiginfo_t *ksi;
    509 
    510 	KASSERT(!TAILQ_EMPTY(kq));
    511 
    512 	while (!TAILQ_EMPTY(kq)) {
    513 		ksi = TAILQ_FIRST(kq);
    514 		TAILQ_REMOVE(kq, ksi, ksi_list);
    515 		pool_cache_put(ksiginfo_cache, ksi);
    516 	}
    517 }
    518 
    519 static int
    520 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    521 {
    522 	ksiginfo_t *ksi, *nksi;
    523 
    524 	if (sp == NULL)
    525 		goto out;
    526 
    527 	/* Find siginfo and copy it out. */
    528 	int count = 0;
    529 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    530 		if (ksi->ksi_signo != signo)
    531 			continue;
    532 		if (count++ > 0) /* Only remove the first, count all of them */
    533 			continue;
    534 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    535 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    536 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    537 		ksi->ksi_flags &= ~KSI_QUEUED;
    538 		if (out != NULL) {
    539 			memcpy(out, ksi, sizeof(*out));
    540 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    541 		}
    542 		ksiginfo_free(ksi);
    543 	}
    544 	if (count)
    545 		return count;
    546 
    547 out:
    548 	/* If there is no siginfo, then manufacture it. */
    549 	if (out != NULL) {
    550 		KSI_INIT(out);
    551 		out->ksi_info._signo = signo;
    552 		out->ksi_info._code = SI_NOINFO;
    553 	}
    554 	return 0;
    555 }
    556 
    557 /*
    558  * sigget:
    559  *
    560  *	Fetch the first pending signal from a set.  Optionally, also fetch
    561  *	or manufacture a ksiginfo element.  Returns the number of the first
    562  *	pending signal, or zero.
    563  */
    564 int
    565 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    566 {
    567 	sigset_t tset;
    568 	int count;
    569 
    570 	/* If there's no pending set, the signal is from the debugger. */
    571 	if (sp == NULL)
    572 		goto out;
    573 
    574 	/* Construct mask from signo, and 'mask'. */
    575 	if (signo == 0) {
    576 		if (mask != NULL) {
    577 			tset = *mask;
    578 			__sigandset(&sp->sp_set, &tset);
    579 		} else
    580 			tset = sp->sp_set;
    581 
    582 		/* If there are no signals pending - return. */
    583 		if ((signo = firstsig(&tset)) == 0)
    584 			goto out;
    585 	} else {
    586 		KASSERT(sigismember(&sp->sp_set, signo));
    587 	}
    588 
    589 	sigdelset(&sp->sp_set, signo);
    590 out:
    591 	count = siggetinfo(sp, out, signo);
    592 	if (count > 1)
    593 		sigaddset(&sp->sp_set, signo);
    594 	return signo;
    595 }
    596 
    597 /*
    598  * sigput:
    599  *
    600  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    601  */
    602 static int
    603 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    604 {
    605 	ksiginfo_t *kp;
    606 
    607 	KASSERT(mutex_owned(p->p_lock));
    608 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    609 
    610 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    611 
    612 	/*
    613 	 * If there is no siginfo, we are done.
    614 	 */
    615 	if (KSI_EMPTY_P(ksi))
    616 		return 0;
    617 
    618 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    619 
    620 	size_t count = 0;
    621 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    622 		count++;
    623 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    624 			continue;
    625 		if (kp->ksi_signo == ksi->ksi_signo) {
    626 			KSI_COPY(ksi, kp);
    627 			kp->ksi_flags |= KSI_QUEUED;
    628 			return 0;
    629 		}
    630 	}
    631 
    632 	if (count >= SIGQUEUE_MAX) {
    633 #ifdef DIAGNOSTIC
    634 		printf("%s(%d): Signal queue is full signal=%d\n",
    635 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    636 #endif
    637 		return SET_ERROR(EAGAIN);
    638 	}
    639 	ksi->ksi_flags |= KSI_QUEUED;
    640 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    641 
    642 	return 0;
    643 }
    644 
    645 /*
    646  * sigclear:
    647  *
    648  *	Clear all pending signals in the specified set.
    649  */
    650 void
    651 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    652 {
    653 	ksiginfo_t *ksi, *next;
    654 
    655 	if (mask == NULL)
    656 		sigemptyset(&sp->sp_set);
    657 	else
    658 		sigminusset(mask, &sp->sp_set);
    659 
    660 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    661 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    662 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    663 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    664 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    665 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    666 		}
    667 	}
    668 }
    669 
    670 /*
    671  * sigclearall:
    672  *
    673  *	Clear all pending signals in the specified set from a process and
    674  *	its LWPs.
    675  */
    676 void
    677 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    678 {
    679 	struct lwp *l;
    680 
    681 	KASSERT(mutex_owned(p->p_lock));
    682 
    683 	sigclear(&p->p_sigpend, mask, kq);
    684 
    685 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    686 		sigclear(&l->l_sigpend, mask, kq);
    687 	}
    688 }
    689 
    690 /*
    691  * sigispending:
    692  *
    693  *	Return the first signal number if there are pending signals for the
    694  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    695  *	and that the signal has been posted to the appropriate queue before
    696  *	LW_PENDSIG is set.
    697  *
    698  *	This should only ever be called with (l == curlwp), unless the
    699  *	result does not matter (procfs, sysctl).
    700  */
    701 int
    702 sigispending(struct lwp *l, int signo)
    703 {
    704 	struct proc *p = l->l_proc;
    705 	sigset_t tset;
    706 
    707 	membar_consumer();
    708 
    709 	tset = l->l_sigpend.sp_set;
    710 	sigplusset(&p->p_sigpend.sp_set, &tset);
    711 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    712 	sigminusset(&l->l_sigmask, &tset);
    713 
    714 	if (signo == 0) {
    715 		return firstsig(&tset);
    716 	}
    717 	return sigismember(&tset, signo) ? signo : 0;
    718 }
    719 
    720 void
    721 getucontext(struct lwp *l, ucontext_t *ucp)
    722 {
    723 	struct proc *p = l->l_proc;
    724 
    725 	KASSERT(mutex_owned(p->p_lock));
    726 
    727 	ucp->uc_flags = 0;
    728 	ucp->uc_link = l->l_ctxlink;
    729 	ucp->uc_sigmask = l->l_sigmask;
    730 	ucp->uc_flags |= _UC_SIGMASK;
    731 
    732 	/*
    733 	 * The (unsupplied) definition of the `current execution stack'
    734 	 * in the System V Interface Definition appears to allow returning
    735 	 * the main context stack.
    736 	 */
    737 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    738 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    739 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    740 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    741 	} else {
    742 		/* Simply copy alternate signal execution stack. */
    743 		ucp->uc_stack = l->l_sigstk;
    744 	}
    745 	ucp->uc_flags |= _UC_STACK;
    746 	mutex_exit(p->p_lock);
    747 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    748 	mutex_enter(p->p_lock);
    749 }
    750 
    751 int
    752 setucontext(struct lwp *l, const ucontext_t *ucp)
    753 {
    754 	struct proc *p = l->l_proc;
    755 	int error;
    756 
    757 	KASSERT(mutex_owned(p->p_lock));
    758 
    759 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    760 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    761 		if (error != 0)
    762 			return error;
    763 	}
    764 
    765 	mutex_exit(p->p_lock);
    766 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    767 	mutex_enter(p->p_lock);
    768 	if (error != 0)
    769 		return (error);
    770 
    771 	l->l_ctxlink = ucp->uc_link;
    772 
    773 	/*
    774 	 * If there was stack information, update whether or not we are
    775 	 * still running on an alternate signal stack.
    776 	 */
    777 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    778 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    779 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    780 		else
    781 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    782 	}
    783 
    784 	return 0;
    785 }
    786 
    787 /*
    788  * killpg1: common code for kill process group/broadcast kill.
    789  */
    790 int
    791 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    792 {
    793 	struct proc	*p, *cp;
    794 	kauth_cred_t	pc;
    795 	struct pgrp	*pgrp;
    796 	int		nfound;
    797 	int		signo = ksi->ksi_signo;
    798 
    799 	cp = l->l_proc;
    800 	pc = l->l_cred;
    801 	nfound = 0;
    802 
    803 	mutex_enter(&proc_lock);
    804 	if (all) {
    805 		/*
    806 		 * Broadcast.
    807 		 */
    808 		PROCLIST_FOREACH(p, &allproc) {
    809 			if (p->p_pid <= 1 || p == cp ||
    810 			    (p->p_flag & PK_SYSTEM) != 0)
    811 				continue;
    812 			mutex_enter(p->p_lock);
    813 			if (kauth_authorize_process(pc,
    814 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    815 			    NULL) == 0) {
    816 				nfound++;
    817 				if (signo)
    818 					kpsignal2(p, ksi);
    819 			}
    820 			mutex_exit(p->p_lock);
    821 		}
    822 	} else {
    823 		if (pgid == 0)
    824 			/* Zero pgid means send to my process group. */
    825 			pgrp = cp->p_pgrp;
    826 		else {
    827 			pgrp = pgrp_find(pgid);
    828 			if (pgrp == NULL)
    829 				goto out;
    830 		}
    831 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    832 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    833 				continue;
    834 			mutex_enter(p->p_lock);
    835 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    836 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    837 				nfound++;
    838 				if (signo && P_ZOMBIE(p) == 0)
    839 					kpsignal2(p, ksi);
    840 			}
    841 			mutex_exit(p->p_lock);
    842 		}
    843 	}
    844 out:
    845 	mutex_exit(&proc_lock);
    846 	return nfound ? 0 : SET_ERROR(ESRCH);
    847 }
    848 
    849 /*
    850  * Send a signal to a process group.  If checktty is set, limit to members
    851  * which have a controlling terminal.
    852  */
    853 void
    854 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    855 {
    856 	ksiginfo_t ksi;
    857 
    858 	KASSERT(!cpu_intr_p());
    859 	KASSERT(mutex_owned(&proc_lock));
    860 
    861 	KSI_INIT_EMPTY(&ksi);
    862 	ksi.ksi_signo = sig;
    863 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    864 }
    865 
    866 void
    867 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    868 {
    869 	struct proc *p;
    870 
    871 	KASSERT(!cpu_intr_p());
    872 	KASSERT(mutex_owned(&proc_lock));
    873 	KASSERT(pgrp != NULL);
    874 
    875 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    876 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    877 			kpsignal(p, ksi, data);
    878 }
    879 
    880 /*
    881  * Send a signal caused by a trap to the current LWP.  If it will be caught
    882  * immediately, deliver it with correct code.  Otherwise, post it normally.
    883  */
    884 void
    885 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    886 {
    887 	struct proc	*p;
    888 	struct sigacts	*ps;
    889 	int signo = ksi->ksi_signo;
    890 	sigset_t *mask;
    891 	sig_t action;
    892 
    893 	KASSERT(KSI_TRAP_P(ksi));
    894 
    895 	ksi->ksi_lid = l->l_lid;
    896 	p = l->l_proc;
    897 
    898 	KASSERT(!cpu_intr_p());
    899 	mutex_enter(&proc_lock);
    900 	mutex_enter(p->p_lock);
    901 
    902 repeat:
    903 	/*
    904 	 * If we are exiting, demise now.
    905 	 *
    906 	 * This avoids notifying tracer and deadlocking.
    907 	 */
    908 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
    909 		mutex_exit(p->p_lock);
    910 		mutex_exit(&proc_lock);
    911 		lwp_exit(l);
    912 		panic("trapsignal");
    913 		/* NOTREACHED */
    914 	}
    915 
    916 	/*
    917 	 * The process is already stopping.
    918 	 */
    919 	if ((p->p_sflag & PS_STOPPING) != 0) {
    920 		mutex_exit(&proc_lock);
    921 		sigswitch_unlock_and_switch_away(l);
    922 		mutex_enter(&proc_lock);
    923 		mutex_enter(p->p_lock);
    924 		goto repeat;
    925 	}
    926 
    927 	mask = &l->l_sigmask;
    928 	ps = p->p_sigacts;
    929 	action = SIGACTION_PS(ps, signo).sa_handler;
    930 
    931 	if (ISSET(p->p_slflag, PSL_TRACED) &&
    932 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
    933 	    p->p_xsig != SIGKILL &&
    934 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
    935 		p->p_xsig = signo;
    936 		p->p_sigctx.ps_faked = true;
    937 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
    938 		p->p_sigctx.ps_info = ksi->ksi_info;
    939 		sigswitch(0, signo, true);
    940 
    941 		if (ktrpoint(KTR_PSIG)) {
    942 			if (p->p_emul->e_ktrpsig)
    943 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    944 			else
    945 				ktrpsig(signo, action, mask, ksi);
    946 		}
    947 		return;
    948 	}
    949 
    950 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
    951 	const bool masked = sigismember(mask, signo);
    952 	if (caught && !masked) {
    953 		mutex_exit(&proc_lock);
    954 		l->l_ru.ru_nsignals++;
    955 		kpsendsig(l, ksi, mask);
    956 		mutex_exit(p->p_lock);
    957 
    958 		if (ktrpoint(KTR_PSIG)) {
    959 			if (p->p_emul->e_ktrpsig)
    960 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
    961 			else
    962 				ktrpsig(signo, action, mask, ksi);
    963 		}
    964 		return;
    965 	}
    966 
    967 	/*
    968 	 * If the signal is masked or ignored, then unmask it and
    969 	 * reset it to the default action so that the process or
    970 	 * its tracer will be notified.
    971 	 */
    972 	const bool ignored = action == SIG_IGN;
    973 	if (masked || ignored) {
    974 		mutex_enter(&ps->sa_mutex);
    975 		sigdelset(mask, signo);
    976 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
    977 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
    978 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
    979 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    980 		mutex_exit(&ps->sa_mutex);
    981 	}
    982 
    983 	kpsignal2(p, ksi);
    984 	mutex_exit(p->p_lock);
    985 	mutex_exit(&proc_lock);
    986 }
    987 
    988 /*
    989  * Fill in signal information and signal the parent for a child status change.
    990  */
    991 void
    992 child_psignal(struct proc *p, int mask)
    993 {
    994 	ksiginfo_t ksi;
    995 	struct proc *q;
    996 	int xsig;
    997 
    998 	KASSERT(mutex_owned(&proc_lock));
    999 	KASSERT(mutex_owned(p->p_lock));
   1000 
   1001 	xsig = p->p_xsig;
   1002 
   1003 	KSI_INIT(&ksi);
   1004 	ksi.ksi_signo = SIGCHLD;
   1005 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1006 	ksi.ksi_pid = p->p_pid;
   1007 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1008 	ksi.ksi_status = xsig;
   1009 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1010 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1011 
   1012 	q = p->p_pptr;
   1013 
   1014 	mutex_exit(p->p_lock);
   1015 	mutex_enter(q->p_lock);
   1016 
   1017 	if ((q->p_sflag & mask) == 0)
   1018 		kpsignal2(q, &ksi);
   1019 
   1020 	mutex_exit(q->p_lock);
   1021 	mutex_enter(p->p_lock);
   1022 }
   1023 
   1024 void
   1025 psignal(struct proc *p, int signo)
   1026 {
   1027 	ksiginfo_t ksi;
   1028 
   1029 	KASSERT(!cpu_intr_p());
   1030 	KASSERT(mutex_owned(&proc_lock));
   1031 
   1032 	KSI_INIT_EMPTY(&ksi);
   1033 	ksi.ksi_signo = signo;
   1034 	mutex_enter(p->p_lock);
   1035 	kpsignal2(p, &ksi);
   1036 	mutex_exit(p->p_lock);
   1037 }
   1038 
   1039 void
   1040 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1041 {
   1042 	fdfile_t *ff;
   1043 	file_t *fp;
   1044 	fdtab_t *dt;
   1045 
   1046 	KASSERT(!cpu_intr_p());
   1047 	KASSERT(mutex_owned(&proc_lock));
   1048 
   1049 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1050 		size_t fd;
   1051 		filedesc_t *fdp = p->p_fd;
   1052 
   1053 		/* XXXSMP locking */
   1054 		ksi->ksi_fd = -1;
   1055 		dt = atomic_load_consume(&fdp->fd_dt);
   1056 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1057 			if ((ff = dt->dt_ff[fd]) == NULL)
   1058 				continue;
   1059 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
   1060 				continue;
   1061 			if (fp->f_data == data) {
   1062 				ksi->ksi_fd = fd;
   1063 				break;
   1064 			}
   1065 		}
   1066 	}
   1067 	mutex_enter(p->p_lock);
   1068 	kpsignal2(p, ksi);
   1069 	mutex_exit(p->p_lock);
   1070 }
   1071 
   1072 /*
   1073  * sigismasked:
   1074  *
   1075  *	Returns true if signal is ignored or masked for the specified LWP.
   1076  */
   1077 int
   1078 sigismasked(struct lwp *l, int sig)
   1079 {
   1080 	struct proc *p = l->l_proc;
   1081 
   1082 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1083 	    sigismember(&l->l_sigmask, sig);
   1084 }
   1085 
   1086 /*
   1087  * sigpost:
   1088  *
   1089  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1090  *	be able to take the signal.
   1091  */
   1092 static int
   1093 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1094 {
   1095 	int rv, masked;
   1096 	struct proc *p = l->l_proc;
   1097 
   1098 	KASSERT(mutex_owned(p->p_lock));
   1099 
   1100 	/*
   1101 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1102 	 * pending signals.  Don't give it more.
   1103 	 */
   1104 	if (l->l_stat == LSZOMB)
   1105 		return 0;
   1106 
   1107 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1108 
   1109 	lwp_lock(l);
   1110 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
   1111 		if ((prop & SA_KILL) != 0)
   1112 			l->l_flag &= ~LW_DBGSUSPEND;
   1113 		else {
   1114 			lwp_unlock(l);
   1115 			return 0;
   1116 		}
   1117 	}
   1118 
   1119 	/*
   1120 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1121 	 * is found to take the signal immediately, it should be taken soon.
   1122 	 */
   1123 	signotify(l);
   1124 
   1125 	/*
   1126 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1127 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1128 	 */
   1129 	masked = sigismember(&l->l_sigmask, sig);
   1130 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1131 		lwp_unlock(l);
   1132 		return 0;
   1133 	}
   1134 
   1135 	/*
   1136 	 * If killing the process, make it run fast.
   1137 	 */
   1138 	if (__predict_false((prop & SA_KILL) != 0) &&
   1139 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1140 		KASSERT(l->l_class == SCHED_OTHER);
   1141 		lwp_changepri(l, MAXPRI_USER);
   1142 	}
   1143 
   1144 	/*
   1145 	 * If the LWP is running or on a run queue, then we win.  If it's
   1146 	 * sleeping interruptably, wake it and make it take the signal.  If
   1147 	 * the sleep isn't interruptable, then the chances are it will get
   1148 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1149 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1150 	 * for later; otherwise punt.
   1151 	 */
   1152 	rv = 0;
   1153 
   1154 	switch (l->l_stat) {
   1155 	case LSRUN:
   1156 	case LSONPROC:
   1157 		rv = 1;
   1158 		break;
   1159 
   1160 	case LSSLEEP:
   1161 		if ((l->l_flag & LW_SINTR) != 0) {
   1162 			/* setrunnable() will release the lock. */
   1163 			setrunnable(l);
   1164 			return 1;
   1165 		}
   1166 		break;
   1167 
   1168 	case LSSUSPENDED:
   1169 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1170 			/* lwp_continue() will release the lock. */
   1171 			lwp_continue(l);
   1172 			return 1;
   1173 		}
   1174 		break;
   1175 
   1176 	case LSSTOP:
   1177 		if ((prop & SA_STOP) != 0)
   1178 			break;
   1179 
   1180 		/*
   1181 		 * If the LWP is stopped and we are sending a continue
   1182 		 * signal, then start it again.
   1183 		 */
   1184 		if ((prop & SA_CONT) != 0) {
   1185 			if (l->l_wchan != NULL) {
   1186 				l->l_stat = LSSLEEP;
   1187 				p->p_nrlwps++;
   1188 				rv = 1;
   1189 				break;
   1190 			}
   1191 			/* setrunnable() will release the lock. */
   1192 			setrunnable(l);
   1193 			return 1;
   1194 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1195 			/* setrunnable() will release the lock. */
   1196 			setrunnable(l);
   1197 			return 1;
   1198 		}
   1199 		break;
   1200 
   1201 	default:
   1202 		break;
   1203 	}
   1204 
   1205 	lwp_unlock(l);
   1206 	return rv;
   1207 }
   1208 
   1209 /*
   1210  * Notify an LWP that it has a pending signal.
   1211  */
   1212 void
   1213 signotify(struct lwp *l)
   1214 {
   1215 	KASSERT(lwp_locked(l, NULL));
   1216 
   1217 	l->l_flag |= LW_PENDSIG;
   1218 	lwp_need_userret(l);
   1219 }
   1220 
   1221 /*
   1222  * Find an LWP within process p that is waiting on signal ksi, and hand
   1223  * it on.
   1224  */
   1225 static int
   1226 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1227 {
   1228 	struct lwp *l;
   1229 	int signo;
   1230 
   1231 	KASSERT(mutex_owned(p->p_lock));
   1232 
   1233 	signo = ksi->ksi_signo;
   1234 
   1235 	if (ksi->ksi_lid != 0) {
   1236 		/*
   1237 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1238 		 * it's interested.
   1239 		 */
   1240 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1241 			return 0;
   1242 		if (l->l_sigwaited == NULL ||
   1243 		    !sigismember(&l->l_sigwaitset, signo))
   1244 			return 0;
   1245 	} else {
   1246 		/*
   1247 		 * Look for any LWP that may be interested.
   1248 		 */
   1249 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1250 			KASSERT(l->l_sigwaited != NULL);
   1251 			if (sigismember(&l->l_sigwaitset, signo))
   1252 				break;
   1253 		}
   1254 	}
   1255 
   1256 	if (l != NULL) {
   1257 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1258 		l->l_sigwaited = NULL;
   1259 		LIST_REMOVE(l, l_sigwaiter);
   1260 		cv_signal(&l->l_sigcv);
   1261 		return 1;
   1262 	}
   1263 
   1264 	return 0;
   1265 }
   1266 
   1267 /*
   1268  * Send the signal to the process.  If the signal has an action, the action
   1269  * is usually performed by the target process rather than the caller; we add
   1270  * the signal to the set of pending signals for the process.
   1271  *
   1272  * Exceptions:
   1273  *   o When a stop signal is sent to a sleeping process that takes the
   1274  *     default action, the process is stopped without awakening it.
   1275  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1276  *     regardless of the signal action (eg, blocked or ignored).
   1277  *
   1278  * Other ignored signals are discarded immediately.
   1279  */
   1280 int
   1281 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1282 {
   1283 	int prop, signo = ksi->ksi_signo;
   1284 	struct lwp *l = NULL;
   1285 	ksiginfo_t *kp;
   1286 	lwpid_t lid;
   1287 	sig_t action;
   1288 	bool toall;
   1289 	bool traced;
   1290 	int error = 0;
   1291 
   1292 	KASSERT(!cpu_intr_p());
   1293 	KASSERT(mutex_owned(&proc_lock));
   1294 	KASSERT(mutex_owned(p->p_lock));
   1295 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1296 	KASSERT(signo > 0);
   1297 	KASSERT(signo < NSIG);
   1298 
   1299 	/*
   1300 	 * If the process is being created by fork, is a zombie or is
   1301 	 * exiting, then just drop the signal here and bail out.
   1302 	 */
   1303 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1304 		return 0;
   1305 
   1306 	/*
   1307 	 * Notify any interested parties of the signal.
   1308 	 */
   1309 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1310 
   1311 	/*
   1312 	 * Some signals including SIGKILL must act on the entire process.
   1313 	 */
   1314 	kp = NULL;
   1315 	prop = sigprop[signo];
   1316 	toall = ((prop & SA_TOALL) != 0);
   1317 	lid = toall ? 0 : ksi->ksi_lid;
   1318 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1319 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1320 
   1321 	/*
   1322 	 * If proc is traced, always give parent a chance.
   1323 	 */
   1324 	if (traced) {
   1325 		action = SIG_DFL;
   1326 
   1327 		if (lid == 0) {
   1328 			/*
   1329 			 * If the process is being traced and the signal
   1330 			 * is being caught, make sure to save any ksiginfo.
   1331 			 */
   1332 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1333 				goto discard;
   1334 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1335 				goto out;
   1336 		}
   1337 	} else {
   1338 
   1339 		/*
   1340 		 * If the signal is being ignored, then drop it.  Note: we
   1341 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1342 		 * SIG_IGN, action will be SIG_DFL here.
   1343 		 */
   1344 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1345 			goto discard;
   1346 
   1347 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1348 			action = SIG_CATCH;
   1349 		else {
   1350 			action = SIG_DFL;
   1351 
   1352 			/*
   1353 			 * If sending a tty stop signal to a member of an
   1354 			 * orphaned process group, discard the signal here if
   1355 			 * the action is default; don't stop the process below
   1356 			 * if sleeping, and don't clear any pending SIGCONT.
   1357 			 */
   1358 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1359 				goto discard;
   1360 
   1361 			if (prop & SA_KILL && p->p_nice > NZERO)
   1362 				p->p_nice = NZERO;
   1363 		}
   1364 	}
   1365 
   1366 	/*
   1367 	 * If stopping or continuing a process, discard any pending
   1368 	 * signals that would do the inverse.
   1369 	 */
   1370 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1371 		ksiginfoq_t kq;
   1372 
   1373 		ksiginfo_queue_init(&kq);
   1374 		if ((prop & SA_CONT) != 0)
   1375 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1376 		if ((prop & SA_STOP) != 0)
   1377 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1378 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1379 	}
   1380 
   1381 	/*
   1382 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1383 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1384 	 * the signal info.  The signal won't be processed further here.
   1385 	 */
   1386 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1387 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1388 	    sigunwait(p, ksi))
   1389 		goto discard;
   1390 
   1391 	/*
   1392 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1393 	 * here.
   1394 	 */
   1395 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1396 		goto discard;
   1397 
   1398 	/*
   1399 	 * LWP private signals are easy - just find the LWP and post
   1400 	 * the signal to it.
   1401 	 */
   1402 	if (lid != 0) {
   1403 		l = lwp_find(p, lid);
   1404 		if (l != NULL) {
   1405 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1406 				goto out;
   1407 			membar_producer();
   1408 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
   1409 				signo = -1;
   1410 		}
   1411 		goto out;
   1412 	}
   1413 
   1414 	/*
   1415 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1416 	 * or for an SA process.
   1417 	 */
   1418 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1419 		if (traced)
   1420 			goto deliver;
   1421 
   1422 		/*
   1423 		 * If SIGCONT is default (or ignored) and process is
   1424 		 * asleep, we are finished; the process should not
   1425 		 * be awakened.
   1426 		 */
   1427 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1428 			goto out;
   1429 	} else {
   1430 		/*
   1431 		 * Process is stopped or stopping.
   1432 		 * - If traced, then no action is needed, unless killing.
   1433 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1434 		 */
   1435 		if (traced && signo != SIGKILL) {
   1436 			goto out;
   1437 		}
   1438 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1439 			/*
   1440 			 * Re-adjust p_nstopchild if the process was
   1441 			 * stopped but not yet collected by its parent.
   1442 			 */
   1443 			if (p->p_stat == SSTOP && !p->p_waited)
   1444 				p->p_pptr->p_nstopchild--;
   1445 			p->p_stat = SACTIVE;
   1446 			p->p_sflag &= ~PS_STOPPING;
   1447 			if (traced) {
   1448 				KASSERT(signo == SIGKILL);
   1449 				goto deliver;
   1450 			}
   1451 			/*
   1452 			 * Do not make signal pending if SIGCONT is default.
   1453 			 *
   1454 			 * If the process catches SIGCONT, let it handle the
   1455 			 * signal itself (if waiting on event - process runs,
   1456 			 * otherwise continues sleeping).
   1457 			 */
   1458 			if ((prop & SA_CONT) != 0) {
   1459 				p->p_xsig = SIGCONT;
   1460 				p->p_sflag |= PS_CONTINUED;
   1461 				child_psignal(p, 0);
   1462 				if (action == SIG_DFL) {
   1463 					KASSERT(signo != SIGKILL);
   1464 					goto deliver;
   1465 				}
   1466 			}
   1467 		} else if ((prop & SA_STOP) != 0) {
   1468 			/*
   1469 			 * Already stopped, don't need to stop again.
   1470 			 * (If we did the shell could get confused.)
   1471 			 */
   1472 			goto out;
   1473 		}
   1474 	}
   1475 	/*
   1476 	 * Make signal pending.
   1477 	 */
   1478 	KASSERT(!traced);
   1479 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1480 		goto out;
   1481 deliver:
   1482 	/*
   1483 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1484 	 * visible on the per process list (for sigispending()).  This
   1485 	 * is unlikely to be needed in practice, but...
   1486 	 */
   1487 	membar_producer();
   1488 
   1489 	/*
   1490 	 * Try to find an LWP that can take the signal.
   1491 	 */
   1492 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1493 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1494 			break;
   1495 	}
   1496 	signo = -1;
   1497 out:
   1498 	/*
   1499 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1500 	 * with locks held.  The caller should take care of this.
   1501 	 */
   1502 	ksiginfo_free(kp);
   1503 	if (signo == -1)
   1504 		return error;
   1505 discard:
   1506 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1507 	return error;
   1508 }
   1509 
   1510 void
   1511 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1512 {
   1513 	struct proc *p = l->l_proc;
   1514 
   1515 	KASSERT(mutex_owned(p->p_lock));
   1516 	(*p->p_emul->e_sendsig)(ksi, mask);
   1517 }
   1518 
   1519 /*
   1520  * Stop any LWPs sleeping interruptably.
   1521  */
   1522 static void
   1523 proc_stop_lwps(struct proc *p)
   1524 {
   1525 	struct lwp *l;
   1526 
   1527 	KASSERT(mutex_owned(p->p_lock));
   1528 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1529 
   1530 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1531 		lwp_lock(l);
   1532 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1533 			l->l_stat = LSSTOP;
   1534 			p->p_nrlwps--;
   1535 		}
   1536 		lwp_unlock(l);
   1537 	}
   1538 }
   1539 
   1540 /*
   1541  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1542  *
   1543  * Drop p_lock briefly if ppsig is true.
   1544  */
   1545 static void
   1546 proc_stop_done(struct proc *p, int ppmask)
   1547 {
   1548 
   1549 	KASSERT(mutex_owned(&proc_lock));
   1550 	KASSERT(mutex_owned(p->p_lock));
   1551 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1552 	KASSERT(p->p_nrlwps == 0 || p->p_nrlwps == 1);
   1553 	KASSERT(p->p_nrlwps == 0 || p == curproc);
   1554 
   1555 	p->p_sflag &= ~PS_STOPPING;
   1556 	p->p_stat = SSTOP;
   1557 	p->p_waited = 0;
   1558 	p->p_pptr->p_nstopchild++;
   1559 
   1560 	/* child_psignal drops p_lock briefly. */
   1561 	child_psignal(p, ppmask);
   1562 	cv_broadcast(&p->p_pptr->p_waitcv);
   1563 }
   1564 
   1565 /*
   1566  * Stop the current process and switch away to the debugger notifying
   1567  * an event specific to a traced process only.
   1568  */
   1569 void
   1570 eventswitch(int code, int pe_report_event, int entity)
   1571 {
   1572 	struct lwp *l = curlwp;
   1573 	struct proc *p = l->l_proc;
   1574 	struct sigacts *ps;
   1575 	sigset_t *mask;
   1576 	sig_t action;
   1577 	ksiginfo_t ksi;
   1578 	const int signo = SIGTRAP;
   1579 
   1580 	KASSERT(mutex_owned(&proc_lock));
   1581 	KASSERT(mutex_owned(p->p_lock));
   1582 	KASSERT(p->p_pptr != initproc);
   1583 	KASSERT(l->l_stat == LSONPROC);
   1584 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   1585 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
   1586 	KASSERT(p->p_nrlwps > 0);
   1587 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
   1588 	        (code == TRAP_EXEC));
   1589 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
   1590 	KASSERT((code != TRAP_LWP) || (entity > 0));
   1591 
   1592 repeat:
   1593 	/*
   1594 	 * If we are exiting, demise now.
   1595 	 *
   1596 	 * This avoids notifying tracer and deadlocking.
   1597 	 */
   1598 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   1599 		mutex_exit(p->p_lock);
   1600 		mutex_exit(&proc_lock);
   1601 
   1602 		if (pe_report_event == PTRACE_LWP_EXIT) {
   1603 			/* Avoid double lwp_exit() and panic. */
   1604 			return;
   1605 		}
   1606 
   1607 		lwp_exit(l);
   1608 		panic("eventswitch");
   1609 		/* NOTREACHED */
   1610 	}
   1611 
   1612 	/*
   1613 	 * If we are no longer traced, abandon this event signal.
   1614 	 *
   1615 	 * This avoids killing a process after detaching the debugger.
   1616 	 */
   1617 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   1618 		mutex_exit(p->p_lock);
   1619 		mutex_exit(&proc_lock);
   1620 		return;
   1621 	}
   1622 
   1623 	/*
   1624 	 * If there's a pending SIGKILL process it immediately.
   1625 	 */
   1626 	if (p->p_xsig == SIGKILL ||
   1627 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   1628 		mutex_exit(p->p_lock);
   1629 		mutex_exit(&proc_lock);
   1630 		return;
   1631 	}
   1632 
   1633 	/*
   1634 	 * The process is already stopping.
   1635 	 */
   1636 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1637 		mutex_exit(&proc_lock);
   1638 		sigswitch_unlock_and_switch_away(l);
   1639 		mutex_enter(&proc_lock);
   1640 		mutex_enter(p->p_lock);
   1641 		goto repeat;
   1642 	}
   1643 
   1644 	KSI_INIT_TRAP(&ksi);
   1645 	ksi.ksi_lid = l->l_lid;
   1646 	ksi.ksi_signo = signo;
   1647 	ksi.ksi_code = code;
   1648 	ksi.ksi_pe_report_event = pe_report_event;
   1649 
   1650 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
   1651 	ksi.ksi_pe_other_pid = entity;
   1652 
   1653 	/* Needed for ktrace */
   1654 	ps = p->p_sigacts;
   1655 	action = SIGACTION_PS(ps, signo).sa_handler;
   1656 	mask = &l->l_sigmask;
   1657 
   1658 	p->p_xsig = signo;
   1659 	p->p_sigctx.ps_faked = true;
   1660 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   1661 	p->p_sigctx.ps_info = ksi.ksi_info;
   1662 
   1663 	sigswitch(0, signo, true);
   1664 
   1665 	if (code == TRAP_CHLD) {
   1666 		mutex_enter(&proc_lock);
   1667 		while (l->l_vforkwaiting)
   1668 			cv_wait(&l->l_waitcv, &proc_lock);
   1669 		mutex_exit(&proc_lock);
   1670 	}
   1671 
   1672 	if (ktrpoint(KTR_PSIG)) {
   1673 		if (p->p_emul->e_ktrpsig)
   1674 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   1675 		else
   1676 			ktrpsig(signo, action, mask, &ksi);
   1677 	}
   1678 }
   1679 
   1680 void
   1681 eventswitchchild(struct proc *p, int code, int pe_report_event)
   1682 {
   1683 	mutex_enter(&proc_lock);
   1684 	mutex_enter(p->p_lock);
   1685 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
   1686 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   1687 		mutex_exit(p->p_lock);
   1688 		mutex_exit(&proc_lock);
   1689 		return;
   1690 	}
   1691 	eventswitch(code, pe_report_event, p->p_oppid);
   1692 }
   1693 
   1694 /*
   1695  * Stop the current process and switch away when being stopped or traced.
   1696  */
   1697 static void
   1698 sigswitch(int ppmask, int signo, bool proc_lock_held)
   1699 {
   1700 	struct lwp *l = curlwp;
   1701 	struct proc *p = l->l_proc;
   1702 
   1703 	KASSERT(mutex_owned(p->p_lock));
   1704 	KASSERT(l->l_stat == LSONPROC);
   1705 	KASSERT(p->p_nrlwps > 0);
   1706 
   1707 	if (proc_lock_held) {
   1708 		KASSERT(mutex_owned(&proc_lock));
   1709 	} else {
   1710 		KASSERT(!mutex_owned(&proc_lock));
   1711 	}
   1712 
   1713 	/*
   1714 	 * On entry we know that the process needs to stop.  If it's
   1715 	 * the result of a 'sideways' stop signal that has been sourced
   1716 	 * through issignal(), then stop other LWPs in the process too.
   1717 	 */
   1718 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1719 		KASSERT(signo != 0);
   1720 		proc_stop(p, signo);
   1721 		KASSERT(p->p_nrlwps > 0);
   1722 	}
   1723 
   1724 	/*
   1725 	 * If we are the last live LWP, and the stop was a result of
   1726 	 * a new signal, then signal the parent.
   1727 	 */
   1728 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1729 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
   1730 			mutex_exit(p->p_lock);
   1731 			mutex_enter(&proc_lock);
   1732 			mutex_enter(p->p_lock);
   1733 		}
   1734 
   1735 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1736 			/*
   1737 			 * Note that proc_stop_done() can drop
   1738 			 * p->p_lock briefly.
   1739 			 */
   1740 			proc_stop_done(p, ppmask);
   1741 		}
   1742 
   1743 		mutex_exit(&proc_lock);
   1744 	}
   1745 
   1746 	sigswitch_unlock_and_switch_away(l);
   1747 }
   1748 
   1749 /*
   1750  * Unlock and switch away.
   1751  */
   1752 static void
   1753 sigswitch_unlock_and_switch_away(struct lwp *l)
   1754 {
   1755 	struct proc *p;
   1756 
   1757 	p = l->l_proc;
   1758 
   1759 	KASSERT(mutex_owned(p->p_lock));
   1760 	KASSERT(!mutex_owned(&proc_lock));
   1761 
   1762 	KASSERT(l->l_stat == LSONPROC);
   1763 	KASSERT(p->p_nrlwps > 0);
   1764 	KASSERT(l->l_blcnt == 0);
   1765 
   1766 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1767 		p->p_nrlwps--;
   1768 		lwp_lock(l);
   1769 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1770 		l->l_stat = LSSTOP;
   1771 		lwp_unlock(l);
   1772 	}
   1773 
   1774 	mutex_exit(p->p_lock);
   1775 	lwp_lock(l);
   1776 	spc_lock(l->l_cpu);
   1777 	mi_switch(l);
   1778 }
   1779 
   1780 /*
   1781  * Check for a signal from the debugger.
   1782  */
   1783 static int
   1784 sigchecktrace(void)
   1785 {
   1786 	struct lwp *l = curlwp;
   1787 	struct proc *p = l->l_proc;
   1788 	int signo;
   1789 
   1790 	KASSERT(mutex_owned(p->p_lock));
   1791 
   1792 	/* If there's a pending SIGKILL, process it immediately. */
   1793 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1794 		return 0;
   1795 
   1796 	/*
   1797 	 * If we are no longer being traced, or the parent didn't
   1798 	 * give us a signal, or we're stopping, look for more signals.
   1799 	 */
   1800 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1801 	    (p->p_sflag & PS_STOPPING) != 0)
   1802 		return 0;
   1803 
   1804 	/*
   1805 	 * If the new signal is being masked, look for other signals.
   1806 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1807 	 */
   1808 	signo = p->p_xsig;
   1809 	p->p_xsig = 0;
   1810 	if (sigismember(&l->l_sigmask, signo)) {
   1811 		signo = 0;
   1812 	}
   1813 	return signo;
   1814 }
   1815 
   1816 /*
   1817  * If the current process has received a signal (should be caught or cause
   1818  * termination, should interrupt current syscall), return the signal number.
   1819  *
   1820  * Stop signals with default action are processed immediately, then cleared;
   1821  * they aren't returned.  This is checked after each entry to the system for
   1822  * a syscall or trap.
   1823  *
   1824  * We will also return -1 if the process is exiting and the current LWP must
   1825  * follow suit.
   1826  */
   1827 int
   1828 issignal(struct lwp *l)
   1829 {
   1830 	struct proc *p;
   1831 	int siglwp, signo, prop;
   1832 	sigpend_t *sp;
   1833 	sigset_t ss;
   1834 	bool traced;
   1835 
   1836 	p = l->l_proc;
   1837 	sp = NULL;
   1838 	signo = 0;
   1839 
   1840 	KASSERT(p == curproc);
   1841 	KASSERT(mutex_owned(p->p_lock));
   1842 
   1843 	for (;;) {
   1844 		/* Discard any signals that we have decided not to take. */
   1845 		if (signo != 0) {
   1846 			(void)sigget(sp, NULL, signo, NULL);
   1847 		}
   1848 
   1849 		/*
   1850 		 * If the process is stopped/stopping, then stop ourselves
   1851 		 * now that we're on the kernel/userspace boundary.  When
   1852 		 * we awaken, check for a signal from the debugger.
   1853 		 */
   1854 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1855 			sigswitch_unlock_and_switch_away(l);
   1856 			mutex_enter(p->p_lock);
   1857 			continue;
   1858 		} else if (p->p_stat == SACTIVE)
   1859 			signo = sigchecktrace();
   1860 		else
   1861 			signo = 0;
   1862 
   1863 		/* Signals from the debugger are "out of band". */
   1864 		sp = NULL;
   1865 
   1866 		/*
   1867 		 * If the debugger didn't provide a signal, find a pending
   1868 		 * signal from our set.  Check per-LWP signals first, and
   1869 		 * then per-process.
   1870 		 */
   1871 		if (signo == 0) {
   1872 			sp = &l->l_sigpend;
   1873 			ss = sp->sp_set;
   1874 			siglwp = l->l_lid;
   1875 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1876 				sigminusset(&vforksigmask, &ss);
   1877 			sigminusset(&l->l_sigmask, &ss);
   1878 
   1879 			if ((signo = firstsig(&ss)) == 0) {
   1880 				sp = &p->p_sigpend;
   1881 				ss = sp->sp_set;
   1882 				siglwp = 0;
   1883 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1884 					sigminusset(&vforksigmask, &ss);
   1885 				sigminusset(&l->l_sigmask, &ss);
   1886 
   1887 				if ((signo = firstsig(&ss)) == 0) {
   1888 					/*
   1889 					 * No signal pending - clear the
   1890 					 * indicator and bail out.
   1891 					 */
   1892 					lwp_lock(l);
   1893 					l->l_flag &= ~LW_PENDSIG;
   1894 					lwp_unlock(l);
   1895 					sp = NULL;
   1896 					break;
   1897 				}
   1898 			}
   1899 		}
   1900 
   1901 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
   1902 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
   1903 
   1904 		if (sp) {
   1905 			/* Overwrite process' signal context to correspond
   1906 			 * to the currently reported LWP.  This is necessary
   1907 			 * for PT_GET_SIGINFO to report the correct signal when
   1908 			 * multiple LWPs have pending signals.  We do this only
   1909 			 * when the signal comes from the queue, for signals
   1910 			 * created by the debugger we assume it set correct
   1911 			 * siginfo.
   1912 			 */
   1913 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
   1914 			if (ksi) {
   1915 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
   1916 				p->p_sigctx.ps_info = ksi->ksi_info;
   1917 			} else {
   1918 				p->p_sigctx.ps_lwp = siglwp;
   1919 				memset(&p->p_sigctx.ps_info, 0,
   1920 				    sizeof(p->p_sigctx.ps_info));
   1921 				p->p_sigctx.ps_info._signo = signo;
   1922 				p->p_sigctx.ps_info._code = SI_NOINFO;
   1923 			}
   1924 		}
   1925 
   1926 		/*
   1927 		 * We should see pending but ignored signals only if
   1928 		 * we are being traced.
   1929 		 */
   1930 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1931 		    !traced) {
   1932 			/* Discard the signal. */
   1933 			continue;
   1934 		}
   1935 
   1936 		/*
   1937 		 * If traced, always stop, and stay stopped until released
   1938 		 * by the debugger.  If the our parent is our debugger waiting
   1939 		 * for us and we vforked, don't hang as we could deadlock.
   1940 		 */
   1941 		if (traced && signo != SIGKILL &&
   1942 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
   1943 		     (p->p_pptr == p->p_opptr))) {
   1944 			/*
   1945 			 * Take the signal, but don't remove it from the
   1946 			 * siginfo queue, because the debugger can send
   1947 			 * it later.
   1948 			 */
   1949 			if (sp)
   1950 				sigdelset(&sp->sp_set, signo);
   1951 			p->p_xsig = signo;
   1952 
   1953 			/* Handling of signal trace */
   1954 			sigswitch(0, signo, false);
   1955 			mutex_enter(p->p_lock);
   1956 
   1957 			/* Check for a signal from the debugger. */
   1958 			if ((signo = sigchecktrace()) == 0)
   1959 				continue;
   1960 
   1961 			/* Signals from the debugger are "out of band". */
   1962 			sp = NULL;
   1963 		}
   1964 
   1965 		prop = sigprop[signo];
   1966 
   1967 		/*
   1968 		 * Decide whether the signal should be returned.
   1969 		 */
   1970 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1971 		case (long)SIG_DFL:
   1972 			/*
   1973 			 * Don't take default actions on system processes.
   1974 			 */
   1975 			if (p->p_pid <= 1) {
   1976 #ifdef DIAGNOSTIC
   1977 				/*
   1978 				 * Are you sure you want to ignore SIGSEGV
   1979 				 * in init? XXX
   1980 				 */
   1981 				printf_nolog("Process (pid %d) got sig %d\n",
   1982 				    p->p_pid, signo);
   1983 #endif
   1984 				continue;
   1985 			}
   1986 
   1987 			/*
   1988 			 * If there is a pending stop signal to process with
   1989 			 * default action, stop here, then clear the signal.
   1990 			 * However, if process is member of an orphaned
   1991 			 * process group, ignore tty stop signals.
   1992 			 */
   1993 			if (prop & SA_STOP) {
   1994 				/*
   1995 				 * XXX Don't hold proc_lock for p_lflag,
   1996 				 * but it's not a big deal.
   1997 				 */
   1998 				if ((traced &&
   1999 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
   2000 				     (p->p_pptr == p->p_opptr))) ||
   2001 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   2002 				    prop & SA_TTYSTOP)) {
   2003 					/* Ignore the signal. */
   2004 					continue;
   2005 				}
   2006 				/* Take the signal. */
   2007 				(void)sigget(sp, NULL, signo, NULL);
   2008 				p->p_xsig = signo;
   2009 				p->p_sflag &= ~PS_CONTINUED;
   2010 				signo = 0;
   2011 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
   2012 				mutex_enter(p->p_lock);
   2013 			} else if (prop & SA_IGNORE) {
   2014 				/*
   2015 				 * Except for SIGCONT, shouldn't get here.
   2016 				 * Default action is to ignore; drop it.
   2017 				 */
   2018 				continue;
   2019 			}
   2020 			break;
   2021 
   2022 		case (long)SIG_IGN:
   2023 #ifdef DEBUG_ISSIGNAL
   2024 			/*
   2025 			 * Masking above should prevent us ever trying
   2026 			 * to take action on an ignored signal other
   2027 			 * than SIGCONT, unless process is traced.
   2028 			 */
   2029 			if ((prop & SA_CONT) == 0 && !traced)
   2030 				printf_nolog("issignal\n");
   2031 #endif
   2032 			continue;
   2033 
   2034 		default:
   2035 			/*
   2036 			 * This signal has an action, let postsig() process
   2037 			 * it.
   2038 			 */
   2039 			break;
   2040 		}
   2041 
   2042 		break;
   2043 	}
   2044 
   2045 	l->l_sigpendset = sp;
   2046 	return signo;
   2047 }
   2048 
   2049 /*
   2050  * Take the action for the specified signal
   2051  * from the current set of pending signals.
   2052  */
   2053 void
   2054 postsig(int signo)
   2055 {
   2056 	struct lwp	*l;
   2057 	struct proc	*p;
   2058 	struct sigacts	*ps;
   2059 	sig_t		action;
   2060 	sigset_t	*returnmask;
   2061 	ksiginfo_t	ksi;
   2062 
   2063 	l = curlwp;
   2064 	p = l->l_proc;
   2065 	ps = p->p_sigacts;
   2066 
   2067 	KASSERT(mutex_owned(p->p_lock));
   2068 	KASSERT(signo > 0);
   2069 
   2070 	/*
   2071 	 * Set the new mask value and also defer further occurrences of this
   2072 	 * signal.
   2073 	 *
   2074 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2075 	 * not of interest, but rather the mask from before the sigsuspend is
   2076 	 * what we want restored after the signal processing is completed.
   2077 	 */
   2078 	if (l->l_sigrestore) {
   2079 		returnmask = &l->l_sigoldmask;
   2080 		l->l_sigrestore = 0;
   2081 	} else
   2082 		returnmask = &l->l_sigmask;
   2083 
   2084 	/*
   2085 	 * Commit to taking the signal before releasing the mutex.
   2086 	 */
   2087 	action = SIGACTION_PS(ps, signo).sa_handler;
   2088 	l->l_ru.ru_nsignals++;
   2089 	if (l->l_sigpendset == NULL) {
   2090 		/* From the debugger */
   2091 		if (p->p_sigctx.ps_faked &&
   2092 		    signo == p->p_sigctx.ps_info._signo) {
   2093 			KSI_INIT(&ksi);
   2094 			ksi.ksi_info = p->p_sigctx.ps_info;
   2095 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
   2096 			p->p_sigctx.ps_faked = false;
   2097 		} else {
   2098 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2099 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2100 		}
   2101 	} else
   2102 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2103 
   2104 	if (ktrpoint(KTR_PSIG)) {
   2105 		mutex_exit(p->p_lock);
   2106 		if (p->p_emul->e_ktrpsig)
   2107 			p->p_emul->e_ktrpsig(signo, action,
   2108 			    returnmask, &ksi);
   2109 		else
   2110 			ktrpsig(signo, action, returnmask, &ksi);
   2111 		mutex_enter(p->p_lock);
   2112 	}
   2113 
   2114 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   2115 
   2116 	if (action == SIG_DFL) {
   2117 		/*
   2118 		 * Default action, where the default is to kill
   2119 		 * the process.  (Other cases were ignored above.)
   2120 		 */
   2121 		sigexit(l, signo);
   2122 		return;
   2123 	}
   2124 
   2125 	/*
   2126 	 * If we get here, the signal must be caught.
   2127 	 */
   2128 #ifdef DIAGNOSTIC
   2129 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2130 		panic("postsig action");
   2131 #endif
   2132 
   2133 	kpsendsig(l, &ksi, returnmask);
   2134 }
   2135 
   2136 /*
   2137  * sendsig:
   2138  *
   2139  *	Default signal delivery method for NetBSD.
   2140  */
   2141 void
   2142 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2143 {
   2144 	struct sigacts *sa;
   2145 	int sig;
   2146 
   2147 	sig = ksi->ksi_signo;
   2148 	sa = curproc->p_sigacts;
   2149 
   2150 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2151 	case __SIGTRAMP_SIGCODE_VERSION:
   2152 #ifdef __HAVE_STRUCT_SIGCONTEXT
   2153 	case __SIGTRAMP_SIGCONTEXT_VERSION_MIN ...
   2154 	     __SIGTRAMP_SIGCONTEXT_VERSION_MAX:
   2155 		/* Compat for 1.6 and earlier. */
   2156 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
   2157 		    break);
   2158 		return;
   2159 #endif /* __HAVE_STRUCT_SIGCONTEXT */
   2160 	case __SIGTRAMP_SIGINFO_VERSION_MIN ...
   2161 	     __SIGTRAMP_SIGINFO_VERSION_MAX:
   2162 		sendsig_siginfo(ksi, mask);
   2163 		return;
   2164 	default:
   2165 		break;
   2166 	}
   2167 
   2168 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2169 	sigexit(curlwp, SIGILL);
   2170 }
   2171 
   2172 /*
   2173  * sendsig_reset:
   2174  *
   2175  *	Reset the signal action.  Called from emulation specific sendsig()
   2176  *	before unlocking to deliver the signal.
   2177  */
   2178 void
   2179 sendsig_reset(struct lwp *l, int signo)
   2180 {
   2181 	struct proc *p = l->l_proc;
   2182 	struct sigacts *ps = p->p_sigacts;
   2183 
   2184 	KASSERT(mutex_owned(p->p_lock));
   2185 
   2186 	p->p_sigctx.ps_lwp = 0;
   2187 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2188 
   2189 	mutex_enter(&ps->sa_mutex);
   2190 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   2191 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2192 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2193 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2194 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2195 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2196 	}
   2197 	mutex_exit(&ps->sa_mutex);
   2198 }
   2199 
   2200 /*
   2201  * Kill the current process for stated reason.
   2202  */
   2203 void
   2204 killproc(struct proc *p, const char *why)
   2205 {
   2206 
   2207 	KASSERT(mutex_owned(&proc_lock));
   2208 
   2209 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2210 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2211 	psignal(p, SIGKILL);
   2212 }
   2213 
   2214 /*
   2215  * Force the current process to exit with the specified signal, dumping core
   2216  * if appropriate.  We bypass the normal tests for masked and caught
   2217  * signals, allowing unrecoverable failures to terminate the process without
   2218  * changing signal state.  Mark the accounting record with the signal
   2219  * termination.  If dumping core, save the signal number for the debugger.
   2220  * Calls exit and does not return.
   2221  */
   2222 void
   2223 sigexit(struct lwp *l, int signo)
   2224 {
   2225 	int exitsig, error, docore;
   2226 	struct proc *p;
   2227 	struct lwp *t;
   2228 
   2229 	p = l->l_proc;
   2230 
   2231 	KASSERT(mutex_owned(p->p_lock));
   2232 	KASSERT(l->l_blcnt == 0);
   2233 
   2234 	/*
   2235 	 * Don't permit coredump() multiple times in the same process.
   2236 	 * Call back into sigexit, where we will be suspended until
   2237 	 * the deed is done.  Note that this is a recursive call, but
   2238 	 * LW_WCORE will prevent us from coming back this way.
   2239 	 */
   2240 	if ((p->p_sflag & PS_WCORE) != 0) {
   2241 		lwp_lock(l);
   2242 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2243 		lwp_need_userret(l);
   2244 		lwp_unlock(l);
   2245 		mutex_exit(p->p_lock);
   2246 		lwp_userret(l);
   2247 		panic("sigexit 1");
   2248 		/* NOTREACHED */
   2249 	}
   2250 
   2251 	/* If process is already on the way out, then bail now. */
   2252 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2253 		mutex_exit(p->p_lock);
   2254 		lwp_exit(l);
   2255 		panic("sigexit 2");
   2256 		/* NOTREACHED */
   2257 	}
   2258 
   2259 	/*
   2260 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2261 	 * so that their registers are available long enough to be dumped.
   2262  	 */
   2263 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2264 		p->p_sflag |= PS_WCORE;
   2265 		for (;;) {
   2266 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2267 				lwp_lock(t);
   2268 				if (t == l) {
   2269 					t->l_flag &=
   2270 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
   2271 					lwp_unlock(t);
   2272 					continue;
   2273 				}
   2274 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2275 				lwp_need_userret(t);
   2276 				lwp_suspend(l, t);
   2277 			}
   2278 
   2279 			if (p->p_nrlwps == 1)
   2280 				break;
   2281 
   2282 			/*
   2283 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2284 			 * for everyone else to stop before proceeding.
   2285 			 */
   2286 			p->p_nlwpwait++;
   2287 			cv_broadcast(&p->p_lwpcv);
   2288 			cv_wait(&p->p_lwpcv, p->p_lock);
   2289 			p->p_nlwpwait--;
   2290 		}
   2291 	}
   2292 
   2293 	exitsig = signo;
   2294 	p->p_acflag |= AXSIG;
   2295 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
   2296 	p->p_sigctx.ps_info._signo = signo;
   2297 	p->p_sigctx.ps_info._code = SI_NOINFO;
   2298 
   2299 	if (docore) {
   2300 		mutex_exit(p->p_lock);
   2301 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
   2302 
   2303 		if (kern_logsigexit) {
   2304 			int uid = l->l_cred ?
   2305 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2306 
   2307 			if (error)
   2308 				log(LOG_INFO, lognocoredump, p->p_pid,
   2309 				    p->p_comm, uid, signo, error);
   2310 			else
   2311 				log(LOG_INFO, logcoredump, p->p_pid,
   2312 				    p->p_comm, uid, signo);
   2313 		}
   2314 
   2315 #ifdef PAX_SEGVGUARD
   2316 		rw_enter(&exec_lock, RW_WRITER);
   2317 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2318 		rw_exit(&exec_lock);
   2319 #endif /* PAX_SEGVGUARD */
   2320 
   2321 		/* Acquire the sched state mutex.  exit1() will release it. */
   2322 		mutex_enter(p->p_lock);
   2323 		if (error == 0)
   2324 			p->p_sflag |= PS_COREDUMP;
   2325 	}
   2326 
   2327 	/* No longer dumping core. */
   2328 	p->p_sflag &= ~PS_WCORE;
   2329 
   2330 	exit1(l, 0, exitsig);
   2331 	/* NOTREACHED */
   2332 }
   2333 
   2334 /*
   2335  * Since the "real" code may (or may not) be present in loadable module,
   2336  * we provide routines here which calls the module hooks.
   2337  */
   2338 
   2339 int
   2340 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
   2341 {
   2342 
   2343 	int retval;
   2344 
   2345 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie),
   2346 	    SET_ERROR(ENOSYS), retval);
   2347 	return retval;
   2348 }
   2349 
   2350 int
   2351 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
   2352 {
   2353 
   2354 	int retval;
   2355 
   2356 	MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie),
   2357 	    SET_ERROR(ENOSYS), retval);
   2358 	return retval;
   2359 }
   2360 
   2361 int
   2362 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
   2363 {
   2364 	int retval;
   2365 
   2366 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie),
   2367 	    SET_ERROR(ENOSYS), retval);
   2368 	return retval;
   2369 }
   2370 
   2371 int
   2372 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
   2373 {
   2374 	int retval;
   2375 
   2376 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie),
   2377 	    SET_ERROR(ENOSYS), retval);
   2378 	return retval;
   2379 }
   2380 
   2381 /*
   2382  * Put process 'p' into the stopped state and optionally, notify the parent.
   2383  */
   2384 void
   2385 proc_stop(struct proc *p, int signo)
   2386 {
   2387 	struct lwp *l;
   2388 
   2389 	KASSERT(mutex_owned(p->p_lock));
   2390 
   2391 	/*
   2392 	 * First off, set the stopping indicator and bring all sleeping
   2393 	 * LWPs to a halt so they are included in p->p_nrlwps.  We mustn't
   2394 	 * unlock between here and the p->p_nrlwps check below.
   2395 	 */
   2396 	p->p_sflag |= PS_STOPPING;
   2397 	membar_producer();
   2398 
   2399 	proc_stop_lwps(p);
   2400 
   2401 	/*
   2402 	 * If there are no LWPs available to take the signal, then we
   2403 	 * signal the parent process immediately.  Otherwise, the last
   2404 	 * LWP to stop will take care of it.
   2405 	 */
   2406 
   2407 	if (p->p_nrlwps == 0) {
   2408 		proc_stop_done(p, PS_NOCLDSTOP);
   2409 	} else {
   2410 		/*
   2411 		 * Have the remaining LWPs come to a halt, and trigger
   2412 		 * proc_stop_callout() to ensure that they do.
   2413 		 */
   2414 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2415 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2416 		}
   2417 		callout_schedule(&proc_stop_ch, 1);
   2418 	}
   2419 }
   2420 
   2421 /*
   2422  * When stopping a process, we do not immediately set sleeping LWPs stopped,
   2423  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2424  * to allow LWPs to release any locks that they may hold before stopping.
   2425  *
   2426  * Non-interruptable sleeps can be long, and there is the potential for an
   2427  * LWP to begin sleeping interruptably soon after the process has been set
   2428  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2429  * stopping, and so complete halt of the process and the return of status
   2430  * information to the parent could be delayed indefinitely.
   2431  *
   2432  * To handle this race, proc_stop_callout() runs once per tick while there
   2433  * are stopping processes in the system.  It sets LWPs that are sleeping
   2434  * interruptably into the LSSTOP state.
   2435  *
   2436  * Note that we are not concerned about keeping all LWPs stopped while the
   2437  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2438  * What we do need to ensure is that all LWPs in a stopping process have
   2439  * stopped at least once, so that notification can be sent to the parent
   2440  * process.
   2441  */
   2442 static void
   2443 proc_stop_callout(void *cookie)
   2444 {
   2445 	bool more, restart;
   2446 	struct proc *p;
   2447 
   2448 	(void)cookie;
   2449 
   2450 	do {
   2451 		restart = false;
   2452 		more = false;
   2453 
   2454 		mutex_enter(&proc_lock);
   2455 		PROCLIST_FOREACH(p, &allproc) {
   2456 			mutex_enter(p->p_lock);
   2457 
   2458 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2459 				mutex_exit(p->p_lock);
   2460 				continue;
   2461 			}
   2462 
   2463 			/* Stop any LWPs sleeping interruptably. */
   2464 			proc_stop_lwps(p);
   2465 			if (p->p_nrlwps == 0) {
   2466 				/*
   2467 				 * We brought the process to a halt.
   2468 				 * Mark it as stopped and notify the
   2469 				 * parent.
   2470 				 *
   2471 				 * Note that proc_stop_done() will
   2472 				 * drop p->p_lock briefly.
   2473 				 * Arrange to restart and check
   2474 				 * all processes again.
   2475 				 */
   2476 				restart = true;
   2477 				proc_stop_done(p, PS_NOCLDSTOP);
   2478 			} else
   2479 				more = true;
   2480 
   2481 			mutex_exit(p->p_lock);
   2482 			if (restart)
   2483 				break;
   2484 		}
   2485 		mutex_exit(&proc_lock);
   2486 	} while (restart);
   2487 
   2488 	/*
   2489 	 * If we noted processes that are stopping but still have
   2490 	 * running LWPs, then arrange to check again in 1 tick.
   2491 	 */
   2492 	if (more)
   2493 		callout_schedule(&proc_stop_ch, 1);
   2494 }
   2495 
   2496 /*
   2497  * Given a process in state SSTOP, set the state back to SACTIVE and
   2498  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2499  */
   2500 void
   2501 proc_unstop(struct proc *p)
   2502 {
   2503 	struct lwp *l;
   2504 	int sig;
   2505 
   2506 	KASSERT(mutex_owned(&proc_lock));
   2507 	KASSERT(mutex_owned(p->p_lock));
   2508 
   2509 	p->p_stat = SACTIVE;
   2510 	p->p_sflag &= ~PS_STOPPING;
   2511 	sig = p->p_xsig;
   2512 
   2513 	if (!p->p_waited)
   2514 		p->p_pptr->p_nstopchild--;
   2515 
   2516 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2517 		lwp_lock(l);
   2518 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
   2519 			lwp_unlock(l);
   2520 			continue;
   2521 		}
   2522 		if (l->l_wchan == NULL) {
   2523 			setrunnable(l);
   2524 			continue;
   2525 		}
   2526 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2527 			setrunnable(l);
   2528 			sig = 0;
   2529 		} else {
   2530 			l->l_stat = LSSLEEP;
   2531 			p->p_nrlwps++;
   2532 			lwp_unlock(l);
   2533 		}
   2534 	}
   2535 }
   2536 
   2537 void
   2538 proc_stoptrace(int trapno, int sysnum, const register_t args[],
   2539                const register_t *ret, int error)
   2540 {
   2541 	struct lwp *l = curlwp;
   2542 	struct proc *p = l->l_proc;
   2543 	struct sigacts *ps;
   2544 	sigset_t *mask;
   2545 	sig_t action;
   2546 	ksiginfo_t ksi;
   2547 	size_t i, sy_narg;
   2548 	const int signo = SIGTRAP;
   2549 
   2550 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
   2551 	KASSERT(p->p_pptr != initproc);
   2552 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
   2553 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
   2554 
   2555 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
   2556 
   2557 	KSI_INIT_TRAP(&ksi);
   2558 	ksi.ksi_lid = l->l_lid;
   2559 	ksi.ksi_signo = signo;
   2560 	ksi.ksi_code = trapno;
   2561 
   2562 	ksi.ksi_sysnum = sysnum;
   2563 	if (trapno == TRAP_SCE) {
   2564 		ksi.ksi_retval[0] = 0;
   2565 		ksi.ksi_retval[1] = 0;
   2566 		ksi.ksi_error = 0;
   2567 	} else {
   2568 		ksi.ksi_retval[0] = ret[0];
   2569 		ksi.ksi_retval[1] = ret[1];
   2570 		ksi.ksi_error = error;
   2571 	}
   2572 
   2573 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
   2574 
   2575 	for (i = 0; i < sy_narg; i++)
   2576 		ksi.ksi_args[i] = args[i];
   2577 
   2578 	mutex_enter(p->p_lock);
   2579 
   2580 repeat:
   2581 	/*
   2582 	 * If we are exiting, demise now.
   2583 	 *
   2584 	 * This avoids notifying tracer and deadlocking.
   2585 	 */
   2586 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
   2587 		mutex_exit(p->p_lock);
   2588 		lwp_exit(l);
   2589 		panic("proc_stoptrace");
   2590 		/* NOTREACHED */
   2591 	}
   2592 
   2593 	/*
   2594 	 * If there's a pending SIGKILL process it immediately.
   2595 	 */
   2596 	if (p->p_xsig == SIGKILL ||
   2597 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
   2598 		mutex_exit(p->p_lock);
   2599 		return;
   2600 	}
   2601 
   2602 	/*
   2603 	 * If we are no longer traced, abandon this event signal.
   2604 	 *
   2605 	 * This avoids killing a process after detaching the debugger.
   2606 	 */
   2607 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
   2608 		mutex_exit(p->p_lock);
   2609 		return;
   2610 	}
   2611 
   2612 	/*
   2613 	 * The process is already stopping.
   2614 	 */
   2615 	if ((p->p_sflag & PS_STOPPING) != 0) {
   2616 		sigswitch_unlock_and_switch_away(l);
   2617 		mutex_enter(p->p_lock);
   2618 		goto repeat;
   2619 	}
   2620 
   2621 	/* Needed for ktrace */
   2622 	ps = p->p_sigacts;
   2623 	action = SIGACTION_PS(ps, signo).sa_handler;
   2624 	mask = &l->l_sigmask;
   2625 
   2626 	p->p_xsig = signo;
   2627 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
   2628 	p->p_sigctx.ps_info = ksi.ksi_info;
   2629 	sigswitch(0, signo, false);
   2630 
   2631 	if (ktrpoint(KTR_PSIG)) {
   2632 		if (p->p_emul->e_ktrpsig)
   2633 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
   2634 		else
   2635 			ktrpsig(signo, action, mask, &ksi);
   2636 	}
   2637 }
   2638 
   2639 static int
   2640 filt_sigattach(struct knote *kn)
   2641 {
   2642 	struct proc *p = curproc;
   2643 
   2644 	kn->kn_obj = p;
   2645 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2646 
   2647 	mutex_enter(p->p_lock);
   2648 	klist_insert(&p->p_klist, kn);
   2649 	mutex_exit(p->p_lock);
   2650 
   2651 	return 0;
   2652 }
   2653 
   2654 static void
   2655 filt_sigdetach(struct knote *kn)
   2656 {
   2657 	struct proc *p = kn->kn_obj;
   2658 
   2659 	mutex_enter(p->p_lock);
   2660 	klist_remove(&p->p_klist, kn);
   2661 	mutex_exit(p->p_lock);
   2662 }
   2663 
   2664 /*
   2665  * Signal knotes are shared with proc knotes, so we apply a mask to
   2666  * the hint in order to differentiate them from process hints.  This
   2667  * could be avoided by using a signal-specific knote list, but probably
   2668  * isn't worth the trouble.
   2669  */
   2670 static int
   2671 filt_signal(struct knote *kn, long hint)
   2672 {
   2673 
   2674 	if (hint & NOTE_SIGNAL) {
   2675 		hint &= ~NOTE_SIGNAL;
   2676 
   2677 		if (kn->kn_id == hint)
   2678 			kn->kn_data++;
   2679 	}
   2680 	return (kn->kn_data != 0);
   2681 }
   2682 
   2683 const struct filterops sig_filtops = {
   2684 	.f_flags = FILTEROP_MPSAFE,
   2685 	.f_attach = filt_sigattach,
   2686 	.f_detach = filt_sigdetach,
   2687 	.f_event = filt_signal,
   2688 };
   2689