Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_sleepq.c,v 1.88 2026/01/04 01:41:42 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
     35  * interfaces.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.88 2026/01/04 01:41:42 riastradh Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <sys/cpu.h>
     44 #include <sys/intr.h>
     45 #include <sys/kernel.h>
     46 #include <sys/ktrace.h>
     47 #include <sys/pool.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/sched.h>
     51 #include <sys/sdt.h>
     52 #include <sys/sleepq.h>
     53 #include <sys/syncobj.h>
     54 #include <sys/systm.h>
     55 
     56 /*
     57  * for sleepq_abort:
     58  * During autoconfiguration or after a panic, a sleep will simply lower the
     59  * priority briefly to allow interrupts, then return.  The priority to be
     60  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
     61  * maintained in the machine-dependent layers.  This priority will typically
     62  * be 0, or the lowest priority that is safe for use on the interrupt stack;
     63  * it can be made higher to block network software interrupts after panics.
     64  */
     65 #ifndef	IPL_SAFEPRI
     66 #define	IPL_SAFEPRI	0
     67 #endif
     68 
     69 static int	sleepq_sigtoerror(lwp_t *, int);
     70 
     71 /* General purpose sleep table, used by mtsleep() and condition variables. */
     72 sleeptab_t	sleeptab __cacheline_aligned;
     73 sleepqlock_t	sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
     74 
     75 /*
     76  * sleeptab_init:
     77  *
     78  *	Initialize a sleep table.
     79  */
     80 void
     81 sleeptab_init(sleeptab_t *st)
     82 {
     83 	static bool again;
     84 	int i;
     85 
     86 	for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
     87 		if (!again) {
     88 			mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
     89 			    IPL_SCHED);
     90 		}
     91 		sleepq_init(&st->st_queue[i]);
     92 	}
     93 	again = true;
     94 }
     95 
     96 /*
     97  * sleepq_init:
     98  *
     99  *	Prepare a sleep queue for use.
    100  */
    101 void
    102 sleepq_init(sleepq_t *sq)
    103 {
    104 
    105 	LIST_INIT(sq);
    106 }
    107 
    108 /*
    109  * sleepq_remove:
    110  *
    111  *	Remove an LWP from a sleep queue and wake it up.  Distinguish
    112  *	between deliberate wakeups (which are a valuable information) and
    113  *	"unsleep" (an out-of-band action must be taken).
    114  *
    115  *	For wakeup, convert any interruptable wait into non-interruptable
    116  *	one before waking the LWP.  Otherwise, if only one LWP is awoken it
    117  *	could fail to do something useful with the wakeup due to an error
    118  *	return and the caller of e.g. cv_signal() may not expect this.
    119  */
    120 void
    121 sleepq_remove(sleepq_t *sq, lwp_t *l, bool wakeup)
    122 {
    123 	struct schedstate_percpu *spc;
    124 	struct cpu_info *ci;
    125 
    126 	KASSERT(lwp_locked(l, NULL));
    127 
    128 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
    129 		KASSERT(sq != NULL);
    130 		LIST_REMOVE(l, l_sleepchain);
    131 	} else {
    132 		KASSERT(sq == NULL);
    133 	}
    134 
    135 	l->l_syncobj = &sched_syncobj;
    136 	l->l_wchan = NULL;
    137 	l->l_sleepq = NULL;
    138 	l->l_flag &= wakeup ? ~(LW_SINTR|LW_CATCHINTR|LW_STIMO) : ~LW_SINTR;
    139 
    140 	ci = l->l_cpu;
    141 	spc = &ci->ci_schedstate;
    142 
    143 	/*
    144 	 * If not sleeping, the LWP must have been suspended.  Let whoever
    145 	 * holds it stopped set it running again.
    146 	 */
    147 	if (l->l_stat != LSSLEEP) {
    148 		KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
    149 		lwp_setlock(l, spc->spc_lwplock);
    150 		return;
    151 	}
    152 
    153 	/*
    154 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    155 	 * about to call mi_switch(), in which case it will yield.
    156 	 */
    157 	if ((l->l_pflag & LP_RUNNING) != 0) {
    158 		l->l_stat = LSONPROC;
    159 		l->l_slptime = 0;
    160 		lwp_setlock(l, spc->spc_lwplock);
    161 		return;
    162 	}
    163 
    164 	/* Update sleep time delta, call the wake-up handler of scheduler */
    165 	l->l_slpticksum += (getticks() - l->l_slpticks);
    166 	sched_wakeup(l);
    167 
    168 	/* Look for a CPU to wake up */
    169 	l->l_cpu = sched_takecpu(l);
    170 	ci = l->l_cpu;
    171 	spc = &ci->ci_schedstate;
    172 
    173 	/*
    174 	 * Set it running.
    175 	 */
    176 	spc_lock(ci);
    177 	lwp_setlock(l, spc->spc_mutex);
    178 	sched_setrunnable(l);
    179 	l->l_stat = LSRUN;
    180 	l->l_slptime = 0;
    181 	sched_enqueue(l);
    182 	sched_resched_lwp(l, true);
    183 	/* LWP & SPC now unlocked, but we still hold sleep queue lock. */
    184 }
    185 
    186 /*
    187  * sleepq_insert:
    188  *
    189  *	Insert an LWP into the sleep queue, optionally sorting by priority.
    190  */
    191 static void
    192 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
    193 {
    194 
    195 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
    196 		KASSERT(sq == NULL);
    197 		return;
    198 	}
    199 	KASSERT(sq != NULL);
    200 
    201 	if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
    202 		lwp_t *l2, *l_last = NULL;
    203 		const pri_t pri = lwp_eprio(l);
    204 
    205 		LIST_FOREACH(l2, sq, l_sleepchain) {
    206 			l_last = l2;
    207 			if (lwp_eprio(l2) < pri) {
    208 				LIST_INSERT_BEFORE(l2, l, l_sleepchain);
    209 				return;
    210 			}
    211 		}
    212 		/*
    213 		 * Ensure FIFO ordering if no waiters are of lower priority.
    214 		 */
    215 		if (l_last != NULL) {
    216 			LIST_INSERT_AFTER(l_last, l, l_sleepchain);
    217 			return;
    218 		}
    219 	}
    220 
    221 	LIST_INSERT_HEAD(sq, l, l_sleepchain);
    222 }
    223 
    224 /*
    225  * sleepq_enter:
    226  *
    227  *	Prepare to block on a sleep queue, after which any interlock can be
    228  *	safely released.
    229  */
    230 int
    231 sleepq_enter(sleepq_t *sq, lwp_t *l, kmutex_t *mp)
    232 {
    233 	int nlocks;
    234 
    235 	KASSERT((sq != NULL) == (mp != NULL));
    236 
    237 	/*
    238 	 * Acquire the per-LWP mutex and lend it our sleep queue lock.
    239 	 * Once interlocked, we can release the kernel lock.
    240 	 */
    241 	lwp_lock(l);
    242 	if (mp != NULL) {
    243 		lwp_unlock_to(l, mp);
    244 	}
    245 	if (__predict_false((nlocks = l->l_blcnt) != 0)) {
    246 		KERNEL_UNLOCK_ALL(NULL, NULL);
    247 	}
    248 	return nlocks;
    249 }
    250 
    251 /*
    252  * sleepq_enqueue:
    253  *
    254  *	Enter an LWP into the sleep queue and prepare for sleep.  The sleep
    255  *	queue must already be locked, and any interlock (such as the kernel
    256  *	lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
    257  */
    258 void
    259 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
    260     bool catch_p)
    261 {
    262 	lwp_t *l = curlwp;
    263 
    264 	KASSERT(lwp_locked(l, NULL));
    265 	KASSERT(l->l_stat == LSONPROC);
    266 	KASSERT(l->l_wchan == NULL);
    267 	KASSERT(l->l_sleepq == NULL);
    268 	KASSERT((l->l_flag & LW_SINTR) == 0);
    269 
    270 	l->l_syncobj = sobj;
    271 	l->l_wchan = wchan;
    272 	l->l_sleepq = sq;
    273 	l->l_wmesg = wmesg;
    274 	l->l_slptime = 0;
    275 	l->l_stat = LSSLEEP;
    276 	if (catch_p)
    277 		l->l_flag |= LW_SINTR;
    278 
    279 	sleepq_insert(sq, l, sobj);
    280 
    281 	/* Save the time when thread has slept */
    282 	l->l_slpticks = getticks();
    283 	sched_slept(l);
    284 }
    285 
    286 /*
    287  * sleepq_transfer:
    288  *
    289  *	Move an LWP from one sleep queue to another.  Both sleep queues
    290  *	must already be locked.
    291  *
    292  *	The LWP will be updated with the new sleepq, wchan, wmesg,
    293  *	sobj, and mutex.  The interruptible flag will also be updated.
    294  */
    295 void
    296 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
    297     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
    298 {
    299 
    300 	KASSERT(l->l_sleepq == from_sq);
    301 
    302 	LIST_REMOVE(l, l_sleepchain);
    303 	l->l_syncobj = sobj;
    304 	l->l_wchan = wchan;
    305 	l->l_sleepq = sq;
    306 	l->l_wmesg = wmesg;
    307 
    308 	if (catch_p)
    309 		l->l_flag = LW_SINTR | LW_CATCHINTR;
    310 	else
    311 		l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
    312 
    313 	/*
    314 	 * This allows the transfer from one sleepq to another where
    315 	 * it is known that they're both protected by the same lock.
    316 	 */
    317 	if (mp != NULL)
    318 		lwp_setlock(l, mp);
    319 
    320 	sleepq_insert(sq, l, sobj);
    321 }
    322 
    323 /*
    324  * sleepq_uncatch:
    325  *
    326  *	Mark the LWP as no longer sleeping interruptibly.
    327  */
    328 void
    329 sleepq_uncatch(lwp_t *l)
    330 {
    331 
    332 	l->l_flag &= ~(LW_SINTR | LW_CATCHINTR | LW_STIMO);
    333 }
    334 
    335 /*
    336  * sleepq_block:
    337  *
    338  *	After any intermediate step such as releasing an interlock, switch.
    339  * 	sleepq_block() may return early under exceptional conditions, for
    340  * 	example if the LWP's containing process is exiting.
    341  *
    342  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    343  */
    344 int
    345 sleepq_block(int timo, bool catch_p, syncobj_t *syncobj, int nlocks)
    346 {
    347 	const int mask = LW_CANCELLED|LW_WEXIT|LW_WCORE|LW_PENDSIG;
    348 	int error = 0, sig, flag;
    349 	struct proc *p;
    350 	lwp_t *l = curlwp;
    351 	bool early = false;
    352 
    353 	ktrcsw(1, 0, syncobj);
    354 
    355 	/*
    356 	 * If sleeping interruptably, check for pending signals, exits or
    357 	 * core dump events.
    358 	 *
    359 	 * Note the usage of LW_CATCHINTR.  This expresses our intent
    360 	 * to catch or not catch sleep interruptions, which might change
    361 	 * while we are sleeping.  It is independent from LW_SINTR because
    362 	 * we don't want to leave LW_SINTR set when the LWP is not asleep.
    363 	 */
    364 	if (catch_p) {
    365 		if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
    366 			l->l_flag &= ~LW_CANCELLED;
    367 			error = SET_ERROR(EINTR);
    368 			early = true;
    369 		} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
    370 			early = true;
    371 		l->l_flag |= LW_CATCHINTR;
    372 	} else
    373 		l->l_flag &= ~LW_CATCHINTR;
    374 
    375 	if (early) {
    376 		/* lwp_unsleep() will release the lock */
    377 		lwp_unsleep(l, true);
    378 	} else {
    379 		/*
    380 		 * The LWP may have already been awoken if the caller
    381 		 * dropped the sleep queue lock between sleepq_enqueue() and
    382 		 * sleepq_block().  If that happens l_stat will be LSONPROC
    383 		 * and mi_switch() will treat this as a preemption.  No need
    384 		 * to do anything special here.
    385 		 */
    386 		if (timo) {
    387 			l->l_flag &= ~LW_STIMO;
    388 			callout_schedule(&l->l_timeout_ch, timo);
    389 		}
    390 		l->l_boostpri = l->l_syncobj->sobj_boostpri;
    391 		spc_lock(l->l_cpu);
    392 		mi_switch(l);
    393 
    394 		/* The LWP and sleep queue are now unlocked. */
    395 		if (timo) {
    396 			/*
    397 			 * Even if the callout appears to have fired, we
    398 			 * need to stop it in order to synchronise with
    399 			 * other CPUs.  It's important that we do this in
    400 			 * this LWP's context, and not during wakeup, in
    401 			 * order to keep the callout & its cache lines
    402 			 * co-located on the CPU with the LWP.
    403 			 */
    404 			(void)callout_halt(&l->l_timeout_ch, NULL);
    405 			error = (l->l_flag & LW_STIMO) ? SET_ERROR(EWOULDBLOCK)
    406 			    : 0;
    407 		}
    408 	}
    409 
    410 	/*
    411 	 * LW_CATCHINTR is only modified in this function OR when we
    412 	 * are asleep (with the sleepq locked).  We can therefore safely
    413 	 * test it unlocked here as it is guaranteed to be stable by
    414 	 * virtue of us running.
    415 	 *
    416 	 * We do not bother clearing it if set; that would require us
    417 	 * to take the LWP lock, and it doesn't seem worth the hassle
    418 	 * considering it is only meaningful here inside this function,
    419 	 * and is set to reflect intent upon entry.
    420 	 */
    421 	flag = atomic_load_relaxed(&l->l_flag);
    422 	if (__predict_false((flag & mask) != 0)) {
    423 		if ((flag & LW_CATCHINTR) == 0 || error != 0)
    424 			/* nothing */;
    425 		else if ((flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
    426 			error = SET_ERROR(EINTR);
    427 		else if ((flag & LW_PENDSIG) != 0) {
    428 			/*
    429 			 * Acquiring p_lock may cause us to recurse
    430 			 * through the sleep path and back into this
    431 			 * routine, but is safe because LWPs sleeping
    432 			 * on locks are non-interruptable and we will
    433 			 * not recurse again.
    434 			 */
    435 			p = l->l_proc;
    436 			mutex_enter(p->p_lock);
    437 			if (((sig = sigispending(l, 0)) != 0 &&
    438 			    (sigprop[sig] & SA_STOP) == 0) ||
    439 			    (sig = issignal(l)) != 0)
    440 				error = sleepq_sigtoerror(l, sig);
    441 			mutex_exit(p->p_lock);
    442 		}
    443 	}
    444 
    445 	ktrcsw(0, 0, syncobj);
    446 	if (__predict_false(nlocks != 0)) {
    447 		KERNEL_LOCK(nlocks, NULL);
    448 	}
    449 	return error;
    450 }
    451 
    452 /*
    453  * sleepq_wake:
    454  *
    455  *	Wake zero or more LWPs blocked on a single wait channel.
    456  */
    457 void
    458 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
    459 {
    460 	lwp_t *l, *next;
    461 
    462 	KASSERT(mutex_owned(mp));
    463 
    464 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
    465 		KASSERT(l->l_sleepq == sq);
    466 		KASSERT(l->l_mutex == mp);
    467 		next = LIST_NEXT(l, l_sleepchain);
    468 		if (l->l_wchan != wchan)
    469 			continue;
    470 		sleepq_remove(sq, l, true);
    471 		if (--expected == 0)
    472 			break;
    473 	}
    474 
    475 	mutex_spin_exit(mp);
    476 }
    477 
    478 /*
    479  * sleepq_unsleep:
    480  *
    481  *	Remove an LWP from its sleep queue and set it runnable again.
    482  *	sleepq_unsleep() is called with the LWP's mutex held, and will
    483  *	release it if "unlock" is true.
    484  */
    485 void
    486 sleepq_unsleep(lwp_t *l, bool unlock)
    487 {
    488 	sleepq_t *sq = l->l_sleepq;
    489 	kmutex_t *mp = l->l_mutex;
    490 
    491 	KASSERT(lwp_locked(l, mp));
    492 	KASSERT(l->l_wchan != NULL);
    493 
    494 	sleepq_remove(sq, l, false);
    495 	if (unlock) {
    496 		mutex_spin_exit(mp);
    497 	}
    498 }
    499 
    500 /*
    501  * sleepq_timeout:
    502  *
    503  *	Entered via the callout(9) subsystem to time out an LWP that is on a
    504  *	sleep queue.
    505  */
    506 void
    507 sleepq_timeout(void *arg)
    508 {
    509 	lwp_t *l = arg;
    510 
    511 	/*
    512 	 * Lock the LWP.  Assuming it's still on the sleep queue, its
    513 	 * current mutex will also be the sleep queue mutex.
    514 	 */
    515 	lwp_lock(l);
    516 
    517 	if (l->l_wchan == NULL || l->l_syncobj == &callout_syncobj) {
    518 		/*
    519 		 * Somebody beat us to it, or the LWP is blocked in
    520 		 * callout_halt() waiting for us to finish here.  In
    521 		 * neither case should the LWP produce EWOULDBLOCK.
    522 		 */
    523 		lwp_unlock(l);
    524 		return;
    525 	}
    526 
    527 	l->l_flag |= LW_STIMO;
    528 	lwp_unsleep(l, true);
    529 }
    530 
    531 /*
    532  * sleepq_sigtoerror:
    533  *
    534  *	Given a signal number, interpret and return an error code.
    535  */
    536 static int
    537 sleepq_sigtoerror(lwp_t *l, int sig)
    538 {
    539 	struct proc *p = l->l_proc;
    540 	int error;
    541 
    542 	KASSERT(mutex_owned(p->p_lock));
    543 
    544 	/*
    545 	 * If this sleep was canceled, don't let the syscall restart.
    546 	 */
    547 	if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    548 		error = SET_ERROR(EINTR);
    549 	else
    550 		error = SET_ERROR(ERESTART);
    551 
    552 	return error;
    553 }
    554 
    555 /*
    556  * sleepq_abort:
    557  *
    558  *	After a panic or during autoconfiguration, lower the interrupt
    559  *	priority level to give pending interrupts a chance to run, and
    560  *	then return.  Called if sleepq_dontsleep() returns non-zero, and
    561  *	always returns zero.
    562  */
    563 int
    564 sleepq_abort(kmutex_t *mtx, int unlock)
    565 {
    566 	int s;
    567 
    568 	s = splhigh();
    569 	splx(IPL_SAFEPRI);
    570 	splx(s);
    571 	if (mtx != NULL && unlock != 0)
    572 		mutex_exit(mtx);
    573 
    574 	return 0;
    575 }
    576 
    577 /*
    578  * sleepq_reinsert:
    579  *
    580  *	Move the position of the lwp in the sleep queue after a possible
    581  *	change of the lwp's effective priority.
    582  */
    583 static void
    584 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
    585 {
    586 
    587 	KASSERT(l->l_sleepq == sq);
    588 	if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
    589 		return;
    590 	}
    591 
    592 	/*
    593 	 * Don't let the sleep queue become empty, even briefly.
    594 	 * cv_signal() and cv_broadcast() inspect it without the
    595 	 * sleep queue lock held and need to see a non-empty queue
    596 	 * head if there are waiters.
    597 	 */
    598 	if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
    599 		return;
    600 	}
    601 	LIST_REMOVE(l, l_sleepchain);
    602 	sleepq_insert(sq, l, l->l_syncobj);
    603 }
    604 
    605 /*
    606  * sleepq_changepri:
    607  *
    608  *	Adjust the priority of an LWP residing on a sleepq.
    609  */
    610 void
    611 sleepq_changepri(lwp_t *l, pri_t pri)
    612 {
    613 	sleepq_t *sq = l->l_sleepq;
    614 
    615 	KASSERT(lwp_locked(l, NULL));
    616 
    617 	l->l_priority = pri;
    618 	sleepq_reinsert(sq, l);
    619 }
    620 
    621 /*
    622  * sleepq_changepri:
    623  *
    624  *	Adjust the lended priority of an LWP residing on a sleepq.
    625  */
    626 void
    627 sleepq_lendpri(lwp_t *l, pri_t pri)
    628 {
    629 	sleepq_t *sq = l->l_sleepq;
    630 
    631 	KASSERT(lwp_locked(l, NULL));
    632 
    633 	l->l_inheritedprio = pri;
    634 	l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    635 	sleepq_reinsert(sq, l);
    636 }
    637