HomeSort by: relevance | last modified time | path
    Searched refs:ten (Results 1 - 11 of 11) sorted by relevancy

  /src/usr.bin/make/unit-tests/
varmod-order-reverse.mk 6 WORDS= one two three four five six seven eight nine ten
8 .if ${WORDS:Or} != "two three ten six seven one nine four five eight"
varmod-order-string.mk 7 WORDS= one two three four five six seven eight nine ten
8 .if ${WORDS:O} != "eight five four nine one seven six ten three two"
varmod-order.mk 6 WORDS= one two three four five six seven eight nine ten
9 .if ${WORDS:O} != "eight five four nine one seven six ten three two"
varmod-order-shuffle.mk 15 WORDS= one two three four five six seven eight nine ten
  /src/tests/usr.bin/xlint/lint1/
msg_193.c 577 goto ten;
585 ten:
init_c99.c 267 struct ten { struct
280 struct ten ten = { variable in typeref:struct:ten
  /src/sys/external/gpl2/dts/dist/arch/mips/boot/dts/xilfpga/
nexys4ddr.dts 105 xlnx,ten-bit-adr = <0x0>;
  /src/share/misc/
style 438 char *eight, *nine, ten, eleven, twelve, thirteen;
  /src/usr.sbin/sysinst/
msg.mi.pl 280 Ten dysk ($0) jest zbyt duzy ($3) na tablice partycji $2 (maks. $4),
545 {Znaleziono kilka napedow CD, prosze wybrac ten, ktory zawiera
1148 Aby obejrzec ten plik, mozesz wpisac ^Z, przejrzec jego zawartosc,
1265 {Ten dysk nie byl wczesniej partycjonowany. Wybierz typ tablicy
  /src/sys/arch/m68k/060sp/dist/
pfpsp.s 13247 lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
13295 lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
13310 # Calculate power-of-ten factor from adjusted and shifted exponent.
13327 # (*) fp1: power-of-ten accumulator
14069 # be inexact, since all powers of ten upto 10^27 are exact
14070 # in extended precision, so the use of a previous power-of-ten
fpsp.s 23286 lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
23334 lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
23349 # Calculate power-of-ten factor from adjusted and shifted exponent.
23366 # (*) fp1: power-of-ten accumulator
24108 # be inexact, since all powers of ten upto 10^27 are exact
24109 # in extended precision, so the use of a previous power-of-ten

Completed in 38 milliseconds