Home | History | Annotate | Line # | Download | only in pax
      1  1.31  christos /*	$NetBSD: tables.c,v 1.31 2013/10/18 19:53:34 christos Exp $	*/
      2   1.4       cgd 
      3   1.1       jtc /*-
      4  1.22       agc  * Copyright (c) 1992 Keith Muller.
      5   1.1       jtc  * Copyright (c) 1992, 1993
      6   1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7   1.1       jtc  *
      8   1.1       jtc  * This code is derived from software contributed to Berkeley by
      9   1.1       jtc  * Keith Muller of the University of California, San Diego.
     10   1.1       jtc  *
     11   1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12   1.1       jtc  * modification, are permitted provided that the following conditions
     13   1.1       jtc  * are met:
     14   1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15   1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16   1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19  1.21       agc  * 3. Neither the name of the University nor the names of its contributors
     20  1.21       agc  *    may be used to endorse or promote products derived from this software
     21  1.21       agc  *    without specific prior written permission.
     22  1.21       agc  *
     23  1.21       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.21       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.21       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.21       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.21       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.21       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.21       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.21       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.21       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.21       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.21       agc  * SUCH DAMAGE.
     34  1.21       agc  */
     35  1.21       agc 
     36  1.23     lukem #if HAVE_NBTOOL_CONFIG_H
     37  1.23     lukem #include "nbtool_config.h"
     38  1.23     lukem #endif
     39  1.23     lukem 
     40   1.7  christos #include <sys/cdefs.h>
     41  1.23     lukem #if !defined(lint)
     42   1.4       cgd #if 0
     43   1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44   1.4       cgd #else
     45  1.31  christos __RCSID("$NetBSD: tables.c,v 1.31 2013/10/18 19:53:34 christos Exp $");
     46   1.4       cgd #endif
     47   1.1       jtc #endif /* not lint */
     48   1.1       jtc 
     49   1.1       jtc #include <sys/types.h>
     50   1.1       jtc #include <sys/time.h>
     51   1.1       jtc #include <sys/stat.h>
     52   1.1       jtc #include <sys/param.h>
     53   1.1       jtc #include <stdio.h>
     54   1.1       jtc #include <ctype.h>
     55   1.8    kleink #include <fcntl.h>
     56   1.9    kleink #include <paths.h>
     57   1.1       jtc #include <string.h>
     58   1.1       jtc #include <unistd.h>
     59   1.1       jtc #include <errno.h>
     60   1.1       jtc #include <stdlib.h>
     61   1.1       jtc #include "pax.h"
     62   1.1       jtc #include "tables.h"
     63   1.1       jtc #include "extern.h"
     64   1.1       jtc 
     65   1.1       jtc /*
     66   1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67   1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68   1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69   1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70  1.24  christos  * As of this writing, the POSIX library functions were more complex than
     71   1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72   1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73   1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74   1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75   1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76  1.24  christos  * Trying to force the fit to the POSIX database routines was not considered
     77   1.1       jtc  * time well spent.
     78   1.1       jtc  */
     79   1.1       jtc 
     80   1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81   1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82   1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83   1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84   1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85  1.13   thorpej #ifdef DIRS_USE_FILE
     86   1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     87   1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     88  1.13   thorpej #endif
     89   1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     90   1.1       jtc 
     91  1.15     lukem static DEVT *chk_dev(dev_t, int);
     92   1.1       jtc 
     93   1.1       jtc /*
     94   1.1       jtc  * hard link table routines
     95   1.1       jtc  *
     96  1.12     itohy  * The hard link table tries to detect hard links to files using the device and
     97   1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     98   1.1       jtc  * write routine that this file is a hard link to another file. The format
     99   1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
    100   1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
    101   1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    102   1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    103   1.1       jtc  * the same table when reading an archive. In that situation, this table is
    104   1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    105   1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    106   1.1       jtc  * can be detected by the archive format.
    107   1.1       jtc  */
    108   1.1       jtc 
    109   1.1       jtc /*
    110   1.1       jtc  * lnk_start
    111   1.1       jtc  *	Creates the hard link table.
    112   1.1       jtc  * Return:
    113   1.1       jtc  *	0 if created, -1 if failure
    114   1.1       jtc  */
    115   1.1       jtc 
    116   1.1       jtc int
    117   1.1       jtc lnk_start(void)
    118   1.1       jtc {
    119   1.1       jtc 	if (ltab != NULL)
    120  1.25       dsl 		return 0;
    121  1.12     itohy 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    122  1.12     itohy 		tty_warn(1, "Cannot allocate memory for hard link table");
    123  1.25       dsl 		return -1;
    124  1.12     itohy 	}
    125  1.25       dsl 	return 0;
    126   1.1       jtc }
    127   1.1       jtc 
    128   1.1       jtc /*
    129   1.1       jtc  * chk_lnk()
    130   1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    131   1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    132   1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    133   1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    134   1.1       jtc  *	we add the file to the database if it has the potential for having
    135   1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    136   1.1       jtc  * Return:
    137   1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    138   1.1       jtc  */
    139   1.1       jtc 
    140   1.1       jtc int
    141   1.5       tls chk_lnk(ARCHD *arcn)
    142   1.1       jtc {
    143   1.5       tls 	HRDLNK *pt;
    144   1.5       tls 	HRDLNK **ppt;
    145   1.5       tls 	u_int indx;
    146   1.1       jtc 
    147   1.1       jtc 	if (ltab == NULL)
    148  1.25       dsl 		return -1;
    149   1.1       jtc 	/*
    150   1.1       jtc 	 * ignore those nodes that cannot have hard links
    151   1.1       jtc 	 */
    152   1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    153  1.25       dsl 		return 0;
    154   1.1       jtc 
    155   1.1       jtc 	/*
    156   1.1       jtc 	 * hash inode number and look for this file
    157   1.1       jtc 	 */
    158   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    159   1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    160   1.1       jtc 		/*
    161  1.27       snj 		 * its hash chain is not empty, walk down looking for it
    162   1.1       jtc 		 */
    163   1.1       jtc 		ppt = &(ltab[indx]);
    164   1.1       jtc 		while (pt != NULL) {
    165   1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    166   1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    167   1.1       jtc 				break;
    168   1.1       jtc 			ppt = &(pt->fow);
    169   1.1       jtc 			pt = pt->fow;
    170   1.1       jtc 		}
    171   1.1       jtc 
    172   1.1       jtc 		if (pt != NULL) {
    173   1.1       jtc 			/*
    174   1.1       jtc 			 * found a link. set the node type and copy in the
    175   1.1       jtc 			 * name of the file it is to link to. we need to
    176   1.1       jtc 			 * handle hardlinks to regular files differently than
    177   1.1       jtc 			 * other links.
    178   1.1       jtc 			 */
    179  1.18  christos 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
    180  1.18  christos 				sizeof(arcn->ln_name));
    181   1.1       jtc 			if (arcn->type == PAX_REG)
    182   1.1       jtc 				arcn->type = PAX_HRG;
    183   1.1       jtc 			else
    184   1.1       jtc 				arcn->type = PAX_HLK;
    185   1.1       jtc 
    186   1.1       jtc 			/*
    187   1.1       jtc 			 * if we have found all the links to this file, remove
    188   1.1       jtc 			 * it from the database
    189   1.1       jtc 			 */
    190   1.1       jtc 			if (--pt->nlink <= 1) {
    191   1.1       jtc 				*ppt = pt->fow;
    192   1.1       jtc 				(void)free((char *)pt->name);
    193   1.1       jtc 				(void)free((char *)pt);
    194   1.1       jtc 			}
    195  1.25       dsl 			return 1;
    196   1.1       jtc 		}
    197   1.1       jtc 	}
    198   1.1       jtc 
    199   1.1       jtc 	/*
    200   1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    201   1.1       jtc 	 * front of this hash chain
    202   1.1       jtc 	 */
    203   1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    204   1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    205   1.1       jtc 			pt->dev = arcn->sb.st_dev;
    206   1.1       jtc 			pt->ino = arcn->sb.st_ino;
    207   1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    208   1.1       jtc 			pt->fow = ltab[indx];
    209   1.1       jtc 			ltab[indx] = pt;
    210  1.25       dsl 			return 0;
    211   1.1       jtc 		}
    212   1.1       jtc 		(void)free((char *)pt);
    213   1.1       jtc 	}
    214   1.1       jtc 
    215   1.7  christos 	tty_warn(1, "Hard link table out of memory");
    216  1.25       dsl 	return -1;
    217   1.1       jtc }
    218   1.1       jtc 
    219   1.1       jtc /*
    220   1.1       jtc  * purg_lnk
    221   1.1       jtc  *	remove reference for a file that we may have added to the data base as
    222   1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    223  1.28  christos  *	we do not want to accidentally point another file at it later on.
    224   1.1       jtc  */
    225   1.1       jtc 
    226   1.1       jtc void
    227   1.5       tls purg_lnk(ARCHD *arcn)
    228   1.1       jtc {
    229   1.5       tls 	HRDLNK *pt;
    230   1.5       tls 	HRDLNK **ppt;
    231   1.5       tls 	u_int indx;
    232   1.1       jtc 
    233   1.1       jtc 	if (ltab == NULL)
    234   1.1       jtc 		return;
    235   1.1       jtc 	/*
    236   1.1       jtc 	 * do not bother to look if it could not be in the database
    237   1.1       jtc 	 */
    238   1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    239   1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    240   1.1       jtc 		return;
    241   1.1       jtc 
    242   1.1       jtc 	/*
    243   1.1       jtc 	 * find the hash chain for this inode value, if empty return
    244   1.1       jtc 	 */
    245   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    246   1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    247   1.1       jtc 		return;
    248   1.1       jtc 
    249   1.1       jtc 	/*
    250   1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    251   1.1       jtc 	 * free if found
    252   1.1       jtc 	 */
    253   1.1       jtc 	ppt = &(ltab[indx]);
    254   1.1       jtc 	while (pt != NULL) {
    255   1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    256   1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    257   1.1       jtc 			break;
    258   1.1       jtc 		ppt = &(pt->fow);
    259   1.1       jtc 		pt = pt->fow;
    260   1.1       jtc 	}
    261   1.1       jtc 	if (pt == NULL)
    262   1.1       jtc 		return;
    263   1.1       jtc 
    264   1.1       jtc 	/*
    265   1.1       jtc 	 * remove and free it
    266   1.1       jtc 	 */
    267   1.1       jtc 	*ppt = pt->fow;
    268   1.1       jtc 	(void)free((char *)pt->name);
    269   1.1       jtc 	(void)free((char *)pt);
    270   1.1       jtc }
    271   1.1       jtc 
    272   1.1       jtc /*
    273   1.1       jtc  * lnk_end()
    274   1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    275   1.1       jtc  *	read and write phases of append with update. (The format may have
    276   1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    277   1.1       jtc  *	write phase
    278   1.1       jtc  */
    279   1.1       jtc 
    280   1.1       jtc void
    281   1.1       jtc lnk_end(void)
    282   1.1       jtc {
    283   1.5       tls 	int i;
    284   1.5       tls 	HRDLNK *pt;
    285   1.5       tls 	HRDLNK *ppt;
    286   1.1       jtc 
    287   1.1       jtc 	if (ltab == NULL)
    288   1.1       jtc 		return;
    289   1.1       jtc 
    290   1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    291   1.1       jtc 		if (ltab[i] == NULL)
    292   1.1       jtc 			continue;
    293   1.1       jtc 		pt = ltab[i];
    294   1.1       jtc 		ltab[i] = NULL;
    295   1.1       jtc 
    296   1.1       jtc 		/*
    297   1.1       jtc 		 * free up each entry on this chain
    298   1.1       jtc 		 */
    299   1.1       jtc 		while (pt != NULL) {
    300   1.1       jtc 			ppt = pt;
    301   1.1       jtc 			pt = ppt->fow;
    302   1.1       jtc 			(void)free((char *)ppt->name);
    303   1.1       jtc 			(void)free((char *)ppt);
    304   1.1       jtc 		}
    305   1.1       jtc 	}
    306   1.1       jtc 	return;
    307   1.1       jtc }
    308   1.1       jtc 
    309   1.1       jtc /*
    310   1.1       jtc  * modification time table routines
    311   1.1       jtc  *
    312   1.1       jtc  * The modification time table keeps track of last modification times for all
    313   1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    314   1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    315   1.1       jtc  * already stored on the archive (if there is no other file with the same
    316   1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    317   1.1       jtc  * An append with an -u must read the archive and store the modification time
    318   1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    319   1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    320  1.20       wiz  * are stored in a scratch file and indexed by an in-memory hash table. The
    321   1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    322  1.12     itohy  * the length of the filename and the lseek offset within the scratch file
    323  1.20       wiz  * where the actual name is stored. Since there are never any deletions from this
    324   1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    325  1.12     itohy  * not exhibit any locality at all (files in the database are rarely
    326  1.20       wiz  * looked up more than once...), so caching is just a waste of memory. The
    327  1.20       wiz  * only limitation is the amount of scratch file space available to store the
    328   1.1       jtc  * path names.
    329   1.1       jtc  */
    330   1.1       jtc 
    331   1.1       jtc /*
    332   1.1       jtc  * ftime_start()
    333   1.1       jtc  *	create the file time hash table and open for read/write the scratch
    334   1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    335   1.1       jtc  *	no witnesses).
    336   1.1       jtc  * Return:
    337   1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    338   1.1       jtc  */
    339   1.1       jtc 
    340   1.1       jtc int
    341   1.1       jtc ftime_start(void)
    342   1.1       jtc {
    343   1.1       jtc 	if (ftab != NULL)
    344  1.25       dsl 		return 0;
    345  1.12     itohy 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    346  1.12     itohy 		tty_warn(1, "Cannot allocate memory for file time table");
    347  1.25       dsl 		return -1;
    348  1.12     itohy 	}
    349   1.1       jtc 
    350   1.1       jtc 	/*
    351   1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    352   1.1       jtc 	 * so it will get removed on exit
    353   1.1       jtc 	 */
    354  1.18  christos 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
    355  1.18  christos 	if ((ffd = mkstemp(tempfile)) == -1) {
    356   1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    357  1.18  christos 		    tempfile);
    358  1.25       dsl 		return -1;
    359   1.1       jtc 	}
    360   1.1       jtc 
    361  1.18  christos 	(void)unlink(tempfile);
    362  1.25       dsl 	return 0;
    363   1.1       jtc }
    364   1.1       jtc 
    365   1.1       jtc /*
    366   1.1       jtc  * chk_ftime()
    367   1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    368   1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    369   1.1       jtc  *	If a file with the same name is found, the file times are compared and
    370   1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    371   1.1       jtc  *	was not in the database) the new file is selected for storage.
    372   1.1       jtc  * Return:
    373   1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    374   1.1       jtc  *	-1 on error
    375   1.1       jtc  */
    376   1.1       jtc 
    377   1.1       jtc int
    378   1.5       tls chk_ftime(ARCHD *arcn)
    379   1.1       jtc {
    380   1.5       tls 	FTM *pt;
    381   1.5       tls 	int namelen;
    382   1.5       tls 	u_int indx;
    383   1.1       jtc 	char ckname[PAXPATHLEN+1];
    384   1.1       jtc 
    385   1.1       jtc 	/*
    386   1.1       jtc 	 * no info, go ahead and add to archive
    387   1.1       jtc 	 */
    388   1.1       jtc 	if (ftab == NULL)
    389  1.25       dsl 		return 0;
    390   1.1       jtc 
    391   1.1       jtc 	/*
    392   1.1       jtc 	 * hash the pathname and look up in table
    393   1.1       jtc 	 */
    394   1.1       jtc 	namelen = arcn->nlen;
    395   1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    396   1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    397   1.1       jtc 		/*
    398   1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    399   1.1       jtc 		 * only read up the path names if the lengths match, speeds
    400   1.1       jtc 		 * up the search a lot
    401   1.1       jtc 		 */
    402   1.1       jtc 		while (pt != NULL) {
    403   1.1       jtc 			if (pt->namelen == namelen) {
    404   1.1       jtc 				/*
    405   1.1       jtc 				 * potential match, have to read the name
    406   1.1       jtc 				 * from the scratch file.
    407   1.1       jtc 				 */
    408   1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    409   1.1       jtc 					syswarn(1, errno,
    410   1.1       jtc 					    "Failed ftime table seek");
    411  1.25       dsl 					return -1;
    412   1.1       jtc 				}
    413  1.11     itohy 				if (xread(ffd, ckname, namelen) != namelen) {
    414   1.1       jtc 					syswarn(1, errno,
    415   1.1       jtc 					    "Failed ftime table read");
    416  1.25       dsl 					return -1;
    417   1.1       jtc 				}
    418   1.1       jtc 
    419   1.1       jtc 				/*
    420   1.1       jtc 				 * if the names match, we are done
    421   1.1       jtc 				 */
    422   1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    423   1.1       jtc 					break;
    424   1.1       jtc 			}
    425   1.1       jtc 
    426   1.1       jtc 			/*
    427   1.1       jtc 			 * try the next entry on the chain
    428   1.1       jtc 			 */
    429   1.1       jtc 			pt = pt->fow;
    430   1.1       jtc 		}
    431   1.1       jtc 
    432   1.1       jtc 		if (pt != NULL) {
    433   1.1       jtc 			/*
    434   1.1       jtc 			 * found the file, compare the times, save the newer
    435   1.1       jtc 			 */
    436   1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    437   1.1       jtc 				/*
    438   1.1       jtc 				 * file is newer
    439   1.1       jtc 				 */
    440   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    441  1.25       dsl 				return 0;
    442  1.12     itohy 			}
    443   1.1       jtc 			/*
    444   1.1       jtc 			 * file is older
    445   1.1       jtc 			 */
    446  1.25       dsl 			return 1;
    447   1.1       jtc 		}
    448   1.1       jtc 	}
    449   1.1       jtc 
    450   1.1       jtc 	/*
    451   1.1       jtc 	 * not in table, add it
    452   1.1       jtc 	 */
    453   1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    454   1.1       jtc 		/*
    455   1.1       jtc 		 * add the name at the end of the scratch file, saving the
    456   1.1       jtc 		 * offset. add the file to the head of the hash chain
    457   1.1       jtc 		 */
    458   1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    459  1.11     itohy 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    460   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    461   1.1       jtc 				pt->namelen = namelen;
    462   1.1       jtc 				pt->fow = ftab[indx];
    463   1.1       jtc 				ftab[indx] = pt;
    464  1.25       dsl 				return 0;
    465   1.1       jtc 			}
    466   1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    467  1.12     itohy 		} else
    468   1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    469   1.1       jtc 	} else
    470   1.7  christos 		tty_warn(1, "File time table ran out of memory");
    471   1.1       jtc 
    472   1.1       jtc 	if (pt != NULL)
    473   1.1       jtc 		(void)free((char *)pt);
    474  1.25       dsl 	return -1;
    475   1.1       jtc }
    476   1.1       jtc 
    477   1.1       jtc /*
    478   1.1       jtc  * Interactive rename table routines
    479   1.1       jtc  *
    480   1.1       jtc  * The interactive rename table keeps track of the new names that the user
    481  1.12     itohy  * assigns to files from tty input. Since this map is unique for each file
    482   1.1       jtc  * we must store it in case there is a reference to the file later in archive
    483   1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    484   1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    485   1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    486   1.1       jtc  * be a very large table).
    487   1.1       jtc  */
    488   1.1       jtc 
    489   1.1       jtc /*
    490   1.1       jtc  * name_start()
    491   1.1       jtc  *	create the interactive rename table
    492   1.1       jtc  * Return:
    493   1.1       jtc  *	0 if successful, -1 otherwise
    494   1.1       jtc  */
    495   1.1       jtc 
    496   1.1       jtc int
    497   1.1       jtc name_start(void)
    498   1.1       jtc {
    499   1.1       jtc 	if (ntab != NULL)
    500  1.25       dsl 		return 0;
    501  1.12     itohy 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    502  1.12     itohy 		tty_warn(1,
    503   1.7  christos 		    "Cannot allocate memory for interactive rename table");
    504  1.25       dsl 		return -1;
    505  1.12     itohy 	}
    506  1.25       dsl 	return 0;
    507   1.1       jtc }
    508   1.1       jtc 
    509   1.1       jtc /*
    510   1.1       jtc  * add_name()
    511   1.1       jtc  *	add the new name to old name mapping just created by the user.
    512   1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    513   1.1       jtc  *	archive) only the most recent is kept.
    514   1.1       jtc  * Return:
    515   1.1       jtc  *	0 if added, -1 otherwise
    516   1.1       jtc  */
    517   1.1       jtc 
    518   1.1       jtc int
    519   1.5       tls add_name(char *oname, int onamelen, char *nname)
    520   1.1       jtc {
    521   1.5       tls 	NAMT *pt;
    522   1.5       tls 	u_int indx;
    523   1.1       jtc 
    524   1.1       jtc 	if (ntab == NULL) {
    525   1.1       jtc 		/*
    526   1.1       jtc 		 * should never happen
    527   1.1       jtc 		 */
    528   1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    529  1.25       dsl 		return 0;
    530   1.1       jtc 	}
    531   1.1       jtc 
    532   1.1       jtc 	/*
    533   1.1       jtc 	 * look to see if we have already mapped this file, if so we
    534   1.1       jtc 	 * will update it
    535   1.1       jtc 	 */
    536   1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    537   1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    538   1.1       jtc 		/*
    539   1.1       jtc 		 * look down the has chain for the file
    540   1.1       jtc 		 */
    541   1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    542   1.1       jtc 			pt = pt->fow;
    543   1.1       jtc 
    544   1.1       jtc 		if (pt != NULL) {
    545   1.1       jtc 			/*
    546   1.1       jtc 			 * found an old mapping, replace it with the new one
    547   1.1       jtc 			 * the user just input (if it is different)
    548   1.1       jtc 			 */
    549   1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    550  1.25       dsl 				return 0;
    551   1.1       jtc 
    552   1.1       jtc 			(void)free((char *)pt->nname);
    553   1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    554   1.7  christos 				tty_warn(1, "Cannot update rename table");
    555  1.25       dsl 				return -1;
    556   1.1       jtc 			}
    557  1.25       dsl 			return 0;
    558   1.1       jtc 		}
    559   1.1       jtc 	}
    560   1.1       jtc 
    561   1.1       jtc 	/*
    562   1.1       jtc 	 * this is a new mapping, add it to the table
    563   1.1       jtc 	 */
    564   1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    565   1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    566   1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    567   1.1       jtc 				pt->fow = ntab[indx];
    568   1.1       jtc 				ntab[indx] = pt;
    569  1.25       dsl 				return 0;
    570   1.1       jtc 			}
    571   1.1       jtc 			(void)free((char *)pt->oname);
    572   1.1       jtc 		}
    573   1.1       jtc 		(void)free((char *)pt);
    574   1.1       jtc 	}
    575   1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    576  1.25       dsl 	return -1;
    577   1.1       jtc }
    578   1.1       jtc 
    579   1.1       jtc /*
    580   1.1       jtc  * sub_name()
    581   1.1       jtc  *	look up a link name to see if it points at a file that has been
    582   1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    583   1.1       jtc  *	new name (oname is the link to name)
    584   1.1       jtc  */
    585   1.1       jtc 
    586   1.1       jtc void
    587  1.18  christos sub_name(char *oname, int *onamelen, size_t onamesize)
    588   1.1       jtc {
    589   1.5       tls 	NAMT *pt;
    590   1.5       tls 	u_int indx;
    591   1.1       jtc 
    592   1.1       jtc 	if (ntab == NULL)
    593   1.1       jtc 		return;
    594   1.1       jtc 	/*
    595   1.1       jtc 	 * look the name up in the hash table
    596   1.1       jtc 	 */
    597   1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    598   1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    599   1.1       jtc 		return;
    600   1.1       jtc 
    601   1.1       jtc 	while (pt != NULL) {
    602   1.1       jtc 		/*
    603  1.14     lukem 		 * walk down the hash chain looking for a match
    604   1.1       jtc 		 */
    605   1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    606   1.1       jtc 			/*
    607   1.1       jtc 			 * found it, replace it with the new name
    608   1.1       jtc 			 * and return (we know that oname has enough space)
    609   1.1       jtc 			 */
    610  1.18  christos 			*onamelen = strlcpy(oname, pt->nname, onamesize);
    611   1.1       jtc 			return;
    612   1.1       jtc 		}
    613   1.1       jtc 		pt = pt->fow;
    614   1.1       jtc 	}
    615   1.1       jtc 
    616   1.1       jtc 	/*
    617   1.1       jtc 	 * no match, just return
    618   1.1       jtc 	 */
    619   1.1       jtc 	return;
    620   1.1       jtc }
    621  1.12     itohy 
    622   1.1       jtc /*
    623   1.1       jtc  * device/inode mapping table routines
    624   1.1       jtc  * (used with formats that store device and inodes fields)
    625   1.1       jtc  *
    626  1.29   msaitoh  * device/inode mapping tables remap the device field in an archive header. The
    627   1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    628   1.1       jtc  * other. However these values have very little meaning outside of that. This
    629   1.1       jtc  * database is used to solve one of two different problems.
    630   1.1       jtc  *
    631   1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    632   1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    633   1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    634   1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    635   1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    636   1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    637   1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    638   1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    639   1.1       jtc  * member that has a device number used in a prior run and already stored in a
    640   1.1       jtc  * file on the archive. During the read phase of the append, we store the
    641   1.1       jtc  * device numbers used and mark them to not be used by any file during the
    642   1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    643   1.1       jtc  * we remap it to a new value.
    644   1.1       jtc  *
    645   1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    646   1.1       jtc  * too small to store the entire value. The result is an inode or device value
    647   1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    648   1.1       jtc  * we end up creating links between files that are really not links (after
    649   1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    650   1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    651   1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    652   1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    653   1.1       jtc  * on a single device to many different devices (each one represented by the
    654   1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    655   1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    656   1.1       jtc  * truncate to the same value clearly will always have different truncation
    657   1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    658   1.1       jtc  * device truncation we remap the device number to a non truncated value.
    659   1.1       jtc  * (for more info see table.h for the data structures involved).
    660   1.1       jtc  */
    661   1.1       jtc 
    662   1.1       jtc /*
    663   1.1       jtc  * dev_start()
    664   1.1       jtc  *	create the device mapping table
    665   1.1       jtc  * Return:
    666   1.1       jtc  *	0 if successful, -1 otherwise
    667   1.1       jtc  */
    668   1.1       jtc 
    669   1.1       jtc int
    670   1.1       jtc dev_start(void)
    671   1.1       jtc {
    672   1.1       jtc 	if (dtab != NULL)
    673  1.25       dsl 		return 0;
    674  1.12     itohy 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    675  1.12     itohy 		tty_warn(1, "Cannot allocate memory for device mapping table");
    676  1.25       dsl 		return -1;
    677  1.12     itohy 	}
    678  1.25       dsl 	return 0;
    679   1.1       jtc }
    680   1.1       jtc 
    681   1.1       jtc /*
    682   1.1       jtc  * add_dev()
    683   1.1       jtc  *	add a device number to the table. this will force the device to be
    684   1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    685   1.1       jtc  *	function is called during the read phase of an append to prohibit the
    686   1.1       jtc  *	use of any device number already in the archive.
    687   1.1       jtc  * Return:
    688   1.1       jtc  *	0 if added ok, -1 otherwise
    689   1.1       jtc  */
    690   1.1       jtc 
    691   1.1       jtc int
    692   1.5       tls add_dev(ARCHD *arcn)
    693   1.1       jtc {
    694   1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    695  1.25       dsl 		return -1;
    696  1.25       dsl 	return 0;
    697   1.1       jtc }
    698   1.1       jtc 
    699   1.1       jtc /*
    700   1.1       jtc  * chk_dev()
    701   1.1       jtc  *	check for a device value in the device table. If not found and the add
    702   1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    703   1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    704  1.12     itohy  *	is already mapped, just return with a pointer to that entry.
    705   1.1       jtc  * Return:
    706   1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    707   1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    708   1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    709   1.1       jtc  *	is returned (indicates an error).
    710   1.1       jtc  */
    711   1.1       jtc 
    712   1.1       jtc static DEVT *
    713   1.1       jtc chk_dev(dev_t dev, int add)
    714   1.1       jtc {
    715   1.5       tls 	DEVT *pt;
    716   1.5       tls 	u_int indx;
    717   1.1       jtc 
    718   1.1       jtc 	if (dtab == NULL)
    719  1.25       dsl 		return NULL;
    720   1.1       jtc 	/*
    721   1.1       jtc 	 * look to see if this device is already in the table
    722   1.1       jtc 	 */
    723   1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    724   1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    725   1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    726   1.1       jtc 			pt = pt->fow;
    727   1.1       jtc 
    728   1.1       jtc 		/*
    729   1.1       jtc 		 * found it, return a pointer to it
    730   1.1       jtc 		 */
    731   1.1       jtc 		if (pt != NULL)
    732  1.25       dsl 			return pt;
    733   1.1       jtc 	}
    734   1.1       jtc 
    735   1.1       jtc 	/*
    736   1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    737   1.1       jtc 	 * to see if a device number is being used.
    738   1.1       jtc 	 */
    739   1.1       jtc 	if (add == 0)
    740  1.25       dsl 		return NULL;
    741   1.1       jtc 
    742   1.1       jtc 	/*
    743   1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    744   1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    745   1.1       jtc 	 * list must be NULL.
    746   1.1       jtc 	 */
    747   1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    748   1.7  christos 		tty_warn(1, "Device map table out of memory");
    749  1.25       dsl 		return NULL;
    750   1.1       jtc 	}
    751   1.1       jtc 	pt->dev = dev;
    752   1.1       jtc 	pt->list = NULL;
    753   1.1       jtc 	pt->fow = dtab[indx];
    754   1.1       jtc 	dtab[indx] = pt;
    755  1.25       dsl 	return pt;
    756   1.1       jtc }
    757   1.1       jtc /*
    758   1.1       jtc  * map_dev()
    759   1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    760   1.1       jtc  *	the archive format is able to store in a header), we check for inode
    761   1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    762   1.1       jtc  *	can also occur when during the read phase of append a device number was
    763   1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    764   1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    765   1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    766   1.1       jtc  * Return:
    767   1.1       jtc  *	0 if all ok, -1 otherwise.
    768   1.1       jtc  */
    769   1.1       jtc 
    770   1.1       jtc int
    771   1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    772   1.1       jtc {
    773   1.5       tls 	DEVT *pt;
    774   1.5       tls 	DLIST *dpt;
    775   1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    776   1.1       jtc 	int trc_ino = 0;
    777   1.1       jtc 	int trc_dev = 0;
    778   1.1       jtc 	ino_t trunc_bits = 0;
    779   1.1       jtc 	ino_t nino;
    780   1.1       jtc 
    781   1.1       jtc 	if (dtab == NULL)
    782  1.25       dsl 		return 0;
    783   1.1       jtc 	/*
    784   1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    785  1.12     itohy 	 * bit pattern.
    786   1.1       jtc 	 */
    787   1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    788   1.1       jtc 		++trc_dev;
    789   1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    790   1.1       jtc 		++trc_ino;
    791   1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    792   1.1       jtc 	}
    793   1.1       jtc 
    794   1.1       jtc 	/*
    795   1.1       jtc 	 * see if this device is already being mapped, look up the device
    796   1.1       jtc 	 * then find the truncation bit pattern which applies
    797   1.1       jtc 	 */
    798   1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    799   1.1       jtc 		/*
    800   1.1       jtc 		 * this device is already marked to be remapped
    801   1.1       jtc 		 */
    802   1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    803   1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    804   1.1       jtc 				break;
    805   1.1       jtc 
    806   1.1       jtc 		if (dpt != NULL) {
    807   1.1       jtc 			/*
    808   1.1       jtc 			 * we are being remapped for this device and pattern
    809   1.1       jtc 			 * change the device number to be stored and return
    810   1.1       jtc 			 */
    811   1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    812   1.1       jtc 			arcn->sb.st_ino = nino;
    813  1.25       dsl 			return 0;
    814   1.1       jtc 		}
    815   1.1       jtc 	} else {
    816   1.1       jtc 		/*
    817   1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    818   1.1       jtc 		 * form of truncation, we do not need a remap
    819   1.1       jtc 		 */
    820   1.1       jtc 		if (!trc_ino && !trc_dev)
    821  1.25       dsl 			return 0;
    822   1.1       jtc 
    823   1.1       jtc 		/*
    824   1.1       jtc 		 * we have truncation, have to add this as a device to remap
    825   1.1       jtc 		 */
    826   1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    827   1.1       jtc 			goto bad;
    828   1.1       jtc 
    829   1.1       jtc 		/*
    830   1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    831   1.1       jtc 		 * all future inodes that do not truncate (they have the
    832   1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    833   1.1       jtc 		 * device number. We probably have already written inodes with
    834   1.1       jtc 		 * this device number to the archive with the truncation
    835   1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    836   1.1       jtc 		 * same device number.
    837   1.1       jtc 		 */
    838   1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    839   1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    840   1.1       jtc 				goto bad;
    841   1.1       jtc 			dpt->trunc_bits = 0;
    842   1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    843   1.1       jtc 			dpt->fow = pt->list;
    844   1.1       jtc 			pt->list = dpt;
    845   1.1       jtc 		}
    846   1.1       jtc 	}
    847   1.1       jtc 
    848   1.1       jtc 	/*
    849   1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    850   1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    851   1.1       jtc 	 */
    852   1.1       jtc 	while (++lastdev > 0) {
    853   1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    854   1.1       jtc 			continue;
    855   1.1       jtc 		/*
    856   1.1       jtc 		 * found an unused value. If we have reached truncation point
    857   1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    858   1.1       jtc 		 * mark it as being used.
    859   1.1       jtc 		 */
    860   1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    861   1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    862   1.1       jtc 			goto bad;
    863   1.1       jtc 		break;
    864   1.1       jtc 	}
    865   1.1       jtc 
    866   1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    867   1.1       jtc 		goto bad;
    868   1.1       jtc 
    869   1.1       jtc 	/*
    870   1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    871   1.1       jtc 	 * change the device number this file is being stored with.
    872   1.1       jtc 	 */
    873   1.1       jtc 	dpt->trunc_bits = trunc_bits;
    874   1.1       jtc 	dpt->dev = lastdev;
    875   1.1       jtc 	dpt->fow = pt->list;
    876   1.1       jtc 	pt->list = dpt;
    877   1.1       jtc 	arcn->sb.st_dev = lastdev;
    878   1.1       jtc 	arcn->sb.st_ino = nino;
    879  1.25       dsl 	return 0;
    880   1.1       jtc 
    881   1.1       jtc     bad:
    882   1.7  christos 	tty_warn(1,
    883   1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    884   1.1       jtc 	    arcn->name);
    885   1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    886  1.25       dsl 	return 0;
    887   1.1       jtc }
    888   1.1       jtc 
    889   1.1       jtc /*
    890   1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    891   1.1       jtc  *
    892   1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    893  1.20       wiz  * as before being read by pax. For regular files, access time is restored after
    894   1.1       jtc  * the file has been copied. This database provides the same functionality for
    895   1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    896   1.1       jtc  * is more complex than files since directories may be read several times until
    897   1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    898   1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    899   1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    900   1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    901   1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    902   1.1       jtc  * directory entries left in this database are reset during final cleanup
    903   1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    904   1.1       jtc  */
    905   1.1       jtc 
    906   1.1       jtc /*
    907   1.1       jtc  * atdir_start()
    908   1.1       jtc  *	create the directory access time database for directories READ by pax.
    909   1.1       jtc  * Return:
    910   1.1       jtc  *	0 is created ok, -1 otherwise.
    911   1.1       jtc  */
    912   1.1       jtc 
    913   1.1       jtc int
    914   1.1       jtc atdir_start(void)
    915   1.1       jtc {
    916   1.1       jtc 	if (atab != NULL)
    917  1.25       dsl 		return 0;
    918  1.12     itohy 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    919  1.12     itohy 		tty_warn(1,
    920   1.7  christos 		    "Cannot allocate space for directory access time table");
    921  1.25       dsl 		return -1;
    922  1.12     itohy 	}
    923  1.25       dsl 	return 0;
    924   1.1       jtc }
    925   1.1       jtc 
    926   1.1       jtc 
    927   1.1       jtc /*
    928   1.1       jtc  * atdir_end()
    929   1.1       jtc  *	walk through the directory access time table and reset the access time
    930   1.1       jtc  *	of any directory who still has an entry left in the database. These
    931   1.1       jtc  *	entries are for directories READ by pax
    932   1.1       jtc  */
    933   1.1       jtc 
    934   1.1       jtc void
    935   1.1       jtc atdir_end(void)
    936   1.1       jtc {
    937   1.5       tls 	ATDIR *pt;
    938   1.5       tls 	int i;
    939   1.1       jtc 
    940   1.1       jtc 	if (atab == NULL)
    941   1.1       jtc 		return;
    942   1.1       jtc 	/*
    943   1.1       jtc 	 * for each non-empty hash table entry reset all the directories
    944   1.1       jtc 	 * chained there.
    945   1.1       jtc 	 */
    946   1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
    947   1.1       jtc 		if ((pt = atab[i]) == NULL)
    948   1.1       jtc 			continue;
    949   1.1       jtc 		/*
    950   1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
    951   1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
    952   1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
    953   1.1       jtc 		 */
    954   1.1       jtc 		for (; pt != NULL; pt = pt->fow)
    955  1.30       tls 			set_ftime(pt->name, pt->mtime, pt->atime, 1, 0);
    956   1.1       jtc 	}
    957   1.1       jtc }
    958   1.1       jtc 
    959   1.1       jtc /*
    960   1.1       jtc  * add_atdir()
    961   1.1       jtc  *	add a directory to the directory access time table. Table is hashed
    962   1.1       jtc  *	and chained by inode number. This is for directories READ by pax
    963   1.1       jtc  */
    964   1.1       jtc 
    965   1.1       jtc void
    966   1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
    967   1.1       jtc {
    968   1.5       tls 	ATDIR *pt;
    969   1.5       tls 	u_int indx;
    970   1.1       jtc 
    971   1.1       jtc 	if (atab == NULL)
    972   1.1       jtc 		return;
    973   1.1       jtc 
    974   1.1       jtc 	/*
    975  1.12     itohy 	 * make sure this directory is not already in the table, if so just
    976   1.1       jtc 	 * return (the older entry always has the correct time). The only
    977   1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
    978   1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
    979  1.20       wiz 	 * subtree before all the post-order visits have been made.
    980   1.1       jtc 	 */
    981   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
    982   1.1       jtc 	if ((pt = atab[indx]) != NULL) {
    983   1.1       jtc 		while (pt != NULL) {
    984   1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
    985   1.1       jtc 				break;
    986   1.1       jtc 			pt = pt->fow;
    987   1.1       jtc 		}
    988   1.1       jtc 
    989   1.1       jtc 		/*
    990   1.1       jtc 		 * oops, already there. Leave it alone.
    991   1.1       jtc 		 */
    992   1.1       jtc 		if (pt != NULL)
    993   1.1       jtc 			return;
    994   1.1       jtc 	}
    995   1.1       jtc 
    996   1.1       jtc 	/*
    997   1.1       jtc 	 * add it to the front of the hash chain
    998   1.1       jtc 	 */
    999   1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1000   1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1001   1.1       jtc 			pt->dev = dev;
   1002   1.1       jtc 			pt->ino = ino;
   1003   1.1       jtc 			pt->mtime = mtime;
   1004   1.1       jtc 			pt->atime = atime;
   1005   1.1       jtc 			pt->fow = atab[indx];
   1006   1.1       jtc 			atab[indx] = pt;
   1007   1.1       jtc 			return;
   1008   1.1       jtc 		}
   1009   1.1       jtc 		(void)free((char *)pt);
   1010   1.1       jtc 	}
   1011   1.1       jtc 
   1012   1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1013   1.1       jtc 	return;
   1014   1.1       jtc }
   1015   1.1       jtc 
   1016   1.1       jtc /*
   1017   1.1       jtc  * get_atdir()
   1018   1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1019   1.1       jtc  *	and modification time you want to set to. If found, the modification
   1020   1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1021   1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1022   1.1       jtc  *	pax
   1023   1.1       jtc  * Return:
   1024   1.1       jtc  *	0 if found, -1 if not found.
   1025   1.1       jtc  */
   1026   1.1       jtc 
   1027   1.1       jtc int
   1028   1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1029   1.1       jtc {
   1030   1.5       tls 	ATDIR *pt;
   1031   1.5       tls 	ATDIR **ppt;
   1032   1.5       tls 	u_int indx;
   1033   1.1       jtc 
   1034   1.1       jtc 	if (atab == NULL)
   1035  1.25       dsl 		return -1;
   1036   1.1       jtc 	/*
   1037   1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1038   1.1       jtc 	 */
   1039   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1040   1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1041  1.25       dsl 		return -1;
   1042   1.1       jtc 
   1043   1.1       jtc 	ppt = &(atab[indx]);
   1044   1.1       jtc 	while (pt != NULL) {
   1045   1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1046   1.1       jtc 			break;
   1047   1.1       jtc 		/*
   1048   1.1       jtc 		 * no match, go to next one
   1049   1.1       jtc 		 */
   1050   1.1       jtc 		ppt = &(pt->fow);
   1051   1.1       jtc 		pt = pt->fow;
   1052   1.1       jtc 	}
   1053   1.1       jtc 
   1054   1.1       jtc 	/*
   1055   1.1       jtc 	 * return if we did not find it.
   1056   1.1       jtc 	 */
   1057   1.1       jtc 	if (pt == NULL)
   1058  1.25       dsl 		return -1;
   1059   1.1       jtc 
   1060   1.1       jtc 	/*
   1061   1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1062   1.1       jtc 	 */
   1063   1.1       jtc 	*ppt = pt->fow;
   1064   1.1       jtc 	*mtime = pt->mtime;
   1065   1.1       jtc 	*atime = pt->atime;
   1066   1.1       jtc 	(void)free((char *)pt->name);
   1067   1.1       jtc 	(void)free((char *)pt);
   1068  1.25       dsl 	return 0;
   1069   1.1       jtc }
   1070   1.1       jtc 
   1071   1.1       jtc /*
   1072   1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1073   1.1       jtc  * by pax).
   1074   1.1       jtc  *
   1075   1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1076   1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1077   1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1078   1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1079   1.1       jtc  * that these directories may have been created with file permissions which
   1080   1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1081   1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1082   1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1083   1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1084   1.1       jtc  * files have been extracted (or copied), these directories have their times
   1085   1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1086   1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1087   1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1088   1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1089   1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1090   1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1091   1.1       jtc  * then the file name.
   1092   1.1       jtc  */
   1093   1.1       jtc 
   1094  1.13   thorpej #ifndef DIRS_USE_FILE
   1095  1.13   thorpej static DIRDATA *dirdata_head;
   1096  1.13   thorpej #endif
   1097  1.13   thorpej 
   1098   1.1       jtc /*
   1099   1.1       jtc  * dir_start()
   1100   1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1101   1.1       jtc  *	by pax.
   1102   1.1       jtc  * Return:
   1103   1.1       jtc  *	0 if ok, -1 otherwise
   1104   1.1       jtc  */
   1105   1.1       jtc 
   1106   1.1       jtc int
   1107   1.1       jtc dir_start(void)
   1108   1.1       jtc {
   1109  1.13   thorpej #ifdef DIRS_USE_FILE
   1110   1.1       jtc 	if (dirfd != -1)
   1111  1.25       dsl 		return 0;
   1112   1.1       jtc 
   1113   1.1       jtc 	/*
   1114   1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1115   1.1       jtc 	 */
   1116  1.18  christos 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
   1117  1.18  christos 	if ((dirfd = mkstemp(tempfile)) >= 0) {
   1118  1.18  christos 		(void)unlink(tempfile);
   1119  1.25       dsl 		return 0;
   1120   1.1       jtc 	}
   1121   1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1122  1.18  christos 	    tempfile);
   1123  1.25       dsl 	return -1;
   1124  1.13   thorpej #else
   1125  1.13   thorpej 	return (0);
   1126  1.13   thorpej #endif /* DIRS_USE_FILE */
   1127   1.1       jtc }
   1128   1.1       jtc 
   1129   1.1       jtc /*
   1130   1.1       jtc  * add_dir()
   1131   1.1       jtc  *	add the mode and times for a newly CREATED directory
   1132   1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1133   1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1134   1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1135  1.12     itohy  *	for the case where we created a file and found that the resulting
   1136  1.19       wiz  *	directory was not writable and the user asked for file modes to NOT
   1137   1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1138   1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1139   1.1       jtc  *	pax spec)
   1140   1.1       jtc  */
   1141   1.1       jtc 
   1142   1.1       jtc void
   1143   1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1144   1.1       jtc {
   1145  1.13   thorpej #ifdef DIRS_USE_FILE
   1146   1.1       jtc 	DIRDATA dblk;
   1147  1.26  christos #else
   1148  1.26  christos 	DIRDATA *dblk;
   1149  1.26  christos #endif
   1150  1.26  christos 	char realname[MAXPATHLEN], *rp;
   1151   1.1       jtc 
   1152  1.26  christos 	if (havechd && *name != '/') {
   1153  1.26  christos 		if ((rp = realpath(name, realname)) == NULL) {
   1154  1.26  christos 			tty_warn(1, "Cannot canonicalize %s", name);
   1155  1.26  christos 			return;
   1156  1.26  christos 		}
   1157  1.26  christos 		name = rp;
   1158  1.31  christos #ifdef DIRS_USE_FILE
   1159  1.26  christos 		nlen = strlen(name);
   1160  1.31  christos #endif
   1161  1.26  christos 	}
   1162  1.26  christos 
   1163  1.26  christos #ifdef DIRS_USE_FILE
   1164   1.1       jtc 	if (dirfd < 0)
   1165   1.1       jtc 		return;
   1166   1.1       jtc 
   1167   1.1       jtc 	/*
   1168   1.1       jtc 	 * get current position (where file name will start) so we can store it
   1169   1.1       jtc 	 * in the trailer
   1170   1.1       jtc 	 */
   1171   1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1172   1.7  christos 		tty_warn(1,
   1173   1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1174   1.1       jtc 		return;
   1175   1.1       jtc 	}
   1176   1.1       jtc 
   1177   1.1       jtc 	/*
   1178   1.1       jtc 	 * write the file name followed by the trailer
   1179   1.1       jtc 	 */
   1180   1.1       jtc 	dblk.nlen = nlen + 1;
   1181   1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1182   1.1       jtc 	dblk.mtime = psb->st_mtime;
   1183   1.1       jtc 	dblk.atime = psb->st_atime;
   1184  1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1185  1.10       mrg 	dblk.fflags = psb->st_flags;
   1186  1.16        tv #else
   1187  1.16        tv 	dblk.fflags = 0;
   1188  1.16        tv #endif
   1189   1.1       jtc 	dblk.frc_mode = frc_mode;
   1190  1.11     itohy 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1191  1.11     itohy 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1192   1.1       jtc 		++dircnt;
   1193   1.1       jtc 		return;
   1194   1.1       jtc 	}
   1195   1.1       jtc 
   1196   1.7  christos 	tty_warn(1,
   1197   1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1198   1.1       jtc 	return;
   1199  1.13   thorpej #else
   1200  1.13   thorpej 
   1201  1.13   thorpej 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1202  1.13   thorpej 	    (dblk->name = strdup(name)) == NULL) {
   1203  1.13   thorpej 		tty_warn(1,
   1204  1.13   thorpej 		    "Unable to store mode and times for directory: %s",name);
   1205  1.13   thorpej 		if (dblk != NULL)
   1206  1.13   thorpej 			free(dblk);
   1207  1.13   thorpej 		return;
   1208  1.13   thorpej 	}
   1209  1.13   thorpej 
   1210  1.13   thorpej 	dblk->mode = psb->st_mode & 0xffff;
   1211  1.13   thorpej 	dblk->mtime = psb->st_mtime;
   1212  1.13   thorpej 	dblk->atime = psb->st_atime;
   1213  1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1214  1.13   thorpej 	dblk->fflags = psb->st_flags;
   1215  1.16        tv #else
   1216  1.16        tv 	dblk->fflags = 0;
   1217  1.16        tv #endif
   1218  1.13   thorpej 	dblk->frc_mode = frc_mode;
   1219  1.13   thorpej 
   1220  1.13   thorpej 	dblk->next = dirdata_head;
   1221  1.13   thorpej 	dirdata_head = dblk;
   1222  1.13   thorpej 	return;
   1223  1.13   thorpej #endif /* DIRS_USE_FILE */
   1224   1.1       jtc }
   1225   1.1       jtc 
   1226   1.1       jtc /*
   1227   1.1       jtc  * proc_dir()
   1228   1.1       jtc  *	process all file modes and times stored for directories CREATED
   1229   1.1       jtc  *	by pax
   1230   1.1       jtc  */
   1231   1.1       jtc 
   1232   1.1       jtc void
   1233   1.1       jtc proc_dir(void)
   1234   1.1       jtc {
   1235  1.13   thorpej #ifdef DIRS_USE_FILE
   1236   1.1       jtc 	char name[PAXPATHLEN+1];
   1237   1.1       jtc 	DIRDATA dblk;
   1238   1.1       jtc 	u_long cnt;
   1239   1.1       jtc 
   1240   1.1       jtc 	if (dirfd < 0)
   1241   1.1       jtc 		return;
   1242   1.1       jtc 	/*
   1243   1.1       jtc 	 * read backwards through the file and process each directory
   1244   1.1       jtc 	 */
   1245   1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1246   1.1       jtc 		/*
   1247   1.1       jtc 		 * read the trailer, then the file name, if this fails
   1248   1.1       jtc 		 * just give up.
   1249   1.1       jtc 		 */
   1250  1.12     itohy 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1251   1.1       jtc 			break;
   1252  1.11     itohy 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1253   1.1       jtc 			break;
   1254  1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1255   1.1       jtc 			break;
   1256  1.11     itohy 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1257   1.1       jtc 			break;
   1258  1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1259   1.1       jtc 			break;
   1260   1.1       jtc 
   1261   1.1       jtc 		/*
   1262   1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1263   1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1264   1.1       jtc 		 */
   1265   1.1       jtc 		if (pmode || dblk.frc_mode)
   1266   1.1       jtc 			set_pmode(name, dblk.mode);
   1267   1.1       jtc 		if (patime || pmtime)
   1268  1.30       tls 			set_ftime(name, dblk.mtime, dblk.atime, 0, 0);
   1269  1.10       mrg 		if (pfflags)
   1270  1.10       mrg 			set_chflags(name, dblk.fflags);
   1271   1.1       jtc 	}
   1272   1.1       jtc 
   1273   1.1       jtc 	(void)close(dirfd);
   1274   1.1       jtc 	dirfd = -1;
   1275   1.1       jtc 	if (cnt != dircnt)
   1276   1.7  christos 		tty_warn(1,
   1277   1.7  christos 		    "Unable to set mode and times for created directories");
   1278   1.1       jtc 	return;
   1279  1.13   thorpej #else
   1280  1.13   thorpej 	DIRDATA *dblk;
   1281  1.13   thorpej 
   1282  1.13   thorpej 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1283  1.13   thorpej 		dirdata_head = dblk->next;
   1284  1.13   thorpej 
   1285  1.13   thorpej 		/*
   1286  1.13   thorpej 		 * frc_mode set, make sure we set the file modes even if
   1287  1.13   thorpej 		 * the user didn't ask for it (see file_subs.c for more info)
   1288  1.13   thorpej 		 */
   1289  1.13   thorpej 		if (pmode || dblk->frc_mode)
   1290  1.13   thorpej 			set_pmode(dblk->name, dblk->mode);
   1291  1.13   thorpej 		if (patime || pmtime)
   1292  1.30       tls 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0, 0);
   1293  1.13   thorpej 		if (pfflags)
   1294  1.13   thorpej 			set_chflags(dblk->name, dblk->fflags);
   1295  1.13   thorpej 
   1296  1.13   thorpej 		free(dblk->name);
   1297  1.13   thorpej 		free(dblk);
   1298  1.13   thorpej 	}
   1299  1.13   thorpej #endif /* DIRS_USE_FILE */
   1300   1.1       jtc }
   1301   1.1       jtc 
   1302   1.1       jtc /*
   1303   1.1       jtc  * database independent routines
   1304   1.1       jtc  */
   1305   1.1       jtc 
   1306   1.1       jtc /*
   1307   1.1       jtc  * st_hash()
   1308   1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1309   1.1       jtc  *	end of file, as this provides far better distribution than any other
   1310   1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1311   1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1312   1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1313   1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1314   1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1315   1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1316   1.1       jtc  * Return:
   1317   1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1318   1.1       jtc  */
   1319   1.1       jtc 
   1320   1.1       jtc u_int
   1321   1.1       jtc st_hash(char *name, int len, int tabsz)
   1322   1.1       jtc {
   1323   1.5       tls 	char *pt;
   1324   1.5       tls 	char *dest;
   1325   1.5       tls 	char *end;
   1326   1.5       tls 	int i;
   1327   1.5       tls 	u_int key = 0;
   1328   1.5       tls 	int steps;
   1329   1.5       tls 	int res;
   1330   1.1       jtc 	u_int val;
   1331   1.1       jtc 
   1332   1.1       jtc 	/*
   1333   1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1334   1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1335   1.1       jtc 	 * spread out the keys)
   1336   1.1       jtc 	 */
   1337   1.1       jtc 	if (len > MAXKEYLEN) {
   1338  1.12     itohy 		pt = &(name[len - MAXKEYLEN]);
   1339   1.1       jtc 		len = MAXKEYLEN;
   1340   1.1       jtc 	} else
   1341   1.1       jtc 		pt = name;
   1342   1.1       jtc 
   1343   1.1       jtc 	/*
   1344   1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1345   1.1       jtc 	 * there is a runt to deal with
   1346   1.1       jtc 	 */
   1347   1.1       jtc 	steps = len/sizeof(u_int);
   1348   1.1       jtc 	res = len % sizeof(u_int);
   1349   1.1       jtc 
   1350   1.1       jtc 	/*
   1351   1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1352   1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1353   1.1       jtc 	 * could avoid the expensive copy.
   1354   1.1       jtc 	 */
   1355   1.1       jtc 	for (i = 0; i < steps; ++i) {
   1356   1.1       jtc 		end = pt + sizeof(u_int);
   1357   1.1       jtc 		dest = (char *)&val;
   1358   1.1       jtc 		while (pt < end)
   1359   1.1       jtc 			*dest++ = *pt++;
   1360   1.1       jtc 		key += val;
   1361   1.1       jtc 	}
   1362   1.1       jtc 
   1363   1.1       jtc 	/*
   1364   1.1       jtc 	 * add in the runt padded with zero to the right
   1365   1.1       jtc 	 */
   1366   1.1       jtc 	if (res) {
   1367   1.1       jtc 		val = 0;
   1368   1.1       jtc 		end = pt + res;
   1369   1.1       jtc 		dest = (char *)&val;
   1370   1.1       jtc 		while (pt < end)
   1371   1.1       jtc 			*dest++ = *pt++;
   1372   1.1       jtc 		key += val;
   1373   1.1       jtc 	}
   1374   1.1       jtc 
   1375   1.1       jtc 	/*
   1376   1.1       jtc 	 * return the result mod the table size
   1377   1.1       jtc 	 */
   1378  1.25       dsl 	return key % tabsz;
   1379   1.1       jtc }
   1380