Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.11
      1  1.11     itohy /*	$NetBSD: tables.c,v 1.11 2000/02/17 03:06:13 itohy Exp $	*/
      2   1.4       cgd 
      3   1.1       jtc /*-
      4   1.1       jtc  * Copyright (c) 1992 Keith Muller.
      5   1.1       jtc  * Copyright (c) 1992, 1993
      6   1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7   1.1       jtc  *
      8   1.1       jtc  * This code is derived from software contributed to Berkeley by
      9   1.1       jtc  * Keith Muller of the University of California, San Diego.
     10   1.1       jtc  *
     11   1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12   1.1       jtc  * modification, are permitted provided that the following conditions
     13   1.1       jtc  * are met:
     14   1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15   1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16   1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19   1.1       jtc  * 3. All advertising materials mentioning features or use of this software
     20   1.1       jtc  *    must display the following acknowledgement:
     21   1.1       jtc  *	This product includes software developed by the University of
     22   1.1       jtc  *	California, Berkeley and its contributors.
     23   1.1       jtc  * 4. Neither the name of the University nor the names of its contributors
     24   1.1       jtc  *    may be used to endorse or promote products derived from this software
     25   1.1       jtc  *    without specific prior written permission.
     26   1.1       jtc  *
     27   1.1       jtc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28   1.1       jtc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29   1.1       jtc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30   1.1       jtc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31   1.1       jtc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32   1.1       jtc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33   1.1       jtc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34   1.1       jtc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35   1.1       jtc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36   1.1       jtc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37   1.1       jtc  * SUCH DAMAGE.
     38   1.1       jtc  */
     39   1.1       jtc 
     40   1.7  christos #include <sys/cdefs.h>
     41   1.1       jtc #ifndef lint
     42   1.4       cgd #if 0
     43   1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44   1.4       cgd #else
     45  1.11     itohy __RCSID("$NetBSD: tables.c,v 1.11 2000/02/17 03:06:13 itohy Exp $");
     46   1.4       cgd #endif
     47   1.1       jtc #endif /* not lint */
     48   1.1       jtc 
     49   1.1       jtc #include <sys/types.h>
     50   1.1       jtc #include <sys/time.h>
     51   1.1       jtc #include <sys/stat.h>
     52   1.1       jtc #include <sys/param.h>
     53   1.1       jtc #include <stdio.h>
     54   1.1       jtc #include <ctype.h>
     55   1.8    kleink #include <fcntl.h>
     56   1.9    kleink #include <paths.h>
     57   1.1       jtc #include <string.h>
     58   1.1       jtc #include <unistd.h>
     59   1.1       jtc #include <errno.h>
     60   1.1       jtc #include <stdlib.h>
     61   1.1       jtc #include "pax.h"
     62   1.1       jtc #include "tables.h"
     63   1.1       jtc #include "extern.h"
     64   1.1       jtc 
     65   1.1       jtc /*
     66   1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67   1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68   1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69   1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70   1.1       jtc  * As of this writing, the posix library functions were more complex than
     71   1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72   1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73   1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74   1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75   1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76   1.1       jtc  * Trying to force the fit to the posix databases routines was not considered
     77   1.1       jtc  * time well spent.
     78   1.1       jtc  */
     79   1.1       jtc 
     80   1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81   1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82   1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83   1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84   1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85   1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     86   1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     87   1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     88   1.1       jtc 
     89   1.1       jtc static DEVT *chk_dev __P((dev_t, int));
     90   1.1       jtc 
     91   1.1       jtc /*
     92   1.1       jtc  * hard link table routines
     93   1.1       jtc  *
     94   1.1       jtc  * The hard link table tries to detect hard links to files using the device and
     95   1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     96   1.1       jtc  * write routine that this file is a hard link to another file. The format
     97   1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
     98   1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
     99   1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    100   1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    101   1.1       jtc  * the same table when reading an archive. In that situation, this table is
    102   1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    103   1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    104   1.1       jtc  * can be detected by the archive format.
    105   1.1       jtc  */
    106   1.1       jtc 
    107   1.1       jtc /*
    108   1.1       jtc  * lnk_start
    109   1.1       jtc  *	Creates the hard link table.
    110   1.1       jtc  * Return:
    111   1.1       jtc  *	0 if created, -1 if failure
    112   1.1       jtc  */
    113   1.1       jtc 
    114   1.1       jtc #if __STDC__
    115   1.1       jtc int
    116   1.1       jtc lnk_start(void)
    117   1.1       jtc #else
    118   1.1       jtc int
    119   1.1       jtc lnk_start()
    120   1.1       jtc #endif
    121   1.1       jtc {
    122   1.1       jtc 	if (ltab != NULL)
    123   1.1       jtc 		return(0);
    124   1.1       jtc  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    125   1.7  christos                 tty_warn(1, "Cannot allocate memory for hard link table");
    126   1.1       jtc                 return(-1);
    127   1.1       jtc         }
    128   1.1       jtc 	return(0);
    129   1.1       jtc }
    130   1.1       jtc 
    131   1.1       jtc /*
    132   1.1       jtc  * chk_lnk()
    133   1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    134   1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    135   1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    136   1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    137   1.1       jtc  *	we add the file to the database if it has the potential for having
    138   1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    139   1.1       jtc  * Return:
    140   1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    141   1.1       jtc  */
    142   1.1       jtc 
    143   1.1       jtc #if __STDC__
    144   1.1       jtc int
    145   1.5       tls chk_lnk(ARCHD *arcn)
    146   1.1       jtc #else
    147   1.1       jtc int
    148   1.1       jtc chk_lnk(arcn)
    149   1.5       tls 	ARCHD *arcn;
    150   1.1       jtc #endif
    151   1.1       jtc {
    152   1.5       tls 	HRDLNK *pt;
    153   1.5       tls 	HRDLNK **ppt;
    154   1.5       tls 	u_int indx;
    155   1.1       jtc 
    156   1.1       jtc 	if (ltab == NULL)
    157   1.1       jtc 		return(-1);
    158   1.1       jtc 	/*
    159   1.1       jtc 	 * ignore those nodes that cannot have hard links
    160   1.1       jtc 	 */
    161   1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    162   1.1       jtc 		return(0);
    163   1.1       jtc 
    164   1.1       jtc 	/*
    165   1.1       jtc 	 * hash inode number and look for this file
    166   1.1       jtc 	 */
    167   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    168   1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    169   1.1       jtc 		/*
    170   1.1       jtc 		 * it's hash chain in not empty, walk down looking for it
    171   1.1       jtc 		 */
    172   1.1       jtc 		ppt = &(ltab[indx]);
    173   1.1       jtc 		while (pt != NULL) {
    174   1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    175   1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    176   1.1       jtc 				break;
    177   1.1       jtc 			ppt = &(pt->fow);
    178   1.1       jtc 			pt = pt->fow;
    179   1.1       jtc 		}
    180   1.1       jtc 
    181   1.1       jtc 		if (pt != NULL) {
    182   1.1       jtc 			/*
    183   1.1       jtc 			 * found a link. set the node type and copy in the
    184   1.1       jtc 			 * name of the file it is to link to. we need to
    185   1.1       jtc 			 * handle hardlinks to regular files differently than
    186   1.1       jtc 			 * other links.
    187   1.1       jtc 			 */
    188   1.1       jtc 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    189   1.1       jtc 				PAXPATHLEN+1);
    190   1.1       jtc 			if (arcn->type == PAX_REG)
    191   1.1       jtc 				arcn->type = PAX_HRG;
    192   1.1       jtc 			else
    193   1.1       jtc 				arcn->type = PAX_HLK;
    194   1.1       jtc 
    195   1.1       jtc 			/*
    196   1.1       jtc 			 * if we have found all the links to this file, remove
    197   1.1       jtc 			 * it from the database
    198   1.1       jtc 			 */
    199   1.1       jtc 			if (--pt->nlink <= 1) {
    200   1.1       jtc 				*ppt = pt->fow;
    201   1.1       jtc 				(void)free((char *)pt->name);
    202   1.1       jtc 				(void)free((char *)pt);
    203   1.1       jtc 			}
    204   1.1       jtc 			return(1);
    205   1.1       jtc 		}
    206   1.1       jtc 	}
    207   1.1       jtc 
    208   1.1       jtc 	/*
    209   1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    210   1.1       jtc 	 * front of this hash chain
    211   1.1       jtc 	 */
    212   1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    213   1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    214   1.1       jtc 			pt->dev = arcn->sb.st_dev;
    215   1.1       jtc 			pt->ino = arcn->sb.st_ino;
    216   1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    217   1.1       jtc 			pt->fow = ltab[indx];
    218   1.1       jtc 			ltab[indx] = pt;
    219   1.1       jtc 			return(0);
    220   1.1       jtc 		}
    221   1.1       jtc 		(void)free((char *)pt);
    222   1.1       jtc 	}
    223   1.1       jtc 
    224   1.7  christos 	tty_warn(1, "Hard link table out of memory");
    225   1.1       jtc 	return(-1);
    226   1.1       jtc }
    227   1.1       jtc 
    228   1.1       jtc /*
    229   1.1       jtc  * purg_lnk
    230   1.1       jtc  *	remove reference for a file that we may have added to the data base as
    231   1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    232   1.1       jtc  *	we do not want to accidently point another file at it later on.
    233   1.1       jtc  */
    234   1.1       jtc 
    235   1.1       jtc #if __STDC__
    236   1.1       jtc void
    237   1.5       tls purg_lnk(ARCHD *arcn)
    238   1.1       jtc #else
    239   1.1       jtc void
    240   1.1       jtc purg_lnk(arcn)
    241   1.5       tls 	ARCHD *arcn;
    242   1.1       jtc #endif
    243   1.1       jtc {
    244   1.5       tls 	HRDLNK *pt;
    245   1.5       tls 	HRDLNK **ppt;
    246   1.5       tls 	u_int indx;
    247   1.1       jtc 
    248   1.1       jtc 	if (ltab == NULL)
    249   1.1       jtc 		return;
    250   1.1       jtc 	/*
    251   1.1       jtc 	 * do not bother to look if it could not be in the database
    252   1.1       jtc 	 */
    253   1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    254   1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    255   1.1       jtc 		return;
    256   1.1       jtc 
    257   1.1       jtc 	/*
    258   1.1       jtc 	 * find the hash chain for this inode value, if empty return
    259   1.1       jtc 	 */
    260   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    261   1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    262   1.1       jtc 		return;
    263   1.1       jtc 
    264   1.1       jtc 	/*
    265   1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    266   1.1       jtc 	 * free if found
    267   1.1       jtc 	 */
    268   1.1       jtc 	ppt = &(ltab[indx]);
    269   1.1       jtc 	while (pt != NULL) {
    270   1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    271   1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    272   1.1       jtc 			break;
    273   1.1       jtc 		ppt = &(pt->fow);
    274   1.1       jtc 		pt = pt->fow;
    275   1.1       jtc 	}
    276   1.1       jtc 	if (pt == NULL)
    277   1.1       jtc 		return;
    278   1.1       jtc 
    279   1.1       jtc 	/*
    280   1.1       jtc 	 * remove and free it
    281   1.1       jtc 	 */
    282   1.1       jtc 	*ppt = pt->fow;
    283   1.1       jtc 	(void)free((char *)pt->name);
    284   1.1       jtc 	(void)free((char *)pt);
    285   1.1       jtc }
    286   1.1       jtc 
    287   1.1       jtc /*
    288   1.1       jtc  * lnk_end()
    289   1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    290   1.1       jtc  *	read and write phases of append with update. (The format may have
    291   1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    292   1.1       jtc  *	write phase
    293   1.1       jtc  */
    294   1.1       jtc 
    295   1.1       jtc #if __STDC__
    296   1.1       jtc void
    297   1.1       jtc lnk_end(void)
    298   1.1       jtc #else
    299   1.1       jtc void
    300   1.1       jtc lnk_end()
    301   1.1       jtc #endif
    302   1.1       jtc {
    303   1.5       tls 	int i;
    304   1.5       tls 	HRDLNK *pt;
    305   1.5       tls 	HRDLNK *ppt;
    306   1.1       jtc 
    307   1.1       jtc 	if (ltab == NULL)
    308   1.1       jtc 		return;
    309   1.1       jtc 
    310   1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    311   1.1       jtc 		if (ltab[i] == NULL)
    312   1.1       jtc 			continue;
    313   1.1       jtc 		pt = ltab[i];
    314   1.1       jtc 		ltab[i] = NULL;
    315   1.1       jtc 
    316   1.1       jtc 		/*
    317   1.1       jtc 		 * free up each entry on this chain
    318   1.1       jtc 		 */
    319   1.1       jtc 		while (pt != NULL) {
    320   1.1       jtc 			ppt = pt;
    321   1.1       jtc 			pt = ppt->fow;
    322   1.1       jtc 			(void)free((char *)ppt->name);
    323   1.1       jtc 			(void)free((char *)ppt);
    324   1.1       jtc 		}
    325   1.1       jtc 	}
    326   1.1       jtc 	return;
    327   1.1       jtc }
    328   1.1       jtc 
    329   1.1       jtc /*
    330   1.1       jtc  * modification time table routines
    331   1.1       jtc  *
    332   1.1       jtc  * The modification time table keeps track of last modification times for all
    333   1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    334   1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    335   1.1       jtc  * already stored on the archive (if there is no other file with the same
    336   1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    337   1.1       jtc  * An append with an -u must read the archive and store the modification time
    338   1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    339   1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    340   1.1       jtc  * are stored in a scatch file and indexed by an in memory hash table. The
    341   1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    342   1.1       jtc  * the length of the filename and the lseek offset within the scratch file
    343   1.1       jtc  * where the actual name is stored. Since there are never any deletions to this
    344   1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    345   1.1       jtc  * not exhibit any locality at all (files in the database are rarely
    346   1.1       jtc  * looked up more than once...). So caching is just a waste of memory. The
    347   1.1       jtc  * only limitation is the amount of scatch file space available to store the
    348   1.1       jtc  * path names.
    349   1.1       jtc  */
    350   1.1       jtc 
    351   1.1       jtc /*
    352   1.1       jtc  * ftime_start()
    353   1.1       jtc  *	create the file time hash table and open for read/write the scratch
    354   1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    355   1.1       jtc  *	no witnesses).
    356   1.1       jtc  * Return:
    357   1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    358   1.1       jtc  */
    359   1.1       jtc 
    360   1.1       jtc #if __STDC__
    361   1.1       jtc int
    362   1.1       jtc ftime_start(void)
    363   1.1       jtc #else
    364   1.1       jtc int
    365   1.1       jtc ftime_start()
    366   1.1       jtc #endif
    367   1.1       jtc {
    368   1.9    kleink 	const char *tmpdir;
    369   1.9    kleink 	char template[MAXPATHLEN];
    370   1.1       jtc 
    371   1.1       jtc 	if (ftab != NULL)
    372   1.1       jtc 		return(0);
    373   1.1       jtc  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    374   1.7  christos                 tty_warn(1, "Cannot allocate memory for file time table");
    375   1.1       jtc                 return(-1);
    376   1.1       jtc         }
    377   1.1       jtc 
    378   1.1       jtc 	/*
    379   1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    380   1.1       jtc 	 * so it will get removed on exit
    381   1.1       jtc 	 */
    382   1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
    383   1.9    kleink 		tmpdir = _PATH_TMP;
    384   1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
    385   1.9    kleink 	if ((ffd = mkstemp(template)) == -1) {
    386   1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    387   1.9    kleink 		    template);
    388   1.1       jtc 		return(-1);
    389   1.1       jtc 	}
    390   1.1       jtc 
    391   1.9    kleink 	(void)unlink(template);
    392   1.1       jtc 	return(0);
    393   1.1       jtc }
    394   1.1       jtc 
    395   1.1       jtc /*
    396   1.1       jtc  * chk_ftime()
    397   1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    398   1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    399   1.1       jtc  *	If a file with the same name is found, the file times are compared and
    400   1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    401   1.1       jtc  *	was not in the database) the new file is selected for storage.
    402   1.1       jtc  * Return:
    403   1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    404   1.1       jtc  *	-1 on error
    405   1.1       jtc  */
    406   1.1       jtc 
    407   1.1       jtc #if __STDC__
    408   1.1       jtc int
    409   1.5       tls chk_ftime(ARCHD *arcn)
    410   1.1       jtc #else
    411   1.1       jtc int
    412   1.1       jtc chk_ftime(arcn)
    413   1.5       tls 	ARCHD *arcn;
    414   1.1       jtc #endif
    415   1.1       jtc {
    416   1.5       tls 	FTM *pt;
    417   1.5       tls 	int namelen;
    418   1.5       tls 	u_int indx;
    419   1.1       jtc 	char ckname[PAXPATHLEN+1];
    420   1.1       jtc 
    421   1.1       jtc 	/*
    422   1.1       jtc 	 * no info, go ahead and add to archive
    423   1.1       jtc 	 */
    424   1.1       jtc 	if (ftab == NULL)
    425   1.1       jtc 		return(0);
    426   1.1       jtc 
    427   1.1       jtc 	/*
    428   1.1       jtc 	 * hash the pathname and look up in table
    429   1.1       jtc 	 */
    430   1.1       jtc 	namelen = arcn->nlen;
    431   1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    432   1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    433   1.1       jtc 		/*
    434   1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    435   1.1       jtc 		 * only read up the path names if the lengths match, speeds
    436   1.1       jtc 		 * up the search a lot
    437   1.1       jtc 		 */
    438   1.1       jtc 		while (pt != NULL) {
    439   1.1       jtc 			if (pt->namelen == namelen) {
    440   1.1       jtc 				/*
    441   1.1       jtc 				 * potential match, have to read the name
    442   1.1       jtc 				 * from the scratch file.
    443   1.1       jtc 				 */
    444   1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    445   1.1       jtc 					syswarn(1, errno,
    446   1.1       jtc 					    "Failed ftime table seek");
    447   1.1       jtc 					return(-1);
    448   1.1       jtc 				}
    449  1.11     itohy 				if (xread(ffd, ckname, namelen) != namelen) {
    450   1.1       jtc 					syswarn(1, errno,
    451   1.1       jtc 					    "Failed ftime table read");
    452   1.1       jtc 					return(-1);
    453   1.1       jtc 				}
    454   1.1       jtc 
    455   1.1       jtc 				/*
    456   1.1       jtc 				 * if the names match, we are done
    457   1.1       jtc 				 */
    458   1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    459   1.1       jtc 					break;
    460   1.1       jtc 			}
    461   1.1       jtc 
    462   1.1       jtc 			/*
    463   1.1       jtc 			 * try the next entry on the chain
    464   1.1       jtc 			 */
    465   1.1       jtc 			pt = pt->fow;
    466   1.1       jtc 		}
    467   1.1       jtc 
    468   1.1       jtc 		if (pt != NULL) {
    469   1.1       jtc 			/*
    470   1.1       jtc 			 * found the file, compare the times, save the newer
    471   1.1       jtc 			 */
    472   1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    473   1.1       jtc 				/*
    474   1.1       jtc 				 * file is newer
    475   1.1       jtc 				 */
    476   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    477   1.1       jtc 				return(0);
    478   1.1       jtc 			}
    479   1.1       jtc 			/*
    480   1.1       jtc 			 * file is older
    481   1.1       jtc 			 */
    482   1.1       jtc 			return(1);
    483   1.1       jtc 		}
    484   1.1       jtc 	}
    485   1.1       jtc 
    486   1.1       jtc 	/*
    487   1.1       jtc 	 * not in table, add it
    488   1.1       jtc 	 */
    489   1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    490   1.1       jtc 		/*
    491   1.1       jtc 		 * add the name at the end of the scratch file, saving the
    492   1.1       jtc 		 * offset. add the file to the head of the hash chain
    493   1.1       jtc 		 */
    494   1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    495  1.11     itohy 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    496   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    497   1.1       jtc 				pt->namelen = namelen;
    498   1.1       jtc 				pt->fow = ftab[indx];
    499   1.1       jtc 				ftab[indx] = pt;
    500   1.1       jtc 				return(0);
    501   1.1       jtc 			}
    502   1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    503   1.1       jtc 		} else
    504   1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    505   1.1       jtc 	} else
    506   1.7  christos 		tty_warn(1, "File time table ran out of memory");
    507   1.1       jtc 
    508   1.1       jtc 	if (pt != NULL)
    509   1.1       jtc 		(void)free((char *)pt);
    510   1.1       jtc 	return(-1);
    511   1.1       jtc }
    512   1.1       jtc 
    513   1.1       jtc /*
    514   1.1       jtc  * Interactive rename table routines
    515   1.1       jtc  *
    516   1.1       jtc  * The interactive rename table keeps track of the new names that the user
    517   1.1       jtc  * assignes to files from tty input. Since this map is unique for each file
    518   1.1       jtc  * we must store it in case there is a reference to the file later in archive
    519   1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    520   1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    521   1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    522   1.1       jtc  * be a very large table).
    523   1.1       jtc  */
    524   1.1       jtc 
    525   1.1       jtc /*
    526   1.1       jtc  * name_start()
    527   1.1       jtc  *	create the interactive rename table
    528   1.1       jtc  * Return:
    529   1.1       jtc  *	0 if successful, -1 otherwise
    530   1.1       jtc  */
    531   1.1       jtc 
    532   1.1       jtc #if __STDC__
    533   1.1       jtc int
    534   1.1       jtc name_start(void)
    535   1.1       jtc #else
    536   1.1       jtc int
    537   1.1       jtc name_start()
    538   1.1       jtc #endif
    539   1.1       jtc {
    540   1.1       jtc 	if (ntab != NULL)
    541   1.1       jtc 		return(0);
    542   1.1       jtc  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    543   1.7  christos                 tty_warn(1,
    544   1.7  christos 		    "Cannot allocate memory for interactive rename table");
    545   1.1       jtc                 return(-1);
    546   1.1       jtc         }
    547   1.1       jtc 	return(0);
    548   1.1       jtc }
    549   1.1       jtc 
    550   1.1       jtc /*
    551   1.1       jtc  * add_name()
    552   1.1       jtc  *	add the new name to old name mapping just created by the user.
    553   1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    554   1.1       jtc  *	archive) only the most recent is kept.
    555   1.1       jtc  * Return:
    556   1.1       jtc  *	0 if added, -1 otherwise
    557   1.1       jtc  */
    558   1.1       jtc 
    559   1.1       jtc #if __STDC__
    560   1.1       jtc int
    561   1.5       tls add_name(char *oname, int onamelen, char *nname)
    562   1.1       jtc #else
    563   1.1       jtc int
    564   1.1       jtc add_name(oname, onamelen, nname)
    565   1.5       tls 	char *oname;
    566   1.1       jtc 	int onamelen;
    567   1.1       jtc 	char *nname;
    568   1.1       jtc #endif
    569   1.1       jtc {
    570   1.5       tls 	NAMT *pt;
    571   1.5       tls 	u_int indx;
    572   1.1       jtc 
    573   1.1       jtc 	if (ntab == NULL) {
    574   1.1       jtc 		/*
    575   1.1       jtc 		 * should never happen
    576   1.1       jtc 		 */
    577   1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    578   1.1       jtc 		return(0);
    579   1.1       jtc 	}
    580   1.1       jtc 
    581   1.1       jtc 	/*
    582   1.1       jtc 	 * look to see if we have already mapped this file, if so we
    583   1.1       jtc 	 * will update it
    584   1.1       jtc 	 */
    585   1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    586   1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    587   1.1       jtc 		/*
    588   1.1       jtc 		 * look down the has chain for the file
    589   1.1       jtc 		 */
    590   1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    591   1.1       jtc 			pt = pt->fow;
    592   1.1       jtc 
    593   1.1       jtc 		if (pt != NULL) {
    594   1.1       jtc 			/*
    595   1.1       jtc 			 * found an old mapping, replace it with the new one
    596   1.1       jtc 			 * the user just input (if it is different)
    597   1.1       jtc 			 */
    598   1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    599   1.1       jtc 				return(0);
    600   1.1       jtc 
    601   1.1       jtc 			(void)free((char *)pt->nname);
    602   1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    603   1.7  christos 				tty_warn(1, "Cannot update rename table");
    604   1.1       jtc 				return(-1);
    605   1.1       jtc 			}
    606   1.1       jtc 			return(0);
    607   1.1       jtc 		}
    608   1.1       jtc 	}
    609   1.1       jtc 
    610   1.1       jtc 	/*
    611   1.1       jtc 	 * this is a new mapping, add it to the table
    612   1.1       jtc 	 */
    613   1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    614   1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    615   1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    616   1.1       jtc 				pt->fow = ntab[indx];
    617   1.1       jtc 				ntab[indx] = pt;
    618   1.1       jtc 				return(0);
    619   1.1       jtc 			}
    620   1.1       jtc 			(void)free((char *)pt->oname);
    621   1.1       jtc 		}
    622   1.1       jtc 		(void)free((char *)pt);
    623   1.1       jtc 	}
    624   1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    625   1.1       jtc 	return(-1);
    626   1.1       jtc }
    627   1.1       jtc 
    628   1.1       jtc /*
    629   1.1       jtc  * sub_name()
    630   1.1       jtc  *	look up a link name to see if it points at a file that has been
    631   1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    632   1.1       jtc  *	new name (oname is the link to name)
    633   1.1       jtc  */
    634   1.1       jtc 
    635   1.1       jtc #if __STDC__
    636   1.1       jtc void
    637   1.5       tls sub_name(char *oname, int *onamelen)
    638   1.1       jtc #else
    639   1.1       jtc void
    640   1.1       jtc sub_name(oname, onamelen)
    641   1.5       tls 	char *oname;
    642   1.1       jtc 	int *onamelen;
    643   1.1       jtc #endif
    644   1.1       jtc {
    645   1.5       tls 	NAMT *pt;
    646   1.5       tls 	u_int indx;
    647   1.1       jtc 
    648   1.1       jtc 	if (ntab == NULL)
    649   1.1       jtc 		return;
    650   1.1       jtc 	/*
    651   1.1       jtc 	 * look the name up in the hash table
    652   1.1       jtc 	 */
    653   1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    654   1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    655   1.1       jtc 		return;
    656   1.1       jtc 
    657   1.1       jtc 	while (pt != NULL) {
    658   1.1       jtc 		/*
    659   1.1       jtc 		 * walk down the hash cahin looking for a match
    660   1.1       jtc 		 */
    661   1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    662   1.1       jtc 			/*
    663   1.1       jtc 			 * found it, replace it with the new name
    664   1.1       jtc 			 * and return (we know that oname has enough space)
    665   1.1       jtc 			 */
    666   1.1       jtc 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    667   1.1       jtc 			return;
    668   1.1       jtc 		}
    669   1.1       jtc 		pt = pt->fow;
    670   1.1       jtc 	}
    671   1.1       jtc 
    672   1.1       jtc 	/*
    673   1.1       jtc 	 * no match, just return
    674   1.1       jtc 	 */
    675   1.1       jtc 	return;
    676   1.1       jtc }
    677   1.1       jtc 
    678   1.1       jtc /*
    679   1.1       jtc  * device/inode mapping table routines
    680   1.1       jtc  * (used with formats that store device and inodes fields)
    681   1.1       jtc  *
    682   1.1       jtc  * device/inode mapping tables remap the device field in a archive header. The
    683   1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    684   1.1       jtc  * other. However these values have very little meaning outside of that. This
    685   1.1       jtc  * database is used to solve one of two different problems.
    686   1.1       jtc  *
    687   1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    688   1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    689   1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    690   1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    691   1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    692   1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    693   1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    694   1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    695   1.1       jtc  * member that has a device number used in a prior run and already stored in a
    696   1.1       jtc  * file on the archive. During the read phase of the append, we store the
    697   1.1       jtc  * device numbers used and mark them to not be used by any file during the
    698   1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    699   1.1       jtc  * we remap it to a new value.
    700   1.1       jtc  *
    701   1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    702   1.1       jtc  * too small to store the entire value. The result is an inode or device value
    703   1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    704   1.1       jtc  * we end up creating links between files that are really not links (after
    705   1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    706   1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    707   1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    708   1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    709   1.1       jtc  * on a single device to many different devices (each one represented by the
    710   1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    711   1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    712   1.1       jtc  * truncate to the same value clearly will always have different truncation
    713   1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    714   1.1       jtc  * device truncation we remap the device number to a non truncated value.
    715   1.1       jtc  * (for more info see table.h for the data structures involved).
    716   1.1       jtc  */
    717   1.1       jtc 
    718   1.1       jtc /*
    719   1.1       jtc  * dev_start()
    720   1.1       jtc  *	create the device mapping table
    721   1.1       jtc  * Return:
    722   1.1       jtc  *	0 if successful, -1 otherwise
    723   1.1       jtc  */
    724   1.1       jtc 
    725   1.1       jtc #if __STDC__
    726   1.1       jtc int
    727   1.1       jtc dev_start(void)
    728   1.1       jtc #else
    729   1.1       jtc int
    730   1.1       jtc dev_start()
    731   1.1       jtc #endif
    732   1.1       jtc {
    733   1.1       jtc 	if (dtab != NULL)
    734   1.1       jtc 		return(0);
    735   1.1       jtc  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    736   1.7  christos                 tty_warn(1, "Cannot allocate memory for device mapping table");
    737   1.1       jtc                 return(-1);
    738   1.1       jtc         }
    739   1.1       jtc 	return(0);
    740   1.1       jtc }
    741   1.1       jtc 
    742   1.1       jtc /*
    743   1.1       jtc  * add_dev()
    744   1.1       jtc  *	add a device number to the table. this will force the device to be
    745   1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    746   1.1       jtc  *	function is called during the read phase of an append to prohibit the
    747   1.1       jtc  *	use of any device number already in the archive.
    748   1.1       jtc  * Return:
    749   1.1       jtc  *	0 if added ok, -1 otherwise
    750   1.1       jtc  */
    751   1.1       jtc 
    752   1.1       jtc #if __STDC__
    753   1.1       jtc int
    754   1.5       tls add_dev(ARCHD *arcn)
    755   1.1       jtc #else
    756   1.1       jtc int
    757   1.1       jtc add_dev(arcn)
    758   1.5       tls 	ARCHD *arcn;
    759   1.1       jtc #endif
    760   1.1       jtc {
    761   1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    762   1.1       jtc 		return(-1);
    763   1.1       jtc 	return(0);
    764   1.1       jtc }
    765   1.1       jtc 
    766   1.1       jtc /*
    767   1.1       jtc  * chk_dev()
    768   1.1       jtc  *	check for a device value in the device table. If not found and the add
    769   1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    770   1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    771   1.1       jtc  *	is alread mapped, just return with a pointer to that entry.
    772   1.1       jtc  * Return:
    773   1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    774   1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    775   1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    776   1.1       jtc  *	is returned (indicates an error).
    777   1.1       jtc  */
    778   1.1       jtc 
    779   1.1       jtc #if __STDC__
    780   1.1       jtc static DEVT *
    781   1.1       jtc chk_dev(dev_t dev, int add)
    782   1.1       jtc #else
    783   1.1       jtc static DEVT *
    784   1.1       jtc chk_dev(dev, add)
    785   1.1       jtc 	dev_t dev;
    786   1.1       jtc 	int add;
    787   1.1       jtc #endif
    788   1.1       jtc {
    789   1.5       tls 	DEVT *pt;
    790   1.5       tls 	u_int indx;
    791   1.1       jtc 
    792   1.1       jtc 	if (dtab == NULL)
    793   1.1       jtc 		return(NULL);
    794   1.1       jtc 	/*
    795   1.1       jtc 	 * look to see if this device is already in the table
    796   1.1       jtc 	 */
    797   1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    798   1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    799   1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    800   1.1       jtc 			pt = pt->fow;
    801   1.1       jtc 
    802   1.1       jtc 		/*
    803   1.1       jtc 		 * found it, return a pointer to it
    804   1.1       jtc 		 */
    805   1.1       jtc 		if (pt != NULL)
    806   1.1       jtc 			return(pt);
    807   1.1       jtc 	}
    808   1.1       jtc 
    809   1.1       jtc 	/*
    810   1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    811   1.1       jtc 	 * to see if a device number is being used.
    812   1.1       jtc 	 */
    813   1.1       jtc 	if (add == 0)
    814   1.1       jtc 		return(NULL);
    815   1.1       jtc 
    816   1.1       jtc 	/*
    817   1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    818   1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    819   1.1       jtc 	 * list must be NULL.
    820   1.1       jtc 	 */
    821   1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    822   1.7  christos 		tty_warn(1, "Device map table out of memory");
    823   1.1       jtc 		return(NULL);
    824   1.1       jtc 	}
    825   1.1       jtc 	pt->dev = dev;
    826   1.1       jtc 	pt->list = NULL;
    827   1.1       jtc 	pt->fow = dtab[indx];
    828   1.1       jtc 	dtab[indx] = pt;
    829   1.1       jtc 	return(pt);
    830   1.1       jtc }
    831   1.1       jtc /*
    832   1.1       jtc  * map_dev()
    833   1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    834   1.1       jtc  *	the archive format is able to store in a header), we check for inode
    835   1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    836   1.1       jtc  *	can also occur when during the read phase of append a device number was
    837   1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    838   1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    839   1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    840   1.1       jtc  * Return:
    841   1.1       jtc  *	0 if all ok, -1 otherwise.
    842   1.1       jtc  */
    843   1.1       jtc 
    844   1.1       jtc #if __STDC__
    845   1.1       jtc int
    846   1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    847   1.1       jtc #else
    848   1.1       jtc int
    849   1.1       jtc map_dev(arcn, dev_mask, ino_mask)
    850   1.5       tls 	ARCHD *arcn;
    851   1.1       jtc 	u_long dev_mask;
    852   1.1       jtc 	u_long ino_mask;
    853   1.1       jtc #endif
    854   1.1       jtc {
    855   1.5       tls 	DEVT *pt;
    856   1.5       tls 	DLIST *dpt;
    857   1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    858   1.1       jtc 	int trc_ino = 0;
    859   1.1       jtc 	int trc_dev = 0;
    860   1.1       jtc 	ino_t trunc_bits = 0;
    861   1.1       jtc 	ino_t nino;
    862   1.1       jtc 
    863   1.1       jtc 	if (dtab == NULL)
    864   1.1       jtc 		return(0);
    865   1.1       jtc 	/*
    866   1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    867   1.1       jtc 	 * bit pattern.
    868   1.1       jtc 	 */
    869   1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    870   1.1       jtc 		++trc_dev;
    871   1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    872   1.1       jtc 		++trc_ino;
    873   1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    874   1.1       jtc 	}
    875   1.1       jtc 
    876   1.1       jtc 	/*
    877   1.1       jtc 	 * see if this device is already being mapped, look up the device
    878   1.1       jtc 	 * then find the truncation bit pattern which applies
    879   1.1       jtc 	 */
    880   1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    881   1.1       jtc 		/*
    882   1.1       jtc 		 * this device is already marked to be remapped
    883   1.1       jtc 		 */
    884   1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    885   1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    886   1.1       jtc 				break;
    887   1.1       jtc 
    888   1.1       jtc 		if (dpt != NULL) {
    889   1.1       jtc 			/*
    890   1.1       jtc 			 * we are being remapped for this device and pattern
    891   1.1       jtc 			 * change the device number to be stored and return
    892   1.1       jtc 			 */
    893   1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    894   1.1       jtc 			arcn->sb.st_ino = nino;
    895   1.1       jtc 			return(0);
    896   1.1       jtc 		}
    897   1.1       jtc 	} else {
    898   1.1       jtc 		/*
    899   1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    900   1.1       jtc 		 * form of truncation, we do not need a remap
    901   1.1       jtc 		 */
    902   1.1       jtc 		if (!trc_ino && !trc_dev)
    903   1.1       jtc 			return(0);
    904   1.1       jtc 
    905   1.1       jtc 		/*
    906   1.1       jtc 		 * we have truncation, have to add this as a device to remap
    907   1.1       jtc 		 */
    908   1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    909   1.1       jtc 			goto bad;
    910   1.1       jtc 
    911   1.1       jtc 		/*
    912   1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    913   1.1       jtc 		 * all future inodes that do not truncate (they have the
    914   1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    915   1.1       jtc 		 * device number. We probably have already written inodes with
    916   1.1       jtc 		 * this device number to the archive with the truncation
    917   1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    918   1.1       jtc 		 * same device number.
    919   1.1       jtc 		 */
    920   1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    921   1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    922   1.1       jtc 				goto bad;
    923   1.1       jtc 			dpt->trunc_bits = 0;
    924   1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    925   1.1       jtc 			dpt->fow = pt->list;
    926   1.1       jtc 			pt->list = dpt;
    927   1.1       jtc 		}
    928   1.1       jtc 	}
    929   1.1       jtc 
    930   1.1       jtc 	/*
    931   1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    932   1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    933   1.1       jtc 	 */
    934   1.1       jtc 	while (++lastdev > 0) {
    935   1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    936   1.1       jtc 			continue;
    937   1.1       jtc 		/*
    938   1.1       jtc 		 * found an unused value. If we have reached truncation point
    939   1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    940   1.1       jtc 		 * mark it as being used.
    941   1.1       jtc 		 */
    942   1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    943   1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    944   1.1       jtc 			goto bad;
    945   1.1       jtc 		break;
    946   1.1       jtc 	}
    947   1.1       jtc 
    948   1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    949   1.1       jtc 		goto bad;
    950   1.1       jtc 
    951   1.1       jtc 	/*
    952   1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    953   1.1       jtc 	 * change the device number this file is being stored with.
    954   1.1       jtc 	 */
    955   1.1       jtc 	dpt->trunc_bits = trunc_bits;
    956   1.1       jtc 	dpt->dev = lastdev;
    957   1.1       jtc 	dpt->fow = pt->list;
    958   1.1       jtc 	pt->list = dpt;
    959   1.1       jtc 	arcn->sb.st_dev = lastdev;
    960   1.1       jtc 	arcn->sb.st_ino = nino;
    961   1.1       jtc 	return(0);
    962   1.1       jtc 
    963   1.1       jtc     bad:
    964   1.7  christos 	tty_warn(1,
    965   1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    966   1.1       jtc 	    arcn->name);
    967   1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    968   1.1       jtc 	return(0);
    969   1.1       jtc }
    970   1.1       jtc 
    971   1.1       jtc /*
    972   1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    973   1.1       jtc  *
    974   1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    975   1.1       jtc  * before being read by pax. For regular files, access time is restored after
    976   1.1       jtc  * the file has been copied. This database provides the same functionality for
    977   1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    978   1.1       jtc  * is more complex than files since directories may be read several times until
    979   1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    980   1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    981   1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    982   1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    983   1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    984   1.1       jtc  * directory entries left in this database are reset during final cleanup
    985   1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    986   1.1       jtc  */
    987   1.1       jtc 
    988   1.1       jtc /*
    989   1.1       jtc  * atdir_start()
    990   1.1       jtc  *	create the directory access time database for directories READ by pax.
    991   1.1       jtc  * Return:
    992   1.1       jtc  *	0 is created ok, -1 otherwise.
    993   1.1       jtc  */
    994   1.1       jtc 
    995   1.1       jtc #if __STDC__
    996   1.1       jtc int
    997   1.1       jtc atdir_start(void)
    998   1.1       jtc #else
    999   1.1       jtc int
   1000   1.1       jtc atdir_start()
   1001   1.1       jtc #endif
   1002   1.1       jtc {
   1003   1.1       jtc 	if (atab != NULL)
   1004   1.1       jtc 		return(0);
   1005   1.1       jtc  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1006   1.7  christos                 tty_warn(1,
   1007   1.7  christos 		    "Cannot allocate space for directory access time table");
   1008   1.1       jtc                 return(-1);
   1009   1.1       jtc         }
   1010   1.1       jtc 	return(0);
   1011   1.1       jtc }
   1012   1.1       jtc 
   1013   1.1       jtc 
   1014   1.1       jtc /*
   1015   1.1       jtc  * atdir_end()
   1016   1.1       jtc  *	walk through the directory access time table and reset the access time
   1017   1.1       jtc  *	of any directory who still has an entry left in the database. These
   1018   1.1       jtc  *	entries are for directories READ by pax
   1019   1.1       jtc  */
   1020   1.1       jtc 
   1021   1.1       jtc #if __STDC__
   1022   1.1       jtc void
   1023   1.1       jtc atdir_end(void)
   1024   1.1       jtc #else
   1025   1.1       jtc void
   1026   1.1       jtc atdir_end()
   1027   1.1       jtc #endif
   1028   1.1       jtc {
   1029   1.5       tls 	ATDIR *pt;
   1030   1.5       tls 	int i;
   1031   1.1       jtc 
   1032   1.1       jtc 	if (atab == NULL)
   1033   1.1       jtc 		return;
   1034   1.1       jtc 	/*
   1035   1.1       jtc 	 * for each non-empty hash table entry reset all the directories
   1036   1.1       jtc 	 * chained there.
   1037   1.1       jtc 	 */
   1038   1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
   1039   1.1       jtc 		if ((pt = atab[i]) == NULL)
   1040   1.1       jtc 			continue;
   1041   1.1       jtc 		/*
   1042   1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
   1043   1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
   1044   1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
   1045   1.1       jtc 		 */
   1046   1.1       jtc 		for (; pt != NULL; pt = pt->fow)
   1047   1.1       jtc 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1048   1.1       jtc 	}
   1049   1.1       jtc }
   1050   1.1       jtc 
   1051   1.1       jtc /*
   1052   1.1       jtc  * add_atdir()
   1053   1.1       jtc  *	add a directory to the directory access time table. Table is hashed
   1054   1.1       jtc  *	and chained by inode number. This is for directories READ by pax
   1055   1.1       jtc  */
   1056   1.1       jtc 
   1057   1.1       jtc #if __STDC__
   1058   1.1       jtc void
   1059   1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1060   1.1       jtc #else
   1061   1.1       jtc void
   1062   1.1       jtc add_atdir(fname, dev, ino, mtime, atime)
   1063   1.1       jtc 	char *fname;
   1064   1.1       jtc 	dev_t dev;
   1065   1.1       jtc 	ino_t ino;
   1066   1.1       jtc 	time_t mtime;
   1067   1.1       jtc 	time_t atime;
   1068   1.1       jtc #endif
   1069   1.1       jtc {
   1070   1.5       tls 	ATDIR *pt;
   1071   1.5       tls 	u_int indx;
   1072   1.1       jtc 
   1073   1.1       jtc 	if (atab == NULL)
   1074   1.1       jtc 		return;
   1075   1.1       jtc 
   1076   1.1       jtc 	/*
   1077   1.1       jtc 	 * make sure this directory is not already in the table, if so just
   1078   1.1       jtc 	 * return (the older entry always has the correct time). The only
   1079   1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
   1080   1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
   1081   1.1       jtc 	 * subtree before all the post-order visits have been made).
   1082   1.1       jtc 	 */
   1083   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1084   1.1       jtc 	if ((pt = atab[indx]) != NULL) {
   1085   1.1       jtc 		while (pt != NULL) {
   1086   1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
   1087   1.1       jtc 				break;
   1088   1.1       jtc 			pt = pt->fow;
   1089   1.1       jtc 		}
   1090   1.1       jtc 
   1091   1.1       jtc 		/*
   1092   1.1       jtc 		 * oops, already there. Leave it alone.
   1093   1.1       jtc 		 */
   1094   1.1       jtc 		if (pt != NULL)
   1095   1.1       jtc 			return;
   1096   1.1       jtc 	}
   1097   1.1       jtc 
   1098   1.1       jtc 	/*
   1099   1.1       jtc 	 * add it to the front of the hash chain
   1100   1.1       jtc 	 */
   1101   1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1102   1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1103   1.1       jtc 			pt->dev = dev;
   1104   1.1       jtc 			pt->ino = ino;
   1105   1.1       jtc 			pt->mtime = mtime;
   1106   1.1       jtc 			pt->atime = atime;
   1107   1.1       jtc 			pt->fow = atab[indx];
   1108   1.1       jtc 			atab[indx] = pt;
   1109   1.1       jtc 			return;
   1110   1.1       jtc 		}
   1111   1.1       jtc 		(void)free((char *)pt);
   1112   1.1       jtc 	}
   1113   1.1       jtc 
   1114   1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1115   1.1       jtc 	return;
   1116   1.1       jtc }
   1117   1.1       jtc 
   1118   1.1       jtc /*
   1119   1.1       jtc  * get_atdir()
   1120   1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1121   1.1       jtc  *	and modification time you want to set to. If found, the modification
   1122   1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1123   1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1124   1.1       jtc  *	pax
   1125   1.1       jtc  * Return:
   1126   1.1       jtc  *	0 if found, -1 if not found.
   1127   1.1       jtc  */
   1128   1.1       jtc 
   1129   1.1       jtc #if __STDC__
   1130   1.1       jtc int
   1131   1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1132   1.1       jtc #else
   1133   1.1       jtc int
   1134   1.1       jtc get_atdir(dev, ino, mtime, atime)
   1135   1.1       jtc 	dev_t dev;
   1136   1.1       jtc 	ino_t ino;
   1137   1.1       jtc 	time_t *mtime;
   1138   1.1       jtc 	time_t *atime;
   1139   1.1       jtc #endif
   1140   1.1       jtc {
   1141   1.5       tls 	ATDIR *pt;
   1142   1.5       tls 	ATDIR **ppt;
   1143   1.5       tls 	u_int indx;
   1144   1.1       jtc 
   1145   1.1       jtc 	if (atab == NULL)
   1146   1.1       jtc 		return(-1);
   1147   1.1       jtc 	/*
   1148   1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1149   1.1       jtc 	 */
   1150   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1151   1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1152   1.1       jtc 		return(-1);
   1153   1.1       jtc 
   1154   1.1       jtc 	ppt = &(atab[indx]);
   1155   1.1       jtc 	while (pt != NULL) {
   1156   1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1157   1.1       jtc 			break;
   1158   1.1       jtc 		/*
   1159   1.1       jtc 		 * no match, go to next one
   1160   1.1       jtc 		 */
   1161   1.1       jtc 		ppt = &(pt->fow);
   1162   1.1       jtc 		pt = pt->fow;
   1163   1.1       jtc 	}
   1164   1.1       jtc 
   1165   1.1       jtc 	/*
   1166   1.1       jtc 	 * return if we did not find it.
   1167   1.1       jtc 	 */
   1168   1.1       jtc 	if (pt == NULL)
   1169   1.1       jtc 		return(-1);
   1170   1.1       jtc 
   1171   1.1       jtc 	/*
   1172   1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1173   1.1       jtc 	 */
   1174   1.1       jtc 	*ppt = pt->fow;
   1175   1.1       jtc 	*mtime = pt->mtime;
   1176   1.1       jtc 	*atime = pt->atime;
   1177   1.1       jtc 	(void)free((char *)pt->name);
   1178   1.1       jtc 	(void)free((char *)pt);
   1179   1.1       jtc 	return(0);
   1180   1.1       jtc }
   1181   1.1       jtc 
   1182   1.1       jtc /*
   1183   1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1184   1.1       jtc  * by pax).
   1185   1.1       jtc  *
   1186   1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1187   1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1188   1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1189   1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1190   1.1       jtc  * that these directories may have been created with file permissions which
   1191   1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1192   1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1193   1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1194   1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1195   1.1       jtc  * files have been extracted (or copied), these directories have their times
   1196   1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1197   1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1198   1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1199   1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1200   1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1201   1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1202   1.1       jtc  * then the file name.
   1203   1.1       jtc  */
   1204   1.1       jtc 
   1205   1.1       jtc /*
   1206   1.1       jtc  * dir_start()
   1207   1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1208   1.1       jtc  *	by pax.
   1209   1.1       jtc  * Return:
   1210   1.1       jtc  *	0 if ok, -1 otherwise
   1211   1.1       jtc  */
   1212   1.1       jtc 
   1213   1.1       jtc #if __STDC__
   1214   1.1       jtc int
   1215   1.1       jtc dir_start(void)
   1216   1.1       jtc #else
   1217   1.1       jtc int
   1218   1.1       jtc dir_start()
   1219   1.1       jtc #endif
   1220   1.1       jtc {
   1221   1.9    kleink 	const char *tmpdir;
   1222   1.9    kleink 	char template[MAXPATHLEN];
   1223   1.1       jtc 
   1224   1.1       jtc 	if (dirfd != -1)
   1225   1.1       jtc 		return(0);
   1226   1.1       jtc 
   1227   1.1       jtc 	/*
   1228   1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1229   1.1       jtc 	 */
   1230   1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
   1231   1.9    kleink 		tmpdir = _PATH_TMP;
   1232   1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
   1233   1.9    kleink 	if ((dirfd = mkstemp(template)) >= 0) {
   1234   1.9    kleink 		(void)unlink(template);
   1235   1.1       jtc 		return(0);
   1236   1.1       jtc 	}
   1237   1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1238   1.9    kleink 	    template);
   1239   1.1       jtc 	return(-1);
   1240   1.1       jtc }
   1241   1.1       jtc 
   1242   1.1       jtc /*
   1243   1.1       jtc  * add_dir()
   1244   1.1       jtc  *	add the mode and times for a newly CREATED directory
   1245   1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1246   1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1247   1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1248   1.1       jtc  *	for the case where we created a file and found that the resulting
   1249   1.1       jtc  *	directory was not writeable and the user asked for file modes to NOT
   1250   1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1251   1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1252   1.1       jtc  *	pax spec)
   1253   1.1       jtc  */
   1254   1.1       jtc 
   1255   1.1       jtc #if __STDC__
   1256   1.1       jtc void
   1257   1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1258   1.1       jtc #else
   1259   1.1       jtc void
   1260   1.1       jtc add_dir(name, nlen, psb, frc_mode)
   1261   1.1       jtc 	char *name;
   1262   1.1       jtc 	int nlen;
   1263   1.1       jtc 	struct stat *psb;
   1264   1.1       jtc 	int frc_mode;
   1265   1.1       jtc #endif
   1266   1.1       jtc {
   1267   1.1       jtc 	DIRDATA dblk;
   1268   1.1       jtc 
   1269   1.1       jtc 	if (dirfd < 0)
   1270   1.1       jtc 		return;
   1271   1.1       jtc 
   1272   1.1       jtc 	/*
   1273   1.1       jtc 	 * get current position (where file name will start) so we can store it
   1274   1.1       jtc 	 * in the trailer
   1275   1.1       jtc 	 */
   1276   1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1277   1.7  christos 		tty_warn(1,
   1278   1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1279   1.1       jtc 		return;
   1280   1.1       jtc 	}
   1281   1.1       jtc 
   1282   1.1       jtc 	/*
   1283   1.1       jtc 	 * write the file name followed by the trailer
   1284   1.1       jtc 	 */
   1285   1.1       jtc 	dblk.nlen = nlen + 1;
   1286   1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1287   1.1       jtc 	dblk.mtime = psb->st_mtime;
   1288   1.1       jtc 	dblk.atime = psb->st_atime;
   1289  1.10       mrg 	dblk.fflags = psb->st_flags;
   1290   1.1       jtc 	dblk.frc_mode = frc_mode;
   1291  1.11     itohy 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1292  1.11     itohy 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1293   1.1       jtc 		++dircnt;
   1294   1.1       jtc 		return;
   1295   1.1       jtc 	}
   1296   1.1       jtc 
   1297   1.7  christos 	tty_warn(1,
   1298   1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1299   1.1       jtc 	return;
   1300   1.1       jtc }
   1301   1.1       jtc 
   1302   1.1       jtc /*
   1303   1.1       jtc  * proc_dir()
   1304   1.1       jtc  *	process all file modes and times stored for directories CREATED
   1305   1.1       jtc  *	by pax
   1306   1.1       jtc  */
   1307   1.1       jtc 
   1308   1.1       jtc #if __STDC__
   1309   1.1       jtc void
   1310   1.1       jtc proc_dir(void)
   1311   1.1       jtc #else
   1312   1.1       jtc void
   1313   1.1       jtc proc_dir()
   1314   1.1       jtc #endif
   1315   1.1       jtc {
   1316   1.1       jtc 	char name[PAXPATHLEN+1];
   1317   1.1       jtc 	DIRDATA dblk;
   1318   1.1       jtc 	u_long cnt;
   1319   1.1       jtc 
   1320   1.1       jtc 	if (dirfd < 0)
   1321   1.1       jtc 		return;
   1322   1.1       jtc 	/*
   1323   1.1       jtc 	 * read backwards through the file and process each directory
   1324   1.1       jtc 	 */
   1325   1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1326   1.1       jtc 		/*
   1327   1.1       jtc 		 * read the trailer, then the file name, if this fails
   1328   1.1       jtc 		 * just give up.
   1329   1.1       jtc 		 */
   1330   1.1       jtc 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1331   1.1       jtc 			break;
   1332  1.11     itohy 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1333   1.1       jtc 			break;
   1334   1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1335   1.1       jtc 			break;
   1336  1.11     itohy 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1337   1.1       jtc 			break;
   1338   1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1339   1.1       jtc 			break;
   1340   1.1       jtc 
   1341   1.1       jtc 		/*
   1342   1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1343   1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1344   1.1       jtc 		 */
   1345   1.1       jtc 		if (pmode || dblk.frc_mode)
   1346   1.1       jtc 			set_pmode(name, dblk.mode);
   1347   1.1       jtc 		if (patime || pmtime)
   1348   1.1       jtc 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1349  1.10       mrg 		if (pfflags)
   1350  1.10       mrg 			set_chflags(name, dblk.fflags);
   1351   1.1       jtc 	}
   1352   1.1       jtc 
   1353   1.1       jtc 	(void)close(dirfd);
   1354   1.1       jtc 	dirfd = -1;
   1355   1.1       jtc 	if (cnt != dircnt)
   1356   1.7  christos 		tty_warn(1,
   1357   1.7  christos 		    "Unable to set mode and times for created directories");
   1358   1.1       jtc 	return;
   1359   1.1       jtc }
   1360   1.1       jtc 
   1361   1.1       jtc /*
   1362   1.1       jtc  * database independent routines
   1363   1.1       jtc  */
   1364   1.1       jtc 
   1365   1.1       jtc /*
   1366   1.1       jtc  * st_hash()
   1367   1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1368   1.1       jtc  *	end of file, as this provides far better distribution than any other
   1369   1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1370   1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1371   1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1372   1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1373   1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1374   1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1375   1.1       jtc  * Return:
   1376   1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1377   1.1       jtc  */
   1378   1.1       jtc 
   1379   1.1       jtc #if __STDC__
   1380   1.1       jtc u_int
   1381   1.1       jtc st_hash(char *name, int len, int tabsz)
   1382   1.1       jtc #else
   1383   1.1       jtc u_int
   1384   1.1       jtc st_hash(name, len, tabsz)
   1385   1.1       jtc 	char *name;
   1386   1.1       jtc 	int len;
   1387   1.1       jtc 	int tabsz;
   1388   1.1       jtc #endif
   1389   1.1       jtc {
   1390   1.5       tls 	char *pt;
   1391   1.5       tls 	char *dest;
   1392   1.5       tls 	char *end;
   1393   1.5       tls 	int i;
   1394   1.5       tls 	u_int key = 0;
   1395   1.5       tls 	int steps;
   1396   1.5       tls 	int res;
   1397   1.1       jtc 	u_int val;
   1398   1.1       jtc 
   1399   1.1       jtc 	/*
   1400   1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1401   1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1402   1.1       jtc 	 * spread out the keys)
   1403   1.1       jtc 	 */
   1404   1.1       jtc 	if (len > MAXKEYLEN) {
   1405   1.1       jtc                 pt = &(name[len - MAXKEYLEN]);
   1406   1.1       jtc 		len = MAXKEYLEN;
   1407   1.1       jtc 	} else
   1408   1.1       jtc 		pt = name;
   1409   1.1       jtc 
   1410   1.1       jtc 	/*
   1411   1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1412   1.1       jtc 	 * there is a runt to deal with
   1413   1.1       jtc 	 */
   1414   1.1       jtc 	steps = len/sizeof(u_int);
   1415   1.1       jtc 	res = len % sizeof(u_int);
   1416   1.1       jtc 
   1417   1.1       jtc 	/*
   1418   1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1419   1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1420   1.1       jtc 	 * could avoid the expensive copy.
   1421   1.1       jtc 	 */
   1422   1.1       jtc 	for (i = 0; i < steps; ++i) {
   1423   1.1       jtc 		end = pt + sizeof(u_int);
   1424   1.1       jtc 		dest = (char *)&val;
   1425   1.1       jtc 		while (pt < end)
   1426   1.1       jtc 			*dest++ = *pt++;
   1427   1.1       jtc 		key += val;
   1428   1.1       jtc 	}
   1429   1.1       jtc 
   1430   1.1       jtc 	/*
   1431   1.1       jtc 	 * add in the runt padded with zero to the right
   1432   1.1       jtc 	 */
   1433   1.1       jtc 	if (res) {
   1434   1.1       jtc 		val = 0;
   1435   1.1       jtc 		end = pt + res;
   1436   1.1       jtc 		dest = (char *)&val;
   1437   1.1       jtc 		while (pt < end)
   1438   1.1       jtc 			*dest++ = *pt++;
   1439   1.1       jtc 		key += val;
   1440   1.1       jtc 	}
   1441   1.1       jtc 
   1442   1.1       jtc 	/*
   1443   1.1       jtc 	 * return the result mod the table size
   1444   1.1       jtc 	 */
   1445   1.1       jtc 	return(key % tabsz);
   1446   1.1       jtc }
   1447