Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.14
      1  1.14     lukem /*	$NetBSD: tables.c,v 1.14 2001/10/24 11:28:55 lukem Exp $	*/
      2   1.4       cgd 
      3   1.1       jtc /*-
      4   1.1       jtc  * Copyright (c) 1992 Keith Muller.
      5   1.1       jtc  * Copyright (c) 1992, 1993
      6   1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7   1.1       jtc  *
      8   1.1       jtc  * This code is derived from software contributed to Berkeley by
      9   1.1       jtc  * Keith Muller of the University of California, San Diego.
     10   1.1       jtc  *
     11   1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12   1.1       jtc  * modification, are permitted provided that the following conditions
     13   1.1       jtc  * are met:
     14   1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15   1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16   1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19   1.1       jtc  * 3. All advertising materials mentioning features or use of this software
     20   1.1       jtc  *    must display the following acknowledgement:
     21   1.1       jtc  *	This product includes software developed by the University of
     22   1.1       jtc  *	California, Berkeley and its contributors.
     23   1.1       jtc  * 4. Neither the name of the University nor the names of its contributors
     24   1.1       jtc  *    may be used to endorse or promote products derived from this software
     25   1.1       jtc  *    without specific prior written permission.
     26   1.1       jtc  *
     27   1.1       jtc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28   1.1       jtc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29   1.1       jtc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30   1.1       jtc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31   1.1       jtc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32   1.1       jtc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33   1.1       jtc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34   1.1       jtc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35   1.1       jtc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36   1.1       jtc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37   1.1       jtc  * SUCH DAMAGE.
     38   1.1       jtc  */
     39   1.1       jtc 
     40   1.7  christos #include <sys/cdefs.h>
     41   1.1       jtc #ifndef lint
     42   1.4       cgd #if 0
     43   1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44   1.4       cgd #else
     45  1.14     lukem __RCSID("$NetBSD: tables.c,v 1.14 2001/10/24 11:28:55 lukem Exp $");
     46   1.4       cgd #endif
     47   1.1       jtc #endif /* not lint */
     48   1.1       jtc 
     49   1.1       jtc #include <sys/types.h>
     50   1.1       jtc #include <sys/time.h>
     51   1.1       jtc #include <sys/stat.h>
     52   1.1       jtc #include <sys/param.h>
     53   1.1       jtc #include <stdio.h>
     54   1.1       jtc #include <ctype.h>
     55   1.8    kleink #include <fcntl.h>
     56   1.9    kleink #include <paths.h>
     57   1.1       jtc #include <string.h>
     58   1.1       jtc #include <unistd.h>
     59   1.1       jtc #include <errno.h>
     60   1.1       jtc #include <stdlib.h>
     61   1.1       jtc #include "pax.h"
     62   1.1       jtc #include "tables.h"
     63   1.1       jtc #include "extern.h"
     64   1.1       jtc 
     65   1.1       jtc /*
     66   1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67   1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68   1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69   1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70   1.1       jtc  * As of this writing, the posix library functions were more complex than
     71   1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72   1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73   1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74   1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75   1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76   1.1       jtc  * Trying to force the fit to the posix databases routines was not considered
     77   1.1       jtc  * time well spent.
     78   1.1       jtc  */
     79   1.1       jtc 
     80   1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81   1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82   1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83   1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84   1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85  1.13   thorpej #ifdef DIRS_USE_FILE
     86   1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     87   1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     88  1.13   thorpej #endif
     89   1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     90   1.1       jtc 
     91   1.1       jtc static DEVT *chk_dev __P((dev_t, int));
     92   1.1       jtc 
     93   1.1       jtc /*
     94   1.1       jtc  * hard link table routines
     95   1.1       jtc  *
     96  1.12     itohy  * The hard link table tries to detect hard links to files using the device and
     97   1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     98   1.1       jtc  * write routine that this file is a hard link to another file. The format
     99   1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
    100   1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
    101   1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    102   1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    103   1.1       jtc  * the same table when reading an archive. In that situation, this table is
    104   1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    105   1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    106   1.1       jtc  * can be detected by the archive format.
    107   1.1       jtc  */
    108   1.1       jtc 
    109   1.1       jtc /*
    110   1.1       jtc  * lnk_start
    111   1.1       jtc  *	Creates the hard link table.
    112   1.1       jtc  * Return:
    113   1.1       jtc  *	0 if created, -1 if failure
    114   1.1       jtc  */
    115   1.1       jtc 
    116   1.1       jtc #if __STDC__
    117   1.1       jtc int
    118   1.1       jtc lnk_start(void)
    119   1.1       jtc #else
    120   1.1       jtc int
    121   1.1       jtc lnk_start()
    122   1.1       jtc #endif
    123   1.1       jtc {
    124   1.1       jtc 	if (ltab != NULL)
    125   1.1       jtc 		return(0);
    126  1.12     itohy 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    127  1.12     itohy 		tty_warn(1, "Cannot allocate memory for hard link table");
    128  1.12     itohy 		return(-1);
    129  1.12     itohy 	}
    130   1.1       jtc 	return(0);
    131   1.1       jtc }
    132   1.1       jtc 
    133   1.1       jtc /*
    134   1.1       jtc  * chk_lnk()
    135   1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    136   1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    137   1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    138   1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    139   1.1       jtc  *	we add the file to the database if it has the potential for having
    140   1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    141   1.1       jtc  * Return:
    142   1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    143   1.1       jtc  */
    144   1.1       jtc 
    145   1.1       jtc #if __STDC__
    146   1.1       jtc int
    147   1.5       tls chk_lnk(ARCHD *arcn)
    148   1.1       jtc #else
    149   1.1       jtc int
    150   1.1       jtc chk_lnk(arcn)
    151   1.5       tls 	ARCHD *arcn;
    152   1.1       jtc #endif
    153   1.1       jtc {
    154   1.5       tls 	HRDLNK *pt;
    155   1.5       tls 	HRDLNK **ppt;
    156   1.5       tls 	u_int indx;
    157   1.1       jtc 
    158   1.1       jtc 	if (ltab == NULL)
    159   1.1       jtc 		return(-1);
    160   1.1       jtc 	/*
    161   1.1       jtc 	 * ignore those nodes that cannot have hard links
    162   1.1       jtc 	 */
    163   1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    164   1.1       jtc 		return(0);
    165   1.1       jtc 
    166   1.1       jtc 	/*
    167   1.1       jtc 	 * hash inode number and look for this file
    168   1.1       jtc 	 */
    169   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    170   1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    171   1.1       jtc 		/*
    172   1.1       jtc 		 * it's hash chain in not empty, walk down looking for it
    173   1.1       jtc 		 */
    174   1.1       jtc 		ppt = &(ltab[indx]);
    175   1.1       jtc 		while (pt != NULL) {
    176   1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    177   1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    178   1.1       jtc 				break;
    179   1.1       jtc 			ppt = &(pt->fow);
    180   1.1       jtc 			pt = pt->fow;
    181   1.1       jtc 		}
    182   1.1       jtc 
    183   1.1       jtc 		if (pt != NULL) {
    184   1.1       jtc 			/*
    185   1.1       jtc 			 * found a link. set the node type and copy in the
    186   1.1       jtc 			 * name of the file it is to link to. we need to
    187   1.1       jtc 			 * handle hardlinks to regular files differently than
    188   1.1       jtc 			 * other links.
    189   1.1       jtc 			 */
    190   1.1       jtc 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    191   1.1       jtc 				PAXPATHLEN+1);
    192   1.1       jtc 			if (arcn->type == PAX_REG)
    193   1.1       jtc 				arcn->type = PAX_HRG;
    194   1.1       jtc 			else
    195   1.1       jtc 				arcn->type = PAX_HLK;
    196   1.1       jtc 
    197   1.1       jtc 			/*
    198   1.1       jtc 			 * if we have found all the links to this file, remove
    199   1.1       jtc 			 * it from the database
    200   1.1       jtc 			 */
    201   1.1       jtc 			if (--pt->nlink <= 1) {
    202   1.1       jtc 				*ppt = pt->fow;
    203   1.1       jtc 				(void)free((char *)pt->name);
    204   1.1       jtc 				(void)free((char *)pt);
    205   1.1       jtc 			}
    206   1.1       jtc 			return(1);
    207   1.1       jtc 		}
    208   1.1       jtc 	}
    209   1.1       jtc 
    210   1.1       jtc 	/*
    211   1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    212   1.1       jtc 	 * front of this hash chain
    213   1.1       jtc 	 */
    214   1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    215   1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    216   1.1       jtc 			pt->dev = arcn->sb.st_dev;
    217   1.1       jtc 			pt->ino = arcn->sb.st_ino;
    218   1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    219   1.1       jtc 			pt->fow = ltab[indx];
    220   1.1       jtc 			ltab[indx] = pt;
    221   1.1       jtc 			return(0);
    222   1.1       jtc 		}
    223   1.1       jtc 		(void)free((char *)pt);
    224   1.1       jtc 	}
    225   1.1       jtc 
    226   1.7  christos 	tty_warn(1, "Hard link table out of memory");
    227   1.1       jtc 	return(-1);
    228   1.1       jtc }
    229   1.1       jtc 
    230   1.1       jtc /*
    231   1.1       jtc  * purg_lnk
    232   1.1       jtc  *	remove reference for a file that we may have added to the data base as
    233   1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    234   1.1       jtc  *	we do not want to accidently point another file at it later on.
    235   1.1       jtc  */
    236   1.1       jtc 
    237   1.1       jtc #if __STDC__
    238   1.1       jtc void
    239   1.5       tls purg_lnk(ARCHD *arcn)
    240   1.1       jtc #else
    241   1.1       jtc void
    242   1.1       jtc purg_lnk(arcn)
    243   1.5       tls 	ARCHD *arcn;
    244   1.1       jtc #endif
    245   1.1       jtc {
    246   1.5       tls 	HRDLNK *pt;
    247   1.5       tls 	HRDLNK **ppt;
    248   1.5       tls 	u_int indx;
    249   1.1       jtc 
    250   1.1       jtc 	if (ltab == NULL)
    251   1.1       jtc 		return;
    252   1.1       jtc 	/*
    253   1.1       jtc 	 * do not bother to look if it could not be in the database
    254   1.1       jtc 	 */
    255   1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    256   1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    257   1.1       jtc 		return;
    258   1.1       jtc 
    259   1.1       jtc 	/*
    260   1.1       jtc 	 * find the hash chain for this inode value, if empty return
    261   1.1       jtc 	 */
    262   1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    263   1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    264   1.1       jtc 		return;
    265   1.1       jtc 
    266   1.1       jtc 	/*
    267   1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    268   1.1       jtc 	 * free if found
    269   1.1       jtc 	 */
    270   1.1       jtc 	ppt = &(ltab[indx]);
    271   1.1       jtc 	while (pt != NULL) {
    272   1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    273   1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    274   1.1       jtc 			break;
    275   1.1       jtc 		ppt = &(pt->fow);
    276   1.1       jtc 		pt = pt->fow;
    277   1.1       jtc 	}
    278   1.1       jtc 	if (pt == NULL)
    279   1.1       jtc 		return;
    280   1.1       jtc 
    281   1.1       jtc 	/*
    282   1.1       jtc 	 * remove and free it
    283   1.1       jtc 	 */
    284   1.1       jtc 	*ppt = pt->fow;
    285   1.1       jtc 	(void)free((char *)pt->name);
    286   1.1       jtc 	(void)free((char *)pt);
    287   1.1       jtc }
    288   1.1       jtc 
    289   1.1       jtc /*
    290   1.1       jtc  * lnk_end()
    291   1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    292   1.1       jtc  *	read and write phases of append with update. (The format may have
    293   1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    294   1.1       jtc  *	write phase
    295   1.1       jtc  */
    296   1.1       jtc 
    297   1.1       jtc #if __STDC__
    298   1.1       jtc void
    299   1.1       jtc lnk_end(void)
    300   1.1       jtc #else
    301   1.1       jtc void
    302   1.1       jtc lnk_end()
    303   1.1       jtc #endif
    304   1.1       jtc {
    305   1.5       tls 	int i;
    306   1.5       tls 	HRDLNK *pt;
    307   1.5       tls 	HRDLNK *ppt;
    308   1.1       jtc 
    309   1.1       jtc 	if (ltab == NULL)
    310   1.1       jtc 		return;
    311   1.1       jtc 
    312   1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    313   1.1       jtc 		if (ltab[i] == NULL)
    314   1.1       jtc 			continue;
    315   1.1       jtc 		pt = ltab[i];
    316   1.1       jtc 		ltab[i] = NULL;
    317   1.1       jtc 
    318   1.1       jtc 		/*
    319   1.1       jtc 		 * free up each entry on this chain
    320   1.1       jtc 		 */
    321   1.1       jtc 		while (pt != NULL) {
    322   1.1       jtc 			ppt = pt;
    323   1.1       jtc 			pt = ppt->fow;
    324   1.1       jtc 			(void)free((char *)ppt->name);
    325   1.1       jtc 			(void)free((char *)ppt);
    326   1.1       jtc 		}
    327   1.1       jtc 	}
    328   1.1       jtc 	return;
    329   1.1       jtc }
    330   1.1       jtc 
    331   1.1       jtc /*
    332   1.1       jtc  * modification time table routines
    333   1.1       jtc  *
    334   1.1       jtc  * The modification time table keeps track of last modification times for all
    335   1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    336   1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    337   1.1       jtc  * already stored on the archive (if there is no other file with the same
    338   1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    339   1.1       jtc  * An append with an -u must read the archive and store the modification time
    340   1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    341   1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    342   1.1       jtc  * are stored in a scatch file and indexed by an in memory hash table. The
    343   1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    344  1.12     itohy  * the length of the filename and the lseek offset within the scratch file
    345   1.1       jtc  * where the actual name is stored. Since there are never any deletions to this
    346   1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    347  1.12     itohy  * not exhibit any locality at all (files in the database are rarely
    348   1.1       jtc  * looked up more than once...). So caching is just a waste of memory. The
    349   1.1       jtc  * only limitation is the amount of scatch file space available to store the
    350   1.1       jtc  * path names.
    351   1.1       jtc  */
    352   1.1       jtc 
    353   1.1       jtc /*
    354   1.1       jtc  * ftime_start()
    355   1.1       jtc  *	create the file time hash table and open for read/write the scratch
    356   1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    357   1.1       jtc  *	no witnesses).
    358   1.1       jtc  * Return:
    359   1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    360   1.1       jtc  */
    361   1.1       jtc 
    362   1.1       jtc #if __STDC__
    363   1.1       jtc int
    364   1.1       jtc ftime_start(void)
    365   1.1       jtc #else
    366   1.1       jtc int
    367   1.1       jtc ftime_start()
    368   1.1       jtc #endif
    369   1.1       jtc {
    370   1.9    kleink 	const char *tmpdir;
    371   1.9    kleink 	char template[MAXPATHLEN];
    372   1.1       jtc 
    373   1.1       jtc 	if (ftab != NULL)
    374   1.1       jtc 		return(0);
    375  1.12     itohy 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    376  1.12     itohy 		tty_warn(1, "Cannot allocate memory for file time table");
    377  1.12     itohy 		return(-1);
    378  1.12     itohy 	}
    379   1.1       jtc 
    380   1.1       jtc 	/*
    381   1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    382   1.1       jtc 	 * so it will get removed on exit
    383   1.1       jtc 	 */
    384   1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
    385   1.9    kleink 		tmpdir = _PATH_TMP;
    386   1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
    387   1.9    kleink 	if ((ffd = mkstemp(template)) == -1) {
    388   1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    389   1.9    kleink 		    template);
    390   1.1       jtc 		return(-1);
    391   1.1       jtc 	}
    392   1.1       jtc 
    393   1.9    kleink 	(void)unlink(template);
    394   1.1       jtc 	return(0);
    395   1.1       jtc }
    396   1.1       jtc 
    397   1.1       jtc /*
    398   1.1       jtc  * chk_ftime()
    399   1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    400   1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    401   1.1       jtc  *	If a file with the same name is found, the file times are compared and
    402   1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    403   1.1       jtc  *	was not in the database) the new file is selected for storage.
    404   1.1       jtc  * Return:
    405   1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    406   1.1       jtc  *	-1 on error
    407   1.1       jtc  */
    408   1.1       jtc 
    409   1.1       jtc #if __STDC__
    410   1.1       jtc int
    411   1.5       tls chk_ftime(ARCHD *arcn)
    412   1.1       jtc #else
    413   1.1       jtc int
    414   1.1       jtc chk_ftime(arcn)
    415   1.5       tls 	ARCHD *arcn;
    416   1.1       jtc #endif
    417   1.1       jtc {
    418   1.5       tls 	FTM *pt;
    419   1.5       tls 	int namelen;
    420   1.5       tls 	u_int indx;
    421   1.1       jtc 	char ckname[PAXPATHLEN+1];
    422   1.1       jtc 
    423   1.1       jtc 	/*
    424   1.1       jtc 	 * no info, go ahead and add to archive
    425   1.1       jtc 	 */
    426   1.1       jtc 	if (ftab == NULL)
    427   1.1       jtc 		return(0);
    428   1.1       jtc 
    429   1.1       jtc 	/*
    430   1.1       jtc 	 * hash the pathname and look up in table
    431   1.1       jtc 	 */
    432   1.1       jtc 	namelen = arcn->nlen;
    433   1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    434   1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    435   1.1       jtc 		/*
    436   1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    437   1.1       jtc 		 * only read up the path names if the lengths match, speeds
    438   1.1       jtc 		 * up the search a lot
    439   1.1       jtc 		 */
    440   1.1       jtc 		while (pt != NULL) {
    441   1.1       jtc 			if (pt->namelen == namelen) {
    442   1.1       jtc 				/*
    443   1.1       jtc 				 * potential match, have to read the name
    444   1.1       jtc 				 * from the scratch file.
    445   1.1       jtc 				 */
    446   1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    447   1.1       jtc 					syswarn(1, errno,
    448   1.1       jtc 					    "Failed ftime table seek");
    449   1.1       jtc 					return(-1);
    450   1.1       jtc 				}
    451  1.11     itohy 				if (xread(ffd, ckname, namelen) != namelen) {
    452   1.1       jtc 					syswarn(1, errno,
    453   1.1       jtc 					    "Failed ftime table read");
    454   1.1       jtc 					return(-1);
    455   1.1       jtc 				}
    456   1.1       jtc 
    457   1.1       jtc 				/*
    458   1.1       jtc 				 * if the names match, we are done
    459   1.1       jtc 				 */
    460   1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    461   1.1       jtc 					break;
    462   1.1       jtc 			}
    463   1.1       jtc 
    464   1.1       jtc 			/*
    465   1.1       jtc 			 * try the next entry on the chain
    466   1.1       jtc 			 */
    467   1.1       jtc 			pt = pt->fow;
    468   1.1       jtc 		}
    469   1.1       jtc 
    470   1.1       jtc 		if (pt != NULL) {
    471   1.1       jtc 			/*
    472   1.1       jtc 			 * found the file, compare the times, save the newer
    473   1.1       jtc 			 */
    474   1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    475   1.1       jtc 				/*
    476   1.1       jtc 				 * file is newer
    477   1.1       jtc 				 */
    478   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    479   1.1       jtc 				return(0);
    480  1.12     itohy 			}
    481   1.1       jtc 			/*
    482   1.1       jtc 			 * file is older
    483   1.1       jtc 			 */
    484   1.1       jtc 			return(1);
    485   1.1       jtc 		}
    486   1.1       jtc 	}
    487   1.1       jtc 
    488   1.1       jtc 	/*
    489   1.1       jtc 	 * not in table, add it
    490   1.1       jtc 	 */
    491   1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    492   1.1       jtc 		/*
    493   1.1       jtc 		 * add the name at the end of the scratch file, saving the
    494   1.1       jtc 		 * offset. add the file to the head of the hash chain
    495   1.1       jtc 		 */
    496   1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    497  1.11     itohy 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    498   1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    499   1.1       jtc 				pt->namelen = namelen;
    500   1.1       jtc 				pt->fow = ftab[indx];
    501   1.1       jtc 				ftab[indx] = pt;
    502   1.1       jtc 				return(0);
    503   1.1       jtc 			}
    504   1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    505  1.12     itohy 		} else
    506   1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    507   1.1       jtc 	} else
    508   1.7  christos 		tty_warn(1, "File time table ran out of memory");
    509   1.1       jtc 
    510   1.1       jtc 	if (pt != NULL)
    511   1.1       jtc 		(void)free((char *)pt);
    512   1.1       jtc 	return(-1);
    513   1.1       jtc }
    514   1.1       jtc 
    515   1.1       jtc /*
    516   1.1       jtc  * Interactive rename table routines
    517   1.1       jtc  *
    518   1.1       jtc  * The interactive rename table keeps track of the new names that the user
    519  1.12     itohy  * assigns to files from tty input. Since this map is unique for each file
    520   1.1       jtc  * we must store it in case there is a reference to the file later in archive
    521   1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    522   1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    523   1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    524   1.1       jtc  * be a very large table).
    525   1.1       jtc  */
    526   1.1       jtc 
    527   1.1       jtc /*
    528   1.1       jtc  * name_start()
    529   1.1       jtc  *	create the interactive rename table
    530   1.1       jtc  * Return:
    531   1.1       jtc  *	0 if successful, -1 otherwise
    532   1.1       jtc  */
    533   1.1       jtc 
    534   1.1       jtc #if __STDC__
    535   1.1       jtc int
    536   1.1       jtc name_start(void)
    537   1.1       jtc #else
    538   1.1       jtc int
    539   1.1       jtc name_start()
    540   1.1       jtc #endif
    541   1.1       jtc {
    542   1.1       jtc 	if (ntab != NULL)
    543   1.1       jtc 		return(0);
    544  1.12     itohy 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    545  1.12     itohy 		tty_warn(1,
    546   1.7  christos 		    "Cannot allocate memory for interactive rename table");
    547  1.12     itohy 		return(-1);
    548  1.12     itohy 	}
    549   1.1       jtc 	return(0);
    550   1.1       jtc }
    551   1.1       jtc 
    552   1.1       jtc /*
    553   1.1       jtc  * add_name()
    554   1.1       jtc  *	add the new name to old name mapping just created by the user.
    555   1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    556   1.1       jtc  *	archive) only the most recent is kept.
    557   1.1       jtc  * Return:
    558   1.1       jtc  *	0 if added, -1 otherwise
    559   1.1       jtc  */
    560   1.1       jtc 
    561   1.1       jtc #if __STDC__
    562   1.1       jtc int
    563   1.5       tls add_name(char *oname, int onamelen, char *nname)
    564   1.1       jtc #else
    565   1.1       jtc int
    566   1.1       jtc add_name(oname, onamelen, nname)
    567   1.5       tls 	char *oname;
    568   1.1       jtc 	int onamelen;
    569   1.1       jtc 	char *nname;
    570   1.1       jtc #endif
    571   1.1       jtc {
    572   1.5       tls 	NAMT *pt;
    573   1.5       tls 	u_int indx;
    574   1.1       jtc 
    575   1.1       jtc 	if (ntab == NULL) {
    576   1.1       jtc 		/*
    577   1.1       jtc 		 * should never happen
    578   1.1       jtc 		 */
    579   1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    580  1.12     itohy 		return(0);
    581   1.1       jtc 	}
    582   1.1       jtc 
    583   1.1       jtc 	/*
    584   1.1       jtc 	 * look to see if we have already mapped this file, if so we
    585   1.1       jtc 	 * will update it
    586   1.1       jtc 	 */
    587   1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    588   1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    589   1.1       jtc 		/*
    590   1.1       jtc 		 * look down the has chain for the file
    591   1.1       jtc 		 */
    592   1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    593   1.1       jtc 			pt = pt->fow;
    594   1.1       jtc 
    595   1.1       jtc 		if (pt != NULL) {
    596   1.1       jtc 			/*
    597   1.1       jtc 			 * found an old mapping, replace it with the new one
    598   1.1       jtc 			 * the user just input (if it is different)
    599   1.1       jtc 			 */
    600   1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    601   1.1       jtc 				return(0);
    602   1.1       jtc 
    603   1.1       jtc 			(void)free((char *)pt->nname);
    604   1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    605   1.7  christos 				tty_warn(1, "Cannot update rename table");
    606   1.1       jtc 				return(-1);
    607   1.1       jtc 			}
    608   1.1       jtc 			return(0);
    609   1.1       jtc 		}
    610   1.1       jtc 	}
    611   1.1       jtc 
    612   1.1       jtc 	/*
    613   1.1       jtc 	 * this is a new mapping, add it to the table
    614   1.1       jtc 	 */
    615   1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    616   1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    617   1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    618   1.1       jtc 				pt->fow = ntab[indx];
    619   1.1       jtc 				ntab[indx] = pt;
    620   1.1       jtc 				return(0);
    621   1.1       jtc 			}
    622   1.1       jtc 			(void)free((char *)pt->oname);
    623   1.1       jtc 		}
    624   1.1       jtc 		(void)free((char *)pt);
    625   1.1       jtc 	}
    626   1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    627   1.1       jtc 	return(-1);
    628   1.1       jtc }
    629   1.1       jtc 
    630   1.1       jtc /*
    631   1.1       jtc  * sub_name()
    632   1.1       jtc  *	look up a link name to see if it points at a file that has been
    633   1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    634   1.1       jtc  *	new name (oname is the link to name)
    635   1.1       jtc  */
    636   1.1       jtc 
    637   1.1       jtc #if __STDC__
    638   1.1       jtc void
    639   1.5       tls sub_name(char *oname, int *onamelen)
    640   1.1       jtc #else
    641   1.1       jtc void
    642   1.1       jtc sub_name(oname, onamelen)
    643   1.5       tls 	char *oname;
    644   1.1       jtc 	int *onamelen;
    645   1.1       jtc #endif
    646   1.1       jtc {
    647   1.5       tls 	NAMT *pt;
    648   1.5       tls 	u_int indx;
    649   1.1       jtc 
    650   1.1       jtc 	if (ntab == NULL)
    651   1.1       jtc 		return;
    652   1.1       jtc 	/*
    653   1.1       jtc 	 * look the name up in the hash table
    654   1.1       jtc 	 */
    655   1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    656   1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    657   1.1       jtc 		return;
    658   1.1       jtc 
    659   1.1       jtc 	while (pt != NULL) {
    660   1.1       jtc 		/*
    661  1.14     lukem 		 * walk down the hash chain looking for a match
    662   1.1       jtc 		 */
    663   1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    664   1.1       jtc 			/*
    665   1.1       jtc 			 * found it, replace it with the new name
    666   1.1       jtc 			 * and return (we know that oname has enough space)
    667   1.1       jtc 			 */
    668   1.1       jtc 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    669   1.1       jtc 			return;
    670   1.1       jtc 		}
    671   1.1       jtc 		pt = pt->fow;
    672   1.1       jtc 	}
    673   1.1       jtc 
    674   1.1       jtc 	/*
    675   1.1       jtc 	 * no match, just return
    676   1.1       jtc 	 */
    677   1.1       jtc 	return;
    678   1.1       jtc }
    679  1.12     itohy 
    680   1.1       jtc /*
    681   1.1       jtc  * device/inode mapping table routines
    682   1.1       jtc  * (used with formats that store device and inodes fields)
    683   1.1       jtc  *
    684   1.1       jtc  * device/inode mapping tables remap the device field in a archive header. The
    685   1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    686   1.1       jtc  * other. However these values have very little meaning outside of that. This
    687   1.1       jtc  * database is used to solve one of two different problems.
    688   1.1       jtc  *
    689   1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    690   1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    691   1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    692   1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    693   1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    694   1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    695   1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    696   1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    697   1.1       jtc  * member that has a device number used in a prior run and already stored in a
    698   1.1       jtc  * file on the archive. During the read phase of the append, we store the
    699   1.1       jtc  * device numbers used and mark them to not be used by any file during the
    700   1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    701   1.1       jtc  * we remap it to a new value.
    702   1.1       jtc  *
    703   1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    704   1.1       jtc  * too small to store the entire value. The result is an inode or device value
    705   1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    706   1.1       jtc  * we end up creating links between files that are really not links (after
    707   1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    708   1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    709   1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    710   1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    711   1.1       jtc  * on a single device to many different devices (each one represented by the
    712   1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    713   1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    714   1.1       jtc  * truncate to the same value clearly will always have different truncation
    715   1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    716   1.1       jtc  * device truncation we remap the device number to a non truncated value.
    717   1.1       jtc  * (for more info see table.h for the data structures involved).
    718   1.1       jtc  */
    719   1.1       jtc 
    720   1.1       jtc /*
    721   1.1       jtc  * dev_start()
    722   1.1       jtc  *	create the device mapping table
    723   1.1       jtc  * Return:
    724   1.1       jtc  *	0 if successful, -1 otherwise
    725   1.1       jtc  */
    726   1.1       jtc 
    727   1.1       jtc #if __STDC__
    728   1.1       jtc int
    729   1.1       jtc dev_start(void)
    730   1.1       jtc #else
    731   1.1       jtc int
    732   1.1       jtc dev_start()
    733   1.1       jtc #endif
    734   1.1       jtc {
    735   1.1       jtc 	if (dtab != NULL)
    736   1.1       jtc 		return(0);
    737  1.12     itohy 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    738  1.12     itohy 		tty_warn(1, "Cannot allocate memory for device mapping table");
    739  1.12     itohy 		return(-1);
    740  1.12     itohy 	}
    741   1.1       jtc 	return(0);
    742   1.1       jtc }
    743   1.1       jtc 
    744   1.1       jtc /*
    745   1.1       jtc  * add_dev()
    746   1.1       jtc  *	add a device number to the table. this will force the device to be
    747   1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    748   1.1       jtc  *	function is called during the read phase of an append to prohibit the
    749   1.1       jtc  *	use of any device number already in the archive.
    750   1.1       jtc  * Return:
    751   1.1       jtc  *	0 if added ok, -1 otherwise
    752   1.1       jtc  */
    753   1.1       jtc 
    754   1.1       jtc #if __STDC__
    755   1.1       jtc int
    756   1.5       tls add_dev(ARCHD *arcn)
    757   1.1       jtc #else
    758   1.1       jtc int
    759   1.1       jtc add_dev(arcn)
    760   1.5       tls 	ARCHD *arcn;
    761   1.1       jtc #endif
    762   1.1       jtc {
    763   1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    764   1.1       jtc 		return(-1);
    765   1.1       jtc 	return(0);
    766   1.1       jtc }
    767   1.1       jtc 
    768   1.1       jtc /*
    769   1.1       jtc  * chk_dev()
    770   1.1       jtc  *	check for a device value in the device table. If not found and the add
    771   1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    772   1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    773  1.12     itohy  *	is already mapped, just return with a pointer to that entry.
    774   1.1       jtc  * Return:
    775   1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    776   1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    777   1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    778   1.1       jtc  *	is returned (indicates an error).
    779   1.1       jtc  */
    780   1.1       jtc 
    781   1.1       jtc #if __STDC__
    782   1.1       jtc static DEVT *
    783   1.1       jtc chk_dev(dev_t dev, int add)
    784   1.1       jtc #else
    785   1.1       jtc static DEVT *
    786   1.1       jtc chk_dev(dev, add)
    787   1.1       jtc 	dev_t dev;
    788   1.1       jtc 	int add;
    789   1.1       jtc #endif
    790   1.1       jtc {
    791   1.5       tls 	DEVT *pt;
    792   1.5       tls 	u_int indx;
    793   1.1       jtc 
    794   1.1       jtc 	if (dtab == NULL)
    795   1.1       jtc 		return(NULL);
    796   1.1       jtc 	/*
    797   1.1       jtc 	 * look to see if this device is already in the table
    798   1.1       jtc 	 */
    799   1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    800   1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    801   1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    802   1.1       jtc 			pt = pt->fow;
    803   1.1       jtc 
    804   1.1       jtc 		/*
    805   1.1       jtc 		 * found it, return a pointer to it
    806   1.1       jtc 		 */
    807   1.1       jtc 		if (pt != NULL)
    808   1.1       jtc 			return(pt);
    809   1.1       jtc 	}
    810   1.1       jtc 
    811   1.1       jtc 	/*
    812   1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    813   1.1       jtc 	 * to see if a device number is being used.
    814   1.1       jtc 	 */
    815   1.1       jtc 	if (add == 0)
    816   1.1       jtc 		return(NULL);
    817   1.1       jtc 
    818   1.1       jtc 	/*
    819   1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    820   1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    821   1.1       jtc 	 * list must be NULL.
    822   1.1       jtc 	 */
    823   1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    824   1.7  christos 		tty_warn(1, "Device map table out of memory");
    825   1.1       jtc 		return(NULL);
    826   1.1       jtc 	}
    827   1.1       jtc 	pt->dev = dev;
    828   1.1       jtc 	pt->list = NULL;
    829   1.1       jtc 	pt->fow = dtab[indx];
    830   1.1       jtc 	dtab[indx] = pt;
    831   1.1       jtc 	return(pt);
    832   1.1       jtc }
    833   1.1       jtc /*
    834   1.1       jtc  * map_dev()
    835   1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    836   1.1       jtc  *	the archive format is able to store in a header), we check for inode
    837   1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    838   1.1       jtc  *	can also occur when during the read phase of append a device number was
    839   1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    840   1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    841   1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    842   1.1       jtc  * Return:
    843   1.1       jtc  *	0 if all ok, -1 otherwise.
    844   1.1       jtc  */
    845   1.1       jtc 
    846   1.1       jtc #if __STDC__
    847   1.1       jtc int
    848   1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    849   1.1       jtc #else
    850   1.1       jtc int
    851   1.1       jtc map_dev(arcn, dev_mask, ino_mask)
    852   1.5       tls 	ARCHD *arcn;
    853   1.1       jtc 	u_long dev_mask;
    854   1.1       jtc 	u_long ino_mask;
    855   1.1       jtc #endif
    856   1.1       jtc {
    857   1.5       tls 	DEVT *pt;
    858   1.5       tls 	DLIST *dpt;
    859   1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    860   1.1       jtc 	int trc_ino = 0;
    861   1.1       jtc 	int trc_dev = 0;
    862   1.1       jtc 	ino_t trunc_bits = 0;
    863   1.1       jtc 	ino_t nino;
    864   1.1       jtc 
    865   1.1       jtc 	if (dtab == NULL)
    866   1.1       jtc 		return(0);
    867   1.1       jtc 	/*
    868   1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    869  1.12     itohy 	 * bit pattern.
    870   1.1       jtc 	 */
    871   1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    872   1.1       jtc 		++trc_dev;
    873   1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    874   1.1       jtc 		++trc_ino;
    875   1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    876   1.1       jtc 	}
    877   1.1       jtc 
    878   1.1       jtc 	/*
    879   1.1       jtc 	 * see if this device is already being mapped, look up the device
    880   1.1       jtc 	 * then find the truncation bit pattern which applies
    881   1.1       jtc 	 */
    882   1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    883   1.1       jtc 		/*
    884   1.1       jtc 		 * this device is already marked to be remapped
    885   1.1       jtc 		 */
    886   1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    887   1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    888   1.1       jtc 				break;
    889   1.1       jtc 
    890   1.1       jtc 		if (dpt != NULL) {
    891   1.1       jtc 			/*
    892   1.1       jtc 			 * we are being remapped for this device and pattern
    893   1.1       jtc 			 * change the device number to be stored and return
    894   1.1       jtc 			 */
    895   1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    896   1.1       jtc 			arcn->sb.st_ino = nino;
    897   1.1       jtc 			return(0);
    898   1.1       jtc 		}
    899   1.1       jtc 	} else {
    900   1.1       jtc 		/*
    901   1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    902   1.1       jtc 		 * form of truncation, we do not need a remap
    903   1.1       jtc 		 */
    904   1.1       jtc 		if (!trc_ino && !trc_dev)
    905   1.1       jtc 			return(0);
    906   1.1       jtc 
    907   1.1       jtc 		/*
    908   1.1       jtc 		 * we have truncation, have to add this as a device to remap
    909   1.1       jtc 		 */
    910   1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    911   1.1       jtc 			goto bad;
    912   1.1       jtc 
    913   1.1       jtc 		/*
    914   1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    915   1.1       jtc 		 * all future inodes that do not truncate (they have the
    916   1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    917   1.1       jtc 		 * device number. We probably have already written inodes with
    918   1.1       jtc 		 * this device number to the archive with the truncation
    919   1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    920   1.1       jtc 		 * same device number.
    921   1.1       jtc 		 */
    922   1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    923   1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    924   1.1       jtc 				goto bad;
    925   1.1       jtc 			dpt->trunc_bits = 0;
    926   1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    927   1.1       jtc 			dpt->fow = pt->list;
    928   1.1       jtc 			pt->list = dpt;
    929   1.1       jtc 		}
    930   1.1       jtc 	}
    931   1.1       jtc 
    932   1.1       jtc 	/*
    933   1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    934   1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    935   1.1       jtc 	 */
    936   1.1       jtc 	while (++lastdev > 0) {
    937   1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    938   1.1       jtc 			continue;
    939   1.1       jtc 		/*
    940   1.1       jtc 		 * found an unused value. If we have reached truncation point
    941   1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    942   1.1       jtc 		 * mark it as being used.
    943   1.1       jtc 		 */
    944   1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    945   1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    946   1.1       jtc 			goto bad;
    947   1.1       jtc 		break;
    948   1.1       jtc 	}
    949   1.1       jtc 
    950   1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    951   1.1       jtc 		goto bad;
    952   1.1       jtc 
    953   1.1       jtc 	/*
    954   1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    955   1.1       jtc 	 * change the device number this file is being stored with.
    956   1.1       jtc 	 */
    957   1.1       jtc 	dpt->trunc_bits = trunc_bits;
    958   1.1       jtc 	dpt->dev = lastdev;
    959   1.1       jtc 	dpt->fow = pt->list;
    960   1.1       jtc 	pt->list = dpt;
    961   1.1       jtc 	arcn->sb.st_dev = lastdev;
    962   1.1       jtc 	arcn->sb.st_ino = nino;
    963   1.1       jtc 	return(0);
    964   1.1       jtc 
    965   1.1       jtc     bad:
    966   1.7  christos 	tty_warn(1,
    967   1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    968   1.1       jtc 	    arcn->name);
    969   1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    970   1.1       jtc 	return(0);
    971   1.1       jtc }
    972   1.1       jtc 
    973   1.1       jtc /*
    974   1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    975   1.1       jtc  *
    976   1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    977   1.1       jtc  * before being read by pax. For regular files, access time is restored after
    978   1.1       jtc  * the file has been copied. This database provides the same functionality for
    979   1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    980   1.1       jtc  * is more complex than files since directories may be read several times until
    981   1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    982   1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    983   1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    984   1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    985   1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    986   1.1       jtc  * directory entries left in this database are reset during final cleanup
    987   1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    988   1.1       jtc  */
    989   1.1       jtc 
    990   1.1       jtc /*
    991   1.1       jtc  * atdir_start()
    992   1.1       jtc  *	create the directory access time database for directories READ by pax.
    993   1.1       jtc  * Return:
    994   1.1       jtc  *	0 is created ok, -1 otherwise.
    995   1.1       jtc  */
    996   1.1       jtc 
    997   1.1       jtc #if __STDC__
    998   1.1       jtc int
    999   1.1       jtc atdir_start(void)
   1000   1.1       jtc #else
   1001   1.1       jtc int
   1002   1.1       jtc atdir_start()
   1003   1.1       jtc #endif
   1004   1.1       jtc {
   1005   1.1       jtc 	if (atab != NULL)
   1006   1.1       jtc 		return(0);
   1007  1.12     itohy 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1008  1.12     itohy 		tty_warn(1,
   1009   1.7  christos 		    "Cannot allocate space for directory access time table");
   1010  1.12     itohy 		return(-1);
   1011  1.12     itohy 	}
   1012   1.1       jtc 	return(0);
   1013   1.1       jtc }
   1014   1.1       jtc 
   1015   1.1       jtc 
   1016   1.1       jtc /*
   1017   1.1       jtc  * atdir_end()
   1018   1.1       jtc  *	walk through the directory access time table and reset the access time
   1019   1.1       jtc  *	of any directory who still has an entry left in the database. These
   1020   1.1       jtc  *	entries are for directories READ by pax
   1021   1.1       jtc  */
   1022   1.1       jtc 
   1023   1.1       jtc #if __STDC__
   1024   1.1       jtc void
   1025   1.1       jtc atdir_end(void)
   1026   1.1       jtc #else
   1027   1.1       jtc void
   1028   1.1       jtc atdir_end()
   1029   1.1       jtc #endif
   1030   1.1       jtc {
   1031   1.5       tls 	ATDIR *pt;
   1032   1.5       tls 	int i;
   1033   1.1       jtc 
   1034   1.1       jtc 	if (atab == NULL)
   1035   1.1       jtc 		return;
   1036   1.1       jtc 	/*
   1037   1.1       jtc 	 * for each non-empty hash table entry reset all the directories
   1038   1.1       jtc 	 * chained there.
   1039   1.1       jtc 	 */
   1040   1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
   1041   1.1       jtc 		if ((pt = atab[i]) == NULL)
   1042   1.1       jtc 			continue;
   1043   1.1       jtc 		/*
   1044   1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
   1045   1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
   1046   1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
   1047   1.1       jtc 		 */
   1048   1.1       jtc 		for (; pt != NULL; pt = pt->fow)
   1049   1.1       jtc 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1050   1.1       jtc 	}
   1051   1.1       jtc }
   1052   1.1       jtc 
   1053   1.1       jtc /*
   1054   1.1       jtc  * add_atdir()
   1055   1.1       jtc  *	add a directory to the directory access time table. Table is hashed
   1056   1.1       jtc  *	and chained by inode number. This is for directories READ by pax
   1057   1.1       jtc  */
   1058   1.1       jtc 
   1059   1.1       jtc #if __STDC__
   1060   1.1       jtc void
   1061   1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1062   1.1       jtc #else
   1063   1.1       jtc void
   1064   1.1       jtc add_atdir(fname, dev, ino, mtime, atime)
   1065   1.1       jtc 	char *fname;
   1066   1.1       jtc 	dev_t dev;
   1067   1.1       jtc 	ino_t ino;
   1068   1.1       jtc 	time_t mtime;
   1069   1.1       jtc 	time_t atime;
   1070   1.1       jtc #endif
   1071   1.1       jtc {
   1072   1.5       tls 	ATDIR *pt;
   1073   1.5       tls 	u_int indx;
   1074   1.1       jtc 
   1075   1.1       jtc 	if (atab == NULL)
   1076   1.1       jtc 		return;
   1077   1.1       jtc 
   1078   1.1       jtc 	/*
   1079  1.12     itohy 	 * make sure this directory is not already in the table, if so just
   1080   1.1       jtc 	 * return (the older entry always has the correct time). The only
   1081   1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
   1082   1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
   1083   1.1       jtc 	 * subtree before all the post-order visits have been made).
   1084   1.1       jtc 	 */
   1085   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1086   1.1       jtc 	if ((pt = atab[indx]) != NULL) {
   1087   1.1       jtc 		while (pt != NULL) {
   1088   1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
   1089   1.1       jtc 				break;
   1090   1.1       jtc 			pt = pt->fow;
   1091   1.1       jtc 		}
   1092   1.1       jtc 
   1093   1.1       jtc 		/*
   1094   1.1       jtc 		 * oops, already there. Leave it alone.
   1095   1.1       jtc 		 */
   1096   1.1       jtc 		if (pt != NULL)
   1097   1.1       jtc 			return;
   1098   1.1       jtc 	}
   1099   1.1       jtc 
   1100   1.1       jtc 	/*
   1101   1.1       jtc 	 * add it to the front of the hash chain
   1102   1.1       jtc 	 */
   1103   1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1104   1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1105   1.1       jtc 			pt->dev = dev;
   1106   1.1       jtc 			pt->ino = ino;
   1107   1.1       jtc 			pt->mtime = mtime;
   1108   1.1       jtc 			pt->atime = atime;
   1109   1.1       jtc 			pt->fow = atab[indx];
   1110   1.1       jtc 			atab[indx] = pt;
   1111   1.1       jtc 			return;
   1112   1.1       jtc 		}
   1113   1.1       jtc 		(void)free((char *)pt);
   1114   1.1       jtc 	}
   1115   1.1       jtc 
   1116   1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1117   1.1       jtc 	return;
   1118   1.1       jtc }
   1119   1.1       jtc 
   1120   1.1       jtc /*
   1121   1.1       jtc  * get_atdir()
   1122   1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1123   1.1       jtc  *	and modification time you want to set to. If found, the modification
   1124   1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1125   1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1126   1.1       jtc  *	pax
   1127   1.1       jtc  * Return:
   1128   1.1       jtc  *	0 if found, -1 if not found.
   1129   1.1       jtc  */
   1130   1.1       jtc 
   1131   1.1       jtc #if __STDC__
   1132   1.1       jtc int
   1133   1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1134   1.1       jtc #else
   1135   1.1       jtc int
   1136   1.1       jtc get_atdir(dev, ino, mtime, atime)
   1137   1.1       jtc 	dev_t dev;
   1138   1.1       jtc 	ino_t ino;
   1139   1.1       jtc 	time_t *mtime;
   1140   1.1       jtc 	time_t *atime;
   1141   1.1       jtc #endif
   1142   1.1       jtc {
   1143   1.5       tls 	ATDIR *pt;
   1144   1.5       tls 	ATDIR **ppt;
   1145   1.5       tls 	u_int indx;
   1146   1.1       jtc 
   1147   1.1       jtc 	if (atab == NULL)
   1148   1.1       jtc 		return(-1);
   1149   1.1       jtc 	/*
   1150   1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1151   1.1       jtc 	 */
   1152   1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1153   1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1154   1.1       jtc 		return(-1);
   1155   1.1       jtc 
   1156   1.1       jtc 	ppt = &(atab[indx]);
   1157   1.1       jtc 	while (pt != NULL) {
   1158   1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1159   1.1       jtc 			break;
   1160   1.1       jtc 		/*
   1161   1.1       jtc 		 * no match, go to next one
   1162   1.1       jtc 		 */
   1163   1.1       jtc 		ppt = &(pt->fow);
   1164   1.1       jtc 		pt = pt->fow;
   1165   1.1       jtc 	}
   1166   1.1       jtc 
   1167   1.1       jtc 	/*
   1168   1.1       jtc 	 * return if we did not find it.
   1169   1.1       jtc 	 */
   1170   1.1       jtc 	if (pt == NULL)
   1171   1.1       jtc 		return(-1);
   1172   1.1       jtc 
   1173   1.1       jtc 	/*
   1174   1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1175   1.1       jtc 	 */
   1176   1.1       jtc 	*ppt = pt->fow;
   1177   1.1       jtc 	*mtime = pt->mtime;
   1178   1.1       jtc 	*atime = pt->atime;
   1179   1.1       jtc 	(void)free((char *)pt->name);
   1180   1.1       jtc 	(void)free((char *)pt);
   1181   1.1       jtc 	return(0);
   1182   1.1       jtc }
   1183   1.1       jtc 
   1184   1.1       jtc /*
   1185   1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1186   1.1       jtc  * by pax).
   1187   1.1       jtc  *
   1188   1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1189   1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1190   1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1191   1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1192   1.1       jtc  * that these directories may have been created with file permissions which
   1193   1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1194   1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1195   1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1196   1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1197   1.1       jtc  * files have been extracted (or copied), these directories have their times
   1198   1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1199   1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1200   1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1201   1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1202   1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1203   1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1204   1.1       jtc  * then the file name.
   1205   1.1       jtc  */
   1206   1.1       jtc 
   1207  1.13   thorpej #ifndef DIRS_USE_FILE
   1208  1.13   thorpej static DIRDATA *dirdata_head;
   1209  1.13   thorpej #endif
   1210  1.13   thorpej 
   1211   1.1       jtc /*
   1212   1.1       jtc  * dir_start()
   1213   1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1214   1.1       jtc  *	by pax.
   1215   1.1       jtc  * Return:
   1216   1.1       jtc  *	0 if ok, -1 otherwise
   1217   1.1       jtc  */
   1218   1.1       jtc 
   1219   1.1       jtc #if __STDC__
   1220   1.1       jtc int
   1221   1.1       jtc dir_start(void)
   1222   1.1       jtc #else
   1223   1.1       jtc int
   1224   1.1       jtc dir_start()
   1225   1.1       jtc #endif
   1226   1.1       jtc {
   1227  1.13   thorpej #ifdef DIRS_USE_FILE
   1228   1.9    kleink 	const char *tmpdir;
   1229   1.9    kleink 	char template[MAXPATHLEN];
   1230   1.1       jtc 
   1231   1.1       jtc 	if (dirfd != -1)
   1232   1.1       jtc 		return(0);
   1233   1.1       jtc 
   1234   1.1       jtc 	/*
   1235   1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1236   1.1       jtc 	 */
   1237   1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
   1238   1.9    kleink 		tmpdir = _PATH_TMP;
   1239   1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
   1240   1.9    kleink 	if ((dirfd = mkstemp(template)) >= 0) {
   1241   1.9    kleink 		(void)unlink(template);
   1242   1.1       jtc 		return(0);
   1243   1.1       jtc 	}
   1244   1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1245   1.9    kleink 	    template);
   1246   1.1       jtc 	return(-1);
   1247  1.13   thorpej #else
   1248  1.13   thorpej 	return (0);
   1249  1.13   thorpej #endif /* DIRS_USE_FILE */
   1250   1.1       jtc }
   1251   1.1       jtc 
   1252   1.1       jtc /*
   1253   1.1       jtc  * add_dir()
   1254   1.1       jtc  *	add the mode and times for a newly CREATED directory
   1255   1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1256   1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1257   1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1258  1.12     itohy  *	for the case where we created a file and found that the resulting
   1259   1.1       jtc  *	directory was not writeable and the user asked for file modes to NOT
   1260   1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1261   1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1262   1.1       jtc  *	pax spec)
   1263   1.1       jtc  */
   1264   1.1       jtc 
   1265   1.1       jtc #if __STDC__
   1266   1.1       jtc void
   1267   1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1268   1.1       jtc #else
   1269   1.1       jtc void
   1270   1.1       jtc add_dir(name, nlen, psb, frc_mode)
   1271   1.1       jtc 	char *name;
   1272   1.1       jtc 	int nlen;
   1273   1.1       jtc 	struct stat *psb;
   1274   1.1       jtc 	int frc_mode;
   1275   1.1       jtc #endif
   1276   1.1       jtc {
   1277  1.13   thorpej #ifdef DIRS_USE_FILE
   1278   1.1       jtc 	DIRDATA dblk;
   1279   1.1       jtc 
   1280   1.1       jtc 	if (dirfd < 0)
   1281   1.1       jtc 		return;
   1282   1.1       jtc 
   1283   1.1       jtc 	/*
   1284   1.1       jtc 	 * get current position (where file name will start) so we can store it
   1285   1.1       jtc 	 * in the trailer
   1286   1.1       jtc 	 */
   1287   1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1288   1.7  christos 		tty_warn(1,
   1289   1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1290   1.1       jtc 		return;
   1291   1.1       jtc 	}
   1292   1.1       jtc 
   1293   1.1       jtc 	/*
   1294   1.1       jtc 	 * write the file name followed by the trailer
   1295   1.1       jtc 	 */
   1296   1.1       jtc 	dblk.nlen = nlen + 1;
   1297   1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1298   1.1       jtc 	dblk.mtime = psb->st_mtime;
   1299   1.1       jtc 	dblk.atime = psb->st_atime;
   1300  1.10       mrg 	dblk.fflags = psb->st_flags;
   1301   1.1       jtc 	dblk.frc_mode = frc_mode;
   1302  1.11     itohy 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1303  1.11     itohy 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1304   1.1       jtc 		++dircnt;
   1305   1.1       jtc 		return;
   1306   1.1       jtc 	}
   1307   1.1       jtc 
   1308   1.7  christos 	tty_warn(1,
   1309   1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1310   1.1       jtc 	return;
   1311  1.13   thorpej #else
   1312  1.13   thorpej 	DIRDATA *dblk;
   1313  1.13   thorpej 
   1314  1.13   thorpej 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1315  1.13   thorpej 	    (dblk->name = strdup(name)) == NULL) {
   1316  1.13   thorpej 		tty_warn(1,
   1317  1.13   thorpej 		    "Unable to store mode and times for directory: %s",name);
   1318  1.13   thorpej 		if (dblk != NULL)
   1319  1.13   thorpej 			free(dblk);
   1320  1.13   thorpej 		return;
   1321  1.13   thorpej 	}
   1322  1.13   thorpej 
   1323  1.13   thorpej 	dblk->mode = psb->st_mode & 0xffff;
   1324  1.13   thorpej 	dblk->mtime = psb->st_mtime;
   1325  1.13   thorpej 	dblk->atime = psb->st_atime;
   1326  1.13   thorpej 	dblk->fflags = psb->st_flags;
   1327  1.13   thorpej 	dblk->frc_mode = frc_mode;
   1328  1.13   thorpej 
   1329  1.13   thorpej 	dblk->next = dirdata_head;
   1330  1.13   thorpej 	dirdata_head = dblk;
   1331  1.13   thorpej 	return;
   1332  1.13   thorpej #endif /* DIRS_USE_FILE */
   1333   1.1       jtc }
   1334   1.1       jtc 
   1335   1.1       jtc /*
   1336   1.1       jtc  * proc_dir()
   1337   1.1       jtc  *	process all file modes and times stored for directories CREATED
   1338   1.1       jtc  *	by pax
   1339   1.1       jtc  */
   1340   1.1       jtc 
   1341   1.1       jtc #if __STDC__
   1342   1.1       jtc void
   1343   1.1       jtc proc_dir(void)
   1344   1.1       jtc #else
   1345   1.1       jtc void
   1346   1.1       jtc proc_dir()
   1347   1.1       jtc #endif
   1348   1.1       jtc {
   1349  1.13   thorpej #ifdef DIRS_USE_FILE
   1350   1.1       jtc 	char name[PAXPATHLEN+1];
   1351   1.1       jtc 	DIRDATA dblk;
   1352   1.1       jtc 	u_long cnt;
   1353   1.1       jtc 
   1354   1.1       jtc 	if (dirfd < 0)
   1355   1.1       jtc 		return;
   1356   1.1       jtc 	/*
   1357   1.1       jtc 	 * read backwards through the file and process each directory
   1358   1.1       jtc 	 */
   1359   1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1360   1.1       jtc 		/*
   1361   1.1       jtc 		 * read the trailer, then the file name, if this fails
   1362   1.1       jtc 		 * just give up.
   1363   1.1       jtc 		 */
   1364  1.12     itohy 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1365   1.1       jtc 			break;
   1366  1.11     itohy 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1367   1.1       jtc 			break;
   1368  1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1369   1.1       jtc 			break;
   1370  1.11     itohy 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1371   1.1       jtc 			break;
   1372  1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1373   1.1       jtc 			break;
   1374   1.1       jtc 
   1375   1.1       jtc 		/*
   1376   1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1377   1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1378   1.1       jtc 		 */
   1379   1.1       jtc 		if (pmode || dblk.frc_mode)
   1380   1.1       jtc 			set_pmode(name, dblk.mode);
   1381   1.1       jtc 		if (patime || pmtime)
   1382   1.1       jtc 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1383  1.10       mrg 		if (pfflags)
   1384  1.10       mrg 			set_chflags(name, dblk.fflags);
   1385   1.1       jtc 	}
   1386   1.1       jtc 
   1387   1.1       jtc 	(void)close(dirfd);
   1388   1.1       jtc 	dirfd = -1;
   1389   1.1       jtc 	if (cnt != dircnt)
   1390   1.7  christos 		tty_warn(1,
   1391   1.7  christos 		    "Unable to set mode and times for created directories");
   1392   1.1       jtc 	return;
   1393  1.13   thorpej #else
   1394  1.13   thorpej 	DIRDATA *dblk;
   1395  1.13   thorpej 
   1396  1.13   thorpej 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1397  1.13   thorpej 		dirdata_head = dblk->next;
   1398  1.13   thorpej 
   1399  1.13   thorpej 		/*
   1400  1.13   thorpej 		 * frc_mode set, make sure we set the file modes even if
   1401  1.13   thorpej 		 * the user didn't ask for it (see file_subs.c for more info)
   1402  1.13   thorpej 		 */
   1403  1.13   thorpej 		if (pmode || dblk->frc_mode)
   1404  1.13   thorpej 			set_pmode(dblk->name, dblk->mode);
   1405  1.13   thorpej 		if (patime || pmtime)
   1406  1.13   thorpej 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
   1407  1.13   thorpej 		if (pfflags)
   1408  1.13   thorpej 			set_chflags(dblk->name, dblk->fflags);
   1409  1.13   thorpej 
   1410  1.13   thorpej 		free(dblk->name);
   1411  1.13   thorpej 		free(dblk);
   1412  1.13   thorpej 	}
   1413  1.13   thorpej #endif /* DIRS_USE_FILE */
   1414   1.1       jtc }
   1415   1.1       jtc 
   1416   1.1       jtc /*
   1417   1.1       jtc  * database independent routines
   1418   1.1       jtc  */
   1419   1.1       jtc 
   1420   1.1       jtc /*
   1421   1.1       jtc  * st_hash()
   1422   1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1423   1.1       jtc  *	end of file, as this provides far better distribution than any other
   1424   1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1425   1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1426   1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1427   1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1428   1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1429   1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1430   1.1       jtc  * Return:
   1431   1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1432   1.1       jtc  */
   1433   1.1       jtc 
   1434   1.1       jtc #if __STDC__
   1435   1.1       jtc u_int
   1436   1.1       jtc st_hash(char *name, int len, int tabsz)
   1437   1.1       jtc #else
   1438   1.1       jtc u_int
   1439   1.1       jtc st_hash(name, len, tabsz)
   1440   1.1       jtc 	char *name;
   1441   1.1       jtc 	int len;
   1442   1.1       jtc 	int tabsz;
   1443   1.1       jtc #endif
   1444   1.1       jtc {
   1445   1.5       tls 	char *pt;
   1446   1.5       tls 	char *dest;
   1447   1.5       tls 	char *end;
   1448   1.5       tls 	int i;
   1449   1.5       tls 	u_int key = 0;
   1450   1.5       tls 	int steps;
   1451   1.5       tls 	int res;
   1452   1.1       jtc 	u_int val;
   1453   1.1       jtc 
   1454   1.1       jtc 	/*
   1455   1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1456   1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1457   1.1       jtc 	 * spread out the keys)
   1458   1.1       jtc 	 */
   1459   1.1       jtc 	if (len > MAXKEYLEN) {
   1460  1.12     itohy 		pt = &(name[len - MAXKEYLEN]);
   1461   1.1       jtc 		len = MAXKEYLEN;
   1462   1.1       jtc 	} else
   1463   1.1       jtc 		pt = name;
   1464   1.1       jtc 
   1465   1.1       jtc 	/*
   1466   1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1467   1.1       jtc 	 * there is a runt to deal with
   1468   1.1       jtc 	 */
   1469   1.1       jtc 	steps = len/sizeof(u_int);
   1470   1.1       jtc 	res = len % sizeof(u_int);
   1471   1.1       jtc 
   1472   1.1       jtc 	/*
   1473   1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1474   1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1475   1.1       jtc 	 * could avoid the expensive copy.
   1476   1.1       jtc 	 */
   1477   1.1       jtc 	for (i = 0; i < steps; ++i) {
   1478   1.1       jtc 		end = pt + sizeof(u_int);
   1479   1.1       jtc 		dest = (char *)&val;
   1480   1.1       jtc 		while (pt < end)
   1481   1.1       jtc 			*dest++ = *pt++;
   1482   1.1       jtc 		key += val;
   1483   1.1       jtc 	}
   1484   1.1       jtc 
   1485   1.1       jtc 	/*
   1486   1.1       jtc 	 * add in the runt padded with zero to the right
   1487   1.1       jtc 	 */
   1488   1.1       jtc 	if (res) {
   1489   1.1       jtc 		val = 0;
   1490   1.1       jtc 		end = pt + res;
   1491   1.1       jtc 		dest = (char *)&val;
   1492   1.1       jtc 		while (pt < end)
   1493   1.1       jtc 			*dest++ = *pt++;
   1494   1.1       jtc 		key += val;
   1495   1.1       jtc 	}
   1496   1.1       jtc 
   1497   1.1       jtc 	/*
   1498   1.1       jtc 	 * return the result mod the table size
   1499   1.1       jtc 	 */
   1500   1.1       jtc 	return(key % tabsz);
   1501   1.1       jtc }
   1502