Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.17.2.1
      1  1.17.2.1       jmc /*	$NetBSD: tables.c,v 1.17.2.1 2004/04/07 06:58:46 jmc Exp $	*/
      2       1.4       cgd 
      3       1.1       jtc /*-
      4       1.1       jtc  * Copyright (c) 1992 Keith Muller.
      5       1.1       jtc  * Copyright (c) 1992, 1993
      6       1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7       1.1       jtc  *
      8       1.1       jtc  * This code is derived from software contributed to Berkeley by
      9       1.1       jtc  * Keith Muller of the University of California, San Diego.
     10       1.1       jtc  *
     11       1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12       1.1       jtc  * modification, are permitted provided that the following conditions
     13       1.1       jtc  * are met:
     14       1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15       1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16       1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18       1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19  1.17.2.1       jmc  * 3. Neither the name of the University nor the names of its contributors
     20       1.1       jtc  *    may be used to endorse or promote products derived from this software
     21       1.1       jtc  *    without specific prior written permission.
     22       1.1       jtc  *
     23       1.1       jtc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.1       jtc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.1       jtc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.1       jtc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.1       jtc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.1       jtc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.1       jtc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.1       jtc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.1       jtc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.1       jtc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.1       jtc  * SUCH DAMAGE.
     34       1.1       jtc  */
     35       1.1       jtc 
     36  1.17.2.1       jmc #if HAVE_NBTOOL_CONFIG_H
     37  1.17.2.1       jmc #include "nbtool_config.h"
     38  1.17.2.1       jmc #endif
     39  1.17.2.1       jmc 
     40       1.7  christos #include <sys/cdefs.h>
     41  1.17.2.1       jmc #if !defined(lint)
     42       1.4       cgd #if 0
     43       1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44       1.4       cgd #else
     45  1.17.2.1       jmc __RCSID("$NetBSD: tables.c,v 1.17.2.1 2004/04/07 06:58:46 jmc Exp $");
     46       1.4       cgd #endif
     47       1.1       jtc #endif /* not lint */
     48       1.1       jtc 
     49       1.1       jtc #include <sys/types.h>
     50       1.1       jtc #include <sys/time.h>
     51       1.1       jtc #include <sys/stat.h>
     52       1.1       jtc #include <sys/param.h>
     53       1.1       jtc #include <stdio.h>
     54       1.1       jtc #include <ctype.h>
     55       1.8    kleink #include <fcntl.h>
     56       1.9    kleink #include <paths.h>
     57       1.1       jtc #include <string.h>
     58       1.1       jtc #include <unistd.h>
     59       1.1       jtc #include <errno.h>
     60       1.1       jtc #include <stdlib.h>
     61       1.1       jtc #include "pax.h"
     62       1.1       jtc #include "tables.h"
     63       1.1       jtc #include "extern.h"
     64       1.1       jtc 
     65       1.1       jtc /*
     66       1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67       1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68       1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69       1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70       1.1       jtc  * As of this writing, the posix library functions were more complex than
     71       1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72       1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73       1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74       1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75       1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76  1.17.2.1       jmc  * Trying to force the fit to the posix database routines was not considered
     77       1.1       jtc  * time well spent.
     78       1.1       jtc  */
     79       1.1       jtc 
     80       1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81       1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82       1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83       1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84       1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85      1.13   thorpej #ifdef DIRS_USE_FILE
     86       1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     87       1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     88      1.13   thorpej #endif
     89       1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     90       1.1       jtc 
     91      1.15     lukem static DEVT *chk_dev(dev_t, int);
     92       1.1       jtc 
     93       1.1       jtc /*
     94       1.1       jtc  * hard link table routines
     95       1.1       jtc  *
     96      1.12     itohy  * The hard link table tries to detect hard links to files using the device and
     97       1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     98       1.1       jtc  * write routine that this file is a hard link to another file. The format
     99       1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
    100       1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
    101       1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    102       1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    103       1.1       jtc  * the same table when reading an archive. In that situation, this table is
    104       1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    105       1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    106       1.1       jtc  * can be detected by the archive format.
    107       1.1       jtc  */
    108       1.1       jtc 
    109       1.1       jtc /*
    110       1.1       jtc  * lnk_start
    111       1.1       jtc  *	Creates the hard link table.
    112       1.1       jtc  * Return:
    113       1.1       jtc  *	0 if created, -1 if failure
    114       1.1       jtc  */
    115       1.1       jtc 
    116       1.1       jtc int
    117       1.1       jtc lnk_start(void)
    118       1.1       jtc {
    119       1.1       jtc 	if (ltab != NULL)
    120       1.1       jtc 		return(0);
    121      1.12     itohy 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    122      1.12     itohy 		tty_warn(1, "Cannot allocate memory for hard link table");
    123      1.12     itohy 		return(-1);
    124      1.12     itohy 	}
    125       1.1       jtc 	return(0);
    126       1.1       jtc }
    127       1.1       jtc 
    128       1.1       jtc /*
    129       1.1       jtc  * chk_lnk()
    130       1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    131       1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    132       1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    133       1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    134       1.1       jtc  *	we add the file to the database if it has the potential for having
    135       1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    136       1.1       jtc  * Return:
    137       1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    138       1.1       jtc  */
    139       1.1       jtc 
    140       1.1       jtc int
    141       1.5       tls chk_lnk(ARCHD *arcn)
    142       1.1       jtc {
    143       1.5       tls 	HRDLNK *pt;
    144       1.5       tls 	HRDLNK **ppt;
    145       1.5       tls 	u_int indx;
    146       1.1       jtc 
    147       1.1       jtc 	if (ltab == NULL)
    148       1.1       jtc 		return(-1);
    149       1.1       jtc 	/*
    150       1.1       jtc 	 * ignore those nodes that cannot have hard links
    151       1.1       jtc 	 */
    152       1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    153       1.1       jtc 		return(0);
    154       1.1       jtc 
    155       1.1       jtc 	/*
    156       1.1       jtc 	 * hash inode number and look for this file
    157       1.1       jtc 	 */
    158       1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    159       1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    160       1.1       jtc 		/*
    161       1.1       jtc 		 * it's hash chain in not empty, walk down looking for it
    162       1.1       jtc 		 */
    163       1.1       jtc 		ppt = &(ltab[indx]);
    164       1.1       jtc 		while (pt != NULL) {
    165       1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    166       1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    167       1.1       jtc 				break;
    168       1.1       jtc 			ppt = &(pt->fow);
    169       1.1       jtc 			pt = pt->fow;
    170       1.1       jtc 		}
    171       1.1       jtc 
    172       1.1       jtc 		if (pt != NULL) {
    173       1.1       jtc 			/*
    174       1.1       jtc 			 * found a link. set the node type and copy in the
    175       1.1       jtc 			 * name of the file it is to link to. we need to
    176       1.1       jtc 			 * handle hardlinks to regular files differently than
    177       1.1       jtc 			 * other links.
    178       1.1       jtc 			 */
    179  1.17.2.1       jmc 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
    180  1.17.2.1       jmc 				sizeof(arcn->ln_name));
    181       1.1       jtc 			if (arcn->type == PAX_REG)
    182       1.1       jtc 				arcn->type = PAX_HRG;
    183       1.1       jtc 			else
    184       1.1       jtc 				arcn->type = PAX_HLK;
    185       1.1       jtc 
    186       1.1       jtc 			/*
    187       1.1       jtc 			 * if we have found all the links to this file, remove
    188       1.1       jtc 			 * it from the database
    189       1.1       jtc 			 */
    190       1.1       jtc 			if (--pt->nlink <= 1) {
    191       1.1       jtc 				*ppt = pt->fow;
    192       1.1       jtc 				(void)free((char *)pt->name);
    193       1.1       jtc 				(void)free((char *)pt);
    194       1.1       jtc 			}
    195       1.1       jtc 			return(1);
    196       1.1       jtc 		}
    197       1.1       jtc 	}
    198       1.1       jtc 
    199       1.1       jtc 	/*
    200       1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    201       1.1       jtc 	 * front of this hash chain
    202       1.1       jtc 	 */
    203       1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    204       1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    205       1.1       jtc 			pt->dev = arcn->sb.st_dev;
    206       1.1       jtc 			pt->ino = arcn->sb.st_ino;
    207       1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    208       1.1       jtc 			pt->fow = ltab[indx];
    209       1.1       jtc 			ltab[indx] = pt;
    210       1.1       jtc 			return(0);
    211       1.1       jtc 		}
    212       1.1       jtc 		(void)free((char *)pt);
    213       1.1       jtc 	}
    214       1.1       jtc 
    215       1.7  christos 	tty_warn(1, "Hard link table out of memory");
    216       1.1       jtc 	return(-1);
    217       1.1       jtc }
    218       1.1       jtc 
    219       1.1       jtc /*
    220       1.1       jtc  * purg_lnk
    221       1.1       jtc  *	remove reference for a file that we may have added to the data base as
    222       1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    223       1.1       jtc  *	we do not want to accidently point another file at it later on.
    224       1.1       jtc  */
    225       1.1       jtc 
    226       1.1       jtc void
    227       1.5       tls purg_lnk(ARCHD *arcn)
    228       1.1       jtc {
    229       1.5       tls 	HRDLNK *pt;
    230       1.5       tls 	HRDLNK **ppt;
    231       1.5       tls 	u_int indx;
    232       1.1       jtc 
    233       1.1       jtc 	if (ltab == NULL)
    234       1.1       jtc 		return;
    235       1.1       jtc 	/*
    236       1.1       jtc 	 * do not bother to look if it could not be in the database
    237       1.1       jtc 	 */
    238       1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    239       1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    240       1.1       jtc 		return;
    241       1.1       jtc 
    242       1.1       jtc 	/*
    243       1.1       jtc 	 * find the hash chain for this inode value, if empty return
    244       1.1       jtc 	 */
    245       1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    246       1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    247       1.1       jtc 		return;
    248       1.1       jtc 
    249       1.1       jtc 	/*
    250       1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    251       1.1       jtc 	 * free if found
    252       1.1       jtc 	 */
    253       1.1       jtc 	ppt = &(ltab[indx]);
    254       1.1       jtc 	while (pt != NULL) {
    255       1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    256       1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    257       1.1       jtc 			break;
    258       1.1       jtc 		ppt = &(pt->fow);
    259       1.1       jtc 		pt = pt->fow;
    260       1.1       jtc 	}
    261       1.1       jtc 	if (pt == NULL)
    262       1.1       jtc 		return;
    263       1.1       jtc 
    264       1.1       jtc 	/*
    265       1.1       jtc 	 * remove and free it
    266       1.1       jtc 	 */
    267       1.1       jtc 	*ppt = pt->fow;
    268       1.1       jtc 	(void)free((char *)pt->name);
    269       1.1       jtc 	(void)free((char *)pt);
    270       1.1       jtc }
    271       1.1       jtc 
    272       1.1       jtc /*
    273       1.1       jtc  * lnk_end()
    274       1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    275       1.1       jtc  *	read and write phases of append with update. (The format may have
    276       1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    277       1.1       jtc  *	write phase
    278       1.1       jtc  */
    279       1.1       jtc 
    280       1.1       jtc void
    281       1.1       jtc lnk_end(void)
    282       1.1       jtc {
    283       1.5       tls 	int i;
    284       1.5       tls 	HRDLNK *pt;
    285       1.5       tls 	HRDLNK *ppt;
    286       1.1       jtc 
    287       1.1       jtc 	if (ltab == NULL)
    288       1.1       jtc 		return;
    289       1.1       jtc 
    290       1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    291       1.1       jtc 		if (ltab[i] == NULL)
    292       1.1       jtc 			continue;
    293       1.1       jtc 		pt = ltab[i];
    294       1.1       jtc 		ltab[i] = NULL;
    295       1.1       jtc 
    296       1.1       jtc 		/*
    297       1.1       jtc 		 * free up each entry on this chain
    298       1.1       jtc 		 */
    299       1.1       jtc 		while (pt != NULL) {
    300       1.1       jtc 			ppt = pt;
    301       1.1       jtc 			pt = ppt->fow;
    302       1.1       jtc 			(void)free((char *)ppt->name);
    303       1.1       jtc 			(void)free((char *)ppt);
    304       1.1       jtc 		}
    305       1.1       jtc 	}
    306       1.1       jtc 	return;
    307       1.1       jtc }
    308       1.1       jtc 
    309       1.1       jtc /*
    310       1.1       jtc  * modification time table routines
    311       1.1       jtc  *
    312       1.1       jtc  * The modification time table keeps track of last modification times for all
    313       1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    314       1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    315       1.1       jtc  * already stored on the archive (if there is no other file with the same
    316       1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    317       1.1       jtc  * An append with an -u must read the archive and store the modification time
    318       1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    319       1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    320  1.17.2.1       jmc  * are stored in a scratch file and indexed by an in-memory hash table. The
    321       1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    322      1.12     itohy  * the length of the filename and the lseek offset within the scratch file
    323  1.17.2.1       jmc  * where the actual name is stored. Since there are never any deletions from this
    324       1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    325      1.12     itohy  * not exhibit any locality at all (files in the database are rarely
    326  1.17.2.1       jmc  * looked up more than once...), so caching is just a waste of memory. The
    327  1.17.2.1       jmc  * only limitation is the amount of scratch file space available to store the
    328       1.1       jtc  * path names.
    329       1.1       jtc  */
    330       1.1       jtc 
    331       1.1       jtc /*
    332       1.1       jtc  * ftime_start()
    333       1.1       jtc  *	create the file time hash table and open for read/write the scratch
    334       1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    335       1.1       jtc  *	no witnesses).
    336       1.1       jtc  * Return:
    337       1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    338       1.1       jtc  */
    339       1.1       jtc 
    340       1.1       jtc int
    341       1.1       jtc ftime_start(void)
    342       1.1       jtc {
    343       1.1       jtc 	if (ftab != NULL)
    344       1.1       jtc 		return(0);
    345      1.12     itohy 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    346      1.12     itohy 		tty_warn(1, "Cannot allocate memory for file time table");
    347      1.12     itohy 		return(-1);
    348      1.12     itohy 	}
    349       1.1       jtc 
    350       1.1       jtc 	/*
    351       1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    352       1.1       jtc 	 * so it will get removed on exit
    353       1.1       jtc 	 */
    354  1.17.2.1       jmc 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
    355  1.17.2.1       jmc 	if ((ffd = mkstemp(tempfile)) == -1) {
    356       1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    357  1.17.2.1       jmc 		    tempfile);
    358       1.1       jtc 		return(-1);
    359       1.1       jtc 	}
    360       1.1       jtc 
    361  1.17.2.1       jmc 	(void)unlink(tempfile);
    362       1.1       jtc 	return(0);
    363       1.1       jtc }
    364       1.1       jtc 
    365       1.1       jtc /*
    366       1.1       jtc  * chk_ftime()
    367       1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    368       1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    369       1.1       jtc  *	If a file with the same name is found, the file times are compared and
    370       1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    371       1.1       jtc  *	was not in the database) the new file is selected for storage.
    372       1.1       jtc  * Return:
    373       1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    374       1.1       jtc  *	-1 on error
    375       1.1       jtc  */
    376       1.1       jtc 
    377       1.1       jtc int
    378       1.5       tls chk_ftime(ARCHD *arcn)
    379       1.1       jtc {
    380       1.5       tls 	FTM *pt;
    381       1.5       tls 	int namelen;
    382       1.5       tls 	u_int indx;
    383       1.1       jtc 	char ckname[PAXPATHLEN+1];
    384       1.1       jtc 
    385       1.1       jtc 	/*
    386       1.1       jtc 	 * no info, go ahead and add to archive
    387       1.1       jtc 	 */
    388       1.1       jtc 	if (ftab == NULL)
    389       1.1       jtc 		return(0);
    390       1.1       jtc 
    391       1.1       jtc 	/*
    392       1.1       jtc 	 * hash the pathname and look up in table
    393       1.1       jtc 	 */
    394       1.1       jtc 	namelen = arcn->nlen;
    395       1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    396       1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    397       1.1       jtc 		/*
    398       1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    399       1.1       jtc 		 * only read up the path names if the lengths match, speeds
    400       1.1       jtc 		 * up the search a lot
    401       1.1       jtc 		 */
    402       1.1       jtc 		while (pt != NULL) {
    403       1.1       jtc 			if (pt->namelen == namelen) {
    404       1.1       jtc 				/*
    405       1.1       jtc 				 * potential match, have to read the name
    406       1.1       jtc 				 * from the scratch file.
    407       1.1       jtc 				 */
    408       1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    409       1.1       jtc 					syswarn(1, errno,
    410       1.1       jtc 					    "Failed ftime table seek");
    411       1.1       jtc 					return(-1);
    412       1.1       jtc 				}
    413      1.11     itohy 				if (xread(ffd, ckname, namelen) != namelen) {
    414       1.1       jtc 					syswarn(1, errno,
    415       1.1       jtc 					    "Failed ftime table read");
    416       1.1       jtc 					return(-1);
    417       1.1       jtc 				}
    418       1.1       jtc 
    419       1.1       jtc 				/*
    420       1.1       jtc 				 * if the names match, we are done
    421       1.1       jtc 				 */
    422       1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    423       1.1       jtc 					break;
    424       1.1       jtc 			}
    425       1.1       jtc 
    426       1.1       jtc 			/*
    427       1.1       jtc 			 * try the next entry on the chain
    428       1.1       jtc 			 */
    429       1.1       jtc 			pt = pt->fow;
    430       1.1       jtc 		}
    431       1.1       jtc 
    432       1.1       jtc 		if (pt != NULL) {
    433       1.1       jtc 			/*
    434       1.1       jtc 			 * found the file, compare the times, save the newer
    435       1.1       jtc 			 */
    436       1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    437       1.1       jtc 				/*
    438       1.1       jtc 				 * file is newer
    439       1.1       jtc 				 */
    440       1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    441       1.1       jtc 				return(0);
    442      1.12     itohy 			}
    443       1.1       jtc 			/*
    444       1.1       jtc 			 * file is older
    445       1.1       jtc 			 */
    446       1.1       jtc 			return(1);
    447       1.1       jtc 		}
    448       1.1       jtc 	}
    449       1.1       jtc 
    450       1.1       jtc 	/*
    451       1.1       jtc 	 * not in table, add it
    452       1.1       jtc 	 */
    453       1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    454       1.1       jtc 		/*
    455       1.1       jtc 		 * add the name at the end of the scratch file, saving the
    456       1.1       jtc 		 * offset. add the file to the head of the hash chain
    457       1.1       jtc 		 */
    458       1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    459      1.11     itohy 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    460       1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    461       1.1       jtc 				pt->namelen = namelen;
    462       1.1       jtc 				pt->fow = ftab[indx];
    463       1.1       jtc 				ftab[indx] = pt;
    464       1.1       jtc 				return(0);
    465       1.1       jtc 			}
    466       1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    467      1.12     itohy 		} else
    468       1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    469       1.1       jtc 	} else
    470       1.7  christos 		tty_warn(1, "File time table ran out of memory");
    471       1.1       jtc 
    472       1.1       jtc 	if (pt != NULL)
    473       1.1       jtc 		(void)free((char *)pt);
    474       1.1       jtc 	return(-1);
    475       1.1       jtc }
    476       1.1       jtc 
    477       1.1       jtc /*
    478       1.1       jtc  * Interactive rename table routines
    479       1.1       jtc  *
    480       1.1       jtc  * The interactive rename table keeps track of the new names that the user
    481      1.12     itohy  * assigns to files from tty input. Since this map is unique for each file
    482       1.1       jtc  * we must store it in case there is a reference to the file later in archive
    483       1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    484       1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    485       1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    486       1.1       jtc  * be a very large table).
    487       1.1       jtc  */
    488       1.1       jtc 
    489       1.1       jtc /*
    490       1.1       jtc  * name_start()
    491       1.1       jtc  *	create the interactive rename table
    492       1.1       jtc  * Return:
    493       1.1       jtc  *	0 if successful, -1 otherwise
    494       1.1       jtc  */
    495       1.1       jtc 
    496       1.1       jtc int
    497       1.1       jtc name_start(void)
    498       1.1       jtc {
    499       1.1       jtc 	if (ntab != NULL)
    500       1.1       jtc 		return(0);
    501      1.12     itohy 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    502      1.12     itohy 		tty_warn(1,
    503       1.7  christos 		    "Cannot allocate memory for interactive rename table");
    504      1.12     itohy 		return(-1);
    505      1.12     itohy 	}
    506       1.1       jtc 	return(0);
    507       1.1       jtc }
    508       1.1       jtc 
    509       1.1       jtc /*
    510       1.1       jtc  * add_name()
    511       1.1       jtc  *	add the new name to old name mapping just created by the user.
    512       1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    513       1.1       jtc  *	archive) only the most recent is kept.
    514       1.1       jtc  * Return:
    515       1.1       jtc  *	0 if added, -1 otherwise
    516       1.1       jtc  */
    517       1.1       jtc 
    518       1.1       jtc int
    519       1.5       tls add_name(char *oname, int onamelen, char *nname)
    520       1.1       jtc {
    521       1.5       tls 	NAMT *pt;
    522       1.5       tls 	u_int indx;
    523       1.1       jtc 
    524       1.1       jtc 	if (ntab == NULL) {
    525       1.1       jtc 		/*
    526       1.1       jtc 		 * should never happen
    527       1.1       jtc 		 */
    528       1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    529      1.12     itohy 		return(0);
    530       1.1       jtc 	}
    531       1.1       jtc 
    532       1.1       jtc 	/*
    533       1.1       jtc 	 * look to see if we have already mapped this file, if so we
    534       1.1       jtc 	 * will update it
    535       1.1       jtc 	 */
    536       1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    537       1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    538       1.1       jtc 		/*
    539       1.1       jtc 		 * look down the has chain for the file
    540       1.1       jtc 		 */
    541       1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    542       1.1       jtc 			pt = pt->fow;
    543       1.1       jtc 
    544       1.1       jtc 		if (pt != NULL) {
    545       1.1       jtc 			/*
    546       1.1       jtc 			 * found an old mapping, replace it with the new one
    547       1.1       jtc 			 * the user just input (if it is different)
    548       1.1       jtc 			 */
    549       1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    550       1.1       jtc 				return(0);
    551       1.1       jtc 
    552       1.1       jtc 			(void)free((char *)pt->nname);
    553       1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    554       1.7  christos 				tty_warn(1, "Cannot update rename table");
    555       1.1       jtc 				return(-1);
    556       1.1       jtc 			}
    557       1.1       jtc 			return(0);
    558       1.1       jtc 		}
    559       1.1       jtc 	}
    560       1.1       jtc 
    561       1.1       jtc 	/*
    562       1.1       jtc 	 * this is a new mapping, add it to the table
    563       1.1       jtc 	 */
    564       1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    565       1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    566       1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    567       1.1       jtc 				pt->fow = ntab[indx];
    568       1.1       jtc 				ntab[indx] = pt;
    569       1.1       jtc 				return(0);
    570       1.1       jtc 			}
    571       1.1       jtc 			(void)free((char *)pt->oname);
    572       1.1       jtc 		}
    573       1.1       jtc 		(void)free((char *)pt);
    574       1.1       jtc 	}
    575       1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    576       1.1       jtc 	return(-1);
    577       1.1       jtc }
    578       1.1       jtc 
    579       1.1       jtc /*
    580       1.1       jtc  * sub_name()
    581       1.1       jtc  *	look up a link name to see if it points at a file that has been
    582       1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    583       1.1       jtc  *	new name (oname is the link to name)
    584       1.1       jtc  */
    585       1.1       jtc 
    586       1.1       jtc void
    587  1.17.2.1       jmc sub_name(char *oname, int *onamelen, size_t onamesize)
    588       1.1       jtc {
    589       1.5       tls 	NAMT *pt;
    590       1.5       tls 	u_int indx;
    591       1.1       jtc 
    592       1.1       jtc 	if (ntab == NULL)
    593       1.1       jtc 		return;
    594       1.1       jtc 	/*
    595       1.1       jtc 	 * look the name up in the hash table
    596       1.1       jtc 	 */
    597       1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    598       1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    599       1.1       jtc 		return;
    600       1.1       jtc 
    601       1.1       jtc 	while (pt != NULL) {
    602       1.1       jtc 		/*
    603      1.14     lukem 		 * walk down the hash chain looking for a match
    604       1.1       jtc 		 */
    605       1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    606       1.1       jtc 			/*
    607       1.1       jtc 			 * found it, replace it with the new name
    608       1.1       jtc 			 * and return (we know that oname has enough space)
    609       1.1       jtc 			 */
    610  1.17.2.1       jmc 			*onamelen = strlcpy(oname, pt->nname, onamesize);
    611       1.1       jtc 			return;
    612       1.1       jtc 		}
    613       1.1       jtc 		pt = pt->fow;
    614       1.1       jtc 	}
    615       1.1       jtc 
    616       1.1       jtc 	/*
    617       1.1       jtc 	 * no match, just return
    618       1.1       jtc 	 */
    619       1.1       jtc 	return;
    620       1.1       jtc }
    621      1.12     itohy 
    622       1.1       jtc /*
    623       1.1       jtc  * device/inode mapping table routines
    624       1.1       jtc  * (used with formats that store device and inodes fields)
    625       1.1       jtc  *
    626       1.1       jtc  * device/inode mapping tables remap the device field in a archive header. The
    627       1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    628       1.1       jtc  * other. However these values have very little meaning outside of that. This
    629       1.1       jtc  * database is used to solve one of two different problems.
    630       1.1       jtc  *
    631       1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    632       1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    633       1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    634       1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    635       1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    636       1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    637       1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    638       1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    639       1.1       jtc  * member that has a device number used in a prior run and already stored in a
    640       1.1       jtc  * file on the archive. During the read phase of the append, we store the
    641       1.1       jtc  * device numbers used and mark them to not be used by any file during the
    642       1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    643       1.1       jtc  * we remap it to a new value.
    644       1.1       jtc  *
    645       1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    646       1.1       jtc  * too small to store the entire value. The result is an inode or device value
    647       1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    648       1.1       jtc  * we end up creating links between files that are really not links (after
    649       1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    650       1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    651       1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    652       1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    653       1.1       jtc  * on a single device to many different devices (each one represented by the
    654       1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    655       1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    656       1.1       jtc  * truncate to the same value clearly will always have different truncation
    657       1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    658       1.1       jtc  * device truncation we remap the device number to a non truncated value.
    659       1.1       jtc  * (for more info see table.h for the data structures involved).
    660       1.1       jtc  */
    661       1.1       jtc 
    662       1.1       jtc /*
    663       1.1       jtc  * dev_start()
    664       1.1       jtc  *	create the device mapping table
    665       1.1       jtc  * Return:
    666       1.1       jtc  *	0 if successful, -1 otherwise
    667       1.1       jtc  */
    668       1.1       jtc 
    669       1.1       jtc int
    670       1.1       jtc dev_start(void)
    671       1.1       jtc {
    672       1.1       jtc 	if (dtab != NULL)
    673       1.1       jtc 		return(0);
    674      1.12     itohy 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    675      1.12     itohy 		tty_warn(1, "Cannot allocate memory for device mapping table");
    676      1.12     itohy 		return(-1);
    677      1.12     itohy 	}
    678       1.1       jtc 	return(0);
    679       1.1       jtc }
    680       1.1       jtc 
    681       1.1       jtc /*
    682       1.1       jtc  * add_dev()
    683       1.1       jtc  *	add a device number to the table. this will force the device to be
    684       1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    685       1.1       jtc  *	function is called during the read phase of an append to prohibit the
    686       1.1       jtc  *	use of any device number already in the archive.
    687       1.1       jtc  * Return:
    688       1.1       jtc  *	0 if added ok, -1 otherwise
    689       1.1       jtc  */
    690       1.1       jtc 
    691       1.1       jtc int
    692       1.5       tls add_dev(ARCHD *arcn)
    693       1.1       jtc {
    694       1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    695       1.1       jtc 		return(-1);
    696       1.1       jtc 	return(0);
    697       1.1       jtc }
    698       1.1       jtc 
    699       1.1       jtc /*
    700       1.1       jtc  * chk_dev()
    701       1.1       jtc  *	check for a device value in the device table. If not found and the add
    702       1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    703       1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    704      1.12     itohy  *	is already mapped, just return with a pointer to that entry.
    705       1.1       jtc  * Return:
    706       1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    707       1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    708       1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    709       1.1       jtc  *	is returned (indicates an error).
    710       1.1       jtc  */
    711       1.1       jtc 
    712       1.1       jtc static DEVT *
    713       1.1       jtc chk_dev(dev_t dev, int add)
    714       1.1       jtc {
    715       1.5       tls 	DEVT *pt;
    716       1.5       tls 	u_int indx;
    717       1.1       jtc 
    718       1.1       jtc 	if (dtab == NULL)
    719       1.1       jtc 		return(NULL);
    720       1.1       jtc 	/*
    721       1.1       jtc 	 * look to see if this device is already in the table
    722       1.1       jtc 	 */
    723       1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    724       1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    725       1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    726       1.1       jtc 			pt = pt->fow;
    727       1.1       jtc 
    728       1.1       jtc 		/*
    729       1.1       jtc 		 * found it, return a pointer to it
    730       1.1       jtc 		 */
    731       1.1       jtc 		if (pt != NULL)
    732       1.1       jtc 			return(pt);
    733       1.1       jtc 	}
    734       1.1       jtc 
    735       1.1       jtc 	/*
    736       1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    737       1.1       jtc 	 * to see if a device number is being used.
    738       1.1       jtc 	 */
    739       1.1       jtc 	if (add == 0)
    740       1.1       jtc 		return(NULL);
    741       1.1       jtc 
    742       1.1       jtc 	/*
    743       1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    744       1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    745       1.1       jtc 	 * list must be NULL.
    746       1.1       jtc 	 */
    747       1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    748       1.7  christos 		tty_warn(1, "Device map table out of memory");
    749       1.1       jtc 		return(NULL);
    750       1.1       jtc 	}
    751       1.1       jtc 	pt->dev = dev;
    752       1.1       jtc 	pt->list = NULL;
    753       1.1       jtc 	pt->fow = dtab[indx];
    754       1.1       jtc 	dtab[indx] = pt;
    755       1.1       jtc 	return(pt);
    756       1.1       jtc }
    757       1.1       jtc /*
    758       1.1       jtc  * map_dev()
    759       1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    760       1.1       jtc  *	the archive format is able to store in a header), we check for inode
    761       1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    762       1.1       jtc  *	can also occur when during the read phase of append a device number was
    763       1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    764       1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    765       1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    766       1.1       jtc  * Return:
    767       1.1       jtc  *	0 if all ok, -1 otherwise.
    768       1.1       jtc  */
    769       1.1       jtc 
    770       1.1       jtc int
    771       1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    772       1.1       jtc {
    773       1.5       tls 	DEVT *pt;
    774       1.5       tls 	DLIST *dpt;
    775       1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    776       1.1       jtc 	int trc_ino = 0;
    777       1.1       jtc 	int trc_dev = 0;
    778       1.1       jtc 	ino_t trunc_bits = 0;
    779       1.1       jtc 	ino_t nino;
    780       1.1       jtc 
    781       1.1       jtc 	if (dtab == NULL)
    782       1.1       jtc 		return(0);
    783       1.1       jtc 	/*
    784       1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    785      1.12     itohy 	 * bit pattern.
    786       1.1       jtc 	 */
    787       1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    788       1.1       jtc 		++trc_dev;
    789       1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    790       1.1       jtc 		++trc_ino;
    791       1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    792       1.1       jtc 	}
    793       1.1       jtc 
    794       1.1       jtc 	/*
    795       1.1       jtc 	 * see if this device is already being mapped, look up the device
    796       1.1       jtc 	 * then find the truncation bit pattern which applies
    797       1.1       jtc 	 */
    798       1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    799       1.1       jtc 		/*
    800       1.1       jtc 		 * this device is already marked to be remapped
    801       1.1       jtc 		 */
    802       1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    803       1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    804       1.1       jtc 				break;
    805       1.1       jtc 
    806       1.1       jtc 		if (dpt != NULL) {
    807       1.1       jtc 			/*
    808       1.1       jtc 			 * we are being remapped for this device and pattern
    809       1.1       jtc 			 * change the device number to be stored and return
    810       1.1       jtc 			 */
    811       1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    812       1.1       jtc 			arcn->sb.st_ino = nino;
    813       1.1       jtc 			return(0);
    814       1.1       jtc 		}
    815       1.1       jtc 	} else {
    816       1.1       jtc 		/*
    817       1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    818       1.1       jtc 		 * form of truncation, we do not need a remap
    819       1.1       jtc 		 */
    820       1.1       jtc 		if (!trc_ino && !trc_dev)
    821       1.1       jtc 			return(0);
    822       1.1       jtc 
    823       1.1       jtc 		/*
    824       1.1       jtc 		 * we have truncation, have to add this as a device to remap
    825       1.1       jtc 		 */
    826       1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    827       1.1       jtc 			goto bad;
    828       1.1       jtc 
    829       1.1       jtc 		/*
    830       1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    831       1.1       jtc 		 * all future inodes that do not truncate (they have the
    832       1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    833       1.1       jtc 		 * device number. We probably have already written inodes with
    834       1.1       jtc 		 * this device number to the archive with the truncation
    835       1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    836       1.1       jtc 		 * same device number.
    837       1.1       jtc 		 */
    838       1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    839       1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    840       1.1       jtc 				goto bad;
    841       1.1       jtc 			dpt->trunc_bits = 0;
    842       1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    843       1.1       jtc 			dpt->fow = pt->list;
    844       1.1       jtc 			pt->list = dpt;
    845       1.1       jtc 		}
    846       1.1       jtc 	}
    847       1.1       jtc 
    848       1.1       jtc 	/*
    849       1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    850       1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    851       1.1       jtc 	 */
    852       1.1       jtc 	while (++lastdev > 0) {
    853       1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    854       1.1       jtc 			continue;
    855       1.1       jtc 		/*
    856       1.1       jtc 		 * found an unused value. If we have reached truncation point
    857       1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    858       1.1       jtc 		 * mark it as being used.
    859       1.1       jtc 		 */
    860       1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    861       1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    862       1.1       jtc 			goto bad;
    863       1.1       jtc 		break;
    864       1.1       jtc 	}
    865       1.1       jtc 
    866       1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    867       1.1       jtc 		goto bad;
    868       1.1       jtc 
    869       1.1       jtc 	/*
    870       1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    871       1.1       jtc 	 * change the device number this file is being stored with.
    872       1.1       jtc 	 */
    873       1.1       jtc 	dpt->trunc_bits = trunc_bits;
    874       1.1       jtc 	dpt->dev = lastdev;
    875       1.1       jtc 	dpt->fow = pt->list;
    876       1.1       jtc 	pt->list = dpt;
    877       1.1       jtc 	arcn->sb.st_dev = lastdev;
    878       1.1       jtc 	arcn->sb.st_ino = nino;
    879       1.1       jtc 	return(0);
    880       1.1       jtc 
    881       1.1       jtc     bad:
    882       1.7  christos 	tty_warn(1,
    883       1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    884       1.1       jtc 	    arcn->name);
    885       1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    886       1.1       jtc 	return(0);
    887       1.1       jtc }
    888       1.1       jtc 
    889       1.1       jtc /*
    890       1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    891       1.1       jtc  *
    892       1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    893  1.17.2.1       jmc  * as before being read by pax. For regular files, access time is restored after
    894       1.1       jtc  * the file has been copied. This database provides the same functionality for
    895       1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    896       1.1       jtc  * is more complex than files since directories may be read several times until
    897       1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    898       1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    899       1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    900       1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    901       1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    902       1.1       jtc  * directory entries left in this database are reset during final cleanup
    903       1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    904       1.1       jtc  */
    905       1.1       jtc 
    906       1.1       jtc /*
    907       1.1       jtc  * atdir_start()
    908       1.1       jtc  *	create the directory access time database for directories READ by pax.
    909       1.1       jtc  * Return:
    910       1.1       jtc  *	0 is created ok, -1 otherwise.
    911       1.1       jtc  */
    912       1.1       jtc 
    913       1.1       jtc int
    914       1.1       jtc atdir_start(void)
    915       1.1       jtc {
    916       1.1       jtc 	if (atab != NULL)
    917       1.1       jtc 		return(0);
    918      1.12     itohy 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    919      1.12     itohy 		tty_warn(1,
    920       1.7  christos 		    "Cannot allocate space for directory access time table");
    921      1.12     itohy 		return(-1);
    922      1.12     itohy 	}
    923       1.1       jtc 	return(0);
    924       1.1       jtc }
    925       1.1       jtc 
    926       1.1       jtc 
    927       1.1       jtc /*
    928       1.1       jtc  * atdir_end()
    929       1.1       jtc  *	walk through the directory access time table and reset the access time
    930       1.1       jtc  *	of any directory who still has an entry left in the database. These
    931       1.1       jtc  *	entries are for directories READ by pax
    932       1.1       jtc  */
    933       1.1       jtc 
    934       1.1       jtc void
    935       1.1       jtc atdir_end(void)
    936       1.1       jtc {
    937       1.5       tls 	ATDIR *pt;
    938       1.5       tls 	int i;
    939       1.1       jtc 
    940       1.1       jtc 	if (atab == NULL)
    941       1.1       jtc 		return;
    942       1.1       jtc 	/*
    943       1.1       jtc 	 * for each non-empty hash table entry reset all the directories
    944       1.1       jtc 	 * chained there.
    945       1.1       jtc 	 */
    946       1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
    947       1.1       jtc 		if ((pt = atab[i]) == NULL)
    948       1.1       jtc 			continue;
    949       1.1       jtc 		/*
    950       1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
    951       1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
    952       1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
    953       1.1       jtc 		 */
    954       1.1       jtc 		for (; pt != NULL; pt = pt->fow)
    955       1.1       jtc 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
    956       1.1       jtc 	}
    957       1.1       jtc }
    958       1.1       jtc 
    959       1.1       jtc /*
    960       1.1       jtc  * add_atdir()
    961       1.1       jtc  *	add a directory to the directory access time table. Table is hashed
    962       1.1       jtc  *	and chained by inode number. This is for directories READ by pax
    963       1.1       jtc  */
    964       1.1       jtc 
    965       1.1       jtc void
    966       1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
    967       1.1       jtc {
    968       1.5       tls 	ATDIR *pt;
    969       1.5       tls 	u_int indx;
    970       1.1       jtc 
    971       1.1       jtc 	if (atab == NULL)
    972       1.1       jtc 		return;
    973       1.1       jtc 
    974       1.1       jtc 	/*
    975      1.12     itohy 	 * make sure this directory is not already in the table, if so just
    976       1.1       jtc 	 * return (the older entry always has the correct time). The only
    977       1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
    978       1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
    979  1.17.2.1       jmc 	 * subtree before all the post-order visits have been made.
    980       1.1       jtc 	 */
    981       1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
    982       1.1       jtc 	if ((pt = atab[indx]) != NULL) {
    983       1.1       jtc 		while (pt != NULL) {
    984       1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
    985       1.1       jtc 				break;
    986       1.1       jtc 			pt = pt->fow;
    987       1.1       jtc 		}
    988       1.1       jtc 
    989       1.1       jtc 		/*
    990       1.1       jtc 		 * oops, already there. Leave it alone.
    991       1.1       jtc 		 */
    992       1.1       jtc 		if (pt != NULL)
    993       1.1       jtc 			return;
    994       1.1       jtc 	}
    995       1.1       jtc 
    996       1.1       jtc 	/*
    997       1.1       jtc 	 * add it to the front of the hash chain
    998       1.1       jtc 	 */
    999       1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1000       1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1001       1.1       jtc 			pt->dev = dev;
   1002       1.1       jtc 			pt->ino = ino;
   1003       1.1       jtc 			pt->mtime = mtime;
   1004       1.1       jtc 			pt->atime = atime;
   1005       1.1       jtc 			pt->fow = atab[indx];
   1006       1.1       jtc 			atab[indx] = pt;
   1007       1.1       jtc 			return;
   1008       1.1       jtc 		}
   1009       1.1       jtc 		(void)free((char *)pt);
   1010       1.1       jtc 	}
   1011       1.1       jtc 
   1012       1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1013       1.1       jtc 	return;
   1014       1.1       jtc }
   1015       1.1       jtc 
   1016       1.1       jtc /*
   1017       1.1       jtc  * get_atdir()
   1018       1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1019       1.1       jtc  *	and modification time you want to set to. If found, the modification
   1020       1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1021       1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1022       1.1       jtc  *	pax
   1023       1.1       jtc  * Return:
   1024       1.1       jtc  *	0 if found, -1 if not found.
   1025       1.1       jtc  */
   1026       1.1       jtc 
   1027       1.1       jtc int
   1028       1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1029       1.1       jtc {
   1030       1.5       tls 	ATDIR *pt;
   1031       1.5       tls 	ATDIR **ppt;
   1032       1.5       tls 	u_int indx;
   1033       1.1       jtc 
   1034       1.1       jtc 	if (atab == NULL)
   1035       1.1       jtc 		return(-1);
   1036       1.1       jtc 	/*
   1037       1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1038       1.1       jtc 	 */
   1039       1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1040       1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1041       1.1       jtc 		return(-1);
   1042       1.1       jtc 
   1043       1.1       jtc 	ppt = &(atab[indx]);
   1044       1.1       jtc 	while (pt != NULL) {
   1045       1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1046       1.1       jtc 			break;
   1047       1.1       jtc 		/*
   1048       1.1       jtc 		 * no match, go to next one
   1049       1.1       jtc 		 */
   1050       1.1       jtc 		ppt = &(pt->fow);
   1051       1.1       jtc 		pt = pt->fow;
   1052       1.1       jtc 	}
   1053       1.1       jtc 
   1054       1.1       jtc 	/*
   1055       1.1       jtc 	 * return if we did not find it.
   1056       1.1       jtc 	 */
   1057       1.1       jtc 	if (pt == NULL)
   1058       1.1       jtc 		return(-1);
   1059       1.1       jtc 
   1060       1.1       jtc 	/*
   1061       1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1062       1.1       jtc 	 */
   1063       1.1       jtc 	*ppt = pt->fow;
   1064       1.1       jtc 	*mtime = pt->mtime;
   1065       1.1       jtc 	*atime = pt->atime;
   1066       1.1       jtc 	(void)free((char *)pt->name);
   1067       1.1       jtc 	(void)free((char *)pt);
   1068       1.1       jtc 	return(0);
   1069       1.1       jtc }
   1070       1.1       jtc 
   1071       1.1       jtc /*
   1072       1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1073       1.1       jtc  * by pax).
   1074       1.1       jtc  *
   1075       1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1076       1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1077       1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1078       1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1079       1.1       jtc  * that these directories may have been created with file permissions which
   1080       1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1081       1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1082       1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1083       1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1084       1.1       jtc  * files have been extracted (or copied), these directories have their times
   1085       1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1086       1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1087       1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1088       1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1089       1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1090       1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1091       1.1       jtc  * then the file name.
   1092       1.1       jtc  */
   1093       1.1       jtc 
   1094      1.13   thorpej #ifndef DIRS_USE_FILE
   1095      1.13   thorpej static DIRDATA *dirdata_head;
   1096      1.13   thorpej #endif
   1097      1.13   thorpej 
   1098       1.1       jtc /*
   1099       1.1       jtc  * dir_start()
   1100       1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1101       1.1       jtc  *	by pax.
   1102       1.1       jtc  * Return:
   1103       1.1       jtc  *	0 if ok, -1 otherwise
   1104       1.1       jtc  */
   1105       1.1       jtc 
   1106       1.1       jtc int
   1107       1.1       jtc dir_start(void)
   1108       1.1       jtc {
   1109      1.13   thorpej #ifdef DIRS_USE_FILE
   1110       1.1       jtc 	if (dirfd != -1)
   1111       1.1       jtc 		return(0);
   1112       1.1       jtc 
   1113       1.1       jtc 	/*
   1114       1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1115       1.1       jtc 	 */
   1116  1.17.2.1       jmc 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
   1117  1.17.2.1       jmc 	if ((dirfd = mkstemp(tempfile)) >= 0) {
   1118  1.17.2.1       jmc 		(void)unlink(tempfile);
   1119       1.1       jtc 		return(0);
   1120       1.1       jtc 	}
   1121       1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1122  1.17.2.1       jmc 	    tempfile);
   1123       1.1       jtc 	return(-1);
   1124      1.13   thorpej #else
   1125      1.13   thorpej 	return (0);
   1126      1.13   thorpej #endif /* DIRS_USE_FILE */
   1127       1.1       jtc }
   1128       1.1       jtc 
   1129       1.1       jtc /*
   1130       1.1       jtc  * add_dir()
   1131       1.1       jtc  *	add the mode and times for a newly CREATED directory
   1132       1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1133       1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1134       1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1135      1.12     itohy  *	for the case where we created a file and found that the resulting
   1136  1.17.2.1       jmc  *	directory was not writable and the user asked for file modes to NOT
   1137       1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1138       1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1139       1.1       jtc  *	pax spec)
   1140       1.1       jtc  */
   1141       1.1       jtc 
   1142       1.1       jtc void
   1143       1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1144       1.1       jtc {
   1145      1.13   thorpej #ifdef DIRS_USE_FILE
   1146       1.1       jtc 	DIRDATA dblk;
   1147       1.1       jtc 
   1148       1.1       jtc 	if (dirfd < 0)
   1149       1.1       jtc 		return;
   1150       1.1       jtc 
   1151       1.1       jtc 	/*
   1152       1.1       jtc 	 * get current position (where file name will start) so we can store it
   1153       1.1       jtc 	 * in the trailer
   1154       1.1       jtc 	 */
   1155       1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1156       1.7  christos 		tty_warn(1,
   1157       1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1158       1.1       jtc 		return;
   1159       1.1       jtc 	}
   1160       1.1       jtc 
   1161       1.1       jtc 	/*
   1162       1.1       jtc 	 * write the file name followed by the trailer
   1163       1.1       jtc 	 */
   1164       1.1       jtc 	dblk.nlen = nlen + 1;
   1165       1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1166       1.1       jtc 	dblk.mtime = psb->st_mtime;
   1167       1.1       jtc 	dblk.atime = psb->st_atime;
   1168      1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1169      1.10       mrg 	dblk.fflags = psb->st_flags;
   1170      1.16        tv #else
   1171      1.16        tv 	dblk.fflags = 0;
   1172      1.16        tv #endif
   1173       1.1       jtc 	dblk.frc_mode = frc_mode;
   1174      1.11     itohy 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1175      1.11     itohy 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1176       1.1       jtc 		++dircnt;
   1177       1.1       jtc 		return;
   1178       1.1       jtc 	}
   1179       1.1       jtc 
   1180       1.7  christos 	tty_warn(1,
   1181       1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1182       1.1       jtc 	return;
   1183      1.13   thorpej #else
   1184      1.13   thorpej 	DIRDATA *dblk;
   1185      1.13   thorpej 
   1186      1.13   thorpej 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1187      1.13   thorpej 	    (dblk->name = strdup(name)) == NULL) {
   1188      1.13   thorpej 		tty_warn(1,
   1189      1.13   thorpej 		    "Unable to store mode and times for directory: %s",name);
   1190      1.13   thorpej 		if (dblk != NULL)
   1191      1.13   thorpej 			free(dblk);
   1192      1.13   thorpej 		return;
   1193      1.13   thorpej 	}
   1194      1.13   thorpej 
   1195      1.13   thorpej 	dblk->mode = psb->st_mode & 0xffff;
   1196      1.13   thorpej 	dblk->mtime = psb->st_mtime;
   1197      1.13   thorpej 	dblk->atime = psb->st_atime;
   1198      1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1199      1.13   thorpej 	dblk->fflags = psb->st_flags;
   1200      1.16        tv #else
   1201      1.16        tv 	dblk->fflags = 0;
   1202      1.16        tv #endif
   1203      1.13   thorpej 	dblk->frc_mode = frc_mode;
   1204      1.13   thorpej 
   1205      1.13   thorpej 	dblk->next = dirdata_head;
   1206      1.13   thorpej 	dirdata_head = dblk;
   1207      1.13   thorpej 	return;
   1208      1.13   thorpej #endif /* DIRS_USE_FILE */
   1209       1.1       jtc }
   1210       1.1       jtc 
   1211       1.1       jtc /*
   1212       1.1       jtc  * proc_dir()
   1213       1.1       jtc  *	process all file modes and times stored for directories CREATED
   1214       1.1       jtc  *	by pax
   1215       1.1       jtc  */
   1216       1.1       jtc 
   1217       1.1       jtc void
   1218       1.1       jtc proc_dir(void)
   1219       1.1       jtc {
   1220      1.13   thorpej #ifdef DIRS_USE_FILE
   1221       1.1       jtc 	char name[PAXPATHLEN+1];
   1222       1.1       jtc 	DIRDATA dblk;
   1223       1.1       jtc 	u_long cnt;
   1224       1.1       jtc 
   1225       1.1       jtc 	if (dirfd < 0)
   1226       1.1       jtc 		return;
   1227       1.1       jtc 	/*
   1228       1.1       jtc 	 * read backwards through the file and process each directory
   1229       1.1       jtc 	 */
   1230       1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1231       1.1       jtc 		/*
   1232       1.1       jtc 		 * read the trailer, then the file name, if this fails
   1233       1.1       jtc 		 * just give up.
   1234       1.1       jtc 		 */
   1235      1.12     itohy 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1236       1.1       jtc 			break;
   1237      1.11     itohy 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1238       1.1       jtc 			break;
   1239      1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1240       1.1       jtc 			break;
   1241      1.11     itohy 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1242       1.1       jtc 			break;
   1243      1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1244       1.1       jtc 			break;
   1245       1.1       jtc 
   1246       1.1       jtc 		/*
   1247       1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1248       1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1249       1.1       jtc 		 */
   1250       1.1       jtc 		if (pmode || dblk.frc_mode)
   1251       1.1       jtc 			set_pmode(name, dblk.mode);
   1252       1.1       jtc 		if (patime || pmtime)
   1253       1.1       jtc 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1254      1.10       mrg 		if (pfflags)
   1255      1.10       mrg 			set_chflags(name, dblk.fflags);
   1256       1.1       jtc 	}
   1257       1.1       jtc 
   1258       1.1       jtc 	(void)close(dirfd);
   1259       1.1       jtc 	dirfd = -1;
   1260       1.1       jtc 	if (cnt != dircnt)
   1261       1.7  christos 		tty_warn(1,
   1262       1.7  christos 		    "Unable to set mode and times for created directories");
   1263       1.1       jtc 	return;
   1264      1.13   thorpej #else
   1265      1.13   thorpej 	DIRDATA *dblk;
   1266      1.13   thorpej 
   1267      1.13   thorpej 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1268      1.13   thorpej 		dirdata_head = dblk->next;
   1269      1.13   thorpej 
   1270      1.13   thorpej 		/*
   1271      1.13   thorpej 		 * frc_mode set, make sure we set the file modes even if
   1272      1.13   thorpej 		 * the user didn't ask for it (see file_subs.c for more info)
   1273      1.13   thorpej 		 */
   1274      1.13   thorpej 		if (pmode || dblk->frc_mode)
   1275      1.13   thorpej 			set_pmode(dblk->name, dblk->mode);
   1276      1.13   thorpej 		if (patime || pmtime)
   1277      1.13   thorpej 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
   1278      1.13   thorpej 		if (pfflags)
   1279      1.13   thorpej 			set_chflags(dblk->name, dblk->fflags);
   1280      1.13   thorpej 
   1281      1.13   thorpej 		free(dblk->name);
   1282      1.13   thorpej 		free(dblk);
   1283      1.13   thorpej 	}
   1284      1.13   thorpej #endif /* DIRS_USE_FILE */
   1285       1.1       jtc }
   1286       1.1       jtc 
   1287       1.1       jtc /*
   1288       1.1       jtc  * database independent routines
   1289       1.1       jtc  */
   1290       1.1       jtc 
   1291       1.1       jtc /*
   1292       1.1       jtc  * st_hash()
   1293       1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1294       1.1       jtc  *	end of file, as this provides far better distribution than any other
   1295       1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1296       1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1297       1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1298       1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1299       1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1300       1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1301       1.1       jtc  * Return:
   1302       1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1303       1.1       jtc  */
   1304       1.1       jtc 
   1305       1.1       jtc u_int
   1306       1.1       jtc st_hash(char *name, int len, int tabsz)
   1307       1.1       jtc {
   1308       1.5       tls 	char *pt;
   1309       1.5       tls 	char *dest;
   1310       1.5       tls 	char *end;
   1311       1.5       tls 	int i;
   1312       1.5       tls 	u_int key = 0;
   1313       1.5       tls 	int steps;
   1314       1.5       tls 	int res;
   1315       1.1       jtc 	u_int val;
   1316       1.1       jtc 
   1317       1.1       jtc 	/*
   1318       1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1319       1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1320       1.1       jtc 	 * spread out the keys)
   1321       1.1       jtc 	 */
   1322       1.1       jtc 	if (len > MAXKEYLEN) {
   1323      1.12     itohy 		pt = &(name[len - MAXKEYLEN]);
   1324       1.1       jtc 		len = MAXKEYLEN;
   1325       1.1       jtc 	} else
   1326       1.1       jtc 		pt = name;
   1327       1.1       jtc 
   1328       1.1       jtc 	/*
   1329       1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1330       1.1       jtc 	 * there is a runt to deal with
   1331       1.1       jtc 	 */
   1332       1.1       jtc 	steps = len/sizeof(u_int);
   1333       1.1       jtc 	res = len % sizeof(u_int);
   1334       1.1       jtc 
   1335       1.1       jtc 	/*
   1336       1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1337       1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1338       1.1       jtc 	 * could avoid the expensive copy.
   1339       1.1       jtc 	 */
   1340       1.1       jtc 	for (i = 0; i < steps; ++i) {
   1341       1.1       jtc 		end = pt + sizeof(u_int);
   1342       1.1       jtc 		dest = (char *)&val;
   1343       1.1       jtc 		while (pt < end)
   1344       1.1       jtc 			*dest++ = *pt++;
   1345       1.1       jtc 		key += val;
   1346       1.1       jtc 	}
   1347       1.1       jtc 
   1348       1.1       jtc 	/*
   1349       1.1       jtc 	 * add in the runt padded with zero to the right
   1350       1.1       jtc 	 */
   1351       1.1       jtc 	if (res) {
   1352       1.1       jtc 		val = 0;
   1353       1.1       jtc 		end = pt + res;
   1354       1.1       jtc 		dest = (char *)&val;
   1355       1.1       jtc 		while (pt < end)
   1356       1.1       jtc 			*dest++ = *pt++;
   1357       1.1       jtc 		key += val;
   1358       1.1       jtc 	}
   1359       1.1       jtc 
   1360       1.1       jtc 	/*
   1361       1.1       jtc 	 * return the result mod the table size
   1362       1.1       jtc 	 */
   1363       1.1       jtc 	return(key % tabsz);
   1364       1.1       jtc }
   1365