tables.c revision 1.21 1 1.21 agc /* $NetBSD: tables.c,v 1.21 2003/08/07 09:05:22 agc Exp $ */
2 1.4 cgd
3 1.1 jtc /*-
4 1.1 jtc * Copyright (c) 1992, 1993
5 1.1 jtc * The Regents of the University of California. All rights reserved.
6 1.1 jtc *
7 1.1 jtc * This code is derived from software contributed to Berkeley by
8 1.1 jtc * Keith Muller of the University of California, San Diego.
9 1.1 jtc *
10 1.1 jtc * Redistribution and use in source and binary forms, with or without
11 1.1 jtc * modification, are permitted provided that the following conditions
12 1.1 jtc * are met:
13 1.1 jtc * 1. Redistributions of source code must retain the above copyright
14 1.1 jtc * notice, this list of conditions and the following disclaimer.
15 1.1 jtc * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 jtc * notice, this list of conditions and the following disclaimer in the
17 1.1 jtc * documentation and/or other materials provided with the distribution.
18 1.21 agc * 3. Neither the name of the University nor the names of its contributors
19 1.21 agc * may be used to endorse or promote products derived from this software
20 1.21 agc * without specific prior written permission.
21 1.21 agc *
22 1.21 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.21 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.21 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.21 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.21 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.21 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.21 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.21 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.21 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.21 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.21 agc * SUCH DAMAGE.
33 1.21 agc */
34 1.21 agc
35 1.21 agc /*-
36 1.21 agc * Copyright (c) 1992 Keith Muller.
37 1.21 agc *
38 1.21 agc * This code is derived from software contributed to Berkeley by
39 1.21 agc * Keith Muller of the University of California, San Diego.
40 1.21 agc *
41 1.21 agc * Redistribution and use in source and binary forms, with or without
42 1.21 agc * modification, are permitted provided that the following conditions
43 1.21 agc * are met:
44 1.21 agc * 1. Redistributions of source code must retain the above copyright
45 1.21 agc * notice, this list of conditions and the following disclaimer.
46 1.21 agc * 2. Redistributions in binary form must reproduce the above copyright
47 1.21 agc * notice, this list of conditions and the following disclaimer in the
48 1.21 agc * documentation and/or other materials provided with the distribution.
49 1.1 jtc * 3. All advertising materials mentioning features or use of this software
50 1.1 jtc * must display the following acknowledgement:
51 1.1 jtc * This product includes software developed by the University of
52 1.1 jtc * California, Berkeley and its contributors.
53 1.1 jtc * 4. Neither the name of the University nor the names of its contributors
54 1.1 jtc * may be used to endorse or promote products derived from this software
55 1.1 jtc * without specific prior written permission.
56 1.1 jtc *
57 1.1 jtc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 jtc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 jtc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 jtc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 jtc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 jtc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 jtc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 jtc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 jtc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 jtc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 jtc * SUCH DAMAGE.
68 1.1 jtc */
69 1.1 jtc
70 1.7 christos #include <sys/cdefs.h>
71 1.17 tv #if defined(__RCSID) && !defined(lint)
72 1.4 cgd #if 0
73 1.4 cgd static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
74 1.4 cgd #else
75 1.21 agc __RCSID("$NetBSD: tables.c,v 1.21 2003/08/07 09:05:22 agc Exp $");
76 1.4 cgd #endif
77 1.1 jtc #endif /* not lint */
78 1.1 jtc
79 1.1 jtc #include <sys/types.h>
80 1.1 jtc #include <sys/time.h>
81 1.1 jtc #include <sys/stat.h>
82 1.1 jtc #include <sys/param.h>
83 1.1 jtc #include <stdio.h>
84 1.1 jtc #include <ctype.h>
85 1.8 kleink #include <fcntl.h>
86 1.9 kleink #include <paths.h>
87 1.1 jtc #include <string.h>
88 1.1 jtc #include <unistd.h>
89 1.1 jtc #include <errno.h>
90 1.1 jtc #include <stdlib.h>
91 1.1 jtc #include "pax.h"
92 1.1 jtc #include "tables.h"
93 1.1 jtc #include "extern.h"
94 1.1 jtc
95 1.1 jtc /*
96 1.1 jtc * Routines for controlling the contents of all the different databases pax
97 1.1 jtc * keeps. Tables are dynamically created only when they are needed. The
98 1.1 jtc * goal was speed and the ability to work with HUGE archives. The databases
99 1.1 jtc * were kept simple, but do have complex rules for when the contents change.
100 1.1 jtc * As of this writing, the posix library functions were more complex than
101 1.1 jtc * needed for this application (pax databases have very short lifetimes and
102 1.1 jtc * do not survive after pax is finished). Pax is required to handle very
103 1.1 jtc * large archives. These database routines carefully combine memory usage and
104 1.1 jtc * temporary file storage in ways which will not significantly impact runtime
105 1.1 jtc * performance while allowing the largest possible archives to be handled.
106 1.20 wiz * Trying to force the fit to the posix database routines was not considered
107 1.1 jtc * time well spent.
108 1.1 jtc */
109 1.1 jtc
110 1.1 jtc static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
111 1.1 jtc static FTM **ftab = NULL; /* file time table for updating arch */
112 1.1 jtc static NAMT **ntab = NULL; /* interactive rename storage table */
113 1.1 jtc static DEVT **dtab = NULL; /* device/inode mapping tables */
114 1.1 jtc static ATDIR **atab = NULL; /* file tree directory time reset table */
115 1.13 thorpej #ifdef DIRS_USE_FILE
116 1.1 jtc static int dirfd = -1; /* storage for setting created dir time/mode */
117 1.1 jtc static u_long dircnt; /* entries in dir time/mode storage */
118 1.13 thorpej #endif
119 1.1 jtc static int ffd = -1; /* tmp file for file time table name storage */
120 1.1 jtc
121 1.15 lukem static DEVT *chk_dev(dev_t, int);
122 1.1 jtc
123 1.1 jtc /*
124 1.1 jtc * hard link table routines
125 1.1 jtc *
126 1.12 itohy * The hard link table tries to detect hard links to files using the device and
127 1.1 jtc * inode values. We do this when writing an archive, so we can tell the format
128 1.1 jtc * write routine that this file is a hard link to another file. The format
129 1.1 jtc * write routine then can store this file in whatever way it wants (as a hard
130 1.1 jtc * link if the format supports that like tar, or ignore this info like cpio).
131 1.1 jtc * (Actually a field in the format driver table tells us if the format wants
132 1.1 jtc * hard link info. if not, we do not waste time looking for them). We also use
133 1.1 jtc * the same table when reading an archive. In that situation, this table is
134 1.1 jtc * used by the format read routine to detect hard links from stored dev and
135 1.1 jtc * inode numbers (like cpio). This will allow pax to create a link when one
136 1.1 jtc * can be detected by the archive format.
137 1.1 jtc */
138 1.1 jtc
139 1.1 jtc /*
140 1.1 jtc * lnk_start
141 1.1 jtc * Creates the hard link table.
142 1.1 jtc * Return:
143 1.1 jtc * 0 if created, -1 if failure
144 1.1 jtc */
145 1.1 jtc
146 1.1 jtc int
147 1.1 jtc lnk_start(void)
148 1.1 jtc {
149 1.1 jtc if (ltab != NULL)
150 1.1 jtc return(0);
151 1.12 itohy if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
152 1.12 itohy tty_warn(1, "Cannot allocate memory for hard link table");
153 1.12 itohy return(-1);
154 1.12 itohy }
155 1.1 jtc return(0);
156 1.1 jtc }
157 1.1 jtc
158 1.1 jtc /*
159 1.1 jtc * chk_lnk()
160 1.1 jtc * Looks up entry in hard link hash table. If found, it copies the name
161 1.1 jtc * of the file it is linked to (we already saw that file) into ln_name.
162 1.1 jtc * lnkcnt is decremented and if goes to 1 the node is deleted from the
163 1.1 jtc * database. (We have seen all the links to this file). If not found,
164 1.1 jtc * we add the file to the database if it has the potential for having
165 1.1 jtc * hard links to other files we may process (it has a link count > 1)
166 1.1 jtc * Return:
167 1.1 jtc * if found returns 1; if not found returns 0; -1 on error
168 1.1 jtc */
169 1.1 jtc
170 1.1 jtc int
171 1.5 tls chk_lnk(ARCHD *arcn)
172 1.1 jtc {
173 1.5 tls HRDLNK *pt;
174 1.5 tls HRDLNK **ppt;
175 1.5 tls u_int indx;
176 1.1 jtc
177 1.1 jtc if (ltab == NULL)
178 1.1 jtc return(-1);
179 1.1 jtc /*
180 1.1 jtc * ignore those nodes that cannot have hard links
181 1.1 jtc */
182 1.1 jtc if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
183 1.1 jtc return(0);
184 1.1 jtc
185 1.1 jtc /*
186 1.1 jtc * hash inode number and look for this file
187 1.1 jtc */
188 1.1 jtc indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
189 1.1 jtc if ((pt = ltab[indx]) != NULL) {
190 1.1 jtc /*
191 1.1 jtc * it's hash chain in not empty, walk down looking for it
192 1.1 jtc */
193 1.1 jtc ppt = &(ltab[indx]);
194 1.1 jtc while (pt != NULL) {
195 1.1 jtc if ((pt->ino == arcn->sb.st_ino) &&
196 1.1 jtc (pt->dev == arcn->sb.st_dev))
197 1.1 jtc break;
198 1.1 jtc ppt = &(pt->fow);
199 1.1 jtc pt = pt->fow;
200 1.1 jtc }
201 1.1 jtc
202 1.1 jtc if (pt != NULL) {
203 1.1 jtc /*
204 1.1 jtc * found a link. set the node type and copy in the
205 1.1 jtc * name of the file it is to link to. we need to
206 1.1 jtc * handle hardlinks to regular files differently than
207 1.1 jtc * other links.
208 1.1 jtc */
209 1.18 christos arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
210 1.18 christos sizeof(arcn->ln_name));
211 1.1 jtc if (arcn->type == PAX_REG)
212 1.1 jtc arcn->type = PAX_HRG;
213 1.1 jtc else
214 1.1 jtc arcn->type = PAX_HLK;
215 1.1 jtc
216 1.1 jtc /*
217 1.1 jtc * if we have found all the links to this file, remove
218 1.1 jtc * it from the database
219 1.1 jtc */
220 1.1 jtc if (--pt->nlink <= 1) {
221 1.1 jtc *ppt = pt->fow;
222 1.1 jtc (void)free((char *)pt->name);
223 1.1 jtc (void)free((char *)pt);
224 1.1 jtc }
225 1.1 jtc return(1);
226 1.1 jtc }
227 1.1 jtc }
228 1.1 jtc
229 1.1 jtc /*
230 1.1 jtc * we never saw this file before. It has links so we add it to the
231 1.1 jtc * front of this hash chain
232 1.1 jtc */
233 1.1 jtc if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
234 1.1 jtc if ((pt->name = strdup(arcn->name)) != NULL) {
235 1.1 jtc pt->dev = arcn->sb.st_dev;
236 1.1 jtc pt->ino = arcn->sb.st_ino;
237 1.1 jtc pt->nlink = arcn->sb.st_nlink;
238 1.1 jtc pt->fow = ltab[indx];
239 1.1 jtc ltab[indx] = pt;
240 1.1 jtc return(0);
241 1.1 jtc }
242 1.1 jtc (void)free((char *)pt);
243 1.1 jtc }
244 1.1 jtc
245 1.7 christos tty_warn(1, "Hard link table out of memory");
246 1.1 jtc return(-1);
247 1.1 jtc }
248 1.1 jtc
249 1.1 jtc /*
250 1.1 jtc * purg_lnk
251 1.1 jtc * remove reference for a file that we may have added to the data base as
252 1.1 jtc * a potential source for hard links. We ended up not using the file, so
253 1.1 jtc * we do not want to accidently point another file at it later on.
254 1.1 jtc */
255 1.1 jtc
256 1.1 jtc void
257 1.5 tls purg_lnk(ARCHD *arcn)
258 1.1 jtc {
259 1.5 tls HRDLNK *pt;
260 1.5 tls HRDLNK **ppt;
261 1.5 tls u_int indx;
262 1.1 jtc
263 1.1 jtc if (ltab == NULL)
264 1.1 jtc return;
265 1.1 jtc /*
266 1.1 jtc * do not bother to look if it could not be in the database
267 1.1 jtc */
268 1.1 jtc if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
269 1.1 jtc (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
270 1.1 jtc return;
271 1.1 jtc
272 1.1 jtc /*
273 1.1 jtc * find the hash chain for this inode value, if empty return
274 1.1 jtc */
275 1.1 jtc indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
276 1.1 jtc if ((pt = ltab[indx]) == NULL)
277 1.1 jtc return;
278 1.1 jtc
279 1.1 jtc /*
280 1.1 jtc * walk down the list looking for the inode/dev pair, unlink and
281 1.1 jtc * free if found
282 1.1 jtc */
283 1.1 jtc ppt = &(ltab[indx]);
284 1.1 jtc while (pt != NULL) {
285 1.1 jtc if ((pt->ino == arcn->sb.st_ino) &&
286 1.1 jtc (pt->dev == arcn->sb.st_dev))
287 1.1 jtc break;
288 1.1 jtc ppt = &(pt->fow);
289 1.1 jtc pt = pt->fow;
290 1.1 jtc }
291 1.1 jtc if (pt == NULL)
292 1.1 jtc return;
293 1.1 jtc
294 1.1 jtc /*
295 1.1 jtc * remove and free it
296 1.1 jtc */
297 1.1 jtc *ppt = pt->fow;
298 1.1 jtc (void)free((char *)pt->name);
299 1.1 jtc (void)free((char *)pt);
300 1.1 jtc }
301 1.1 jtc
302 1.1 jtc /*
303 1.1 jtc * lnk_end()
304 1.1 jtc * pull apart a existing link table so we can reuse it. We do this between
305 1.1 jtc * read and write phases of append with update. (The format may have
306 1.1 jtc * used the link table, and we need to start with a fresh table for the
307 1.1 jtc * write phase
308 1.1 jtc */
309 1.1 jtc
310 1.1 jtc void
311 1.1 jtc lnk_end(void)
312 1.1 jtc {
313 1.5 tls int i;
314 1.5 tls HRDLNK *pt;
315 1.5 tls HRDLNK *ppt;
316 1.1 jtc
317 1.1 jtc if (ltab == NULL)
318 1.1 jtc return;
319 1.1 jtc
320 1.1 jtc for (i = 0; i < L_TAB_SZ; ++i) {
321 1.1 jtc if (ltab[i] == NULL)
322 1.1 jtc continue;
323 1.1 jtc pt = ltab[i];
324 1.1 jtc ltab[i] = NULL;
325 1.1 jtc
326 1.1 jtc /*
327 1.1 jtc * free up each entry on this chain
328 1.1 jtc */
329 1.1 jtc while (pt != NULL) {
330 1.1 jtc ppt = pt;
331 1.1 jtc pt = ppt->fow;
332 1.1 jtc (void)free((char *)ppt->name);
333 1.1 jtc (void)free((char *)ppt);
334 1.1 jtc }
335 1.1 jtc }
336 1.1 jtc return;
337 1.1 jtc }
338 1.1 jtc
339 1.1 jtc /*
340 1.1 jtc * modification time table routines
341 1.1 jtc *
342 1.1 jtc * The modification time table keeps track of last modification times for all
343 1.1 jtc * files stored in an archive during a write phase when -u is set. We only
344 1.1 jtc * add a file to the archive if it is newer than a file with the same name
345 1.1 jtc * already stored on the archive (if there is no other file with the same
346 1.1 jtc * name on the archive it is added). This applies to writes and appends.
347 1.1 jtc * An append with an -u must read the archive and store the modification time
348 1.1 jtc * for every file on that archive before starting the write phase. It is clear
349 1.1 jtc * that this is one HUGE database. To save memory space, the actual file names
350 1.20 wiz * are stored in a scratch file and indexed by an in-memory hash table. The
351 1.1 jtc * hash table is indexed by hashing the file path. The nodes in the table store
352 1.12 itohy * the length of the filename and the lseek offset within the scratch file
353 1.20 wiz * where the actual name is stored. Since there are never any deletions from this
354 1.1 jtc * table, fragmentation of the scratch file is never a issue. Lookups seem to
355 1.12 itohy * not exhibit any locality at all (files in the database are rarely
356 1.20 wiz * looked up more than once...), so caching is just a waste of memory. The
357 1.20 wiz * only limitation is the amount of scratch file space available to store the
358 1.1 jtc * path names.
359 1.1 jtc */
360 1.1 jtc
361 1.1 jtc /*
362 1.1 jtc * ftime_start()
363 1.1 jtc * create the file time hash table and open for read/write the scratch
364 1.1 jtc * file. (after created it is unlinked, so when we exit we leave
365 1.1 jtc * no witnesses).
366 1.1 jtc * Return:
367 1.1 jtc * 0 if the table and file was created ok, -1 otherwise
368 1.1 jtc */
369 1.1 jtc
370 1.1 jtc int
371 1.1 jtc ftime_start(void)
372 1.1 jtc {
373 1.1 jtc if (ftab != NULL)
374 1.1 jtc return(0);
375 1.12 itohy if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
376 1.12 itohy tty_warn(1, "Cannot allocate memory for file time table");
377 1.12 itohy return(-1);
378 1.12 itohy }
379 1.1 jtc
380 1.1 jtc /*
381 1.1 jtc * get random name and create temporary scratch file, unlink name
382 1.1 jtc * so it will get removed on exit
383 1.1 jtc */
384 1.18 christos memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
385 1.18 christos if ((ffd = mkstemp(tempfile)) == -1) {
386 1.9 kleink syswarn(1, errno, "Unable to create temporary file: %s",
387 1.18 christos tempfile);
388 1.1 jtc return(-1);
389 1.1 jtc }
390 1.1 jtc
391 1.18 christos (void)unlink(tempfile);
392 1.1 jtc return(0);
393 1.1 jtc }
394 1.1 jtc
395 1.1 jtc /*
396 1.1 jtc * chk_ftime()
397 1.1 jtc * looks up entry in file time hash table. If not found, the file is
398 1.1 jtc * added to the hash table and the file named stored in the scratch file.
399 1.1 jtc * If a file with the same name is found, the file times are compared and
400 1.1 jtc * the most recent file time is retained. If the new file was younger (or
401 1.1 jtc * was not in the database) the new file is selected for storage.
402 1.1 jtc * Return:
403 1.1 jtc * 0 if file should be added to the archive, 1 if it should be skipped,
404 1.1 jtc * -1 on error
405 1.1 jtc */
406 1.1 jtc
407 1.1 jtc int
408 1.5 tls chk_ftime(ARCHD *arcn)
409 1.1 jtc {
410 1.5 tls FTM *pt;
411 1.5 tls int namelen;
412 1.5 tls u_int indx;
413 1.1 jtc char ckname[PAXPATHLEN+1];
414 1.1 jtc
415 1.1 jtc /*
416 1.1 jtc * no info, go ahead and add to archive
417 1.1 jtc */
418 1.1 jtc if (ftab == NULL)
419 1.1 jtc return(0);
420 1.1 jtc
421 1.1 jtc /*
422 1.1 jtc * hash the pathname and look up in table
423 1.1 jtc */
424 1.1 jtc namelen = arcn->nlen;
425 1.1 jtc indx = st_hash(arcn->name, namelen, F_TAB_SZ);
426 1.1 jtc if ((pt = ftab[indx]) != NULL) {
427 1.1 jtc /*
428 1.1 jtc * the hash chain is not empty, walk down looking for match
429 1.1 jtc * only read up the path names if the lengths match, speeds
430 1.1 jtc * up the search a lot
431 1.1 jtc */
432 1.1 jtc while (pt != NULL) {
433 1.1 jtc if (pt->namelen == namelen) {
434 1.1 jtc /*
435 1.1 jtc * potential match, have to read the name
436 1.1 jtc * from the scratch file.
437 1.1 jtc */
438 1.1 jtc if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
439 1.1 jtc syswarn(1, errno,
440 1.1 jtc "Failed ftime table seek");
441 1.1 jtc return(-1);
442 1.1 jtc }
443 1.11 itohy if (xread(ffd, ckname, namelen) != namelen) {
444 1.1 jtc syswarn(1, errno,
445 1.1 jtc "Failed ftime table read");
446 1.1 jtc return(-1);
447 1.1 jtc }
448 1.1 jtc
449 1.1 jtc /*
450 1.1 jtc * if the names match, we are done
451 1.1 jtc */
452 1.1 jtc if (!strncmp(ckname, arcn->name, namelen))
453 1.1 jtc break;
454 1.1 jtc }
455 1.1 jtc
456 1.1 jtc /*
457 1.1 jtc * try the next entry on the chain
458 1.1 jtc */
459 1.1 jtc pt = pt->fow;
460 1.1 jtc }
461 1.1 jtc
462 1.1 jtc if (pt != NULL) {
463 1.1 jtc /*
464 1.1 jtc * found the file, compare the times, save the newer
465 1.1 jtc */
466 1.1 jtc if (arcn->sb.st_mtime > pt->mtime) {
467 1.1 jtc /*
468 1.1 jtc * file is newer
469 1.1 jtc */
470 1.1 jtc pt->mtime = arcn->sb.st_mtime;
471 1.1 jtc return(0);
472 1.12 itohy }
473 1.1 jtc /*
474 1.1 jtc * file is older
475 1.1 jtc */
476 1.1 jtc return(1);
477 1.1 jtc }
478 1.1 jtc }
479 1.1 jtc
480 1.1 jtc /*
481 1.1 jtc * not in table, add it
482 1.1 jtc */
483 1.1 jtc if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
484 1.1 jtc /*
485 1.1 jtc * add the name at the end of the scratch file, saving the
486 1.1 jtc * offset. add the file to the head of the hash chain
487 1.1 jtc */
488 1.1 jtc if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
489 1.11 itohy if (xwrite(ffd, arcn->name, namelen) == namelen) {
490 1.1 jtc pt->mtime = arcn->sb.st_mtime;
491 1.1 jtc pt->namelen = namelen;
492 1.1 jtc pt->fow = ftab[indx];
493 1.1 jtc ftab[indx] = pt;
494 1.1 jtc return(0);
495 1.1 jtc }
496 1.1 jtc syswarn(1, errno, "Failed write to file time table");
497 1.12 itohy } else
498 1.1 jtc syswarn(1, errno, "Failed seek on file time table");
499 1.1 jtc } else
500 1.7 christos tty_warn(1, "File time table ran out of memory");
501 1.1 jtc
502 1.1 jtc if (pt != NULL)
503 1.1 jtc (void)free((char *)pt);
504 1.1 jtc return(-1);
505 1.1 jtc }
506 1.1 jtc
507 1.1 jtc /*
508 1.1 jtc * Interactive rename table routines
509 1.1 jtc *
510 1.1 jtc * The interactive rename table keeps track of the new names that the user
511 1.12 itohy * assigns to files from tty input. Since this map is unique for each file
512 1.1 jtc * we must store it in case there is a reference to the file later in archive
513 1.1 jtc * (a link). Otherwise we will be unable to find the file we know was
514 1.1 jtc * extracted. The remapping of these files is stored in a memory based hash
515 1.1 jtc * table (it is assumed since input must come from /dev/tty, it is unlikely to
516 1.1 jtc * be a very large table).
517 1.1 jtc */
518 1.1 jtc
519 1.1 jtc /*
520 1.1 jtc * name_start()
521 1.1 jtc * create the interactive rename table
522 1.1 jtc * Return:
523 1.1 jtc * 0 if successful, -1 otherwise
524 1.1 jtc */
525 1.1 jtc
526 1.1 jtc int
527 1.1 jtc name_start(void)
528 1.1 jtc {
529 1.1 jtc if (ntab != NULL)
530 1.1 jtc return(0);
531 1.12 itohy if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
532 1.12 itohy tty_warn(1,
533 1.7 christos "Cannot allocate memory for interactive rename table");
534 1.12 itohy return(-1);
535 1.12 itohy }
536 1.1 jtc return(0);
537 1.1 jtc }
538 1.1 jtc
539 1.1 jtc /*
540 1.1 jtc * add_name()
541 1.1 jtc * add the new name to old name mapping just created by the user.
542 1.1 jtc * If an old name mapping is found (there may be duplicate names on an
543 1.1 jtc * archive) only the most recent is kept.
544 1.1 jtc * Return:
545 1.1 jtc * 0 if added, -1 otherwise
546 1.1 jtc */
547 1.1 jtc
548 1.1 jtc int
549 1.5 tls add_name(char *oname, int onamelen, char *nname)
550 1.1 jtc {
551 1.5 tls NAMT *pt;
552 1.5 tls u_int indx;
553 1.1 jtc
554 1.1 jtc if (ntab == NULL) {
555 1.1 jtc /*
556 1.1 jtc * should never happen
557 1.1 jtc */
558 1.7 christos tty_warn(0, "No interactive rename table, links may fail\n");
559 1.12 itohy return(0);
560 1.1 jtc }
561 1.1 jtc
562 1.1 jtc /*
563 1.1 jtc * look to see if we have already mapped this file, if so we
564 1.1 jtc * will update it
565 1.1 jtc */
566 1.1 jtc indx = st_hash(oname, onamelen, N_TAB_SZ);
567 1.1 jtc if ((pt = ntab[indx]) != NULL) {
568 1.1 jtc /*
569 1.1 jtc * look down the has chain for the file
570 1.1 jtc */
571 1.1 jtc while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
572 1.1 jtc pt = pt->fow;
573 1.1 jtc
574 1.1 jtc if (pt != NULL) {
575 1.1 jtc /*
576 1.1 jtc * found an old mapping, replace it with the new one
577 1.1 jtc * the user just input (if it is different)
578 1.1 jtc */
579 1.1 jtc if (strcmp(nname, pt->nname) == 0)
580 1.1 jtc return(0);
581 1.1 jtc
582 1.1 jtc (void)free((char *)pt->nname);
583 1.1 jtc if ((pt->nname = strdup(nname)) == NULL) {
584 1.7 christos tty_warn(1, "Cannot update rename table");
585 1.1 jtc return(-1);
586 1.1 jtc }
587 1.1 jtc return(0);
588 1.1 jtc }
589 1.1 jtc }
590 1.1 jtc
591 1.1 jtc /*
592 1.1 jtc * this is a new mapping, add it to the table
593 1.1 jtc */
594 1.1 jtc if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
595 1.1 jtc if ((pt->oname = strdup(oname)) != NULL) {
596 1.1 jtc if ((pt->nname = strdup(nname)) != NULL) {
597 1.1 jtc pt->fow = ntab[indx];
598 1.1 jtc ntab[indx] = pt;
599 1.1 jtc return(0);
600 1.1 jtc }
601 1.1 jtc (void)free((char *)pt->oname);
602 1.1 jtc }
603 1.1 jtc (void)free((char *)pt);
604 1.1 jtc }
605 1.7 christos tty_warn(1, "Interactive rename table out of memory");
606 1.1 jtc return(-1);
607 1.1 jtc }
608 1.1 jtc
609 1.1 jtc /*
610 1.1 jtc * sub_name()
611 1.1 jtc * look up a link name to see if it points at a file that has been
612 1.1 jtc * remapped by the user. If found, the link is adjusted to contain the
613 1.1 jtc * new name (oname is the link to name)
614 1.1 jtc */
615 1.1 jtc
616 1.1 jtc void
617 1.18 christos sub_name(char *oname, int *onamelen, size_t onamesize)
618 1.1 jtc {
619 1.5 tls NAMT *pt;
620 1.5 tls u_int indx;
621 1.1 jtc
622 1.1 jtc if (ntab == NULL)
623 1.1 jtc return;
624 1.1 jtc /*
625 1.1 jtc * look the name up in the hash table
626 1.1 jtc */
627 1.1 jtc indx = st_hash(oname, *onamelen, N_TAB_SZ);
628 1.1 jtc if ((pt = ntab[indx]) == NULL)
629 1.1 jtc return;
630 1.1 jtc
631 1.1 jtc while (pt != NULL) {
632 1.1 jtc /*
633 1.14 lukem * walk down the hash chain looking for a match
634 1.1 jtc */
635 1.1 jtc if (strcmp(oname, pt->oname) == 0) {
636 1.1 jtc /*
637 1.1 jtc * found it, replace it with the new name
638 1.1 jtc * and return (we know that oname has enough space)
639 1.1 jtc */
640 1.18 christos *onamelen = strlcpy(oname, pt->nname, onamesize);
641 1.1 jtc return;
642 1.1 jtc }
643 1.1 jtc pt = pt->fow;
644 1.1 jtc }
645 1.1 jtc
646 1.1 jtc /*
647 1.1 jtc * no match, just return
648 1.1 jtc */
649 1.1 jtc return;
650 1.1 jtc }
651 1.12 itohy
652 1.1 jtc /*
653 1.1 jtc * device/inode mapping table routines
654 1.1 jtc * (used with formats that store device and inodes fields)
655 1.1 jtc *
656 1.1 jtc * device/inode mapping tables remap the device field in a archive header. The
657 1.1 jtc * device/inode fields are used to determine when files are hard links to each
658 1.1 jtc * other. However these values have very little meaning outside of that. This
659 1.1 jtc * database is used to solve one of two different problems.
660 1.1 jtc *
661 1.1 jtc * 1) when files are appended to an archive, while the new files may have hard
662 1.1 jtc * links to each other, you cannot determine if they have hard links to any
663 1.1 jtc * file already stored on the archive from a prior run of pax. We must assume
664 1.1 jtc * that these inode/device pairs are unique only within a SINGLE run of pax
665 1.1 jtc * (which adds a set of files to an archive). So we have to make sure the
666 1.1 jtc * inode/dev pairs we add each time are always unique. We do this by observing
667 1.1 jtc * while the inode field is very dense, the use of the dev field is fairly
668 1.1 jtc * sparse. Within each run of pax, we remap any device number of a new archive
669 1.1 jtc * member that has a device number used in a prior run and already stored in a
670 1.1 jtc * file on the archive. During the read phase of the append, we store the
671 1.1 jtc * device numbers used and mark them to not be used by any file during the
672 1.1 jtc * write phase. If during write we go to use one of those old device numbers,
673 1.1 jtc * we remap it to a new value.
674 1.1 jtc *
675 1.1 jtc * 2) Often the fields in the archive header used to store these values are
676 1.1 jtc * too small to store the entire value. The result is an inode or device value
677 1.1 jtc * which can be truncated. This really can foul up an archive. With truncation
678 1.1 jtc * we end up creating links between files that are really not links (after
679 1.1 jtc * truncation the inodes are the same value). We address that by detecting
680 1.1 jtc * truncation and forcing a remap of the device field to split truncated
681 1.1 jtc * inodes away from each other. Each truncation creates a pattern of bits that
682 1.1 jtc * are removed. We use this pattern of truncated bits to partition the inodes
683 1.1 jtc * on a single device to many different devices (each one represented by the
684 1.1 jtc * truncated bit pattern). All inodes on the same device that have the same
685 1.1 jtc * truncation pattern are mapped to the same new device. Two inodes that
686 1.1 jtc * truncate to the same value clearly will always have different truncation
687 1.1 jtc * bit patterns, so they will be split from away each other. When we spot
688 1.1 jtc * device truncation we remap the device number to a non truncated value.
689 1.1 jtc * (for more info see table.h for the data structures involved).
690 1.1 jtc */
691 1.1 jtc
692 1.1 jtc /*
693 1.1 jtc * dev_start()
694 1.1 jtc * create the device mapping table
695 1.1 jtc * Return:
696 1.1 jtc * 0 if successful, -1 otherwise
697 1.1 jtc */
698 1.1 jtc
699 1.1 jtc int
700 1.1 jtc dev_start(void)
701 1.1 jtc {
702 1.1 jtc if (dtab != NULL)
703 1.1 jtc return(0);
704 1.12 itohy if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
705 1.12 itohy tty_warn(1, "Cannot allocate memory for device mapping table");
706 1.12 itohy return(-1);
707 1.12 itohy }
708 1.1 jtc return(0);
709 1.1 jtc }
710 1.1 jtc
711 1.1 jtc /*
712 1.1 jtc * add_dev()
713 1.1 jtc * add a device number to the table. this will force the device to be
714 1.1 jtc * remapped to a new value if it be used during a write phase. This
715 1.1 jtc * function is called during the read phase of an append to prohibit the
716 1.1 jtc * use of any device number already in the archive.
717 1.1 jtc * Return:
718 1.1 jtc * 0 if added ok, -1 otherwise
719 1.1 jtc */
720 1.1 jtc
721 1.1 jtc int
722 1.5 tls add_dev(ARCHD *arcn)
723 1.1 jtc {
724 1.1 jtc if (chk_dev(arcn->sb.st_dev, 1) == NULL)
725 1.1 jtc return(-1);
726 1.1 jtc return(0);
727 1.1 jtc }
728 1.1 jtc
729 1.1 jtc /*
730 1.1 jtc * chk_dev()
731 1.1 jtc * check for a device value in the device table. If not found and the add
732 1.1 jtc * flag is set, it is added. This does NOT assign any mapping values, just
733 1.1 jtc * adds the device number as one that need to be remapped. If this device
734 1.12 itohy * is already mapped, just return with a pointer to that entry.
735 1.1 jtc * Return:
736 1.1 jtc * pointer to the entry for this device in the device map table. Null
737 1.1 jtc * if the add flag is not set and the device is not in the table (it is
738 1.1 jtc * not been seen yet). If add is set and the device cannot be added, null
739 1.1 jtc * is returned (indicates an error).
740 1.1 jtc */
741 1.1 jtc
742 1.1 jtc static DEVT *
743 1.1 jtc chk_dev(dev_t dev, int add)
744 1.1 jtc {
745 1.5 tls DEVT *pt;
746 1.5 tls u_int indx;
747 1.1 jtc
748 1.1 jtc if (dtab == NULL)
749 1.1 jtc return(NULL);
750 1.1 jtc /*
751 1.1 jtc * look to see if this device is already in the table
752 1.1 jtc */
753 1.1 jtc indx = ((unsigned)dev) % D_TAB_SZ;
754 1.1 jtc if ((pt = dtab[indx]) != NULL) {
755 1.1 jtc while ((pt != NULL) && (pt->dev != dev))
756 1.1 jtc pt = pt->fow;
757 1.1 jtc
758 1.1 jtc /*
759 1.1 jtc * found it, return a pointer to it
760 1.1 jtc */
761 1.1 jtc if (pt != NULL)
762 1.1 jtc return(pt);
763 1.1 jtc }
764 1.1 jtc
765 1.1 jtc /*
766 1.1 jtc * not in table, we add it only if told to as this may just be a check
767 1.1 jtc * to see if a device number is being used.
768 1.1 jtc */
769 1.1 jtc if (add == 0)
770 1.1 jtc return(NULL);
771 1.1 jtc
772 1.1 jtc /*
773 1.1 jtc * allocate a node for this device and add it to the front of the hash
774 1.1 jtc * chain. Note we do not assign remaps values here, so the pt->list
775 1.1 jtc * list must be NULL.
776 1.1 jtc */
777 1.1 jtc if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
778 1.7 christos tty_warn(1, "Device map table out of memory");
779 1.1 jtc return(NULL);
780 1.1 jtc }
781 1.1 jtc pt->dev = dev;
782 1.1 jtc pt->list = NULL;
783 1.1 jtc pt->fow = dtab[indx];
784 1.1 jtc dtab[indx] = pt;
785 1.1 jtc return(pt);
786 1.1 jtc }
787 1.1 jtc /*
788 1.1 jtc * map_dev()
789 1.1 jtc * given an inode and device storage mask (the mask has a 1 for each bit
790 1.1 jtc * the archive format is able to store in a header), we check for inode
791 1.1 jtc * and device truncation and remap the device as required. Device mapping
792 1.1 jtc * can also occur when during the read phase of append a device number was
793 1.1 jtc * seen (and was marked as do not use during the write phase). WE ASSUME
794 1.1 jtc * that unsigned longs are the same size or bigger than the fields used
795 1.1 jtc * for ino_t and dev_t. If not the types will have to be changed.
796 1.1 jtc * Return:
797 1.1 jtc * 0 if all ok, -1 otherwise.
798 1.1 jtc */
799 1.1 jtc
800 1.1 jtc int
801 1.5 tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
802 1.1 jtc {
803 1.5 tls DEVT *pt;
804 1.5 tls DLIST *dpt;
805 1.1 jtc static dev_t lastdev = 0; /* next device number to try */
806 1.1 jtc int trc_ino = 0;
807 1.1 jtc int trc_dev = 0;
808 1.1 jtc ino_t trunc_bits = 0;
809 1.1 jtc ino_t nino;
810 1.1 jtc
811 1.1 jtc if (dtab == NULL)
812 1.1 jtc return(0);
813 1.1 jtc /*
814 1.1 jtc * check for device and inode truncation, and extract the truncated
815 1.12 itohy * bit pattern.
816 1.1 jtc */
817 1.1 jtc if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
818 1.1 jtc ++trc_dev;
819 1.1 jtc if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
820 1.1 jtc ++trc_ino;
821 1.1 jtc trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
822 1.1 jtc }
823 1.1 jtc
824 1.1 jtc /*
825 1.1 jtc * see if this device is already being mapped, look up the device
826 1.1 jtc * then find the truncation bit pattern which applies
827 1.1 jtc */
828 1.1 jtc if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
829 1.1 jtc /*
830 1.1 jtc * this device is already marked to be remapped
831 1.1 jtc */
832 1.1 jtc for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
833 1.1 jtc if (dpt->trunc_bits == trunc_bits)
834 1.1 jtc break;
835 1.1 jtc
836 1.1 jtc if (dpt != NULL) {
837 1.1 jtc /*
838 1.1 jtc * we are being remapped for this device and pattern
839 1.1 jtc * change the device number to be stored and return
840 1.1 jtc */
841 1.1 jtc arcn->sb.st_dev = dpt->dev;
842 1.1 jtc arcn->sb.st_ino = nino;
843 1.1 jtc return(0);
844 1.1 jtc }
845 1.1 jtc } else {
846 1.1 jtc /*
847 1.1 jtc * this device is not being remapped YET. if we do not have any
848 1.1 jtc * form of truncation, we do not need a remap
849 1.1 jtc */
850 1.1 jtc if (!trc_ino && !trc_dev)
851 1.1 jtc return(0);
852 1.1 jtc
853 1.1 jtc /*
854 1.1 jtc * we have truncation, have to add this as a device to remap
855 1.1 jtc */
856 1.1 jtc if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
857 1.1 jtc goto bad;
858 1.1 jtc
859 1.1 jtc /*
860 1.1 jtc * if we just have a truncated inode, we have to make sure that
861 1.1 jtc * all future inodes that do not truncate (they have the
862 1.1 jtc * truncation pattern of all 0's) continue to map to the same
863 1.1 jtc * device number. We probably have already written inodes with
864 1.1 jtc * this device number to the archive with the truncation
865 1.1 jtc * pattern of all 0's. So we add the mapping for all 0's to the
866 1.1 jtc * same device number.
867 1.1 jtc */
868 1.1 jtc if (!trc_dev && (trunc_bits != 0)) {
869 1.1 jtc if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
870 1.1 jtc goto bad;
871 1.1 jtc dpt->trunc_bits = 0;
872 1.1 jtc dpt->dev = arcn->sb.st_dev;
873 1.1 jtc dpt->fow = pt->list;
874 1.1 jtc pt->list = dpt;
875 1.1 jtc }
876 1.1 jtc }
877 1.1 jtc
878 1.1 jtc /*
879 1.1 jtc * look for a device number not being used. We must watch for wrap
880 1.1 jtc * around on lastdev (so we do not get stuck looking forever!)
881 1.1 jtc */
882 1.1 jtc while (++lastdev > 0) {
883 1.1 jtc if (chk_dev(lastdev, 0) != NULL)
884 1.1 jtc continue;
885 1.1 jtc /*
886 1.1 jtc * found an unused value. If we have reached truncation point
887 1.1 jtc * for this format we are hosed, so we give up. Otherwise we
888 1.1 jtc * mark it as being used.
889 1.1 jtc */
890 1.1 jtc if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
891 1.1 jtc (chk_dev(lastdev, 1) == NULL))
892 1.1 jtc goto bad;
893 1.1 jtc break;
894 1.1 jtc }
895 1.1 jtc
896 1.1 jtc if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
897 1.1 jtc goto bad;
898 1.1 jtc
899 1.1 jtc /*
900 1.1 jtc * got a new device number, store it under this truncation pattern.
901 1.1 jtc * change the device number this file is being stored with.
902 1.1 jtc */
903 1.1 jtc dpt->trunc_bits = trunc_bits;
904 1.1 jtc dpt->dev = lastdev;
905 1.1 jtc dpt->fow = pt->list;
906 1.1 jtc pt->list = dpt;
907 1.1 jtc arcn->sb.st_dev = lastdev;
908 1.1 jtc arcn->sb.st_ino = nino;
909 1.1 jtc return(0);
910 1.1 jtc
911 1.1 jtc bad:
912 1.7 christos tty_warn(1,
913 1.7 christos "Unable to fix truncated inode/device field when storing %s",
914 1.1 jtc arcn->name);
915 1.7 christos tty_warn(0, "Archive may create improper hard links when extracted");
916 1.1 jtc return(0);
917 1.1 jtc }
918 1.1 jtc
919 1.1 jtc /*
920 1.1 jtc * directory access/mod time reset table routines (for directories READ by pax)
921 1.1 jtc *
922 1.1 jtc * The pax -t flag requires that access times of archive files to be the same
923 1.20 wiz * as before being read by pax. For regular files, access time is restored after
924 1.1 jtc * the file has been copied. This database provides the same functionality for
925 1.1 jtc * directories read during file tree traversal. Restoring directory access time
926 1.1 jtc * is more complex than files since directories may be read several times until
927 1.1 jtc * all the descendants in their subtree are visited by fts. Directory access
928 1.1 jtc * and modification times are stored during the fts pre-order visit (done
929 1.1 jtc * before any descendants in the subtree is visited) and restored after the
930 1.1 jtc * fts post-order visit (after all the descendants have been visited). In the
931 1.1 jtc * case of premature exit from a subtree (like from the effects of -n), any
932 1.1 jtc * directory entries left in this database are reset during final cleanup
933 1.1 jtc * operations of pax. Entries are hashed by inode number for fast lookup.
934 1.1 jtc */
935 1.1 jtc
936 1.1 jtc /*
937 1.1 jtc * atdir_start()
938 1.1 jtc * create the directory access time database for directories READ by pax.
939 1.1 jtc * Return:
940 1.1 jtc * 0 is created ok, -1 otherwise.
941 1.1 jtc */
942 1.1 jtc
943 1.1 jtc int
944 1.1 jtc atdir_start(void)
945 1.1 jtc {
946 1.1 jtc if (atab != NULL)
947 1.1 jtc return(0);
948 1.12 itohy if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
949 1.12 itohy tty_warn(1,
950 1.7 christos "Cannot allocate space for directory access time table");
951 1.12 itohy return(-1);
952 1.12 itohy }
953 1.1 jtc return(0);
954 1.1 jtc }
955 1.1 jtc
956 1.1 jtc
957 1.1 jtc /*
958 1.1 jtc * atdir_end()
959 1.1 jtc * walk through the directory access time table and reset the access time
960 1.1 jtc * of any directory who still has an entry left in the database. These
961 1.1 jtc * entries are for directories READ by pax
962 1.1 jtc */
963 1.1 jtc
964 1.1 jtc void
965 1.1 jtc atdir_end(void)
966 1.1 jtc {
967 1.5 tls ATDIR *pt;
968 1.5 tls int i;
969 1.1 jtc
970 1.1 jtc if (atab == NULL)
971 1.1 jtc return;
972 1.1 jtc /*
973 1.1 jtc * for each non-empty hash table entry reset all the directories
974 1.1 jtc * chained there.
975 1.1 jtc */
976 1.1 jtc for (i = 0; i < A_TAB_SZ; ++i) {
977 1.1 jtc if ((pt = atab[i]) == NULL)
978 1.1 jtc continue;
979 1.1 jtc /*
980 1.1 jtc * remember to force the times, set_ftime() looks at pmtime
981 1.1 jtc * and patime, which only applies to things CREATED by pax,
982 1.1 jtc * not read by pax. Read time reset is controlled by -t.
983 1.1 jtc */
984 1.1 jtc for (; pt != NULL; pt = pt->fow)
985 1.1 jtc set_ftime(pt->name, pt->mtime, pt->atime, 1);
986 1.1 jtc }
987 1.1 jtc }
988 1.1 jtc
989 1.1 jtc /*
990 1.1 jtc * add_atdir()
991 1.1 jtc * add a directory to the directory access time table. Table is hashed
992 1.1 jtc * and chained by inode number. This is for directories READ by pax
993 1.1 jtc */
994 1.1 jtc
995 1.1 jtc void
996 1.1 jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
997 1.1 jtc {
998 1.5 tls ATDIR *pt;
999 1.5 tls u_int indx;
1000 1.1 jtc
1001 1.1 jtc if (atab == NULL)
1002 1.1 jtc return;
1003 1.1 jtc
1004 1.1 jtc /*
1005 1.12 itohy * make sure this directory is not already in the table, if so just
1006 1.1 jtc * return (the older entry always has the correct time). The only
1007 1.1 jtc * way this will happen is when the same subtree can be traversed by
1008 1.1 jtc * different args to pax and the -n option is aborting fts out of a
1009 1.20 wiz * subtree before all the post-order visits have been made.
1010 1.1 jtc */
1011 1.1 jtc indx = ((unsigned)ino) % A_TAB_SZ;
1012 1.1 jtc if ((pt = atab[indx]) != NULL) {
1013 1.1 jtc while (pt != NULL) {
1014 1.1 jtc if ((pt->ino == ino) && (pt->dev == dev))
1015 1.1 jtc break;
1016 1.1 jtc pt = pt->fow;
1017 1.1 jtc }
1018 1.1 jtc
1019 1.1 jtc /*
1020 1.1 jtc * oops, already there. Leave it alone.
1021 1.1 jtc */
1022 1.1 jtc if (pt != NULL)
1023 1.1 jtc return;
1024 1.1 jtc }
1025 1.1 jtc
1026 1.1 jtc /*
1027 1.1 jtc * add it to the front of the hash chain
1028 1.1 jtc */
1029 1.1 jtc if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1030 1.1 jtc if ((pt->name = strdup(fname)) != NULL) {
1031 1.1 jtc pt->dev = dev;
1032 1.1 jtc pt->ino = ino;
1033 1.1 jtc pt->mtime = mtime;
1034 1.1 jtc pt->atime = atime;
1035 1.1 jtc pt->fow = atab[indx];
1036 1.1 jtc atab[indx] = pt;
1037 1.1 jtc return;
1038 1.1 jtc }
1039 1.1 jtc (void)free((char *)pt);
1040 1.1 jtc }
1041 1.1 jtc
1042 1.7 christos tty_warn(1, "Directory access time reset table ran out of memory");
1043 1.1 jtc return;
1044 1.1 jtc }
1045 1.1 jtc
1046 1.1 jtc /*
1047 1.1 jtc * get_atdir()
1048 1.1 jtc * look up a directory by inode and device number to obtain the access
1049 1.1 jtc * and modification time you want to set to. If found, the modification
1050 1.1 jtc * and access time parameters are set and the entry is removed from the
1051 1.1 jtc * table (as it is no longer needed). These are for directories READ by
1052 1.1 jtc * pax
1053 1.1 jtc * Return:
1054 1.1 jtc * 0 if found, -1 if not found.
1055 1.1 jtc */
1056 1.1 jtc
1057 1.1 jtc int
1058 1.1 jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1059 1.1 jtc {
1060 1.5 tls ATDIR *pt;
1061 1.5 tls ATDIR **ppt;
1062 1.5 tls u_int indx;
1063 1.1 jtc
1064 1.1 jtc if (atab == NULL)
1065 1.1 jtc return(-1);
1066 1.1 jtc /*
1067 1.1 jtc * hash by inode and search the chain for an inode and device match
1068 1.1 jtc */
1069 1.1 jtc indx = ((unsigned)ino) % A_TAB_SZ;
1070 1.1 jtc if ((pt = atab[indx]) == NULL)
1071 1.1 jtc return(-1);
1072 1.1 jtc
1073 1.1 jtc ppt = &(atab[indx]);
1074 1.1 jtc while (pt != NULL) {
1075 1.1 jtc if ((pt->ino == ino) && (pt->dev == dev))
1076 1.1 jtc break;
1077 1.1 jtc /*
1078 1.1 jtc * no match, go to next one
1079 1.1 jtc */
1080 1.1 jtc ppt = &(pt->fow);
1081 1.1 jtc pt = pt->fow;
1082 1.1 jtc }
1083 1.1 jtc
1084 1.1 jtc /*
1085 1.1 jtc * return if we did not find it.
1086 1.1 jtc */
1087 1.1 jtc if (pt == NULL)
1088 1.1 jtc return(-1);
1089 1.1 jtc
1090 1.1 jtc /*
1091 1.1 jtc * found it. return the times and remove the entry from the table.
1092 1.1 jtc */
1093 1.1 jtc *ppt = pt->fow;
1094 1.1 jtc *mtime = pt->mtime;
1095 1.1 jtc *atime = pt->atime;
1096 1.1 jtc (void)free((char *)pt->name);
1097 1.1 jtc (void)free((char *)pt);
1098 1.1 jtc return(0);
1099 1.1 jtc }
1100 1.1 jtc
1101 1.1 jtc /*
1102 1.1 jtc * directory access mode and time storage routines (for directories CREATED
1103 1.1 jtc * by pax).
1104 1.1 jtc *
1105 1.1 jtc * Pax requires that extracted directories, by default, have their access/mod
1106 1.1 jtc * times and permissions set to the values specified in the archive. During the
1107 1.1 jtc * actions of extracting (and creating the destination subtree during -rw copy)
1108 1.1 jtc * directories extracted may be modified after being created. Even worse is
1109 1.1 jtc * that these directories may have been created with file permissions which
1110 1.1 jtc * prohibits any descendants of these directories from being extracted. When
1111 1.1 jtc * directories are created by pax, access rights may be added to permit the
1112 1.1 jtc * creation of files in their subtree. Every time pax creates a directory, the
1113 1.1 jtc * times and file permissions specified by the archive are stored. After all
1114 1.1 jtc * files have been extracted (or copied), these directories have their times
1115 1.1 jtc * and file modes reset to the stored values. The directory info is restored in
1116 1.1 jtc * reverse order as entries were added to the data file from root to leaf. To
1117 1.1 jtc * restore atime properly, we must go backwards. The data file consists of
1118 1.1 jtc * records with two parts, the file name followed by a DIRDATA trailer. The
1119 1.1 jtc * fixed sized trailer contains the size of the name plus the off_t location in
1120 1.1 jtc * the file. To restore we work backwards through the file reading the trailer
1121 1.1 jtc * then the file name.
1122 1.1 jtc */
1123 1.1 jtc
1124 1.13 thorpej #ifndef DIRS_USE_FILE
1125 1.13 thorpej static DIRDATA *dirdata_head;
1126 1.13 thorpej #endif
1127 1.13 thorpej
1128 1.1 jtc /*
1129 1.1 jtc * dir_start()
1130 1.1 jtc * set up the directory time and file mode storage for directories CREATED
1131 1.1 jtc * by pax.
1132 1.1 jtc * Return:
1133 1.1 jtc * 0 if ok, -1 otherwise
1134 1.1 jtc */
1135 1.1 jtc
1136 1.1 jtc int
1137 1.1 jtc dir_start(void)
1138 1.1 jtc {
1139 1.13 thorpej #ifdef DIRS_USE_FILE
1140 1.1 jtc if (dirfd != -1)
1141 1.1 jtc return(0);
1142 1.1 jtc
1143 1.1 jtc /*
1144 1.1 jtc * unlink the file so it goes away at termination by itself
1145 1.1 jtc */
1146 1.18 christos memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1147 1.18 christos if ((dirfd = mkstemp(tempfile)) >= 0) {
1148 1.18 christos (void)unlink(tempfile);
1149 1.1 jtc return(0);
1150 1.1 jtc }
1151 1.7 christos tty_warn(1, "Unable to create temporary file for directory times: %s",
1152 1.18 christos tempfile);
1153 1.1 jtc return(-1);
1154 1.13 thorpej #else
1155 1.13 thorpej return (0);
1156 1.13 thorpej #endif /* DIRS_USE_FILE */
1157 1.1 jtc }
1158 1.1 jtc
1159 1.1 jtc /*
1160 1.1 jtc * add_dir()
1161 1.1 jtc * add the mode and times for a newly CREATED directory
1162 1.1 jtc * name is name of the directory, psb the stat buffer with the data in it,
1163 1.1 jtc * frc_mode is a flag that says whether to force the setting of the mode
1164 1.1 jtc * (ignoring the user set values for preserving file mode). Frc_mode is
1165 1.12 itohy * for the case where we created a file and found that the resulting
1166 1.19 wiz * directory was not writable and the user asked for file modes to NOT
1167 1.1 jtc * be preserved. (we have to preserve what was created by default, so we
1168 1.1 jtc * have to force the setting at the end. this is stated explicitly in the
1169 1.1 jtc * pax spec)
1170 1.1 jtc */
1171 1.1 jtc
1172 1.1 jtc void
1173 1.1 jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1174 1.1 jtc {
1175 1.13 thorpej #ifdef DIRS_USE_FILE
1176 1.1 jtc DIRDATA dblk;
1177 1.1 jtc
1178 1.1 jtc if (dirfd < 0)
1179 1.1 jtc return;
1180 1.1 jtc
1181 1.1 jtc /*
1182 1.1 jtc * get current position (where file name will start) so we can store it
1183 1.1 jtc * in the trailer
1184 1.1 jtc */
1185 1.1 jtc if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1186 1.7 christos tty_warn(1,
1187 1.7 christos "Unable to store mode and times for directory: %s",name);
1188 1.1 jtc return;
1189 1.1 jtc }
1190 1.1 jtc
1191 1.1 jtc /*
1192 1.1 jtc * write the file name followed by the trailer
1193 1.1 jtc */
1194 1.1 jtc dblk.nlen = nlen + 1;
1195 1.1 jtc dblk.mode = psb->st_mode & 0xffff;
1196 1.1 jtc dblk.mtime = psb->st_mtime;
1197 1.1 jtc dblk.atime = psb->st_atime;
1198 1.16 tv #if HAVE_STRUCT_STAT_ST_FLAGS
1199 1.10 mrg dblk.fflags = psb->st_flags;
1200 1.16 tv #else
1201 1.16 tv dblk.fflags = 0;
1202 1.16 tv #endif
1203 1.1 jtc dblk.frc_mode = frc_mode;
1204 1.11 itohy if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1205 1.11 itohy (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1206 1.1 jtc ++dircnt;
1207 1.1 jtc return;
1208 1.1 jtc }
1209 1.1 jtc
1210 1.7 christos tty_warn(1,
1211 1.7 christos "Unable to store mode and times for created directory: %s",name);
1212 1.1 jtc return;
1213 1.13 thorpej #else
1214 1.13 thorpej DIRDATA *dblk;
1215 1.13 thorpej
1216 1.13 thorpej if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1217 1.13 thorpej (dblk->name = strdup(name)) == NULL) {
1218 1.13 thorpej tty_warn(1,
1219 1.13 thorpej "Unable to store mode and times for directory: %s",name);
1220 1.13 thorpej if (dblk != NULL)
1221 1.13 thorpej free(dblk);
1222 1.13 thorpej return;
1223 1.13 thorpej }
1224 1.13 thorpej
1225 1.13 thorpej dblk->mode = psb->st_mode & 0xffff;
1226 1.13 thorpej dblk->mtime = psb->st_mtime;
1227 1.13 thorpej dblk->atime = psb->st_atime;
1228 1.16 tv #if HAVE_STRUCT_STAT_ST_FLAGS
1229 1.13 thorpej dblk->fflags = psb->st_flags;
1230 1.16 tv #else
1231 1.16 tv dblk->fflags = 0;
1232 1.16 tv #endif
1233 1.13 thorpej dblk->frc_mode = frc_mode;
1234 1.13 thorpej
1235 1.13 thorpej dblk->next = dirdata_head;
1236 1.13 thorpej dirdata_head = dblk;
1237 1.13 thorpej return;
1238 1.13 thorpej #endif /* DIRS_USE_FILE */
1239 1.1 jtc }
1240 1.1 jtc
1241 1.1 jtc /*
1242 1.1 jtc * proc_dir()
1243 1.1 jtc * process all file modes and times stored for directories CREATED
1244 1.1 jtc * by pax
1245 1.1 jtc */
1246 1.1 jtc
1247 1.1 jtc void
1248 1.1 jtc proc_dir(void)
1249 1.1 jtc {
1250 1.13 thorpej #ifdef DIRS_USE_FILE
1251 1.1 jtc char name[PAXPATHLEN+1];
1252 1.1 jtc DIRDATA dblk;
1253 1.1 jtc u_long cnt;
1254 1.1 jtc
1255 1.1 jtc if (dirfd < 0)
1256 1.1 jtc return;
1257 1.1 jtc /*
1258 1.1 jtc * read backwards through the file and process each directory
1259 1.1 jtc */
1260 1.1 jtc for (cnt = 0; cnt < dircnt; ++cnt) {
1261 1.1 jtc /*
1262 1.1 jtc * read the trailer, then the file name, if this fails
1263 1.1 jtc * just give up.
1264 1.1 jtc */
1265 1.12 itohy if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1266 1.1 jtc break;
1267 1.11 itohy if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1268 1.1 jtc break;
1269 1.12 itohy if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1270 1.1 jtc break;
1271 1.11 itohy if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1272 1.1 jtc break;
1273 1.12 itohy if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1274 1.1 jtc break;
1275 1.1 jtc
1276 1.1 jtc /*
1277 1.1 jtc * frc_mode set, make sure we set the file modes even if
1278 1.1 jtc * the user didn't ask for it (see file_subs.c for more info)
1279 1.1 jtc */
1280 1.1 jtc if (pmode || dblk.frc_mode)
1281 1.1 jtc set_pmode(name, dblk.mode);
1282 1.1 jtc if (patime || pmtime)
1283 1.1 jtc set_ftime(name, dblk.mtime, dblk.atime, 0);
1284 1.10 mrg if (pfflags)
1285 1.10 mrg set_chflags(name, dblk.fflags);
1286 1.1 jtc }
1287 1.1 jtc
1288 1.1 jtc (void)close(dirfd);
1289 1.1 jtc dirfd = -1;
1290 1.1 jtc if (cnt != dircnt)
1291 1.7 christos tty_warn(1,
1292 1.7 christos "Unable to set mode and times for created directories");
1293 1.1 jtc return;
1294 1.13 thorpej #else
1295 1.13 thorpej DIRDATA *dblk;
1296 1.13 thorpej
1297 1.13 thorpej for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1298 1.13 thorpej dirdata_head = dblk->next;
1299 1.13 thorpej
1300 1.13 thorpej /*
1301 1.13 thorpej * frc_mode set, make sure we set the file modes even if
1302 1.13 thorpej * the user didn't ask for it (see file_subs.c for more info)
1303 1.13 thorpej */
1304 1.13 thorpej if (pmode || dblk->frc_mode)
1305 1.13 thorpej set_pmode(dblk->name, dblk->mode);
1306 1.13 thorpej if (patime || pmtime)
1307 1.13 thorpej set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1308 1.13 thorpej if (pfflags)
1309 1.13 thorpej set_chflags(dblk->name, dblk->fflags);
1310 1.13 thorpej
1311 1.13 thorpej free(dblk->name);
1312 1.13 thorpej free(dblk);
1313 1.13 thorpej }
1314 1.13 thorpej #endif /* DIRS_USE_FILE */
1315 1.1 jtc }
1316 1.1 jtc
1317 1.1 jtc /*
1318 1.1 jtc * database independent routines
1319 1.1 jtc */
1320 1.1 jtc
1321 1.1 jtc /*
1322 1.1 jtc * st_hash()
1323 1.1 jtc * hashes filenames to a u_int for hashing into a table. Looks at the tail
1324 1.1 jtc * end of file, as this provides far better distribution than any other
1325 1.1 jtc * part of the name. For performance reasons we only care about the last
1326 1.1 jtc * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1327 1.1 jtc * name). Was tested on 500,000 name file tree traversal from the root
1328 1.1 jtc * and gave almost a perfectly uniform distribution of keys when used with
1329 1.1 jtc * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1330 1.1 jtc * chars at a time and pads with 0 for last addition.
1331 1.1 jtc * Return:
1332 1.1 jtc * the hash value of the string MOD (%) the table size.
1333 1.1 jtc */
1334 1.1 jtc
1335 1.1 jtc u_int
1336 1.1 jtc st_hash(char *name, int len, int tabsz)
1337 1.1 jtc {
1338 1.5 tls char *pt;
1339 1.5 tls char *dest;
1340 1.5 tls char *end;
1341 1.5 tls int i;
1342 1.5 tls u_int key = 0;
1343 1.5 tls int steps;
1344 1.5 tls int res;
1345 1.1 jtc u_int val;
1346 1.1 jtc
1347 1.1 jtc /*
1348 1.1 jtc * only look at the tail up to MAXKEYLEN, we do not need to waste
1349 1.1 jtc * time here (remember these are pathnames, the tail is what will
1350 1.1 jtc * spread out the keys)
1351 1.1 jtc */
1352 1.1 jtc if (len > MAXKEYLEN) {
1353 1.12 itohy pt = &(name[len - MAXKEYLEN]);
1354 1.1 jtc len = MAXKEYLEN;
1355 1.1 jtc } else
1356 1.1 jtc pt = name;
1357 1.1 jtc
1358 1.1 jtc /*
1359 1.1 jtc * calculate the number of u_int size steps in the string and if
1360 1.1 jtc * there is a runt to deal with
1361 1.1 jtc */
1362 1.1 jtc steps = len/sizeof(u_int);
1363 1.1 jtc res = len % sizeof(u_int);
1364 1.1 jtc
1365 1.1 jtc /*
1366 1.1 jtc * add up the value of the string in unsigned integer sized pieces
1367 1.1 jtc * too bad we cannot have unsigned int aligned strings, then we
1368 1.1 jtc * could avoid the expensive copy.
1369 1.1 jtc */
1370 1.1 jtc for (i = 0; i < steps; ++i) {
1371 1.1 jtc end = pt + sizeof(u_int);
1372 1.1 jtc dest = (char *)&val;
1373 1.1 jtc while (pt < end)
1374 1.1 jtc *dest++ = *pt++;
1375 1.1 jtc key += val;
1376 1.1 jtc }
1377 1.1 jtc
1378 1.1 jtc /*
1379 1.1 jtc * add in the runt padded with zero to the right
1380 1.1 jtc */
1381 1.1 jtc if (res) {
1382 1.1 jtc val = 0;
1383 1.1 jtc end = pt + res;
1384 1.1 jtc dest = (char *)&val;
1385 1.1 jtc while (pt < end)
1386 1.1 jtc *dest++ = *pt++;
1387 1.1 jtc key += val;
1388 1.1 jtc }
1389 1.1 jtc
1390 1.1 jtc /*
1391 1.1 jtc * return the result mod the table size
1392 1.1 jtc */
1393 1.1 jtc return(key % tabsz);
1394 1.1 jtc }
1395