tables.c revision 1.23 1 1.23 lukem /* $NetBSD: tables.c,v 1.23 2003/10/27 00:12:41 lukem Exp $ */
2 1.4 cgd
3 1.1 jtc /*-
4 1.22 agc * Copyright (c) 1992 Keith Muller.
5 1.1 jtc * Copyright (c) 1992, 1993
6 1.1 jtc * The Regents of the University of California. All rights reserved.
7 1.1 jtc *
8 1.1 jtc * This code is derived from software contributed to Berkeley by
9 1.1 jtc * Keith Muller of the University of California, San Diego.
10 1.1 jtc *
11 1.1 jtc * Redistribution and use in source and binary forms, with or without
12 1.1 jtc * modification, are permitted provided that the following conditions
13 1.1 jtc * are met:
14 1.1 jtc * 1. Redistributions of source code must retain the above copyright
15 1.1 jtc * notice, this list of conditions and the following disclaimer.
16 1.1 jtc * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jtc * notice, this list of conditions and the following disclaimer in the
18 1.1 jtc * documentation and/or other materials provided with the distribution.
19 1.21 agc * 3. Neither the name of the University nor the names of its contributors
20 1.21 agc * may be used to endorse or promote products derived from this software
21 1.21 agc * without specific prior written permission.
22 1.21 agc *
23 1.21 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.21 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.21 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.21 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.21 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.21 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.21 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.21 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.21 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.21 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.21 agc * SUCH DAMAGE.
34 1.21 agc */
35 1.21 agc
36 1.23 lukem #if HAVE_NBTOOL_CONFIG_H
37 1.23 lukem #include "nbtool_config.h"
38 1.23 lukem #endif
39 1.23 lukem
40 1.7 christos #include <sys/cdefs.h>
41 1.23 lukem #if !defined(lint)
42 1.4 cgd #if 0
43 1.4 cgd static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
44 1.4 cgd #else
45 1.23 lukem __RCSID("$NetBSD: tables.c,v 1.23 2003/10/27 00:12:41 lukem Exp $");
46 1.4 cgd #endif
47 1.1 jtc #endif /* not lint */
48 1.1 jtc
49 1.1 jtc #include <sys/types.h>
50 1.1 jtc #include <sys/time.h>
51 1.1 jtc #include <sys/stat.h>
52 1.1 jtc #include <sys/param.h>
53 1.1 jtc #include <stdio.h>
54 1.1 jtc #include <ctype.h>
55 1.8 kleink #include <fcntl.h>
56 1.9 kleink #include <paths.h>
57 1.1 jtc #include <string.h>
58 1.1 jtc #include <unistd.h>
59 1.1 jtc #include <errno.h>
60 1.1 jtc #include <stdlib.h>
61 1.1 jtc #include "pax.h"
62 1.1 jtc #include "tables.h"
63 1.1 jtc #include "extern.h"
64 1.1 jtc
65 1.1 jtc /*
66 1.1 jtc * Routines for controlling the contents of all the different databases pax
67 1.1 jtc * keeps. Tables are dynamically created only when they are needed. The
68 1.1 jtc * goal was speed and the ability to work with HUGE archives. The databases
69 1.1 jtc * were kept simple, but do have complex rules for when the contents change.
70 1.1 jtc * As of this writing, the posix library functions were more complex than
71 1.1 jtc * needed for this application (pax databases have very short lifetimes and
72 1.1 jtc * do not survive after pax is finished). Pax is required to handle very
73 1.1 jtc * large archives. These database routines carefully combine memory usage and
74 1.1 jtc * temporary file storage in ways which will not significantly impact runtime
75 1.1 jtc * performance while allowing the largest possible archives to be handled.
76 1.20 wiz * Trying to force the fit to the posix database routines was not considered
77 1.1 jtc * time well spent.
78 1.1 jtc */
79 1.1 jtc
80 1.1 jtc static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
81 1.1 jtc static FTM **ftab = NULL; /* file time table for updating arch */
82 1.1 jtc static NAMT **ntab = NULL; /* interactive rename storage table */
83 1.1 jtc static DEVT **dtab = NULL; /* device/inode mapping tables */
84 1.1 jtc static ATDIR **atab = NULL; /* file tree directory time reset table */
85 1.13 thorpej #ifdef DIRS_USE_FILE
86 1.1 jtc static int dirfd = -1; /* storage for setting created dir time/mode */
87 1.1 jtc static u_long dircnt; /* entries in dir time/mode storage */
88 1.13 thorpej #endif
89 1.1 jtc static int ffd = -1; /* tmp file for file time table name storage */
90 1.1 jtc
91 1.15 lukem static DEVT *chk_dev(dev_t, int);
92 1.1 jtc
93 1.1 jtc /*
94 1.1 jtc * hard link table routines
95 1.1 jtc *
96 1.12 itohy * The hard link table tries to detect hard links to files using the device and
97 1.1 jtc * inode values. We do this when writing an archive, so we can tell the format
98 1.1 jtc * write routine that this file is a hard link to another file. The format
99 1.1 jtc * write routine then can store this file in whatever way it wants (as a hard
100 1.1 jtc * link if the format supports that like tar, or ignore this info like cpio).
101 1.1 jtc * (Actually a field in the format driver table tells us if the format wants
102 1.1 jtc * hard link info. if not, we do not waste time looking for them). We also use
103 1.1 jtc * the same table when reading an archive. In that situation, this table is
104 1.1 jtc * used by the format read routine to detect hard links from stored dev and
105 1.1 jtc * inode numbers (like cpio). This will allow pax to create a link when one
106 1.1 jtc * can be detected by the archive format.
107 1.1 jtc */
108 1.1 jtc
109 1.1 jtc /*
110 1.1 jtc * lnk_start
111 1.1 jtc * Creates the hard link table.
112 1.1 jtc * Return:
113 1.1 jtc * 0 if created, -1 if failure
114 1.1 jtc */
115 1.1 jtc
116 1.1 jtc int
117 1.1 jtc lnk_start(void)
118 1.1 jtc {
119 1.1 jtc if (ltab != NULL)
120 1.1 jtc return(0);
121 1.12 itohy if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
122 1.12 itohy tty_warn(1, "Cannot allocate memory for hard link table");
123 1.12 itohy return(-1);
124 1.12 itohy }
125 1.1 jtc return(0);
126 1.1 jtc }
127 1.1 jtc
128 1.1 jtc /*
129 1.1 jtc * chk_lnk()
130 1.1 jtc * Looks up entry in hard link hash table. If found, it copies the name
131 1.1 jtc * of the file it is linked to (we already saw that file) into ln_name.
132 1.1 jtc * lnkcnt is decremented and if goes to 1 the node is deleted from the
133 1.1 jtc * database. (We have seen all the links to this file). If not found,
134 1.1 jtc * we add the file to the database if it has the potential for having
135 1.1 jtc * hard links to other files we may process (it has a link count > 1)
136 1.1 jtc * Return:
137 1.1 jtc * if found returns 1; if not found returns 0; -1 on error
138 1.1 jtc */
139 1.1 jtc
140 1.1 jtc int
141 1.5 tls chk_lnk(ARCHD *arcn)
142 1.1 jtc {
143 1.5 tls HRDLNK *pt;
144 1.5 tls HRDLNK **ppt;
145 1.5 tls u_int indx;
146 1.1 jtc
147 1.1 jtc if (ltab == NULL)
148 1.1 jtc return(-1);
149 1.1 jtc /*
150 1.1 jtc * ignore those nodes that cannot have hard links
151 1.1 jtc */
152 1.1 jtc if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
153 1.1 jtc return(0);
154 1.1 jtc
155 1.1 jtc /*
156 1.1 jtc * hash inode number and look for this file
157 1.1 jtc */
158 1.1 jtc indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
159 1.1 jtc if ((pt = ltab[indx]) != NULL) {
160 1.1 jtc /*
161 1.1 jtc * it's hash chain in not empty, walk down looking for it
162 1.1 jtc */
163 1.1 jtc ppt = &(ltab[indx]);
164 1.1 jtc while (pt != NULL) {
165 1.1 jtc if ((pt->ino == arcn->sb.st_ino) &&
166 1.1 jtc (pt->dev == arcn->sb.st_dev))
167 1.1 jtc break;
168 1.1 jtc ppt = &(pt->fow);
169 1.1 jtc pt = pt->fow;
170 1.1 jtc }
171 1.1 jtc
172 1.1 jtc if (pt != NULL) {
173 1.1 jtc /*
174 1.1 jtc * found a link. set the node type and copy in the
175 1.1 jtc * name of the file it is to link to. we need to
176 1.1 jtc * handle hardlinks to regular files differently than
177 1.1 jtc * other links.
178 1.1 jtc */
179 1.18 christos arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
180 1.18 christos sizeof(arcn->ln_name));
181 1.1 jtc if (arcn->type == PAX_REG)
182 1.1 jtc arcn->type = PAX_HRG;
183 1.1 jtc else
184 1.1 jtc arcn->type = PAX_HLK;
185 1.1 jtc
186 1.1 jtc /*
187 1.1 jtc * if we have found all the links to this file, remove
188 1.1 jtc * it from the database
189 1.1 jtc */
190 1.1 jtc if (--pt->nlink <= 1) {
191 1.1 jtc *ppt = pt->fow;
192 1.1 jtc (void)free((char *)pt->name);
193 1.1 jtc (void)free((char *)pt);
194 1.1 jtc }
195 1.1 jtc return(1);
196 1.1 jtc }
197 1.1 jtc }
198 1.1 jtc
199 1.1 jtc /*
200 1.1 jtc * we never saw this file before. It has links so we add it to the
201 1.1 jtc * front of this hash chain
202 1.1 jtc */
203 1.1 jtc if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
204 1.1 jtc if ((pt->name = strdup(arcn->name)) != NULL) {
205 1.1 jtc pt->dev = arcn->sb.st_dev;
206 1.1 jtc pt->ino = arcn->sb.st_ino;
207 1.1 jtc pt->nlink = arcn->sb.st_nlink;
208 1.1 jtc pt->fow = ltab[indx];
209 1.1 jtc ltab[indx] = pt;
210 1.1 jtc return(0);
211 1.1 jtc }
212 1.1 jtc (void)free((char *)pt);
213 1.1 jtc }
214 1.1 jtc
215 1.7 christos tty_warn(1, "Hard link table out of memory");
216 1.1 jtc return(-1);
217 1.1 jtc }
218 1.1 jtc
219 1.1 jtc /*
220 1.1 jtc * purg_lnk
221 1.1 jtc * remove reference for a file that we may have added to the data base as
222 1.1 jtc * a potential source for hard links. We ended up not using the file, so
223 1.1 jtc * we do not want to accidently point another file at it later on.
224 1.1 jtc */
225 1.1 jtc
226 1.1 jtc void
227 1.5 tls purg_lnk(ARCHD *arcn)
228 1.1 jtc {
229 1.5 tls HRDLNK *pt;
230 1.5 tls HRDLNK **ppt;
231 1.5 tls u_int indx;
232 1.1 jtc
233 1.1 jtc if (ltab == NULL)
234 1.1 jtc return;
235 1.1 jtc /*
236 1.1 jtc * do not bother to look if it could not be in the database
237 1.1 jtc */
238 1.1 jtc if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
239 1.1 jtc (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
240 1.1 jtc return;
241 1.1 jtc
242 1.1 jtc /*
243 1.1 jtc * find the hash chain for this inode value, if empty return
244 1.1 jtc */
245 1.1 jtc indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
246 1.1 jtc if ((pt = ltab[indx]) == NULL)
247 1.1 jtc return;
248 1.1 jtc
249 1.1 jtc /*
250 1.1 jtc * walk down the list looking for the inode/dev pair, unlink and
251 1.1 jtc * free if found
252 1.1 jtc */
253 1.1 jtc ppt = &(ltab[indx]);
254 1.1 jtc while (pt != NULL) {
255 1.1 jtc if ((pt->ino == arcn->sb.st_ino) &&
256 1.1 jtc (pt->dev == arcn->sb.st_dev))
257 1.1 jtc break;
258 1.1 jtc ppt = &(pt->fow);
259 1.1 jtc pt = pt->fow;
260 1.1 jtc }
261 1.1 jtc if (pt == NULL)
262 1.1 jtc return;
263 1.1 jtc
264 1.1 jtc /*
265 1.1 jtc * remove and free it
266 1.1 jtc */
267 1.1 jtc *ppt = pt->fow;
268 1.1 jtc (void)free((char *)pt->name);
269 1.1 jtc (void)free((char *)pt);
270 1.1 jtc }
271 1.1 jtc
272 1.1 jtc /*
273 1.1 jtc * lnk_end()
274 1.1 jtc * pull apart a existing link table so we can reuse it. We do this between
275 1.1 jtc * read and write phases of append with update. (The format may have
276 1.1 jtc * used the link table, and we need to start with a fresh table for the
277 1.1 jtc * write phase
278 1.1 jtc */
279 1.1 jtc
280 1.1 jtc void
281 1.1 jtc lnk_end(void)
282 1.1 jtc {
283 1.5 tls int i;
284 1.5 tls HRDLNK *pt;
285 1.5 tls HRDLNK *ppt;
286 1.1 jtc
287 1.1 jtc if (ltab == NULL)
288 1.1 jtc return;
289 1.1 jtc
290 1.1 jtc for (i = 0; i < L_TAB_SZ; ++i) {
291 1.1 jtc if (ltab[i] == NULL)
292 1.1 jtc continue;
293 1.1 jtc pt = ltab[i];
294 1.1 jtc ltab[i] = NULL;
295 1.1 jtc
296 1.1 jtc /*
297 1.1 jtc * free up each entry on this chain
298 1.1 jtc */
299 1.1 jtc while (pt != NULL) {
300 1.1 jtc ppt = pt;
301 1.1 jtc pt = ppt->fow;
302 1.1 jtc (void)free((char *)ppt->name);
303 1.1 jtc (void)free((char *)ppt);
304 1.1 jtc }
305 1.1 jtc }
306 1.1 jtc return;
307 1.1 jtc }
308 1.1 jtc
309 1.1 jtc /*
310 1.1 jtc * modification time table routines
311 1.1 jtc *
312 1.1 jtc * The modification time table keeps track of last modification times for all
313 1.1 jtc * files stored in an archive during a write phase when -u is set. We only
314 1.1 jtc * add a file to the archive if it is newer than a file with the same name
315 1.1 jtc * already stored on the archive (if there is no other file with the same
316 1.1 jtc * name on the archive it is added). This applies to writes and appends.
317 1.1 jtc * An append with an -u must read the archive and store the modification time
318 1.1 jtc * for every file on that archive before starting the write phase. It is clear
319 1.1 jtc * that this is one HUGE database. To save memory space, the actual file names
320 1.20 wiz * are stored in a scratch file and indexed by an in-memory hash table. The
321 1.1 jtc * hash table is indexed by hashing the file path. The nodes in the table store
322 1.12 itohy * the length of the filename and the lseek offset within the scratch file
323 1.20 wiz * where the actual name is stored. Since there are never any deletions from this
324 1.1 jtc * table, fragmentation of the scratch file is never a issue. Lookups seem to
325 1.12 itohy * not exhibit any locality at all (files in the database are rarely
326 1.20 wiz * looked up more than once...), so caching is just a waste of memory. The
327 1.20 wiz * only limitation is the amount of scratch file space available to store the
328 1.1 jtc * path names.
329 1.1 jtc */
330 1.1 jtc
331 1.1 jtc /*
332 1.1 jtc * ftime_start()
333 1.1 jtc * create the file time hash table and open for read/write the scratch
334 1.1 jtc * file. (after created it is unlinked, so when we exit we leave
335 1.1 jtc * no witnesses).
336 1.1 jtc * Return:
337 1.1 jtc * 0 if the table and file was created ok, -1 otherwise
338 1.1 jtc */
339 1.1 jtc
340 1.1 jtc int
341 1.1 jtc ftime_start(void)
342 1.1 jtc {
343 1.1 jtc if (ftab != NULL)
344 1.1 jtc return(0);
345 1.12 itohy if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
346 1.12 itohy tty_warn(1, "Cannot allocate memory for file time table");
347 1.12 itohy return(-1);
348 1.12 itohy }
349 1.1 jtc
350 1.1 jtc /*
351 1.1 jtc * get random name and create temporary scratch file, unlink name
352 1.1 jtc * so it will get removed on exit
353 1.1 jtc */
354 1.18 christos memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
355 1.18 christos if ((ffd = mkstemp(tempfile)) == -1) {
356 1.9 kleink syswarn(1, errno, "Unable to create temporary file: %s",
357 1.18 christos tempfile);
358 1.1 jtc return(-1);
359 1.1 jtc }
360 1.1 jtc
361 1.18 christos (void)unlink(tempfile);
362 1.1 jtc return(0);
363 1.1 jtc }
364 1.1 jtc
365 1.1 jtc /*
366 1.1 jtc * chk_ftime()
367 1.1 jtc * looks up entry in file time hash table. If not found, the file is
368 1.1 jtc * added to the hash table and the file named stored in the scratch file.
369 1.1 jtc * If a file with the same name is found, the file times are compared and
370 1.1 jtc * the most recent file time is retained. If the new file was younger (or
371 1.1 jtc * was not in the database) the new file is selected for storage.
372 1.1 jtc * Return:
373 1.1 jtc * 0 if file should be added to the archive, 1 if it should be skipped,
374 1.1 jtc * -1 on error
375 1.1 jtc */
376 1.1 jtc
377 1.1 jtc int
378 1.5 tls chk_ftime(ARCHD *arcn)
379 1.1 jtc {
380 1.5 tls FTM *pt;
381 1.5 tls int namelen;
382 1.5 tls u_int indx;
383 1.1 jtc char ckname[PAXPATHLEN+1];
384 1.1 jtc
385 1.1 jtc /*
386 1.1 jtc * no info, go ahead and add to archive
387 1.1 jtc */
388 1.1 jtc if (ftab == NULL)
389 1.1 jtc return(0);
390 1.1 jtc
391 1.1 jtc /*
392 1.1 jtc * hash the pathname and look up in table
393 1.1 jtc */
394 1.1 jtc namelen = arcn->nlen;
395 1.1 jtc indx = st_hash(arcn->name, namelen, F_TAB_SZ);
396 1.1 jtc if ((pt = ftab[indx]) != NULL) {
397 1.1 jtc /*
398 1.1 jtc * the hash chain is not empty, walk down looking for match
399 1.1 jtc * only read up the path names if the lengths match, speeds
400 1.1 jtc * up the search a lot
401 1.1 jtc */
402 1.1 jtc while (pt != NULL) {
403 1.1 jtc if (pt->namelen == namelen) {
404 1.1 jtc /*
405 1.1 jtc * potential match, have to read the name
406 1.1 jtc * from the scratch file.
407 1.1 jtc */
408 1.1 jtc if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
409 1.1 jtc syswarn(1, errno,
410 1.1 jtc "Failed ftime table seek");
411 1.1 jtc return(-1);
412 1.1 jtc }
413 1.11 itohy if (xread(ffd, ckname, namelen) != namelen) {
414 1.1 jtc syswarn(1, errno,
415 1.1 jtc "Failed ftime table read");
416 1.1 jtc return(-1);
417 1.1 jtc }
418 1.1 jtc
419 1.1 jtc /*
420 1.1 jtc * if the names match, we are done
421 1.1 jtc */
422 1.1 jtc if (!strncmp(ckname, arcn->name, namelen))
423 1.1 jtc break;
424 1.1 jtc }
425 1.1 jtc
426 1.1 jtc /*
427 1.1 jtc * try the next entry on the chain
428 1.1 jtc */
429 1.1 jtc pt = pt->fow;
430 1.1 jtc }
431 1.1 jtc
432 1.1 jtc if (pt != NULL) {
433 1.1 jtc /*
434 1.1 jtc * found the file, compare the times, save the newer
435 1.1 jtc */
436 1.1 jtc if (arcn->sb.st_mtime > pt->mtime) {
437 1.1 jtc /*
438 1.1 jtc * file is newer
439 1.1 jtc */
440 1.1 jtc pt->mtime = arcn->sb.st_mtime;
441 1.1 jtc return(0);
442 1.12 itohy }
443 1.1 jtc /*
444 1.1 jtc * file is older
445 1.1 jtc */
446 1.1 jtc return(1);
447 1.1 jtc }
448 1.1 jtc }
449 1.1 jtc
450 1.1 jtc /*
451 1.1 jtc * not in table, add it
452 1.1 jtc */
453 1.1 jtc if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
454 1.1 jtc /*
455 1.1 jtc * add the name at the end of the scratch file, saving the
456 1.1 jtc * offset. add the file to the head of the hash chain
457 1.1 jtc */
458 1.1 jtc if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
459 1.11 itohy if (xwrite(ffd, arcn->name, namelen) == namelen) {
460 1.1 jtc pt->mtime = arcn->sb.st_mtime;
461 1.1 jtc pt->namelen = namelen;
462 1.1 jtc pt->fow = ftab[indx];
463 1.1 jtc ftab[indx] = pt;
464 1.1 jtc return(0);
465 1.1 jtc }
466 1.1 jtc syswarn(1, errno, "Failed write to file time table");
467 1.12 itohy } else
468 1.1 jtc syswarn(1, errno, "Failed seek on file time table");
469 1.1 jtc } else
470 1.7 christos tty_warn(1, "File time table ran out of memory");
471 1.1 jtc
472 1.1 jtc if (pt != NULL)
473 1.1 jtc (void)free((char *)pt);
474 1.1 jtc return(-1);
475 1.1 jtc }
476 1.1 jtc
477 1.1 jtc /*
478 1.1 jtc * Interactive rename table routines
479 1.1 jtc *
480 1.1 jtc * The interactive rename table keeps track of the new names that the user
481 1.12 itohy * assigns to files from tty input. Since this map is unique for each file
482 1.1 jtc * we must store it in case there is a reference to the file later in archive
483 1.1 jtc * (a link). Otherwise we will be unable to find the file we know was
484 1.1 jtc * extracted. The remapping of these files is stored in a memory based hash
485 1.1 jtc * table (it is assumed since input must come from /dev/tty, it is unlikely to
486 1.1 jtc * be a very large table).
487 1.1 jtc */
488 1.1 jtc
489 1.1 jtc /*
490 1.1 jtc * name_start()
491 1.1 jtc * create the interactive rename table
492 1.1 jtc * Return:
493 1.1 jtc * 0 if successful, -1 otherwise
494 1.1 jtc */
495 1.1 jtc
496 1.1 jtc int
497 1.1 jtc name_start(void)
498 1.1 jtc {
499 1.1 jtc if (ntab != NULL)
500 1.1 jtc return(0);
501 1.12 itohy if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
502 1.12 itohy tty_warn(1,
503 1.7 christos "Cannot allocate memory for interactive rename table");
504 1.12 itohy return(-1);
505 1.12 itohy }
506 1.1 jtc return(0);
507 1.1 jtc }
508 1.1 jtc
509 1.1 jtc /*
510 1.1 jtc * add_name()
511 1.1 jtc * add the new name to old name mapping just created by the user.
512 1.1 jtc * If an old name mapping is found (there may be duplicate names on an
513 1.1 jtc * archive) only the most recent is kept.
514 1.1 jtc * Return:
515 1.1 jtc * 0 if added, -1 otherwise
516 1.1 jtc */
517 1.1 jtc
518 1.1 jtc int
519 1.5 tls add_name(char *oname, int onamelen, char *nname)
520 1.1 jtc {
521 1.5 tls NAMT *pt;
522 1.5 tls u_int indx;
523 1.1 jtc
524 1.1 jtc if (ntab == NULL) {
525 1.1 jtc /*
526 1.1 jtc * should never happen
527 1.1 jtc */
528 1.7 christos tty_warn(0, "No interactive rename table, links may fail\n");
529 1.12 itohy return(0);
530 1.1 jtc }
531 1.1 jtc
532 1.1 jtc /*
533 1.1 jtc * look to see if we have already mapped this file, if so we
534 1.1 jtc * will update it
535 1.1 jtc */
536 1.1 jtc indx = st_hash(oname, onamelen, N_TAB_SZ);
537 1.1 jtc if ((pt = ntab[indx]) != NULL) {
538 1.1 jtc /*
539 1.1 jtc * look down the has chain for the file
540 1.1 jtc */
541 1.1 jtc while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
542 1.1 jtc pt = pt->fow;
543 1.1 jtc
544 1.1 jtc if (pt != NULL) {
545 1.1 jtc /*
546 1.1 jtc * found an old mapping, replace it with the new one
547 1.1 jtc * the user just input (if it is different)
548 1.1 jtc */
549 1.1 jtc if (strcmp(nname, pt->nname) == 0)
550 1.1 jtc return(0);
551 1.1 jtc
552 1.1 jtc (void)free((char *)pt->nname);
553 1.1 jtc if ((pt->nname = strdup(nname)) == NULL) {
554 1.7 christos tty_warn(1, "Cannot update rename table");
555 1.1 jtc return(-1);
556 1.1 jtc }
557 1.1 jtc return(0);
558 1.1 jtc }
559 1.1 jtc }
560 1.1 jtc
561 1.1 jtc /*
562 1.1 jtc * this is a new mapping, add it to the table
563 1.1 jtc */
564 1.1 jtc if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
565 1.1 jtc if ((pt->oname = strdup(oname)) != NULL) {
566 1.1 jtc if ((pt->nname = strdup(nname)) != NULL) {
567 1.1 jtc pt->fow = ntab[indx];
568 1.1 jtc ntab[indx] = pt;
569 1.1 jtc return(0);
570 1.1 jtc }
571 1.1 jtc (void)free((char *)pt->oname);
572 1.1 jtc }
573 1.1 jtc (void)free((char *)pt);
574 1.1 jtc }
575 1.7 christos tty_warn(1, "Interactive rename table out of memory");
576 1.1 jtc return(-1);
577 1.1 jtc }
578 1.1 jtc
579 1.1 jtc /*
580 1.1 jtc * sub_name()
581 1.1 jtc * look up a link name to see if it points at a file that has been
582 1.1 jtc * remapped by the user. If found, the link is adjusted to contain the
583 1.1 jtc * new name (oname is the link to name)
584 1.1 jtc */
585 1.1 jtc
586 1.1 jtc void
587 1.18 christos sub_name(char *oname, int *onamelen, size_t onamesize)
588 1.1 jtc {
589 1.5 tls NAMT *pt;
590 1.5 tls u_int indx;
591 1.1 jtc
592 1.1 jtc if (ntab == NULL)
593 1.1 jtc return;
594 1.1 jtc /*
595 1.1 jtc * look the name up in the hash table
596 1.1 jtc */
597 1.1 jtc indx = st_hash(oname, *onamelen, N_TAB_SZ);
598 1.1 jtc if ((pt = ntab[indx]) == NULL)
599 1.1 jtc return;
600 1.1 jtc
601 1.1 jtc while (pt != NULL) {
602 1.1 jtc /*
603 1.14 lukem * walk down the hash chain looking for a match
604 1.1 jtc */
605 1.1 jtc if (strcmp(oname, pt->oname) == 0) {
606 1.1 jtc /*
607 1.1 jtc * found it, replace it with the new name
608 1.1 jtc * and return (we know that oname has enough space)
609 1.1 jtc */
610 1.18 christos *onamelen = strlcpy(oname, pt->nname, onamesize);
611 1.1 jtc return;
612 1.1 jtc }
613 1.1 jtc pt = pt->fow;
614 1.1 jtc }
615 1.1 jtc
616 1.1 jtc /*
617 1.1 jtc * no match, just return
618 1.1 jtc */
619 1.1 jtc return;
620 1.1 jtc }
621 1.12 itohy
622 1.1 jtc /*
623 1.1 jtc * device/inode mapping table routines
624 1.1 jtc * (used with formats that store device and inodes fields)
625 1.1 jtc *
626 1.1 jtc * device/inode mapping tables remap the device field in a archive header. The
627 1.1 jtc * device/inode fields are used to determine when files are hard links to each
628 1.1 jtc * other. However these values have very little meaning outside of that. This
629 1.1 jtc * database is used to solve one of two different problems.
630 1.1 jtc *
631 1.1 jtc * 1) when files are appended to an archive, while the new files may have hard
632 1.1 jtc * links to each other, you cannot determine if they have hard links to any
633 1.1 jtc * file already stored on the archive from a prior run of pax. We must assume
634 1.1 jtc * that these inode/device pairs are unique only within a SINGLE run of pax
635 1.1 jtc * (which adds a set of files to an archive). So we have to make sure the
636 1.1 jtc * inode/dev pairs we add each time are always unique. We do this by observing
637 1.1 jtc * while the inode field is very dense, the use of the dev field is fairly
638 1.1 jtc * sparse. Within each run of pax, we remap any device number of a new archive
639 1.1 jtc * member that has a device number used in a prior run and already stored in a
640 1.1 jtc * file on the archive. During the read phase of the append, we store the
641 1.1 jtc * device numbers used and mark them to not be used by any file during the
642 1.1 jtc * write phase. If during write we go to use one of those old device numbers,
643 1.1 jtc * we remap it to a new value.
644 1.1 jtc *
645 1.1 jtc * 2) Often the fields in the archive header used to store these values are
646 1.1 jtc * too small to store the entire value. The result is an inode or device value
647 1.1 jtc * which can be truncated. This really can foul up an archive. With truncation
648 1.1 jtc * we end up creating links between files that are really not links (after
649 1.1 jtc * truncation the inodes are the same value). We address that by detecting
650 1.1 jtc * truncation and forcing a remap of the device field to split truncated
651 1.1 jtc * inodes away from each other. Each truncation creates a pattern of bits that
652 1.1 jtc * are removed. We use this pattern of truncated bits to partition the inodes
653 1.1 jtc * on a single device to many different devices (each one represented by the
654 1.1 jtc * truncated bit pattern). All inodes on the same device that have the same
655 1.1 jtc * truncation pattern are mapped to the same new device. Two inodes that
656 1.1 jtc * truncate to the same value clearly will always have different truncation
657 1.1 jtc * bit patterns, so they will be split from away each other. When we spot
658 1.1 jtc * device truncation we remap the device number to a non truncated value.
659 1.1 jtc * (for more info see table.h for the data structures involved).
660 1.1 jtc */
661 1.1 jtc
662 1.1 jtc /*
663 1.1 jtc * dev_start()
664 1.1 jtc * create the device mapping table
665 1.1 jtc * Return:
666 1.1 jtc * 0 if successful, -1 otherwise
667 1.1 jtc */
668 1.1 jtc
669 1.1 jtc int
670 1.1 jtc dev_start(void)
671 1.1 jtc {
672 1.1 jtc if (dtab != NULL)
673 1.1 jtc return(0);
674 1.12 itohy if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
675 1.12 itohy tty_warn(1, "Cannot allocate memory for device mapping table");
676 1.12 itohy return(-1);
677 1.12 itohy }
678 1.1 jtc return(0);
679 1.1 jtc }
680 1.1 jtc
681 1.1 jtc /*
682 1.1 jtc * add_dev()
683 1.1 jtc * add a device number to the table. this will force the device to be
684 1.1 jtc * remapped to a new value if it be used during a write phase. This
685 1.1 jtc * function is called during the read phase of an append to prohibit the
686 1.1 jtc * use of any device number already in the archive.
687 1.1 jtc * Return:
688 1.1 jtc * 0 if added ok, -1 otherwise
689 1.1 jtc */
690 1.1 jtc
691 1.1 jtc int
692 1.5 tls add_dev(ARCHD *arcn)
693 1.1 jtc {
694 1.1 jtc if (chk_dev(arcn->sb.st_dev, 1) == NULL)
695 1.1 jtc return(-1);
696 1.1 jtc return(0);
697 1.1 jtc }
698 1.1 jtc
699 1.1 jtc /*
700 1.1 jtc * chk_dev()
701 1.1 jtc * check for a device value in the device table. If not found and the add
702 1.1 jtc * flag is set, it is added. This does NOT assign any mapping values, just
703 1.1 jtc * adds the device number as one that need to be remapped. If this device
704 1.12 itohy * is already mapped, just return with a pointer to that entry.
705 1.1 jtc * Return:
706 1.1 jtc * pointer to the entry for this device in the device map table. Null
707 1.1 jtc * if the add flag is not set and the device is not in the table (it is
708 1.1 jtc * not been seen yet). If add is set and the device cannot be added, null
709 1.1 jtc * is returned (indicates an error).
710 1.1 jtc */
711 1.1 jtc
712 1.1 jtc static DEVT *
713 1.1 jtc chk_dev(dev_t dev, int add)
714 1.1 jtc {
715 1.5 tls DEVT *pt;
716 1.5 tls u_int indx;
717 1.1 jtc
718 1.1 jtc if (dtab == NULL)
719 1.1 jtc return(NULL);
720 1.1 jtc /*
721 1.1 jtc * look to see if this device is already in the table
722 1.1 jtc */
723 1.1 jtc indx = ((unsigned)dev) % D_TAB_SZ;
724 1.1 jtc if ((pt = dtab[indx]) != NULL) {
725 1.1 jtc while ((pt != NULL) && (pt->dev != dev))
726 1.1 jtc pt = pt->fow;
727 1.1 jtc
728 1.1 jtc /*
729 1.1 jtc * found it, return a pointer to it
730 1.1 jtc */
731 1.1 jtc if (pt != NULL)
732 1.1 jtc return(pt);
733 1.1 jtc }
734 1.1 jtc
735 1.1 jtc /*
736 1.1 jtc * not in table, we add it only if told to as this may just be a check
737 1.1 jtc * to see if a device number is being used.
738 1.1 jtc */
739 1.1 jtc if (add == 0)
740 1.1 jtc return(NULL);
741 1.1 jtc
742 1.1 jtc /*
743 1.1 jtc * allocate a node for this device and add it to the front of the hash
744 1.1 jtc * chain. Note we do not assign remaps values here, so the pt->list
745 1.1 jtc * list must be NULL.
746 1.1 jtc */
747 1.1 jtc if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
748 1.7 christos tty_warn(1, "Device map table out of memory");
749 1.1 jtc return(NULL);
750 1.1 jtc }
751 1.1 jtc pt->dev = dev;
752 1.1 jtc pt->list = NULL;
753 1.1 jtc pt->fow = dtab[indx];
754 1.1 jtc dtab[indx] = pt;
755 1.1 jtc return(pt);
756 1.1 jtc }
757 1.1 jtc /*
758 1.1 jtc * map_dev()
759 1.1 jtc * given an inode and device storage mask (the mask has a 1 for each bit
760 1.1 jtc * the archive format is able to store in a header), we check for inode
761 1.1 jtc * and device truncation and remap the device as required. Device mapping
762 1.1 jtc * can also occur when during the read phase of append a device number was
763 1.1 jtc * seen (and was marked as do not use during the write phase). WE ASSUME
764 1.1 jtc * that unsigned longs are the same size or bigger than the fields used
765 1.1 jtc * for ino_t and dev_t. If not the types will have to be changed.
766 1.1 jtc * Return:
767 1.1 jtc * 0 if all ok, -1 otherwise.
768 1.1 jtc */
769 1.1 jtc
770 1.1 jtc int
771 1.5 tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
772 1.1 jtc {
773 1.5 tls DEVT *pt;
774 1.5 tls DLIST *dpt;
775 1.1 jtc static dev_t lastdev = 0; /* next device number to try */
776 1.1 jtc int trc_ino = 0;
777 1.1 jtc int trc_dev = 0;
778 1.1 jtc ino_t trunc_bits = 0;
779 1.1 jtc ino_t nino;
780 1.1 jtc
781 1.1 jtc if (dtab == NULL)
782 1.1 jtc return(0);
783 1.1 jtc /*
784 1.1 jtc * check for device and inode truncation, and extract the truncated
785 1.12 itohy * bit pattern.
786 1.1 jtc */
787 1.1 jtc if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
788 1.1 jtc ++trc_dev;
789 1.1 jtc if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
790 1.1 jtc ++trc_ino;
791 1.1 jtc trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
792 1.1 jtc }
793 1.1 jtc
794 1.1 jtc /*
795 1.1 jtc * see if this device is already being mapped, look up the device
796 1.1 jtc * then find the truncation bit pattern which applies
797 1.1 jtc */
798 1.1 jtc if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
799 1.1 jtc /*
800 1.1 jtc * this device is already marked to be remapped
801 1.1 jtc */
802 1.1 jtc for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
803 1.1 jtc if (dpt->trunc_bits == trunc_bits)
804 1.1 jtc break;
805 1.1 jtc
806 1.1 jtc if (dpt != NULL) {
807 1.1 jtc /*
808 1.1 jtc * we are being remapped for this device and pattern
809 1.1 jtc * change the device number to be stored and return
810 1.1 jtc */
811 1.1 jtc arcn->sb.st_dev = dpt->dev;
812 1.1 jtc arcn->sb.st_ino = nino;
813 1.1 jtc return(0);
814 1.1 jtc }
815 1.1 jtc } else {
816 1.1 jtc /*
817 1.1 jtc * this device is not being remapped YET. if we do not have any
818 1.1 jtc * form of truncation, we do not need a remap
819 1.1 jtc */
820 1.1 jtc if (!trc_ino && !trc_dev)
821 1.1 jtc return(0);
822 1.1 jtc
823 1.1 jtc /*
824 1.1 jtc * we have truncation, have to add this as a device to remap
825 1.1 jtc */
826 1.1 jtc if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
827 1.1 jtc goto bad;
828 1.1 jtc
829 1.1 jtc /*
830 1.1 jtc * if we just have a truncated inode, we have to make sure that
831 1.1 jtc * all future inodes that do not truncate (they have the
832 1.1 jtc * truncation pattern of all 0's) continue to map to the same
833 1.1 jtc * device number. We probably have already written inodes with
834 1.1 jtc * this device number to the archive with the truncation
835 1.1 jtc * pattern of all 0's. So we add the mapping for all 0's to the
836 1.1 jtc * same device number.
837 1.1 jtc */
838 1.1 jtc if (!trc_dev && (trunc_bits != 0)) {
839 1.1 jtc if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
840 1.1 jtc goto bad;
841 1.1 jtc dpt->trunc_bits = 0;
842 1.1 jtc dpt->dev = arcn->sb.st_dev;
843 1.1 jtc dpt->fow = pt->list;
844 1.1 jtc pt->list = dpt;
845 1.1 jtc }
846 1.1 jtc }
847 1.1 jtc
848 1.1 jtc /*
849 1.1 jtc * look for a device number not being used. We must watch for wrap
850 1.1 jtc * around on lastdev (so we do not get stuck looking forever!)
851 1.1 jtc */
852 1.1 jtc while (++lastdev > 0) {
853 1.1 jtc if (chk_dev(lastdev, 0) != NULL)
854 1.1 jtc continue;
855 1.1 jtc /*
856 1.1 jtc * found an unused value. If we have reached truncation point
857 1.1 jtc * for this format we are hosed, so we give up. Otherwise we
858 1.1 jtc * mark it as being used.
859 1.1 jtc */
860 1.1 jtc if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
861 1.1 jtc (chk_dev(lastdev, 1) == NULL))
862 1.1 jtc goto bad;
863 1.1 jtc break;
864 1.1 jtc }
865 1.1 jtc
866 1.1 jtc if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
867 1.1 jtc goto bad;
868 1.1 jtc
869 1.1 jtc /*
870 1.1 jtc * got a new device number, store it under this truncation pattern.
871 1.1 jtc * change the device number this file is being stored with.
872 1.1 jtc */
873 1.1 jtc dpt->trunc_bits = trunc_bits;
874 1.1 jtc dpt->dev = lastdev;
875 1.1 jtc dpt->fow = pt->list;
876 1.1 jtc pt->list = dpt;
877 1.1 jtc arcn->sb.st_dev = lastdev;
878 1.1 jtc arcn->sb.st_ino = nino;
879 1.1 jtc return(0);
880 1.1 jtc
881 1.1 jtc bad:
882 1.7 christos tty_warn(1,
883 1.7 christos "Unable to fix truncated inode/device field when storing %s",
884 1.1 jtc arcn->name);
885 1.7 christos tty_warn(0, "Archive may create improper hard links when extracted");
886 1.1 jtc return(0);
887 1.1 jtc }
888 1.1 jtc
889 1.1 jtc /*
890 1.1 jtc * directory access/mod time reset table routines (for directories READ by pax)
891 1.1 jtc *
892 1.1 jtc * The pax -t flag requires that access times of archive files to be the same
893 1.20 wiz * as before being read by pax. For regular files, access time is restored after
894 1.1 jtc * the file has been copied. This database provides the same functionality for
895 1.1 jtc * directories read during file tree traversal. Restoring directory access time
896 1.1 jtc * is more complex than files since directories may be read several times until
897 1.1 jtc * all the descendants in their subtree are visited by fts. Directory access
898 1.1 jtc * and modification times are stored during the fts pre-order visit (done
899 1.1 jtc * before any descendants in the subtree is visited) and restored after the
900 1.1 jtc * fts post-order visit (after all the descendants have been visited). In the
901 1.1 jtc * case of premature exit from a subtree (like from the effects of -n), any
902 1.1 jtc * directory entries left in this database are reset during final cleanup
903 1.1 jtc * operations of pax. Entries are hashed by inode number for fast lookup.
904 1.1 jtc */
905 1.1 jtc
906 1.1 jtc /*
907 1.1 jtc * atdir_start()
908 1.1 jtc * create the directory access time database for directories READ by pax.
909 1.1 jtc * Return:
910 1.1 jtc * 0 is created ok, -1 otherwise.
911 1.1 jtc */
912 1.1 jtc
913 1.1 jtc int
914 1.1 jtc atdir_start(void)
915 1.1 jtc {
916 1.1 jtc if (atab != NULL)
917 1.1 jtc return(0);
918 1.12 itohy if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
919 1.12 itohy tty_warn(1,
920 1.7 christos "Cannot allocate space for directory access time table");
921 1.12 itohy return(-1);
922 1.12 itohy }
923 1.1 jtc return(0);
924 1.1 jtc }
925 1.1 jtc
926 1.1 jtc
927 1.1 jtc /*
928 1.1 jtc * atdir_end()
929 1.1 jtc * walk through the directory access time table and reset the access time
930 1.1 jtc * of any directory who still has an entry left in the database. These
931 1.1 jtc * entries are for directories READ by pax
932 1.1 jtc */
933 1.1 jtc
934 1.1 jtc void
935 1.1 jtc atdir_end(void)
936 1.1 jtc {
937 1.5 tls ATDIR *pt;
938 1.5 tls int i;
939 1.1 jtc
940 1.1 jtc if (atab == NULL)
941 1.1 jtc return;
942 1.1 jtc /*
943 1.1 jtc * for each non-empty hash table entry reset all the directories
944 1.1 jtc * chained there.
945 1.1 jtc */
946 1.1 jtc for (i = 0; i < A_TAB_SZ; ++i) {
947 1.1 jtc if ((pt = atab[i]) == NULL)
948 1.1 jtc continue;
949 1.1 jtc /*
950 1.1 jtc * remember to force the times, set_ftime() looks at pmtime
951 1.1 jtc * and patime, which only applies to things CREATED by pax,
952 1.1 jtc * not read by pax. Read time reset is controlled by -t.
953 1.1 jtc */
954 1.1 jtc for (; pt != NULL; pt = pt->fow)
955 1.1 jtc set_ftime(pt->name, pt->mtime, pt->atime, 1);
956 1.1 jtc }
957 1.1 jtc }
958 1.1 jtc
959 1.1 jtc /*
960 1.1 jtc * add_atdir()
961 1.1 jtc * add a directory to the directory access time table. Table is hashed
962 1.1 jtc * and chained by inode number. This is for directories READ by pax
963 1.1 jtc */
964 1.1 jtc
965 1.1 jtc void
966 1.1 jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
967 1.1 jtc {
968 1.5 tls ATDIR *pt;
969 1.5 tls u_int indx;
970 1.1 jtc
971 1.1 jtc if (atab == NULL)
972 1.1 jtc return;
973 1.1 jtc
974 1.1 jtc /*
975 1.12 itohy * make sure this directory is not already in the table, if so just
976 1.1 jtc * return (the older entry always has the correct time). The only
977 1.1 jtc * way this will happen is when the same subtree can be traversed by
978 1.1 jtc * different args to pax and the -n option is aborting fts out of a
979 1.20 wiz * subtree before all the post-order visits have been made.
980 1.1 jtc */
981 1.1 jtc indx = ((unsigned)ino) % A_TAB_SZ;
982 1.1 jtc if ((pt = atab[indx]) != NULL) {
983 1.1 jtc while (pt != NULL) {
984 1.1 jtc if ((pt->ino == ino) && (pt->dev == dev))
985 1.1 jtc break;
986 1.1 jtc pt = pt->fow;
987 1.1 jtc }
988 1.1 jtc
989 1.1 jtc /*
990 1.1 jtc * oops, already there. Leave it alone.
991 1.1 jtc */
992 1.1 jtc if (pt != NULL)
993 1.1 jtc return;
994 1.1 jtc }
995 1.1 jtc
996 1.1 jtc /*
997 1.1 jtc * add it to the front of the hash chain
998 1.1 jtc */
999 1.1 jtc if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1000 1.1 jtc if ((pt->name = strdup(fname)) != NULL) {
1001 1.1 jtc pt->dev = dev;
1002 1.1 jtc pt->ino = ino;
1003 1.1 jtc pt->mtime = mtime;
1004 1.1 jtc pt->atime = atime;
1005 1.1 jtc pt->fow = atab[indx];
1006 1.1 jtc atab[indx] = pt;
1007 1.1 jtc return;
1008 1.1 jtc }
1009 1.1 jtc (void)free((char *)pt);
1010 1.1 jtc }
1011 1.1 jtc
1012 1.7 christos tty_warn(1, "Directory access time reset table ran out of memory");
1013 1.1 jtc return;
1014 1.1 jtc }
1015 1.1 jtc
1016 1.1 jtc /*
1017 1.1 jtc * get_atdir()
1018 1.1 jtc * look up a directory by inode and device number to obtain the access
1019 1.1 jtc * and modification time you want to set to. If found, the modification
1020 1.1 jtc * and access time parameters are set and the entry is removed from the
1021 1.1 jtc * table (as it is no longer needed). These are for directories READ by
1022 1.1 jtc * pax
1023 1.1 jtc * Return:
1024 1.1 jtc * 0 if found, -1 if not found.
1025 1.1 jtc */
1026 1.1 jtc
1027 1.1 jtc int
1028 1.1 jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1029 1.1 jtc {
1030 1.5 tls ATDIR *pt;
1031 1.5 tls ATDIR **ppt;
1032 1.5 tls u_int indx;
1033 1.1 jtc
1034 1.1 jtc if (atab == NULL)
1035 1.1 jtc return(-1);
1036 1.1 jtc /*
1037 1.1 jtc * hash by inode and search the chain for an inode and device match
1038 1.1 jtc */
1039 1.1 jtc indx = ((unsigned)ino) % A_TAB_SZ;
1040 1.1 jtc if ((pt = atab[indx]) == NULL)
1041 1.1 jtc return(-1);
1042 1.1 jtc
1043 1.1 jtc ppt = &(atab[indx]);
1044 1.1 jtc while (pt != NULL) {
1045 1.1 jtc if ((pt->ino == ino) && (pt->dev == dev))
1046 1.1 jtc break;
1047 1.1 jtc /*
1048 1.1 jtc * no match, go to next one
1049 1.1 jtc */
1050 1.1 jtc ppt = &(pt->fow);
1051 1.1 jtc pt = pt->fow;
1052 1.1 jtc }
1053 1.1 jtc
1054 1.1 jtc /*
1055 1.1 jtc * return if we did not find it.
1056 1.1 jtc */
1057 1.1 jtc if (pt == NULL)
1058 1.1 jtc return(-1);
1059 1.1 jtc
1060 1.1 jtc /*
1061 1.1 jtc * found it. return the times and remove the entry from the table.
1062 1.1 jtc */
1063 1.1 jtc *ppt = pt->fow;
1064 1.1 jtc *mtime = pt->mtime;
1065 1.1 jtc *atime = pt->atime;
1066 1.1 jtc (void)free((char *)pt->name);
1067 1.1 jtc (void)free((char *)pt);
1068 1.1 jtc return(0);
1069 1.1 jtc }
1070 1.1 jtc
1071 1.1 jtc /*
1072 1.1 jtc * directory access mode and time storage routines (for directories CREATED
1073 1.1 jtc * by pax).
1074 1.1 jtc *
1075 1.1 jtc * Pax requires that extracted directories, by default, have their access/mod
1076 1.1 jtc * times and permissions set to the values specified in the archive. During the
1077 1.1 jtc * actions of extracting (and creating the destination subtree during -rw copy)
1078 1.1 jtc * directories extracted may be modified after being created. Even worse is
1079 1.1 jtc * that these directories may have been created with file permissions which
1080 1.1 jtc * prohibits any descendants of these directories from being extracted. When
1081 1.1 jtc * directories are created by pax, access rights may be added to permit the
1082 1.1 jtc * creation of files in their subtree. Every time pax creates a directory, the
1083 1.1 jtc * times and file permissions specified by the archive are stored. After all
1084 1.1 jtc * files have been extracted (or copied), these directories have their times
1085 1.1 jtc * and file modes reset to the stored values. The directory info is restored in
1086 1.1 jtc * reverse order as entries were added to the data file from root to leaf. To
1087 1.1 jtc * restore atime properly, we must go backwards. The data file consists of
1088 1.1 jtc * records with two parts, the file name followed by a DIRDATA trailer. The
1089 1.1 jtc * fixed sized trailer contains the size of the name plus the off_t location in
1090 1.1 jtc * the file. To restore we work backwards through the file reading the trailer
1091 1.1 jtc * then the file name.
1092 1.1 jtc */
1093 1.1 jtc
1094 1.13 thorpej #ifndef DIRS_USE_FILE
1095 1.13 thorpej static DIRDATA *dirdata_head;
1096 1.13 thorpej #endif
1097 1.13 thorpej
1098 1.1 jtc /*
1099 1.1 jtc * dir_start()
1100 1.1 jtc * set up the directory time and file mode storage for directories CREATED
1101 1.1 jtc * by pax.
1102 1.1 jtc * Return:
1103 1.1 jtc * 0 if ok, -1 otherwise
1104 1.1 jtc */
1105 1.1 jtc
1106 1.1 jtc int
1107 1.1 jtc dir_start(void)
1108 1.1 jtc {
1109 1.13 thorpej #ifdef DIRS_USE_FILE
1110 1.1 jtc if (dirfd != -1)
1111 1.1 jtc return(0);
1112 1.1 jtc
1113 1.1 jtc /*
1114 1.1 jtc * unlink the file so it goes away at termination by itself
1115 1.1 jtc */
1116 1.18 christos memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1117 1.18 christos if ((dirfd = mkstemp(tempfile)) >= 0) {
1118 1.18 christos (void)unlink(tempfile);
1119 1.1 jtc return(0);
1120 1.1 jtc }
1121 1.7 christos tty_warn(1, "Unable to create temporary file for directory times: %s",
1122 1.18 christos tempfile);
1123 1.1 jtc return(-1);
1124 1.13 thorpej #else
1125 1.13 thorpej return (0);
1126 1.13 thorpej #endif /* DIRS_USE_FILE */
1127 1.1 jtc }
1128 1.1 jtc
1129 1.1 jtc /*
1130 1.1 jtc * add_dir()
1131 1.1 jtc * add the mode and times for a newly CREATED directory
1132 1.1 jtc * name is name of the directory, psb the stat buffer with the data in it,
1133 1.1 jtc * frc_mode is a flag that says whether to force the setting of the mode
1134 1.1 jtc * (ignoring the user set values for preserving file mode). Frc_mode is
1135 1.12 itohy * for the case where we created a file and found that the resulting
1136 1.19 wiz * directory was not writable and the user asked for file modes to NOT
1137 1.1 jtc * be preserved. (we have to preserve what was created by default, so we
1138 1.1 jtc * have to force the setting at the end. this is stated explicitly in the
1139 1.1 jtc * pax spec)
1140 1.1 jtc */
1141 1.1 jtc
1142 1.1 jtc void
1143 1.1 jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1144 1.1 jtc {
1145 1.13 thorpej #ifdef DIRS_USE_FILE
1146 1.1 jtc DIRDATA dblk;
1147 1.1 jtc
1148 1.1 jtc if (dirfd < 0)
1149 1.1 jtc return;
1150 1.1 jtc
1151 1.1 jtc /*
1152 1.1 jtc * get current position (where file name will start) so we can store it
1153 1.1 jtc * in the trailer
1154 1.1 jtc */
1155 1.1 jtc if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1156 1.7 christos tty_warn(1,
1157 1.7 christos "Unable to store mode and times for directory: %s",name);
1158 1.1 jtc return;
1159 1.1 jtc }
1160 1.1 jtc
1161 1.1 jtc /*
1162 1.1 jtc * write the file name followed by the trailer
1163 1.1 jtc */
1164 1.1 jtc dblk.nlen = nlen + 1;
1165 1.1 jtc dblk.mode = psb->st_mode & 0xffff;
1166 1.1 jtc dblk.mtime = psb->st_mtime;
1167 1.1 jtc dblk.atime = psb->st_atime;
1168 1.16 tv #if HAVE_STRUCT_STAT_ST_FLAGS
1169 1.10 mrg dblk.fflags = psb->st_flags;
1170 1.16 tv #else
1171 1.16 tv dblk.fflags = 0;
1172 1.16 tv #endif
1173 1.1 jtc dblk.frc_mode = frc_mode;
1174 1.11 itohy if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1175 1.11 itohy (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1176 1.1 jtc ++dircnt;
1177 1.1 jtc return;
1178 1.1 jtc }
1179 1.1 jtc
1180 1.7 christos tty_warn(1,
1181 1.7 christos "Unable to store mode and times for created directory: %s",name);
1182 1.1 jtc return;
1183 1.13 thorpej #else
1184 1.13 thorpej DIRDATA *dblk;
1185 1.13 thorpej
1186 1.13 thorpej if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1187 1.13 thorpej (dblk->name = strdup(name)) == NULL) {
1188 1.13 thorpej tty_warn(1,
1189 1.13 thorpej "Unable to store mode and times for directory: %s",name);
1190 1.13 thorpej if (dblk != NULL)
1191 1.13 thorpej free(dblk);
1192 1.13 thorpej return;
1193 1.13 thorpej }
1194 1.13 thorpej
1195 1.13 thorpej dblk->mode = psb->st_mode & 0xffff;
1196 1.13 thorpej dblk->mtime = psb->st_mtime;
1197 1.13 thorpej dblk->atime = psb->st_atime;
1198 1.16 tv #if HAVE_STRUCT_STAT_ST_FLAGS
1199 1.13 thorpej dblk->fflags = psb->st_flags;
1200 1.16 tv #else
1201 1.16 tv dblk->fflags = 0;
1202 1.16 tv #endif
1203 1.13 thorpej dblk->frc_mode = frc_mode;
1204 1.13 thorpej
1205 1.13 thorpej dblk->next = dirdata_head;
1206 1.13 thorpej dirdata_head = dblk;
1207 1.13 thorpej return;
1208 1.13 thorpej #endif /* DIRS_USE_FILE */
1209 1.1 jtc }
1210 1.1 jtc
1211 1.1 jtc /*
1212 1.1 jtc * proc_dir()
1213 1.1 jtc * process all file modes and times stored for directories CREATED
1214 1.1 jtc * by pax
1215 1.1 jtc */
1216 1.1 jtc
1217 1.1 jtc void
1218 1.1 jtc proc_dir(void)
1219 1.1 jtc {
1220 1.13 thorpej #ifdef DIRS_USE_FILE
1221 1.1 jtc char name[PAXPATHLEN+1];
1222 1.1 jtc DIRDATA dblk;
1223 1.1 jtc u_long cnt;
1224 1.1 jtc
1225 1.1 jtc if (dirfd < 0)
1226 1.1 jtc return;
1227 1.1 jtc /*
1228 1.1 jtc * read backwards through the file and process each directory
1229 1.1 jtc */
1230 1.1 jtc for (cnt = 0; cnt < dircnt; ++cnt) {
1231 1.1 jtc /*
1232 1.1 jtc * read the trailer, then the file name, if this fails
1233 1.1 jtc * just give up.
1234 1.1 jtc */
1235 1.12 itohy if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1236 1.1 jtc break;
1237 1.11 itohy if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1238 1.1 jtc break;
1239 1.12 itohy if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1240 1.1 jtc break;
1241 1.11 itohy if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1242 1.1 jtc break;
1243 1.12 itohy if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1244 1.1 jtc break;
1245 1.1 jtc
1246 1.1 jtc /*
1247 1.1 jtc * frc_mode set, make sure we set the file modes even if
1248 1.1 jtc * the user didn't ask for it (see file_subs.c for more info)
1249 1.1 jtc */
1250 1.1 jtc if (pmode || dblk.frc_mode)
1251 1.1 jtc set_pmode(name, dblk.mode);
1252 1.1 jtc if (patime || pmtime)
1253 1.1 jtc set_ftime(name, dblk.mtime, dblk.atime, 0);
1254 1.10 mrg if (pfflags)
1255 1.10 mrg set_chflags(name, dblk.fflags);
1256 1.1 jtc }
1257 1.1 jtc
1258 1.1 jtc (void)close(dirfd);
1259 1.1 jtc dirfd = -1;
1260 1.1 jtc if (cnt != dircnt)
1261 1.7 christos tty_warn(1,
1262 1.7 christos "Unable to set mode and times for created directories");
1263 1.1 jtc return;
1264 1.13 thorpej #else
1265 1.13 thorpej DIRDATA *dblk;
1266 1.13 thorpej
1267 1.13 thorpej for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1268 1.13 thorpej dirdata_head = dblk->next;
1269 1.13 thorpej
1270 1.13 thorpej /*
1271 1.13 thorpej * frc_mode set, make sure we set the file modes even if
1272 1.13 thorpej * the user didn't ask for it (see file_subs.c for more info)
1273 1.13 thorpej */
1274 1.13 thorpej if (pmode || dblk->frc_mode)
1275 1.13 thorpej set_pmode(dblk->name, dblk->mode);
1276 1.13 thorpej if (patime || pmtime)
1277 1.13 thorpej set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1278 1.13 thorpej if (pfflags)
1279 1.13 thorpej set_chflags(dblk->name, dblk->fflags);
1280 1.13 thorpej
1281 1.13 thorpej free(dblk->name);
1282 1.13 thorpej free(dblk);
1283 1.13 thorpej }
1284 1.13 thorpej #endif /* DIRS_USE_FILE */
1285 1.1 jtc }
1286 1.1 jtc
1287 1.1 jtc /*
1288 1.1 jtc * database independent routines
1289 1.1 jtc */
1290 1.1 jtc
1291 1.1 jtc /*
1292 1.1 jtc * st_hash()
1293 1.1 jtc * hashes filenames to a u_int for hashing into a table. Looks at the tail
1294 1.1 jtc * end of file, as this provides far better distribution than any other
1295 1.1 jtc * part of the name. For performance reasons we only care about the last
1296 1.1 jtc * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1297 1.1 jtc * name). Was tested on 500,000 name file tree traversal from the root
1298 1.1 jtc * and gave almost a perfectly uniform distribution of keys when used with
1299 1.1 jtc * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1300 1.1 jtc * chars at a time and pads with 0 for last addition.
1301 1.1 jtc * Return:
1302 1.1 jtc * the hash value of the string MOD (%) the table size.
1303 1.1 jtc */
1304 1.1 jtc
1305 1.1 jtc u_int
1306 1.1 jtc st_hash(char *name, int len, int tabsz)
1307 1.1 jtc {
1308 1.5 tls char *pt;
1309 1.5 tls char *dest;
1310 1.5 tls char *end;
1311 1.5 tls int i;
1312 1.5 tls u_int key = 0;
1313 1.5 tls int steps;
1314 1.5 tls int res;
1315 1.1 jtc u_int val;
1316 1.1 jtc
1317 1.1 jtc /*
1318 1.1 jtc * only look at the tail up to MAXKEYLEN, we do not need to waste
1319 1.1 jtc * time here (remember these are pathnames, the tail is what will
1320 1.1 jtc * spread out the keys)
1321 1.1 jtc */
1322 1.1 jtc if (len > MAXKEYLEN) {
1323 1.12 itohy pt = &(name[len - MAXKEYLEN]);
1324 1.1 jtc len = MAXKEYLEN;
1325 1.1 jtc } else
1326 1.1 jtc pt = name;
1327 1.1 jtc
1328 1.1 jtc /*
1329 1.1 jtc * calculate the number of u_int size steps in the string and if
1330 1.1 jtc * there is a runt to deal with
1331 1.1 jtc */
1332 1.1 jtc steps = len/sizeof(u_int);
1333 1.1 jtc res = len % sizeof(u_int);
1334 1.1 jtc
1335 1.1 jtc /*
1336 1.1 jtc * add up the value of the string in unsigned integer sized pieces
1337 1.1 jtc * too bad we cannot have unsigned int aligned strings, then we
1338 1.1 jtc * could avoid the expensive copy.
1339 1.1 jtc */
1340 1.1 jtc for (i = 0; i < steps; ++i) {
1341 1.1 jtc end = pt + sizeof(u_int);
1342 1.1 jtc dest = (char *)&val;
1343 1.1 jtc while (pt < end)
1344 1.1 jtc *dest++ = *pt++;
1345 1.1 jtc key += val;
1346 1.1 jtc }
1347 1.1 jtc
1348 1.1 jtc /*
1349 1.1 jtc * add in the runt padded with zero to the right
1350 1.1 jtc */
1351 1.1 jtc if (res) {
1352 1.1 jtc val = 0;
1353 1.1 jtc end = pt + res;
1354 1.1 jtc dest = (char *)&val;
1355 1.1 jtc while (pt < end)
1356 1.1 jtc *dest++ = *pt++;
1357 1.1 jtc key += val;
1358 1.1 jtc }
1359 1.1 jtc
1360 1.1 jtc /*
1361 1.1 jtc * return the result mod the table size
1362 1.1 jtc */
1363 1.1 jtc return(key % tabsz);
1364 1.1 jtc }
1365