Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.30.26.1
      1  1.30.26.1      yamt /*	$NetBSD: tables.c,v 1.30.26.1 2014/05/22 11:26:23 yamt Exp $	*/
      2        1.4       cgd 
      3        1.1       jtc /*-
      4       1.22       agc  * Copyright (c) 1992 Keith Muller.
      5        1.1       jtc  * Copyright (c) 1992, 1993
      6        1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7        1.1       jtc  *
      8        1.1       jtc  * This code is derived from software contributed to Berkeley by
      9        1.1       jtc  * Keith Muller of the University of California, San Diego.
     10        1.1       jtc  *
     11        1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12        1.1       jtc  * modification, are permitted provided that the following conditions
     13        1.1       jtc  * are met:
     14        1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15        1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16        1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18        1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19       1.21       agc  * 3. Neither the name of the University nor the names of its contributors
     20       1.21       agc  *    may be used to endorse or promote products derived from this software
     21       1.21       agc  *    without specific prior written permission.
     22       1.21       agc  *
     23       1.21       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.21       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.21       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.21       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.21       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.21       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.21       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.21       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.21       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.21       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.21       agc  * SUCH DAMAGE.
     34       1.21       agc  */
     35       1.21       agc 
     36       1.23     lukem #if HAVE_NBTOOL_CONFIG_H
     37       1.23     lukem #include "nbtool_config.h"
     38       1.23     lukem #endif
     39       1.23     lukem 
     40        1.7  christos #include <sys/cdefs.h>
     41       1.23     lukem #if !defined(lint)
     42        1.4       cgd #if 0
     43        1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44        1.4       cgd #else
     45  1.30.26.1      yamt __RCSID("$NetBSD: tables.c,v 1.30.26.1 2014/05/22 11:26:23 yamt Exp $");
     46        1.4       cgd #endif
     47        1.1       jtc #endif /* not lint */
     48        1.1       jtc 
     49        1.1       jtc #include <sys/types.h>
     50        1.1       jtc #include <sys/time.h>
     51        1.1       jtc #include <sys/stat.h>
     52        1.1       jtc #include <sys/param.h>
     53        1.1       jtc #include <stdio.h>
     54        1.1       jtc #include <ctype.h>
     55        1.8    kleink #include <fcntl.h>
     56        1.9    kleink #include <paths.h>
     57        1.1       jtc #include <string.h>
     58        1.1       jtc #include <unistd.h>
     59        1.1       jtc #include <errno.h>
     60        1.1       jtc #include <stdlib.h>
     61        1.1       jtc #include "pax.h"
     62        1.1       jtc #include "tables.h"
     63        1.1       jtc #include "extern.h"
     64        1.1       jtc 
     65        1.1       jtc /*
     66        1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67        1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68        1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69        1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70       1.24  christos  * As of this writing, the POSIX library functions were more complex than
     71        1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72        1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73        1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74        1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75        1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76       1.24  christos  * Trying to force the fit to the POSIX database routines was not considered
     77        1.1       jtc  * time well spent.
     78        1.1       jtc  */
     79        1.1       jtc 
     80        1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81        1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82        1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83        1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84        1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85       1.13   thorpej #ifdef DIRS_USE_FILE
     86        1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     87        1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     88       1.13   thorpej #endif
     89        1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     90        1.1       jtc 
     91       1.15     lukem static DEVT *chk_dev(dev_t, int);
     92        1.1       jtc 
     93        1.1       jtc /*
     94        1.1       jtc  * hard link table routines
     95        1.1       jtc  *
     96       1.12     itohy  * The hard link table tries to detect hard links to files using the device and
     97        1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     98        1.1       jtc  * write routine that this file is a hard link to another file. The format
     99        1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
    100        1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
    101        1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    102        1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    103        1.1       jtc  * the same table when reading an archive. In that situation, this table is
    104        1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    105        1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    106        1.1       jtc  * can be detected by the archive format.
    107        1.1       jtc  */
    108        1.1       jtc 
    109        1.1       jtc /*
    110        1.1       jtc  * lnk_start
    111        1.1       jtc  *	Creates the hard link table.
    112        1.1       jtc  * Return:
    113        1.1       jtc  *	0 if created, -1 if failure
    114        1.1       jtc  */
    115        1.1       jtc 
    116        1.1       jtc int
    117        1.1       jtc lnk_start(void)
    118        1.1       jtc {
    119        1.1       jtc 	if (ltab != NULL)
    120       1.25       dsl 		return 0;
    121       1.12     itohy 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    122       1.12     itohy 		tty_warn(1, "Cannot allocate memory for hard link table");
    123       1.25       dsl 		return -1;
    124       1.12     itohy 	}
    125       1.25       dsl 	return 0;
    126        1.1       jtc }
    127        1.1       jtc 
    128        1.1       jtc /*
    129        1.1       jtc  * chk_lnk()
    130        1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    131        1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    132        1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    133        1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    134        1.1       jtc  *	we add the file to the database if it has the potential for having
    135        1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    136        1.1       jtc  * Return:
    137        1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    138        1.1       jtc  */
    139        1.1       jtc 
    140        1.1       jtc int
    141        1.5       tls chk_lnk(ARCHD *arcn)
    142        1.1       jtc {
    143        1.5       tls 	HRDLNK *pt;
    144        1.5       tls 	HRDLNK **ppt;
    145        1.5       tls 	u_int indx;
    146        1.1       jtc 
    147        1.1       jtc 	if (ltab == NULL)
    148       1.25       dsl 		return -1;
    149        1.1       jtc 	/*
    150        1.1       jtc 	 * ignore those nodes that cannot have hard links
    151        1.1       jtc 	 */
    152        1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    153       1.25       dsl 		return 0;
    154        1.1       jtc 
    155        1.1       jtc 	/*
    156        1.1       jtc 	 * hash inode number and look for this file
    157        1.1       jtc 	 */
    158        1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    159        1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    160        1.1       jtc 		/*
    161       1.27       snj 		 * its hash chain is not empty, walk down looking for it
    162        1.1       jtc 		 */
    163        1.1       jtc 		ppt = &(ltab[indx]);
    164        1.1       jtc 		while (pt != NULL) {
    165        1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    166        1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    167        1.1       jtc 				break;
    168        1.1       jtc 			ppt = &(pt->fow);
    169        1.1       jtc 			pt = pt->fow;
    170        1.1       jtc 		}
    171        1.1       jtc 
    172        1.1       jtc 		if (pt != NULL) {
    173        1.1       jtc 			/*
    174        1.1       jtc 			 * found a link. set the node type and copy in the
    175        1.1       jtc 			 * name of the file it is to link to. we need to
    176        1.1       jtc 			 * handle hardlinks to regular files differently than
    177        1.1       jtc 			 * other links.
    178        1.1       jtc 			 */
    179       1.18  christos 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
    180       1.18  christos 				sizeof(arcn->ln_name));
    181        1.1       jtc 			if (arcn->type == PAX_REG)
    182        1.1       jtc 				arcn->type = PAX_HRG;
    183        1.1       jtc 			else
    184        1.1       jtc 				arcn->type = PAX_HLK;
    185        1.1       jtc 
    186        1.1       jtc 			/*
    187        1.1       jtc 			 * if we have found all the links to this file, remove
    188        1.1       jtc 			 * it from the database
    189        1.1       jtc 			 */
    190        1.1       jtc 			if (--pt->nlink <= 1) {
    191        1.1       jtc 				*ppt = pt->fow;
    192        1.1       jtc 				(void)free((char *)pt->name);
    193        1.1       jtc 				(void)free((char *)pt);
    194        1.1       jtc 			}
    195       1.25       dsl 			return 1;
    196        1.1       jtc 		}
    197        1.1       jtc 	}
    198        1.1       jtc 
    199        1.1       jtc 	/*
    200        1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    201        1.1       jtc 	 * front of this hash chain
    202        1.1       jtc 	 */
    203        1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    204        1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    205        1.1       jtc 			pt->dev = arcn->sb.st_dev;
    206        1.1       jtc 			pt->ino = arcn->sb.st_ino;
    207        1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    208        1.1       jtc 			pt->fow = ltab[indx];
    209        1.1       jtc 			ltab[indx] = pt;
    210       1.25       dsl 			return 0;
    211        1.1       jtc 		}
    212        1.1       jtc 		(void)free((char *)pt);
    213        1.1       jtc 	}
    214        1.1       jtc 
    215        1.7  christos 	tty_warn(1, "Hard link table out of memory");
    216       1.25       dsl 	return -1;
    217        1.1       jtc }
    218        1.1       jtc 
    219        1.1       jtc /*
    220        1.1       jtc  * purg_lnk
    221        1.1       jtc  *	remove reference for a file that we may have added to the data base as
    222        1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    223       1.28  christos  *	we do not want to accidentally point another file at it later on.
    224        1.1       jtc  */
    225        1.1       jtc 
    226        1.1       jtc void
    227        1.5       tls purg_lnk(ARCHD *arcn)
    228        1.1       jtc {
    229        1.5       tls 	HRDLNK *pt;
    230        1.5       tls 	HRDLNK **ppt;
    231        1.5       tls 	u_int indx;
    232        1.1       jtc 
    233        1.1       jtc 	if (ltab == NULL)
    234        1.1       jtc 		return;
    235        1.1       jtc 	/*
    236        1.1       jtc 	 * do not bother to look if it could not be in the database
    237        1.1       jtc 	 */
    238        1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    239        1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    240        1.1       jtc 		return;
    241        1.1       jtc 
    242        1.1       jtc 	/*
    243        1.1       jtc 	 * find the hash chain for this inode value, if empty return
    244        1.1       jtc 	 */
    245        1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    246        1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    247        1.1       jtc 		return;
    248        1.1       jtc 
    249        1.1       jtc 	/*
    250        1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    251        1.1       jtc 	 * free if found
    252        1.1       jtc 	 */
    253        1.1       jtc 	ppt = &(ltab[indx]);
    254        1.1       jtc 	while (pt != NULL) {
    255        1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    256        1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    257        1.1       jtc 			break;
    258        1.1       jtc 		ppt = &(pt->fow);
    259        1.1       jtc 		pt = pt->fow;
    260        1.1       jtc 	}
    261        1.1       jtc 	if (pt == NULL)
    262        1.1       jtc 		return;
    263        1.1       jtc 
    264        1.1       jtc 	/*
    265        1.1       jtc 	 * remove and free it
    266        1.1       jtc 	 */
    267        1.1       jtc 	*ppt = pt->fow;
    268        1.1       jtc 	(void)free((char *)pt->name);
    269        1.1       jtc 	(void)free((char *)pt);
    270        1.1       jtc }
    271        1.1       jtc 
    272        1.1       jtc /*
    273        1.1       jtc  * lnk_end()
    274        1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    275        1.1       jtc  *	read and write phases of append with update. (The format may have
    276        1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    277        1.1       jtc  *	write phase
    278        1.1       jtc  */
    279        1.1       jtc 
    280        1.1       jtc void
    281        1.1       jtc lnk_end(void)
    282        1.1       jtc {
    283        1.5       tls 	int i;
    284        1.5       tls 	HRDLNK *pt;
    285        1.5       tls 	HRDLNK *ppt;
    286        1.1       jtc 
    287        1.1       jtc 	if (ltab == NULL)
    288        1.1       jtc 		return;
    289        1.1       jtc 
    290        1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    291        1.1       jtc 		if (ltab[i] == NULL)
    292        1.1       jtc 			continue;
    293        1.1       jtc 		pt = ltab[i];
    294        1.1       jtc 		ltab[i] = NULL;
    295        1.1       jtc 
    296        1.1       jtc 		/*
    297        1.1       jtc 		 * free up each entry on this chain
    298        1.1       jtc 		 */
    299        1.1       jtc 		while (pt != NULL) {
    300        1.1       jtc 			ppt = pt;
    301        1.1       jtc 			pt = ppt->fow;
    302        1.1       jtc 			(void)free((char *)ppt->name);
    303        1.1       jtc 			(void)free((char *)ppt);
    304        1.1       jtc 		}
    305        1.1       jtc 	}
    306        1.1       jtc 	return;
    307        1.1       jtc }
    308        1.1       jtc 
    309        1.1       jtc /*
    310        1.1       jtc  * modification time table routines
    311        1.1       jtc  *
    312        1.1       jtc  * The modification time table keeps track of last modification times for all
    313        1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    314        1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    315        1.1       jtc  * already stored on the archive (if there is no other file with the same
    316        1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    317        1.1       jtc  * An append with an -u must read the archive and store the modification time
    318        1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    319        1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    320       1.20       wiz  * are stored in a scratch file and indexed by an in-memory hash table. The
    321        1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    322       1.12     itohy  * the length of the filename and the lseek offset within the scratch file
    323       1.20       wiz  * where the actual name is stored. Since there are never any deletions from this
    324        1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    325       1.12     itohy  * not exhibit any locality at all (files in the database are rarely
    326       1.20       wiz  * looked up more than once...), so caching is just a waste of memory. The
    327       1.20       wiz  * only limitation is the amount of scratch file space available to store the
    328        1.1       jtc  * path names.
    329        1.1       jtc  */
    330        1.1       jtc 
    331        1.1       jtc /*
    332        1.1       jtc  * ftime_start()
    333        1.1       jtc  *	create the file time hash table and open for read/write the scratch
    334        1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    335        1.1       jtc  *	no witnesses).
    336        1.1       jtc  * Return:
    337        1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    338        1.1       jtc  */
    339        1.1       jtc 
    340        1.1       jtc int
    341        1.1       jtc ftime_start(void)
    342        1.1       jtc {
    343        1.1       jtc 	if (ftab != NULL)
    344       1.25       dsl 		return 0;
    345       1.12     itohy 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    346       1.12     itohy 		tty_warn(1, "Cannot allocate memory for file time table");
    347       1.25       dsl 		return -1;
    348       1.12     itohy 	}
    349        1.1       jtc 
    350        1.1       jtc 	/*
    351        1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    352        1.1       jtc 	 * so it will get removed on exit
    353        1.1       jtc 	 */
    354       1.18  christos 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
    355       1.18  christos 	if ((ffd = mkstemp(tempfile)) == -1) {
    356        1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    357       1.18  christos 		    tempfile);
    358       1.25       dsl 		return -1;
    359        1.1       jtc 	}
    360        1.1       jtc 
    361       1.18  christos 	(void)unlink(tempfile);
    362       1.25       dsl 	return 0;
    363        1.1       jtc }
    364        1.1       jtc 
    365        1.1       jtc /*
    366        1.1       jtc  * chk_ftime()
    367        1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    368        1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    369        1.1       jtc  *	If a file with the same name is found, the file times are compared and
    370        1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    371        1.1       jtc  *	was not in the database) the new file is selected for storage.
    372        1.1       jtc  * Return:
    373        1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    374        1.1       jtc  *	-1 on error
    375        1.1       jtc  */
    376        1.1       jtc 
    377        1.1       jtc int
    378        1.5       tls chk_ftime(ARCHD *arcn)
    379        1.1       jtc {
    380        1.5       tls 	FTM *pt;
    381        1.5       tls 	int namelen;
    382        1.5       tls 	u_int indx;
    383        1.1       jtc 	char ckname[PAXPATHLEN+1];
    384        1.1       jtc 
    385        1.1       jtc 	/*
    386        1.1       jtc 	 * no info, go ahead and add to archive
    387        1.1       jtc 	 */
    388        1.1       jtc 	if (ftab == NULL)
    389       1.25       dsl 		return 0;
    390        1.1       jtc 
    391        1.1       jtc 	/*
    392        1.1       jtc 	 * hash the pathname and look up in table
    393        1.1       jtc 	 */
    394        1.1       jtc 	namelen = arcn->nlen;
    395        1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    396        1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    397        1.1       jtc 		/*
    398        1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    399        1.1       jtc 		 * only read up the path names if the lengths match, speeds
    400        1.1       jtc 		 * up the search a lot
    401        1.1       jtc 		 */
    402        1.1       jtc 		while (pt != NULL) {
    403        1.1       jtc 			if (pt->namelen == namelen) {
    404        1.1       jtc 				/*
    405        1.1       jtc 				 * potential match, have to read the name
    406        1.1       jtc 				 * from the scratch file.
    407        1.1       jtc 				 */
    408        1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    409        1.1       jtc 					syswarn(1, errno,
    410        1.1       jtc 					    "Failed ftime table seek");
    411       1.25       dsl 					return -1;
    412        1.1       jtc 				}
    413       1.11     itohy 				if (xread(ffd, ckname, namelen) != namelen) {
    414        1.1       jtc 					syswarn(1, errno,
    415        1.1       jtc 					    "Failed ftime table read");
    416       1.25       dsl 					return -1;
    417        1.1       jtc 				}
    418        1.1       jtc 
    419        1.1       jtc 				/*
    420        1.1       jtc 				 * if the names match, we are done
    421        1.1       jtc 				 */
    422        1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    423        1.1       jtc 					break;
    424        1.1       jtc 			}
    425        1.1       jtc 
    426        1.1       jtc 			/*
    427        1.1       jtc 			 * try the next entry on the chain
    428        1.1       jtc 			 */
    429        1.1       jtc 			pt = pt->fow;
    430        1.1       jtc 		}
    431        1.1       jtc 
    432        1.1       jtc 		if (pt != NULL) {
    433        1.1       jtc 			/*
    434        1.1       jtc 			 * found the file, compare the times, save the newer
    435        1.1       jtc 			 */
    436        1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    437        1.1       jtc 				/*
    438        1.1       jtc 				 * file is newer
    439        1.1       jtc 				 */
    440        1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    441       1.25       dsl 				return 0;
    442       1.12     itohy 			}
    443        1.1       jtc 			/*
    444        1.1       jtc 			 * file is older
    445        1.1       jtc 			 */
    446       1.25       dsl 			return 1;
    447        1.1       jtc 		}
    448        1.1       jtc 	}
    449        1.1       jtc 
    450        1.1       jtc 	/*
    451        1.1       jtc 	 * not in table, add it
    452        1.1       jtc 	 */
    453        1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    454        1.1       jtc 		/*
    455        1.1       jtc 		 * add the name at the end of the scratch file, saving the
    456        1.1       jtc 		 * offset. add the file to the head of the hash chain
    457        1.1       jtc 		 */
    458        1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    459       1.11     itohy 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    460        1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    461        1.1       jtc 				pt->namelen = namelen;
    462        1.1       jtc 				pt->fow = ftab[indx];
    463        1.1       jtc 				ftab[indx] = pt;
    464       1.25       dsl 				return 0;
    465        1.1       jtc 			}
    466        1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    467       1.12     itohy 		} else
    468        1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    469        1.1       jtc 	} else
    470        1.7  christos 		tty_warn(1, "File time table ran out of memory");
    471        1.1       jtc 
    472        1.1       jtc 	if (pt != NULL)
    473        1.1       jtc 		(void)free((char *)pt);
    474       1.25       dsl 	return -1;
    475        1.1       jtc }
    476        1.1       jtc 
    477        1.1       jtc /*
    478        1.1       jtc  * Interactive rename table routines
    479        1.1       jtc  *
    480        1.1       jtc  * The interactive rename table keeps track of the new names that the user
    481       1.12     itohy  * assigns to files from tty input. Since this map is unique for each file
    482        1.1       jtc  * we must store it in case there is a reference to the file later in archive
    483        1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    484        1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    485        1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    486        1.1       jtc  * be a very large table).
    487        1.1       jtc  */
    488        1.1       jtc 
    489        1.1       jtc /*
    490        1.1       jtc  * name_start()
    491        1.1       jtc  *	create the interactive rename table
    492        1.1       jtc  * Return:
    493        1.1       jtc  *	0 if successful, -1 otherwise
    494        1.1       jtc  */
    495        1.1       jtc 
    496        1.1       jtc int
    497        1.1       jtc name_start(void)
    498        1.1       jtc {
    499        1.1       jtc 	if (ntab != NULL)
    500       1.25       dsl 		return 0;
    501       1.12     itohy 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    502       1.12     itohy 		tty_warn(1,
    503        1.7  christos 		    "Cannot allocate memory for interactive rename table");
    504       1.25       dsl 		return -1;
    505       1.12     itohy 	}
    506       1.25       dsl 	return 0;
    507        1.1       jtc }
    508        1.1       jtc 
    509        1.1       jtc /*
    510        1.1       jtc  * add_name()
    511        1.1       jtc  *	add the new name to old name mapping just created by the user.
    512        1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    513        1.1       jtc  *	archive) only the most recent is kept.
    514        1.1       jtc  * Return:
    515        1.1       jtc  *	0 if added, -1 otherwise
    516        1.1       jtc  */
    517        1.1       jtc 
    518        1.1       jtc int
    519        1.5       tls add_name(char *oname, int onamelen, char *nname)
    520        1.1       jtc {
    521        1.5       tls 	NAMT *pt;
    522        1.5       tls 	u_int indx;
    523        1.1       jtc 
    524        1.1       jtc 	if (ntab == NULL) {
    525        1.1       jtc 		/*
    526        1.1       jtc 		 * should never happen
    527        1.1       jtc 		 */
    528        1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    529       1.25       dsl 		return 0;
    530        1.1       jtc 	}
    531        1.1       jtc 
    532        1.1       jtc 	/*
    533        1.1       jtc 	 * look to see if we have already mapped this file, if so we
    534        1.1       jtc 	 * will update it
    535        1.1       jtc 	 */
    536        1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    537        1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    538        1.1       jtc 		/*
    539        1.1       jtc 		 * look down the has chain for the file
    540        1.1       jtc 		 */
    541        1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    542        1.1       jtc 			pt = pt->fow;
    543        1.1       jtc 
    544        1.1       jtc 		if (pt != NULL) {
    545        1.1       jtc 			/*
    546        1.1       jtc 			 * found an old mapping, replace it with the new one
    547        1.1       jtc 			 * the user just input (if it is different)
    548        1.1       jtc 			 */
    549        1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    550       1.25       dsl 				return 0;
    551        1.1       jtc 
    552        1.1       jtc 			(void)free((char *)pt->nname);
    553        1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    554        1.7  christos 				tty_warn(1, "Cannot update rename table");
    555       1.25       dsl 				return -1;
    556        1.1       jtc 			}
    557       1.25       dsl 			return 0;
    558        1.1       jtc 		}
    559        1.1       jtc 	}
    560        1.1       jtc 
    561        1.1       jtc 	/*
    562        1.1       jtc 	 * this is a new mapping, add it to the table
    563        1.1       jtc 	 */
    564        1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    565        1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    566        1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    567        1.1       jtc 				pt->fow = ntab[indx];
    568        1.1       jtc 				ntab[indx] = pt;
    569       1.25       dsl 				return 0;
    570        1.1       jtc 			}
    571        1.1       jtc 			(void)free((char *)pt->oname);
    572        1.1       jtc 		}
    573        1.1       jtc 		(void)free((char *)pt);
    574        1.1       jtc 	}
    575        1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    576       1.25       dsl 	return -1;
    577        1.1       jtc }
    578        1.1       jtc 
    579        1.1       jtc /*
    580        1.1       jtc  * sub_name()
    581        1.1       jtc  *	look up a link name to see if it points at a file that has been
    582        1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    583        1.1       jtc  *	new name (oname is the link to name)
    584        1.1       jtc  */
    585        1.1       jtc 
    586        1.1       jtc void
    587       1.18  christos sub_name(char *oname, int *onamelen, size_t onamesize)
    588        1.1       jtc {
    589        1.5       tls 	NAMT *pt;
    590        1.5       tls 	u_int indx;
    591        1.1       jtc 
    592        1.1       jtc 	if (ntab == NULL)
    593        1.1       jtc 		return;
    594        1.1       jtc 	/*
    595        1.1       jtc 	 * look the name up in the hash table
    596        1.1       jtc 	 */
    597        1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    598        1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    599        1.1       jtc 		return;
    600        1.1       jtc 
    601        1.1       jtc 	while (pt != NULL) {
    602        1.1       jtc 		/*
    603       1.14     lukem 		 * walk down the hash chain looking for a match
    604        1.1       jtc 		 */
    605        1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    606        1.1       jtc 			/*
    607        1.1       jtc 			 * found it, replace it with the new name
    608        1.1       jtc 			 * and return (we know that oname has enough space)
    609        1.1       jtc 			 */
    610       1.18  christos 			*onamelen = strlcpy(oname, pt->nname, onamesize);
    611        1.1       jtc 			return;
    612        1.1       jtc 		}
    613        1.1       jtc 		pt = pt->fow;
    614        1.1       jtc 	}
    615        1.1       jtc 
    616        1.1       jtc 	/*
    617        1.1       jtc 	 * no match, just return
    618        1.1       jtc 	 */
    619        1.1       jtc 	return;
    620        1.1       jtc }
    621       1.12     itohy 
    622        1.1       jtc /*
    623        1.1       jtc  * device/inode mapping table routines
    624        1.1       jtc  * (used with formats that store device and inodes fields)
    625        1.1       jtc  *
    626       1.29   msaitoh  * device/inode mapping tables remap the device field in an archive header. The
    627        1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    628        1.1       jtc  * other. However these values have very little meaning outside of that. This
    629        1.1       jtc  * database is used to solve one of two different problems.
    630        1.1       jtc  *
    631        1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    632        1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    633        1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    634        1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    635        1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    636        1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    637        1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    638        1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    639        1.1       jtc  * member that has a device number used in a prior run and already stored in a
    640        1.1       jtc  * file on the archive. During the read phase of the append, we store the
    641        1.1       jtc  * device numbers used and mark them to not be used by any file during the
    642        1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    643        1.1       jtc  * we remap it to a new value.
    644        1.1       jtc  *
    645        1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    646        1.1       jtc  * too small to store the entire value. The result is an inode or device value
    647        1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    648        1.1       jtc  * we end up creating links between files that are really not links (after
    649        1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    650        1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    651        1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    652        1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    653        1.1       jtc  * on a single device to many different devices (each one represented by the
    654        1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    655        1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    656        1.1       jtc  * truncate to the same value clearly will always have different truncation
    657        1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    658        1.1       jtc  * device truncation we remap the device number to a non truncated value.
    659        1.1       jtc  * (for more info see table.h for the data structures involved).
    660        1.1       jtc  */
    661        1.1       jtc 
    662        1.1       jtc /*
    663        1.1       jtc  * dev_start()
    664        1.1       jtc  *	create the device mapping table
    665        1.1       jtc  * Return:
    666        1.1       jtc  *	0 if successful, -1 otherwise
    667        1.1       jtc  */
    668        1.1       jtc 
    669        1.1       jtc int
    670        1.1       jtc dev_start(void)
    671        1.1       jtc {
    672        1.1       jtc 	if (dtab != NULL)
    673       1.25       dsl 		return 0;
    674       1.12     itohy 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    675       1.12     itohy 		tty_warn(1, "Cannot allocate memory for device mapping table");
    676       1.25       dsl 		return -1;
    677       1.12     itohy 	}
    678       1.25       dsl 	return 0;
    679        1.1       jtc }
    680        1.1       jtc 
    681        1.1       jtc /*
    682        1.1       jtc  * add_dev()
    683        1.1       jtc  *	add a device number to the table. this will force the device to be
    684        1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    685        1.1       jtc  *	function is called during the read phase of an append to prohibit the
    686        1.1       jtc  *	use of any device number already in the archive.
    687        1.1       jtc  * Return:
    688        1.1       jtc  *	0 if added ok, -1 otherwise
    689        1.1       jtc  */
    690        1.1       jtc 
    691        1.1       jtc int
    692        1.5       tls add_dev(ARCHD *arcn)
    693        1.1       jtc {
    694        1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    695       1.25       dsl 		return -1;
    696       1.25       dsl 	return 0;
    697        1.1       jtc }
    698        1.1       jtc 
    699        1.1       jtc /*
    700        1.1       jtc  * chk_dev()
    701        1.1       jtc  *	check for a device value in the device table. If not found and the add
    702        1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    703        1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    704       1.12     itohy  *	is already mapped, just return with a pointer to that entry.
    705        1.1       jtc  * Return:
    706        1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    707        1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    708        1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    709        1.1       jtc  *	is returned (indicates an error).
    710        1.1       jtc  */
    711        1.1       jtc 
    712        1.1       jtc static DEVT *
    713        1.1       jtc chk_dev(dev_t dev, int add)
    714        1.1       jtc {
    715        1.5       tls 	DEVT *pt;
    716        1.5       tls 	u_int indx;
    717        1.1       jtc 
    718        1.1       jtc 	if (dtab == NULL)
    719       1.25       dsl 		return NULL;
    720        1.1       jtc 	/*
    721        1.1       jtc 	 * look to see if this device is already in the table
    722        1.1       jtc 	 */
    723        1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    724        1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    725        1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    726        1.1       jtc 			pt = pt->fow;
    727        1.1       jtc 
    728        1.1       jtc 		/*
    729        1.1       jtc 		 * found it, return a pointer to it
    730        1.1       jtc 		 */
    731        1.1       jtc 		if (pt != NULL)
    732       1.25       dsl 			return pt;
    733        1.1       jtc 	}
    734        1.1       jtc 
    735        1.1       jtc 	/*
    736        1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    737        1.1       jtc 	 * to see if a device number is being used.
    738        1.1       jtc 	 */
    739        1.1       jtc 	if (add == 0)
    740       1.25       dsl 		return NULL;
    741        1.1       jtc 
    742        1.1       jtc 	/*
    743        1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    744        1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    745        1.1       jtc 	 * list must be NULL.
    746        1.1       jtc 	 */
    747        1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    748        1.7  christos 		tty_warn(1, "Device map table out of memory");
    749       1.25       dsl 		return NULL;
    750        1.1       jtc 	}
    751        1.1       jtc 	pt->dev = dev;
    752        1.1       jtc 	pt->list = NULL;
    753        1.1       jtc 	pt->fow = dtab[indx];
    754        1.1       jtc 	dtab[indx] = pt;
    755       1.25       dsl 	return pt;
    756        1.1       jtc }
    757        1.1       jtc /*
    758        1.1       jtc  * map_dev()
    759        1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    760        1.1       jtc  *	the archive format is able to store in a header), we check for inode
    761        1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    762        1.1       jtc  *	can also occur when during the read phase of append a device number was
    763        1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    764        1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    765        1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    766        1.1       jtc  * Return:
    767        1.1       jtc  *	0 if all ok, -1 otherwise.
    768        1.1       jtc  */
    769        1.1       jtc 
    770        1.1       jtc int
    771        1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    772        1.1       jtc {
    773        1.5       tls 	DEVT *pt;
    774        1.5       tls 	DLIST *dpt;
    775        1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    776        1.1       jtc 	int trc_ino = 0;
    777        1.1       jtc 	int trc_dev = 0;
    778        1.1       jtc 	ino_t trunc_bits = 0;
    779        1.1       jtc 	ino_t nino;
    780        1.1       jtc 
    781        1.1       jtc 	if (dtab == NULL)
    782       1.25       dsl 		return 0;
    783        1.1       jtc 	/*
    784        1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    785       1.12     itohy 	 * bit pattern.
    786        1.1       jtc 	 */
    787        1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    788        1.1       jtc 		++trc_dev;
    789        1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    790        1.1       jtc 		++trc_ino;
    791        1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    792        1.1       jtc 	}
    793        1.1       jtc 
    794        1.1       jtc 	/*
    795        1.1       jtc 	 * see if this device is already being mapped, look up the device
    796        1.1       jtc 	 * then find the truncation bit pattern which applies
    797        1.1       jtc 	 */
    798        1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    799        1.1       jtc 		/*
    800        1.1       jtc 		 * this device is already marked to be remapped
    801        1.1       jtc 		 */
    802        1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    803        1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    804        1.1       jtc 				break;
    805        1.1       jtc 
    806        1.1       jtc 		if (dpt != NULL) {
    807        1.1       jtc 			/*
    808        1.1       jtc 			 * we are being remapped for this device and pattern
    809        1.1       jtc 			 * change the device number to be stored and return
    810        1.1       jtc 			 */
    811        1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    812        1.1       jtc 			arcn->sb.st_ino = nino;
    813       1.25       dsl 			return 0;
    814        1.1       jtc 		}
    815        1.1       jtc 	} else {
    816        1.1       jtc 		/*
    817        1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    818        1.1       jtc 		 * form of truncation, we do not need a remap
    819        1.1       jtc 		 */
    820        1.1       jtc 		if (!trc_ino && !trc_dev)
    821       1.25       dsl 			return 0;
    822        1.1       jtc 
    823        1.1       jtc 		/*
    824        1.1       jtc 		 * we have truncation, have to add this as a device to remap
    825        1.1       jtc 		 */
    826        1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    827        1.1       jtc 			goto bad;
    828        1.1       jtc 
    829        1.1       jtc 		/*
    830        1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    831        1.1       jtc 		 * all future inodes that do not truncate (they have the
    832        1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    833        1.1       jtc 		 * device number. We probably have already written inodes with
    834        1.1       jtc 		 * this device number to the archive with the truncation
    835        1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    836        1.1       jtc 		 * same device number.
    837        1.1       jtc 		 */
    838        1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    839        1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    840        1.1       jtc 				goto bad;
    841        1.1       jtc 			dpt->trunc_bits = 0;
    842        1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    843        1.1       jtc 			dpt->fow = pt->list;
    844        1.1       jtc 			pt->list = dpt;
    845        1.1       jtc 		}
    846        1.1       jtc 	}
    847        1.1       jtc 
    848        1.1       jtc 	/*
    849        1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    850        1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    851        1.1       jtc 	 */
    852        1.1       jtc 	while (++lastdev > 0) {
    853        1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    854        1.1       jtc 			continue;
    855        1.1       jtc 		/*
    856        1.1       jtc 		 * found an unused value. If we have reached truncation point
    857        1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    858        1.1       jtc 		 * mark it as being used.
    859        1.1       jtc 		 */
    860        1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    861        1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    862        1.1       jtc 			goto bad;
    863        1.1       jtc 		break;
    864        1.1       jtc 	}
    865        1.1       jtc 
    866        1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    867        1.1       jtc 		goto bad;
    868        1.1       jtc 
    869        1.1       jtc 	/*
    870        1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    871        1.1       jtc 	 * change the device number this file is being stored with.
    872        1.1       jtc 	 */
    873        1.1       jtc 	dpt->trunc_bits = trunc_bits;
    874        1.1       jtc 	dpt->dev = lastdev;
    875        1.1       jtc 	dpt->fow = pt->list;
    876        1.1       jtc 	pt->list = dpt;
    877        1.1       jtc 	arcn->sb.st_dev = lastdev;
    878        1.1       jtc 	arcn->sb.st_ino = nino;
    879       1.25       dsl 	return 0;
    880        1.1       jtc 
    881        1.1       jtc     bad:
    882        1.7  christos 	tty_warn(1,
    883        1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    884        1.1       jtc 	    arcn->name);
    885        1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    886       1.25       dsl 	return 0;
    887        1.1       jtc }
    888        1.1       jtc 
    889        1.1       jtc /*
    890        1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    891        1.1       jtc  *
    892        1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    893       1.20       wiz  * as before being read by pax. For regular files, access time is restored after
    894        1.1       jtc  * the file has been copied. This database provides the same functionality for
    895        1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    896        1.1       jtc  * is more complex than files since directories may be read several times until
    897        1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    898        1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    899        1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    900        1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    901        1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    902        1.1       jtc  * directory entries left in this database are reset during final cleanup
    903        1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    904        1.1       jtc  */
    905        1.1       jtc 
    906        1.1       jtc /*
    907        1.1       jtc  * atdir_start()
    908        1.1       jtc  *	create the directory access time database for directories READ by pax.
    909        1.1       jtc  * Return:
    910        1.1       jtc  *	0 is created ok, -1 otherwise.
    911        1.1       jtc  */
    912        1.1       jtc 
    913        1.1       jtc int
    914        1.1       jtc atdir_start(void)
    915        1.1       jtc {
    916        1.1       jtc 	if (atab != NULL)
    917       1.25       dsl 		return 0;
    918       1.12     itohy 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    919       1.12     itohy 		tty_warn(1,
    920        1.7  christos 		    "Cannot allocate space for directory access time table");
    921       1.25       dsl 		return -1;
    922       1.12     itohy 	}
    923       1.25       dsl 	return 0;
    924        1.1       jtc }
    925        1.1       jtc 
    926        1.1       jtc 
    927        1.1       jtc /*
    928        1.1       jtc  * atdir_end()
    929        1.1       jtc  *	walk through the directory access time table and reset the access time
    930        1.1       jtc  *	of any directory who still has an entry left in the database. These
    931        1.1       jtc  *	entries are for directories READ by pax
    932        1.1       jtc  */
    933        1.1       jtc 
    934        1.1       jtc void
    935        1.1       jtc atdir_end(void)
    936        1.1       jtc {
    937        1.5       tls 	ATDIR *pt;
    938        1.5       tls 	int i;
    939        1.1       jtc 
    940        1.1       jtc 	if (atab == NULL)
    941        1.1       jtc 		return;
    942        1.1       jtc 	/*
    943        1.1       jtc 	 * for each non-empty hash table entry reset all the directories
    944        1.1       jtc 	 * chained there.
    945        1.1       jtc 	 */
    946        1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
    947        1.1       jtc 		if ((pt = atab[i]) == NULL)
    948        1.1       jtc 			continue;
    949        1.1       jtc 		/*
    950        1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
    951        1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
    952        1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
    953        1.1       jtc 		 */
    954        1.1       jtc 		for (; pt != NULL; pt = pt->fow)
    955       1.30       tls 			set_ftime(pt->name, pt->mtime, pt->atime, 1, 0);
    956        1.1       jtc 	}
    957        1.1       jtc }
    958        1.1       jtc 
    959        1.1       jtc /*
    960        1.1       jtc  * add_atdir()
    961        1.1       jtc  *	add a directory to the directory access time table. Table is hashed
    962        1.1       jtc  *	and chained by inode number. This is for directories READ by pax
    963        1.1       jtc  */
    964        1.1       jtc 
    965        1.1       jtc void
    966        1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
    967        1.1       jtc {
    968        1.5       tls 	ATDIR *pt;
    969        1.5       tls 	u_int indx;
    970        1.1       jtc 
    971        1.1       jtc 	if (atab == NULL)
    972        1.1       jtc 		return;
    973        1.1       jtc 
    974        1.1       jtc 	/*
    975       1.12     itohy 	 * make sure this directory is not already in the table, if so just
    976        1.1       jtc 	 * return (the older entry always has the correct time). The only
    977        1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
    978        1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
    979       1.20       wiz 	 * subtree before all the post-order visits have been made.
    980        1.1       jtc 	 */
    981        1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
    982        1.1       jtc 	if ((pt = atab[indx]) != NULL) {
    983        1.1       jtc 		while (pt != NULL) {
    984        1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
    985        1.1       jtc 				break;
    986        1.1       jtc 			pt = pt->fow;
    987        1.1       jtc 		}
    988        1.1       jtc 
    989        1.1       jtc 		/*
    990        1.1       jtc 		 * oops, already there. Leave it alone.
    991        1.1       jtc 		 */
    992        1.1       jtc 		if (pt != NULL)
    993        1.1       jtc 			return;
    994        1.1       jtc 	}
    995        1.1       jtc 
    996        1.1       jtc 	/*
    997        1.1       jtc 	 * add it to the front of the hash chain
    998        1.1       jtc 	 */
    999        1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1000        1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1001        1.1       jtc 			pt->dev = dev;
   1002        1.1       jtc 			pt->ino = ino;
   1003        1.1       jtc 			pt->mtime = mtime;
   1004        1.1       jtc 			pt->atime = atime;
   1005        1.1       jtc 			pt->fow = atab[indx];
   1006        1.1       jtc 			atab[indx] = pt;
   1007        1.1       jtc 			return;
   1008        1.1       jtc 		}
   1009        1.1       jtc 		(void)free((char *)pt);
   1010        1.1       jtc 	}
   1011        1.1       jtc 
   1012        1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1013        1.1       jtc 	return;
   1014        1.1       jtc }
   1015        1.1       jtc 
   1016        1.1       jtc /*
   1017        1.1       jtc  * get_atdir()
   1018        1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1019        1.1       jtc  *	and modification time you want to set to. If found, the modification
   1020        1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1021        1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1022        1.1       jtc  *	pax
   1023        1.1       jtc  * Return:
   1024        1.1       jtc  *	0 if found, -1 if not found.
   1025        1.1       jtc  */
   1026        1.1       jtc 
   1027        1.1       jtc int
   1028        1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1029        1.1       jtc {
   1030        1.5       tls 	ATDIR *pt;
   1031        1.5       tls 	ATDIR **ppt;
   1032        1.5       tls 	u_int indx;
   1033        1.1       jtc 
   1034        1.1       jtc 	if (atab == NULL)
   1035       1.25       dsl 		return -1;
   1036        1.1       jtc 	/*
   1037        1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1038        1.1       jtc 	 */
   1039        1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1040        1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1041       1.25       dsl 		return -1;
   1042        1.1       jtc 
   1043        1.1       jtc 	ppt = &(atab[indx]);
   1044        1.1       jtc 	while (pt != NULL) {
   1045        1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1046        1.1       jtc 			break;
   1047        1.1       jtc 		/*
   1048        1.1       jtc 		 * no match, go to next one
   1049        1.1       jtc 		 */
   1050        1.1       jtc 		ppt = &(pt->fow);
   1051        1.1       jtc 		pt = pt->fow;
   1052        1.1       jtc 	}
   1053        1.1       jtc 
   1054        1.1       jtc 	/*
   1055        1.1       jtc 	 * return if we did not find it.
   1056        1.1       jtc 	 */
   1057        1.1       jtc 	if (pt == NULL)
   1058       1.25       dsl 		return -1;
   1059        1.1       jtc 
   1060        1.1       jtc 	/*
   1061        1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1062        1.1       jtc 	 */
   1063        1.1       jtc 	*ppt = pt->fow;
   1064        1.1       jtc 	*mtime = pt->mtime;
   1065        1.1       jtc 	*atime = pt->atime;
   1066        1.1       jtc 	(void)free((char *)pt->name);
   1067        1.1       jtc 	(void)free((char *)pt);
   1068       1.25       dsl 	return 0;
   1069        1.1       jtc }
   1070        1.1       jtc 
   1071        1.1       jtc /*
   1072        1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1073        1.1       jtc  * by pax).
   1074        1.1       jtc  *
   1075        1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1076        1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1077        1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1078        1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1079        1.1       jtc  * that these directories may have been created with file permissions which
   1080        1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1081        1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1082        1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1083        1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1084        1.1       jtc  * files have been extracted (or copied), these directories have their times
   1085        1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1086        1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1087        1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1088        1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1089        1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1090        1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1091        1.1       jtc  * then the file name.
   1092        1.1       jtc  */
   1093        1.1       jtc 
   1094       1.13   thorpej #ifndef DIRS_USE_FILE
   1095       1.13   thorpej static DIRDATA *dirdata_head;
   1096       1.13   thorpej #endif
   1097       1.13   thorpej 
   1098        1.1       jtc /*
   1099        1.1       jtc  * dir_start()
   1100        1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1101        1.1       jtc  *	by pax.
   1102        1.1       jtc  * Return:
   1103        1.1       jtc  *	0 if ok, -1 otherwise
   1104        1.1       jtc  */
   1105        1.1       jtc 
   1106        1.1       jtc int
   1107        1.1       jtc dir_start(void)
   1108        1.1       jtc {
   1109       1.13   thorpej #ifdef DIRS_USE_FILE
   1110        1.1       jtc 	if (dirfd != -1)
   1111       1.25       dsl 		return 0;
   1112        1.1       jtc 
   1113        1.1       jtc 	/*
   1114        1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1115        1.1       jtc 	 */
   1116       1.18  christos 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
   1117       1.18  christos 	if ((dirfd = mkstemp(tempfile)) >= 0) {
   1118       1.18  christos 		(void)unlink(tempfile);
   1119       1.25       dsl 		return 0;
   1120        1.1       jtc 	}
   1121        1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1122       1.18  christos 	    tempfile);
   1123       1.25       dsl 	return -1;
   1124       1.13   thorpej #else
   1125       1.13   thorpej 	return (0);
   1126       1.13   thorpej #endif /* DIRS_USE_FILE */
   1127        1.1       jtc }
   1128        1.1       jtc 
   1129        1.1       jtc /*
   1130        1.1       jtc  * add_dir()
   1131        1.1       jtc  *	add the mode and times for a newly CREATED directory
   1132        1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1133        1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1134        1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1135       1.12     itohy  *	for the case where we created a file and found that the resulting
   1136       1.19       wiz  *	directory was not writable and the user asked for file modes to NOT
   1137        1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1138        1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1139        1.1       jtc  *	pax spec)
   1140        1.1       jtc  */
   1141        1.1       jtc 
   1142        1.1       jtc void
   1143        1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1144        1.1       jtc {
   1145       1.13   thorpej #ifdef DIRS_USE_FILE
   1146        1.1       jtc 	DIRDATA dblk;
   1147       1.26  christos #else
   1148       1.26  christos 	DIRDATA *dblk;
   1149       1.26  christos #endif
   1150       1.26  christos 	char realname[MAXPATHLEN], *rp;
   1151        1.1       jtc 
   1152       1.26  christos 	if (havechd && *name != '/') {
   1153       1.26  christos 		if ((rp = realpath(name, realname)) == NULL) {
   1154       1.26  christos 			tty_warn(1, "Cannot canonicalize %s", name);
   1155       1.26  christos 			return;
   1156       1.26  christos 		}
   1157       1.26  christos 		name = rp;
   1158  1.30.26.1      yamt #ifdef DIRS_USE_FILE
   1159       1.26  christos 		nlen = strlen(name);
   1160  1.30.26.1      yamt #endif
   1161       1.26  christos 	}
   1162       1.26  christos 
   1163       1.26  christos #ifdef DIRS_USE_FILE
   1164        1.1       jtc 	if (dirfd < 0)
   1165        1.1       jtc 		return;
   1166        1.1       jtc 
   1167        1.1       jtc 	/*
   1168        1.1       jtc 	 * get current position (where file name will start) so we can store it
   1169        1.1       jtc 	 * in the trailer
   1170        1.1       jtc 	 */
   1171        1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1172        1.7  christos 		tty_warn(1,
   1173        1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1174        1.1       jtc 		return;
   1175        1.1       jtc 	}
   1176        1.1       jtc 
   1177        1.1       jtc 	/*
   1178        1.1       jtc 	 * write the file name followed by the trailer
   1179        1.1       jtc 	 */
   1180        1.1       jtc 	dblk.nlen = nlen + 1;
   1181        1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1182        1.1       jtc 	dblk.mtime = psb->st_mtime;
   1183        1.1       jtc 	dblk.atime = psb->st_atime;
   1184       1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1185       1.10       mrg 	dblk.fflags = psb->st_flags;
   1186       1.16        tv #else
   1187       1.16        tv 	dblk.fflags = 0;
   1188       1.16        tv #endif
   1189        1.1       jtc 	dblk.frc_mode = frc_mode;
   1190       1.11     itohy 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1191       1.11     itohy 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1192        1.1       jtc 		++dircnt;
   1193        1.1       jtc 		return;
   1194        1.1       jtc 	}
   1195        1.1       jtc 
   1196        1.7  christos 	tty_warn(1,
   1197        1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1198        1.1       jtc 	return;
   1199       1.13   thorpej #else
   1200       1.13   thorpej 
   1201       1.13   thorpej 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1202       1.13   thorpej 	    (dblk->name = strdup(name)) == NULL) {
   1203       1.13   thorpej 		tty_warn(1,
   1204       1.13   thorpej 		    "Unable to store mode and times for directory: %s",name);
   1205       1.13   thorpej 		if (dblk != NULL)
   1206       1.13   thorpej 			free(dblk);
   1207       1.13   thorpej 		return;
   1208       1.13   thorpej 	}
   1209       1.13   thorpej 
   1210       1.13   thorpej 	dblk->mode = psb->st_mode & 0xffff;
   1211       1.13   thorpej 	dblk->mtime = psb->st_mtime;
   1212       1.13   thorpej 	dblk->atime = psb->st_atime;
   1213       1.16        tv #if HAVE_STRUCT_STAT_ST_FLAGS
   1214       1.13   thorpej 	dblk->fflags = psb->st_flags;
   1215       1.16        tv #else
   1216       1.16        tv 	dblk->fflags = 0;
   1217       1.16        tv #endif
   1218       1.13   thorpej 	dblk->frc_mode = frc_mode;
   1219       1.13   thorpej 
   1220       1.13   thorpej 	dblk->next = dirdata_head;
   1221       1.13   thorpej 	dirdata_head = dblk;
   1222       1.13   thorpej 	return;
   1223       1.13   thorpej #endif /* DIRS_USE_FILE */
   1224        1.1       jtc }
   1225        1.1       jtc 
   1226        1.1       jtc /*
   1227        1.1       jtc  * proc_dir()
   1228        1.1       jtc  *	process all file modes and times stored for directories CREATED
   1229        1.1       jtc  *	by pax
   1230        1.1       jtc  */
   1231        1.1       jtc 
   1232        1.1       jtc void
   1233        1.1       jtc proc_dir(void)
   1234        1.1       jtc {
   1235       1.13   thorpej #ifdef DIRS_USE_FILE
   1236        1.1       jtc 	char name[PAXPATHLEN+1];
   1237        1.1       jtc 	DIRDATA dblk;
   1238        1.1       jtc 	u_long cnt;
   1239        1.1       jtc 
   1240        1.1       jtc 	if (dirfd < 0)
   1241        1.1       jtc 		return;
   1242        1.1       jtc 	/*
   1243        1.1       jtc 	 * read backwards through the file and process each directory
   1244        1.1       jtc 	 */
   1245        1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1246        1.1       jtc 		/*
   1247        1.1       jtc 		 * read the trailer, then the file name, if this fails
   1248        1.1       jtc 		 * just give up.
   1249        1.1       jtc 		 */
   1250       1.12     itohy 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1251        1.1       jtc 			break;
   1252       1.11     itohy 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1253        1.1       jtc 			break;
   1254       1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1255        1.1       jtc 			break;
   1256       1.11     itohy 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1257        1.1       jtc 			break;
   1258       1.12     itohy 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1259        1.1       jtc 			break;
   1260        1.1       jtc 
   1261        1.1       jtc 		/*
   1262        1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1263        1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1264        1.1       jtc 		 */
   1265        1.1       jtc 		if (pmode || dblk.frc_mode)
   1266        1.1       jtc 			set_pmode(name, dblk.mode);
   1267        1.1       jtc 		if (patime || pmtime)
   1268       1.30       tls 			set_ftime(name, dblk.mtime, dblk.atime, 0, 0);
   1269       1.10       mrg 		if (pfflags)
   1270       1.10       mrg 			set_chflags(name, dblk.fflags);
   1271        1.1       jtc 	}
   1272        1.1       jtc 
   1273        1.1       jtc 	(void)close(dirfd);
   1274        1.1       jtc 	dirfd = -1;
   1275        1.1       jtc 	if (cnt != dircnt)
   1276        1.7  christos 		tty_warn(1,
   1277        1.7  christos 		    "Unable to set mode and times for created directories");
   1278        1.1       jtc 	return;
   1279       1.13   thorpej #else
   1280       1.13   thorpej 	DIRDATA *dblk;
   1281       1.13   thorpej 
   1282       1.13   thorpej 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1283       1.13   thorpej 		dirdata_head = dblk->next;
   1284       1.13   thorpej 
   1285       1.13   thorpej 		/*
   1286       1.13   thorpej 		 * frc_mode set, make sure we set the file modes even if
   1287       1.13   thorpej 		 * the user didn't ask for it (see file_subs.c for more info)
   1288       1.13   thorpej 		 */
   1289       1.13   thorpej 		if (pmode || dblk->frc_mode)
   1290       1.13   thorpej 			set_pmode(dblk->name, dblk->mode);
   1291       1.13   thorpej 		if (patime || pmtime)
   1292       1.30       tls 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0, 0);
   1293       1.13   thorpej 		if (pfflags)
   1294       1.13   thorpej 			set_chflags(dblk->name, dblk->fflags);
   1295       1.13   thorpej 
   1296       1.13   thorpej 		free(dblk->name);
   1297       1.13   thorpej 		free(dblk);
   1298       1.13   thorpej 	}
   1299       1.13   thorpej #endif /* DIRS_USE_FILE */
   1300        1.1       jtc }
   1301        1.1       jtc 
   1302        1.1       jtc /*
   1303        1.1       jtc  * database independent routines
   1304        1.1       jtc  */
   1305        1.1       jtc 
   1306        1.1       jtc /*
   1307        1.1       jtc  * st_hash()
   1308        1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1309        1.1       jtc  *	end of file, as this provides far better distribution than any other
   1310        1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1311        1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1312        1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1313        1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1314        1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1315        1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1316        1.1       jtc  * Return:
   1317        1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1318        1.1       jtc  */
   1319        1.1       jtc 
   1320        1.1       jtc u_int
   1321        1.1       jtc st_hash(char *name, int len, int tabsz)
   1322        1.1       jtc {
   1323        1.5       tls 	char *pt;
   1324        1.5       tls 	char *dest;
   1325        1.5       tls 	char *end;
   1326        1.5       tls 	int i;
   1327        1.5       tls 	u_int key = 0;
   1328        1.5       tls 	int steps;
   1329        1.5       tls 	int res;
   1330        1.1       jtc 	u_int val;
   1331        1.1       jtc 
   1332        1.1       jtc 	/*
   1333        1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1334        1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1335        1.1       jtc 	 * spread out the keys)
   1336        1.1       jtc 	 */
   1337        1.1       jtc 	if (len > MAXKEYLEN) {
   1338       1.12     itohy 		pt = &(name[len - MAXKEYLEN]);
   1339        1.1       jtc 		len = MAXKEYLEN;
   1340        1.1       jtc 	} else
   1341        1.1       jtc 		pt = name;
   1342        1.1       jtc 
   1343        1.1       jtc 	/*
   1344        1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1345        1.1       jtc 	 * there is a runt to deal with
   1346        1.1       jtc 	 */
   1347        1.1       jtc 	steps = len/sizeof(u_int);
   1348        1.1       jtc 	res = len % sizeof(u_int);
   1349        1.1       jtc 
   1350        1.1       jtc 	/*
   1351        1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1352        1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1353        1.1       jtc 	 * could avoid the expensive copy.
   1354        1.1       jtc 	 */
   1355        1.1       jtc 	for (i = 0; i < steps; ++i) {
   1356        1.1       jtc 		end = pt + sizeof(u_int);
   1357        1.1       jtc 		dest = (char *)&val;
   1358        1.1       jtc 		while (pt < end)
   1359        1.1       jtc 			*dest++ = *pt++;
   1360        1.1       jtc 		key += val;
   1361        1.1       jtc 	}
   1362        1.1       jtc 
   1363        1.1       jtc 	/*
   1364        1.1       jtc 	 * add in the runt padded with zero to the right
   1365        1.1       jtc 	 */
   1366        1.1       jtc 	if (res) {
   1367        1.1       jtc 		val = 0;
   1368        1.1       jtc 		end = pt + res;
   1369        1.1       jtc 		dest = (char *)&val;
   1370        1.1       jtc 		while (pt < end)
   1371        1.1       jtc 			*dest++ = *pt++;
   1372        1.1       jtc 		key += val;
   1373        1.1       jtc 	}
   1374        1.1       jtc 
   1375        1.1       jtc 	/*
   1376        1.1       jtc 	 * return the result mod the table size
   1377        1.1       jtc 	 */
   1378       1.25       dsl 	return key % tabsz;
   1379        1.1       jtc }
   1380