Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.8
      1  1.8    kleink /*	$NetBSD: tables.c,v 1.8 1999/02/12 15:04:00 kleink Exp $	*/
      2  1.4       cgd 
      3  1.1       jtc /*-
      4  1.1       jtc  * Copyright (c) 1992 Keith Muller.
      5  1.1       jtc  * Copyright (c) 1992, 1993
      6  1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7  1.1       jtc  *
      8  1.1       jtc  * This code is derived from software contributed to Berkeley by
      9  1.1       jtc  * Keith Muller of the University of California, San Diego.
     10  1.1       jtc  *
     11  1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12  1.1       jtc  * modification, are permitted provided that the following conditions
     13  1.1       jtc  * are met:
     14  1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15  1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16  1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18  1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19  1.1       jtc  * 3. All advertising materials mentioning features or use of this software
     20  1.1       jtc  *    must display the following acknowledgement:
     21  1.1       jtc  *	This product includes software developed by the University of
     22  1.1       jtc  *	California, Berkeley and its contributors.
     23  1.1       jtc  * 4. Neither the name of the University nor the names of its contributors
     24  1.1       jtc  *    may be used to endorse or promote products derived from this software
     25  1.1       jtc  *    without specific prior written permission.
     26  1.1       jtc  *
     27  1.1       jtc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  1.1       jtc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  1.1       jtc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  1.1       jtc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  1.1       jtc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  1.1       jtc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  1.1       jtc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  1.1       jtc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  1.1       jtc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  1.1       jtc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  1.1       jtc  * SUCH DAMAGE.
     38  1.1       jtc  */
     39  1.1       jtc 
     40  1.7  christos #include <sys/cdefs.h>
     41  1.1       jtc #ifndef lint
     42  1.4       cgd #if 0
     43  1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44  1.4       cgd #else
     45  1.8    kleink __RCSID("$NetBSD: tables.c,v 1.8 1999/02/12 15:04:00 kleink Exp $");
     46  1.4       cgd #endif
     47  1.1       jtc #endif /* not lint */
     48  1.1       jtc 
     49  1.1       jtc #include <sys/types.h>
     50  1.1       jtc #include <sys/time.h>
     51  1.1       jtc #include <sys/stat.h>
     52  1.1       jtc #include <sys/param.h>
     53  1.1       jtc #include <stdio.h>
     54  1.1       jtc #include <ctype.h>
     55  1.8    kleink #include <fcntl.h>
     56  1.1       jtc #include <string.h>
     57  1.1       jtc #include <unistd.h>
     58  1.1       jtc #include <errno.h>
     59  1.1       jtc #include <stdlib.h>
     60  1.1       jtc #include "pax.h"
     61  1.1       jtc #include "tables.h"
     62  1.1       jtc #include "extern.h"
     63  1.1       jtc 
     64  1.1       jtc /*
     65  1.1       jtc  * Routines for controlling the contents of all the different databases pax
     66  1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     67  1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     68  1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     69  1.1       jtc  * As of this writing, the posix library functions were more complex than
     70  1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     71  1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     72  1.1       jtc  * large archives. These database routines carefully combine memory usage and
     73  1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     74  1.1       jtc  * performance while allowing the largest possible archives to be handled.
     75  1.1       jtc  * Trying to force the fit to the posix databases routines was not considered
     76  1.1       jtc  * time well spent.
     77  1.1       jtc  */
     78  1.1       jtc 
     79  1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     80  1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     81  1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     82  1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     83  1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     84  1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     85  1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     86  1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     87  1.1       jtc 
     88  1.1       jtc static DEVT *chk_dev __P((dev_t, int));
     89  1.1       jtc 
     90  1.1       jtc /*
     91  1.1       jtc  * hard link table routines
     92  1.1       jtc  *
     93  1.1       jtc  * The hard link table tries to detect hard links to files using the device and
     94  1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     95  1.1       jtc  * write routine that this file is a hard link to another file. The format
     96  1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
     97  1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
     98  1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
     99  1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    100  1.1       jtc  * the same table when reading an archive. In that situation, this table is
    101  1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    102  1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    103  1.1       jtc  * can be detected by the archive format.
    104  1.1       jtc  */
    105  1.1       jtc 
    106  1.1       jtc /*
    107  1.1       jtc  * lnk_start
    108  1.1       jtc  *	Creates the hard link table.
    109  1.1       jtc  * Return:
    110  1.1       jtc  *	0 if created, -1 if failure
    111  1.1       jtc  */
    112  1.1       jtc 
    113  1.1       jtc #if __STDC__
    114  1.1       jtc int
    115  1.1       jtc lnk_start(void)
    116  1.1       jtc #else
    117  1.1       jtc int
    118  1.1       jtc lnk_start()
    119  1.1       jtc #endif
    120  1.1       jtc {
    121  1.1       jtc 	if (ltab != NULL)
    122  1.1       jtc 		return(0);
    123  1.1       jtc  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    124  1.7  christos                 tty_warn(1, "Cannot allocate memory for hard link table");
    125  1.1       jtc                 return(-1);
    126  1.1       jtc         }
    127  1.1       jtc 	return(0);
    128  1.1       jtc }
    129  1.1       jtc 
    130  1.1       jtc /*
    131  1.1       jtc  * chk_lnk()
    132  1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    133  1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    134  1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    135  1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    136  1.1       jtc  *	we add the file to the database if it has the potential for having
    137  1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    138  1.1       jtc  * Return:
    139  1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    140  1.1       jtc  */
    141  1.1       jtc 
    142  1.1       jtc #if __STDC__
    143  1.1       jtc int
    144  1.5       tls chk_lnk(ARCHD *arcn)
    145  1.1       jtc #else
    146  1.1       jtc int
    147  1.1       jtc chk_lnk(arcn)
    148  1.5       tls 	ARCHD *arcn;
    149  1.1       jtc #endif
    150  1.1       jtc {
    151  1.5       tls 	HRDLNK *pt;
    152  1.5       tls 	HRDLNK **ppt;
    153  1.5       tls 	u_int indx;
    154  1.1       jtc 
    155  1.1       jtc 	if (ltab == NULL)
    156  1.1       jtc 		return(-1);
    157  1.1       jtc 	/*
    158  1.1       jtc 	 * ignore those nodes that cannot have hard links
    159  1.1       jtc 	 */
    160  1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    161  1.1       jtc 		return(0);
    162  1.1       jtc 
    163  1.1       jtc 	/*
    164  1.1       jtc 	 * hash inode number and look for this file
    165  1.1       jtc 	 */
    166  1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    167  1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    168  1.1       jtc 		/*
    169  1.1       jtc 		 * it's hash chain in not empty, walk down looking for it
    170  1.1       jtc 		 */
    171  1.1       jtc 		ppt = &(ltab[indx]);
    172  1.1       jtc 		while (pt != NULL) {
    173  1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    174  1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    175  1.1       jtc 				break;
    176  1.1       jtc 			ppt = &(pt->fow);
    177  1.1       jtc 			pt = pt->fow;
    178  1.1       jtc 		}
    179  1.1       jtc 
    180  1.1       jtc 		if (pt != NULL) {
    181  1.1       jtc 			/*
    182  1.1       jtc 			 * found a link. set the node type and copy in the
    183  1.1       jtc 			 * name of the file it is to link to. we need to
    184  1.1       jtc 			 * handle hardlinks to regular files differently than
    185  1.1       jtc 			 * other links.
    186  1.1       jtc 			 */
    187  1.1       jtc 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    188  1.1       jtc 				PAXPATHLEN+1);
    189  1.1       jtc 			if (arcn->type == PAX_REG)
    190  1.1       jtc 				arcn->type = PAX_HRG;
    191  1.1       jtc 			else
    192  1.1       jtc 				arcn->type = PAX_HLK;
    193  1.1       jtc 
    194  1.1       jtc 			/*
    195  1.1       jtc 			 * if we have found all the links to this file, remove
    196  1.1       jtc 			 * it from the database
    197  1.1       jtc 			 */
    198  1.1       jtc 			if (--pt->nlink <= 1) {
    199  1.1       jtc 				*ppt = pt->fow;
    200  1.1       jtc 				(void)free((char *)pt->name);
    201  1.1       jtc 				(void)free((char *)pt);
    202  1.1       jtc 			}
    203  1.1       jtc 			return(1);
    204  1.1       jtc 		}
    205  1.1       jtc 	}
    206  1.1       jtc 
    207  1.1       jtc 	/*
    208  1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    209  1.1       jtc 	 * front of this hash chain
    210  1.1       jtc 	 */
    211  1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    212  1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    213  1.1       jtc 			pt->dev = arcn->sb.st_dev;
    214  1.1       jtc 			pt->ino = arcn->sb.st_ino;
    215  1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    216  1.1       jtc 			pt->fow = ltab[indx];
    217  1.1       jtc 			ltab[indx] = pt;
    218  1.1       jtc 			return(0);
    219  1.1       jtc 		}
    220  1.1       jtc 		(void)free((char *)pt);
    221  1.1       jtc 	}
    222  1.1       jtc 
    223  1.7  christos 	tty_warn(1, "Hard link table out of memory");
    224  1.1       jtc 	return(-1);
    225  1.1       jtc }
    226  1.1       jtc 
    227  1.1       jtc /*
    228  1.1       jtc  * purg_lnk
    229  1.1       jtc  *	remove reference for a file that we may have added to the data base as
    230  1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    231  1.1       jtc  *	we do not want to accidently point another file at it later on.
    232  1.1       jtc  */
    233  1.1       jtc 
    234  1.1       jtc #if __STDC__
    235  1.1       jtc void
    236  1.5       tls purg_lnk(ARCHD *arcn)
    237  1.1       jtc #else
    238  1.1       jtc void
    239  1.1       jtc purg_lnk(arcn)
    240  1.5       tls 	ARCHD *arcn;
    241  1.1       jtc #endif
    242  1.1       jtc {
    243  1.5       tls 	HRDLNK *pt;
    244  1.5       tls 	HRDLNK **ppt;
    245  1.5       tls 	u_int indx;
    246  1.1       jtc 
    247  1.1       jtc 	if (ltab == NULL)
    248  1.1       jtc 		return;
    249  1.1       jtc 	/*
    250  1.1       jtc 	 * do not bother to look if it could not be in the database
    251  1.1       jtc 	 */
    252  1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    253  1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    254  1.1       jtc 		return;
    255  1.1       jtc 
    256  1.1       jtc 	/*
    257  1.1       jtc 	 * find the hash chain for this inode value, if empty return
    258  1.1       jtc 	 */
    259  1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    260  1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    261  1.1       jtc 		return;
    262  1.1       jtc 
    263  1.1       jtc 	/*
    264  1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    265  1.1       jtc 	 * free if found
    266  1.1       jtc 	 */
    267  1.1       jtc 	ppt = &(ltab[indx]);
    268  1.1       jtc 	while (pt != NULL) {
    269  1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    270  1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    271  1.1       jtc 			break;
    272  1.1       jtc 		ppt = &(pt->fow);
    273  1.1       jtc 		pt = pt->fow;
    274  1.1       jtc 	}
    275  1.1       jtc 	if (pt == NULL)
    276  1.1       jtc 		return;
    277  1.1       jtc 
    278  1.1       jtc 	/*
    279  1.1       jtc 	 * remove and free it
    280  1.1       jtc 	 */
    281  1.1       jtc 	*ppt = pt->fow;
    282  1.1       jtc 	(void)free((char *)pt->name);
    283  1.1       jtc 	(void)free((char *)pt);
    284  1.1       jtc }
    285  1.1       jtc 
    286  1.1       jtc /*
    287  1.1       jtc  * lnk_end()
    288  1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    289  1.1       jtc  *	read and write phases of append with update. (The format may have
    290  1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    291  1.1       jtc  *	write phase
    292  1.1       jtc  */
    293  1.1       jtc 
    294  1.1       jtc #if __STDC__
    295  1.1       jtc void
    296  1.1       jtc lnk_end(void)
    297  1.1       jtc #else
    298  1.1       jtc void
    299  1.1       jtc lnk_end()
    300  1.1       jtc #endif
    301  1.1       jtc {
    302  1.5       tls 	int i;
    303  1.5       tls 	HRDLNK *pt;
    304  1.5       tls 	HRDLNK *ppt;
    305  1.1       jtc 
    306  1.1       jtc 	if (ltab == NULL)
    307  1.1       jtc 		return;
    308  1.1       jtc 
    309  1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    310  1.1       jtc 		if (ltab[i] == NULL)
    311  1.1       jtc 			continue;
    312  1.1       jtc 		pt = ltab[i];
    313  1.1       jtc 		ltab[i] = NULL;
    314  1.1       jtc 
    315  1.1       jtc 		/*
    316  1.1       jtc 		 * free up each entry on this chain
    317  1.1       jtc 		 */
    318  1.1       jtc 		while (pt != NULL) {
    319  1.1       jtc 			ppt = pt;
    320  1.1       jtc 			pt = ppt->fow;
    321  1.1       jtc 			(void)free((char *)ppt->name);
    322  1.1       jtc 			(void)free((char *)ppt);
    323  1.1       jtc 		}
    324  1.1       jtc 	}
    325  1.1       jtc 	return;
    326  1.1       jtc }
    327  1.1       jtc 
    328  1.1       jtc /*
    329  1.1       jtc  * modification time table routines
    330  1.1       jtc  *
    331  1.1       jtc  * The modification time table keeps track of last modification times for all
    332  1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    333  1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    334  1.1       jtc  * already stored on the archive (if there is no other file with the same
    335  1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    336  1.1       jtc  * An append with an -u must read the archive and store the modification time
    337  1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    338  1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    339  1.1       jtc  * are stored in a scatch file and indexed by an in memory hash table. The
    340  1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    341  1.1       jtc  * the length of the filename and the lseek offset within the scratch file
    342  1.1       jtc  * where the actual name is stored. Since there are never any deletions to this
    343  1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    344  1.1       jtc  * not exhibit any locality at all (files in the database are rarely
    345  1.1       jtc  * looked up more than once...). So caching is just a waste of memory. The
    346  1.1       jtc  * only limitation is the amount of scatch file space available to store the
    347  1.1       jtc  * path names.
    348  1.1       jtc  */
    349  1.1       jtc 
    350  1.1       jtc /*
    351  1.1       jtc  * ftime_start()
    352  1.1       jtc  *	create the file time hash table and open for read/write the scratch
    353  1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    354  1.1       jtc  *	no witnesses).
    355  1.1       jtc  * Return:
    356  1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    357  1.1       jtc  */
    358  1.1       jtc 
    359  1.1       jtc #if __STDC__
    360  1.1       jtc int
    361  1.1       jtc ftime_start(void)
    362  1.1       jtc #else
    363  1.1       jtc int
    364  1.1       jtc ftime_start()
    365  1.1       jtc #endif
    366  1.1       jtc {
    367  1.1       jtc 	char *pt;
    368  1.1       jtc 
    369  1.1       jtc 	if (ftab != NULL)
    370  1.1       jtc 		return(0);
    371  1.1       jtc  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    372  1.7  christos                 tty_warn(1, "Cannot allocate memory for file time table");
    373  1.1       jtc                 return(-1);
    374  1.1       jtc         }
    375  1.1       jtc 
    376  1.1       jtc 	/*
    377  1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    378  1.1       jtc 	 * so it will get removed on exit
    379  1.1       jtc 	 */
    380  1.6     lukem 	pt = strdup("/tmp/paxXXXXXX");
    381  1.6     lukem 	if (pt == NULL) {
    382  1.7  christos 		tty_warn(1, "Unable to allocate memory");
    383  1.1       jtc 		return(-1);
    384  1.6     lukem 	}
    385  1.6     lukem 	if ((ffd = mkstemp(pt)) == -1) {
    386  1.6     lukem 		syswarn(1, errno, "Unable to create temporary file: %s", pt);
    387  1.6     lukem 		free(pt);
    388  1.1       jtc 		return(-1);
    389  1.1       jtc 	}
    390  1.1       jtc 
    391  1.1       jtc 	(void)unlink(pt);
    392  1.6     lukem 	free(pt);
    393  1.1       jtc 	return(0);
    394  1.1       jtc }
    395  1.1       jtc 
    396  1.1       jtc /*
    397  1.1       jtc  * chk_ftime()
    398  1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    399  1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    400  1.1       jtc  *	If a file with the same name is found, the file times are compared and
    401  1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    402  1.1       jtc  *	was not in the database) the new file is selected for storage.
    403  1.1       jtc  * Return:
    404  1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    405  1.1       jtc  *	-1 on error
    406  1.1       jtc  */
    407  1.1       jtc 
    408  1.1       jtc #if __STDC__
    409  1.1       jtc int
    410  1.5       tls chk_ftime(ARCHD *arcn)
    411  1.1       jtc #else
    412  1.1       jtc int
    413  1.1       jtc chk_ftime(arcn)
    414  1.5       tls 	ARCHD *arcn;
    415  1.1       jtc #endif
    416  1.1       jtc {
    417  1.5       tls 	FTM *pt;
    418  1.5       tls 	int namelen;
    419  1.5       tls 	u_int indx;
    420  1.1       jtc 	char ckname[PAXPATHLEN+1];
    421  1.1       jtc 
    422  1.1       jtc 	/*
    423  1.1       jtc 	 * no info, go ahead and add to archive
    424  1.1       jtc 	 */
    425  1.1       jtc 	if (ftab == NULL)
    426  1.1       jtc 		return(0);
    427  1.1       jtc 
    428  1.1       jtc 	/*
    429  1.1       jtc 	 * hash the pathname and look up in table
    430  1.1       jtc 	 */
    431  1.1       jtc 	namelen = arcn->nlen;
    432  1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    433  1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    434  1.1       jtc 		/*
    435  1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    436  1.1       jtc 		 * only read up the path names if the lengths match, speeds
    437  1.1       jtc 		 * up the search a lot
    438  1.1       jtc 		 */
    439  1.1       jtc 		while (pt != NULL) {
    440  1.1       jtc 			if (pt->namelen == namelen) {
    441  1.1       jtc 				/*
    442  1.1       jtc 				 * potential match, have to read the name
    443  1.1       jtc 				 * from the scratch file.
    444  1.1       jtc 				 */
    445  1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    446  1.1       jtc 					syswarn(1, errno,
    447  1.1       jtc 					    "Failed ftime table seek");
    448  1.1       jtc 					return(-1);
    449  1.1       jtc 				}
    450  1.1       jtc 				if (read(ffd, ckname, namelen) != namelen) {
    451  1.1       jtc 					syswarn(1, errno,
    452  1.1       jtc 					    "Failed ftime table read");
    453  1.1       jtc 					return(-1);
    454  1.1       jtc 				}
    455  1.1       jtc 
    456  1.1       jtc 				/*
    457  1.1       jtc 				 * if the names match, we are done
    458  1.1       jtc 				 */
    459  1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    460  1.1       jtc 					break;
    461  1.1       jtc 			}
    462  1.1       jtc 
    463  1.1       jtc 			/*
    464  1.1       jtc 			 * try the next entry on the chain
    465  1.1       jtc 			 */
    466  1.1       jtc 			pt = pt->fow;
    467  1.1       jtc 		}
    468  1.1       jtc 
    469  1.1       jtc 		if (pt != NULL) {
    470  1.1       jtc 			/*
    471  1.1       jtc 			 * found the file, compare the times, save the newer
    472  1.1       jtc 			 */
    473  1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    474  1.1       jtc 				/*
    475  1.1       jtc 				 * file is newer
    476  1.1       jtc 				 */
    477  1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    478  1.1       jtc 				return(0);
    479  1.1       jtc 			}
    480  1.1       jtc 			/*
    481  1.1       jtc 			 * file is older
    482  1.1       jtc 			 */
    483  1.1       jtc 			return(1);
    484  1.1       jtc 		}
    485  1.1       jtc 	}
    486  1.1       jtc 
    487  1.1       jtc 	/*
    488  1.1       jtc 	 * not in table, add it
    489  1.1       jtc 	 */
    490  1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    491  1.1       jtc 		/*
    492  1.1       jtc 		 * add the name at the end of the scratch file, saving the
    493  1.1       jtc 		 * offset. add the file to the head of the hash chain
    494  1.1       jtc 		 */
    495  1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    496  1.1       jtc 			if (write(ffd, arcn->name, namelen) == namelen) {
    497  1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    498  1.1       jtc 				pt->namelen = namelen;
    499  1.1       jtc 				pt->fow = ftab[indx];
    500  1.1       jtc 				ftab[indx] = pt;
    501  1.1       jtc 				return(0);
    502  1.1       jtc 			}
    503  1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    504  1.1       jtc 		} else
    505  1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    506  1.1       jtc 	} else
    507  1.7  christos 		tty_warn(1, "File time table ran out of memory");
    508  1.1       jtc 
    509  1.1       jtc 	if (pt != NULL)
    510  1.1       jtc 		(void)free((char *)pt);
    511  1.1       jtc 	return(-1);
    512  1.1       jtc }
    513  1.1       jtc 
    514  1.1       jtc /*
    515  1.1       jtc  * Interactive rename table routines
    516  1.1       jtc  *
    517  1.1       jtc  * The interactive rename table keeps track of the new names that the user
    518  1.1       jtc  * assignes to files from tty input. Since this map is unique for each file
    519  1.1       jtc  * we must store it in case there is a reference to the file later in archive
    520  1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    521  1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    522  1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    523  1.1       jtc  * be a very large table).
    524  1.1       jtc  */
    525  1.1       jtc 
    526  1.1       jtc /*
    527  1.1       jtc  * name_start()
    528  1.1       jtc  *	create the interactive rename table
    529  1.1       jtc  * Return:
    530  1.1       jtc  *	0 if successful, -1 otherwise
    531  1.1       jtc  */
    532  1.1       jtc 
    533  1.1       jtc #if __STDC__
    534  1.1       jtc int
    535  1.1       jtc name_start(void)
    536  1.1       jtc #else
    537  1.1       jtc int
    538  1.1       jtc name_start()
    539  1.1       jtc #endif
    540  1.1       jtc {
    541  1.1       jtc 	if (ntab != NULL)
    542  1.1       jtc 		return(0);
    543  1.1       jtc  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    544  1.7  christos                 tty_warn(1,
    545  1.7  christos 		    "Cannot allocate memory for interactive rename table");
    546  1.1       jtc                 return(-1);
    547  1.1       jtc         }
    548  1.1       jtc 	return(0);
    549  1.1       jtc }
    550  1.1       jtc 
    551  1.1       jtc /*
    552  1.1       jtc  * add_name()
    553  1.1       jtc  *	add the new name to old name mapping just created by the user.
    554  1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    555  1.1       jtc  *	archive) only the most recent is kept.
    556  1.1       jtc  * Return:
    557  1.1       jtc  *	0 if added, -1 otherwise
    558  1.1       jtc  */
    559  1.1       jtc 
    560  1.1       jtc #if __STDC__
    561  1.1       jtc int
    562  1.5       tls add_name(char *oname, int onamelen, char *nname)
    563  1.1       jtc #else
    564  1.1       jtc int
    565  1.1       jtc add_name(oname, onamelen, nname)
    566  1.5       tls 	char *oname;
    567  1.1       jtc 	int onamelen;
    568  1.1       jtc 	char *nname;
    569  1.1       jtc #endif
    570  1.1       jtc {
    571  1.5       tls 	NAMT *pt;
    572  1.5       tls 	u_int indx;
    573  1.1       jtc 
    574  1.1       jtc 	if (ntab == NULL) {
    575  1.1       jtc 		/*
    576  1.1       jtc 		 * should never happen
    577  1.1       jtc 		 */
    578  1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    579  1.1       jtc 		return(0);
    580  1.1       jtc 	}
    581  1.1       jtc 
    582  1.1       jtc 	/*
    583  1.1       jtc 	 * look to see if we have already mapped this file, if so we
    584  1.1       jtc 	 * will update it
    585  1.1       jtc 	 */
    586  1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    587  1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    588  1.1       jtc 		/*
    589  1.1       jtc 		 * look down the has chain for the file
    590  1.1       jtc 		 */
    591  1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    592  1.1       jtc 			pt = pt->fow;
    593  1.1       jtc 
    594  1.1       jtc 		if (pt != NULL) {
    595  1.1       jtc 			/*
    596  1.1       jtc 			 * found an old mapping, replace it with the new one
    597  1.1       jtc 			 * the user just input (if it is different)
    598  1.1       jtc 			 */
    599  1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    600  1.1       jtc 				return(0);
    601  1.1       jtc 
    602  1.1       jtc 			(void)free((char *)pt->nname);
    603  1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    604  1.7  christos 				tty_warn(1, "Cannot update rename table");
    605  1.1       jtc 				return(-1);
    606  1.1       jtc 			}
    607  1.1       jtc 			return(0);
    608  1.1       jtc 		}
    609  1.1       jtc 	}
    610  1.1       jtc 
    611  1.1       jtc 	/*
    612  1.1       jtc 	 * this is a new mapping, add it to the table
    613  1.1       jtc 	 */
    614  1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    615  1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    616  1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    617  1.1       jtc 				pt->fow = ntab[indx];
    618  1.1       jtc 				ntab[indx] = pt;
    619  1.1       jtc 				return(0);
    620  1.1       jtc 			}
    621  1.1       jtc 			(void)free((char *)pt->oname);
    622  1.1       jtc 		}
    623  1.1       jtc 		(void)free((char *)pt);
    624  1.1       jtc 	}
    625  1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    626  1.1       jtc 	return(-1);
    627  1.1       jtc }
    628  1.1       jtc 
    629  1.1       jtc /*
    630  1.1       jtc  * sub_name()
    631  1.1       jtc  *	look up a link name to see if it points at a file that has been
    632  1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    633  1.1       jtc  *	new name (oname is the link to name)
    634  1.1       jtc  */
    635  1.1       jtc 
    636  1.1       jtc #if __STDC__
    637  1.1       jtc void
    638  1.5       tls sub_name(char *oname, int *onamelen)
    639  1.1       jtc #else
    640  1.1       jtc void
    641  1.1       jtc sub_name(oname, onamelen)
    642  1.5       tls 	char *oname;
    643  1.1       jtc 	int *onamelen;
    644  1.1       jtc #endif
    645  1.1       jtc {
    646  1.5       tls 	NAMT *pt;
    647  1.5       tls 	u_int indx;
    648  1.1       jtc 
    649  1.1       jtc 	if (ntab == NULL)
    650  1.1       jtc 		return;
    651  1.1       jtc 	/*
    652  1.1       jtc 	 * look the name up in the hash table
    653  1.1       jtc 	 */
    654  1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    655  1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    656  1.1       jtc 		return;
    657  1.1       jtc 
    658  1.1       jtc 	while (pt != NULL) {
    659  1.1       jtc 		/*
    660  1.1       jtc 		 * walk down the hash cahin looking for a match
    661  1.1       jtc 		 */
    662  1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    663  1.1       jtc 			/*
    664  1.1       jtc 			 * found it, replace it with the new name
    665  1.1       jtc 			 * and return (we know that oname has enough space)
    666  1.1       jtc 			 */
    667  1.1       jtc 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    668  1.1       jtc 			return;
    669  1.1       jtc 		}
    670  1.1       jtc 		pt = pt->fow;
    671  1.1       jtc 	}
    672  1.1       jtc 
    673  1.1       jtc 	/*
    674  1.1       jtc 	 * no match, just return
    675  1.1       jtc 	 */
    676  1.1       jtc 	return;
    677  1.1       jtc }
    678  1.1       jtc 
    679  1.1       jtc /*
    680  1.1       jtc  * device/inode mapping table routines
    681  1.1       jtc  * (used with formats that store device and inodes fields)
    682  1.1       jtc  *
    683  1.1       jtc  * device/inode mapping tables remap the device field in a archive header. The
    684  1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    685  1.1       jtc  * other. However these values have very little meaning outside of that. This
    686  1.1       jtc  * database is used to solve one of two different problems.
    687  1.1       jtc  *
    688  1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    689  1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    690  1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    691  1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    692  1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    693  1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    694  1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    695  1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    696  1.1       jtc  * member that has a device number used in a prior run and already stored in a
    697  1.1       jtc  * file on the archive. During the read phase of the append, we store the
    698  1.1       jtc  * device numbers used and mark them to not be used by any file during the
    699  1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    700  1.1       jtc  * we remap it to a new value.
    701  1.1       jtc  *
    702  1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    703  1.1       jtc  * too small to store the entire value. The result is an inode or device value
    704  1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    705  1.1       jtc  * we end up creating links between files that are really not links (after
    706  1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    707  1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    708  1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    709  1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    710  1.1       jtc  * on a single device to many different devices (each one represented by the
    711  1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    712  1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    713  1.1       jtc  * truncate to the same value clearly will always have different truncation
    714  1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    715  1.1       jtc  * device truncation we remap the device number to a non truncated value.
    716  1.1       jtc  * (for more info see table.h for the data structures involved).
    717  1.1       jtc  */
    718  1.1       jtc 
    719  1.1       jtc /*
    720  1.1       jtc  * dev_start()
    721  1.1       jtc  *	create the device mapping table
    722  1.1       jtc  * Return:
    723  1.1       jtc  *	0 if successful, -1 otherwise
    724  1.1       jtc  */
    725  1.1       jtc 
    726  1.1       jtc #if __STDC__
    727  1.1       jtc int
    728  1.1       jtc dev_start(void)
    729  1.1       jtc #else
    730  1.1       jtc int
    731  1.1       jtc dev_start()
    732  1.1       jtc #endif
    733  1.1       jtc {
    734  1.1       jtc 	if (dtab != NULL)
    735  1.1       jtc 		return(0);
    736  1.1       jtc  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    737  1.7  christos                 tty_warn(1, "Cannot allocate memory for device mapping table");
    738  1.1       jtc                 return(-1);
    739  1.1       jtc         }
    740  1.1       jtc 	return(0);
    741  1.1       jtc }
    742  1.1       jtc 
    743  1.1       jtc /*
    744  1.1       jtc  * add_dev()
    745  1.1       jtc  *	add a device number to the table. this will force the device to be
    746  1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    747  1.1       jtc  *	function is called during the read phase of an append to prohibit the
    748  1.1       jtc  *	use of any device number already in the archive.
    749  1.1       jtc  * Return:
    750  1.1       jtc  *	0 if added ok, -1 otherwise
    751  1.1       jtc  */
    752  1.1       jtc 
    753  1.1       jtc #if __STDC__
    754  1.1       jtc int
    755  1.5       tls add_dev(ARCHD *arcn)
    756  1.1       jtc #else
    757  1.1       jtc int
    758  1.1       jtc add_dev(arcn)
    759  1.5       tls 	ARCHD *arcn;
    760  1.1       jtc #endif
    761  1.1       jtc {
    762  1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    763  1.1       jtc 		return(-1);
    764  1.1       jtc 	return(0);
    765  1.1       jtc }
    766  1.1       jtc 
    767  1.1       jtc /*
    768  1.1       jtc  * chk_dev()
    769  1.1       jtc  *	check for a device value in the device table. If not found and the add
    770  1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    771  1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    772  1.1       jtc  *	is alread mapped, just return with a pointer to that entry.
    773  1.1       jtc  * Return:
    774  1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    775  1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    776  1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    777  1.1       jtc  *	is returned (indicates an error).
    778  1.1       jtc  */
    779  1.1       jtc 
    780  1.1       jtc #if __STDC__
    781  1.1       jtc static DEVT *
    782  1.1       jtc chk_dev(dev_t dev, int add)
    783  1.1       jtc #else
    784  1.1       jtc static DEVT *
    785  1.1       jtc chk_dev(dev, add)
    786  1.1       jtc 	dev_t dev;
    787  1.1       jtc 	int add;
    788  1.1       jtc #endif
    789  1.1       jtc {
    790  1.5       tls 	DEVT *pt;
    791  1.5       tls 	u_int indx;
    792  1.1       jtc 
    793  1.1       jtc 	if (dtab == NULL)
    794  1.1       jtc 		return(NULL);
    795  1.1       jtc 	/*
    796  1.1       jtc 	 * look to see if this device is already in the table
    797  1.1       jtc 	 */
    798  1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    799  1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    800  1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    801  1.1       jtc 			pt = pt->fow;
    802  1.1       jtc 
    803  1.1       jtc 		/*
    804  1.1       jtc 		 * found it, return a pointer to it
    805  1.1       jtc 		 */
    806  1.1       jtc 		if (pt != NULL)
    807  1.1       jtc 			return(pt);
    808  1.1       jtc 	}
    809  1.1       jtc 
    810  1.1       jtc 	/*
    811  1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    812  1.1       jtc 	 * to see if a device number is being used.
    813  1.1       jtc 	 */
    814  1.1       jtc 	if (add == 0)
    815  1.1       jtc 		return(NULL);
    816  1.1       jtc 
    817  1.1       jtc 	/*
    818  1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    819  1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    820  1.1       jtc 	 * list must be NULL.
    821  1.1       jtc 	 */
    822  1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    823  1.7  christos 		tty_warn(1, "Device map table out of memory");
    824  1.1       jtc 		return(NULL);
    825  1.1       jtc 	}
    826  1.1       jtc 	pt->dev = dev;
    827  1.1       jtc 	pt->list = NULL;
    828  1.1       jtc 	pt->fow = dtab[indx];
    829  1.1       jtc 	dtab[indx] = pt;
    830  1.1       jtc 	return(pt);
    831  1.1       jtc }
    832  1.1       jtc /*
    833  1.1       jtc  * map_dev()
    834  1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    835  1.1       jtc  *	the archive format is able to store in a header), we check for inode
    836  1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    837  1.1       jtc  *	can also occur when during the read phase of append a device number was
    838  1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    839  1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    840  1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    841  1.1       jtc  * Return:
    842  1.1       jtc  *	0 if all ok, -1 otherwise.
    843  1.1       jtc  */
    844  1.1       jtc 
    845  1.1       jtc #if __STDC__
    846  1.1       jtc int
    847  1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    848  1.1       jtc #else
    849  1.1       jtc int
    850  1.1       jtc map_dev(arcn, dev_mask, ino_mask)
    851  1.5       tls 	ARCHD *arcn;
    852  1.1       jtc 	u_long dev_mask;
    853  1.1       jtc 	u_long ino_mask;
    854  1.1       jtc #endif
    855  1.1       jtc {
    856  1.5       tls 	DEVT *pt;
    857  1.5       tls 	DLIST *dpt;
    858  1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    859  1.1       jtc 	int trc_ino = 0;
    860  1.1       jtc 	int trc_dev = 0;
    861  1.1       jtc 	ino_t trunc_bits = 0;
    862  1.1       jtc 	ino_t nino;
    863  1.1       jtc 
    864  1.1       jtc 	if (dtab == NULL)
    865  1.1       jtc 		return(0);
    866  1.1       jtc 	/*
    867  1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    868  1.1       jtc 	 * bit pattern.
    869  1.1       jtc 	 */
    870  1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    871  1.1       jtc 		++trc_dev;
    872  1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    873  1.1       jtc 		++trc_ino;
    874  1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    875  1.1       jtc 	}
    876  1.1       jtc 
    877  1.1       jtc 	/*
    878  1.1       jtc 	 * see if this device is already being mapped, look up the device
    879  1.1       jtc 	 * then find the truncation bit pattern which applies
    880  1.1       jtc 	 */
    881  1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    882  1.1       jtc 		/*
    883  1.1       jtc 		 * this device is already marked to be remapped
    884  1.1       jtc 		 */
    885  1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    886  1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    887  1.1       jtc 				break;
    888  1.1       jtc 
    889  1.1       jtc 		if (dpt != NULL) {
    890  1.1       jtc 			/*
    891  1.1       jtc 			 * we are being remapped for this device and pattern
    892  1.1       jtc 			 * change the device number to be stored and return
    893  1.1       jtc 			 */
    894  1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    895  1.1       jtc 			arcn->sb.st_ino = nino;
    896  1.1       jtc 			return(0);
    897  1.1       jtc 		}
    898  1.1       jtc 	} else {
    899  1.1       jtc 		/*
    900  1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    901  1.1       jtc 		 * form of truncation, we do not need a remap
    902  1.1       jtc 		 */
    903  1.1       jtc 		if (!trc_ino && !trc_dev)
    904  1.1       jtc 			return(0);
    905  1.1       jtc 
    906  1.1       jtc 		/*
    907  1.1       jtc 		 * we have truncation, have to add this as a device to remap
    908  1.1       jtc 		 */
    909  1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    910  1.1       jtc 			goto bad;
    911  1.1       jtc 
    912  1.1       jtc 		/*
    913  1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    914  1.1       jtc 		 * all future inodes that do not truncate (they have the
    915  1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    916  1.1       jtc 		 * device number. We probably have already written inodes with
    917  1.1       jtc 		 * this device number to the archive with the truncation
    918  1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    919  1.1       jtc 		 * same device number.
    920  1.1       jtc 		 */
    921  1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    922  1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    923  1.1       jtc 				goto bad;
    924  1.1       jtc 			dpt->trunc_bits = 0;
    925  1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    926  1.1       jtc 			dpt->fow = pt->list;
    927  1.1       jtc 			pt->list = dpt;
    928  1.1       jtc 		}
    929  1.1       jtc 	}
    930  1.1       jtc 
    931  1.1       jtc 	/*
    932  1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    933  1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    934  1.1       jtc 	 */
    935  1.1       jtc 	while (++lastdev > 0) {
    936  1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    937  1.1       jtc 			continue;
    938  1.1       jtc 		/*
    939  1.1       jtc 		 * found an unused value. If we have reached truncation point
    940  1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    941  1.1       jtc 		 * mark it as being used.
    942  1.1       jtc 		 */
    943  1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    944  1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    945  1.1       jtc 			goto bad;
    946  1.1       jtc 		break;
    947  1.1       jtc 	}
    948  1.1       jtc 
    949  1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    950  1.1       jtc 		goto bad;
    951  1.1       jtc 
    952  1.1       jtc 	/*
    953  1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    954  1.1       jtc 	 * change the device number this file is being stored with.
    955  1.1       jtc 	 */
    956  1.1       jtc 	dpt->trunc_bits = trunc_bits;
    957  1.1       jtc 	dpt->dev = lastdev;
    958  1.1       jtc 	dpt->fow = pt->list;
    959  1.1       jtc 	pt->list = dpt;
    960  1.1       jtc 	arcn->sb.st_dev = lastdev;
    961  1.1       jtc 	arcn->sb.st_ino = nino;
    962  1.1       jtc 	return(0);
    963  1.1       jtc 
    964  1.1       jtc     bad:
    965  1.7  christos 	tty_warn(1,
    966  1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    967  1.1       jtc 	    arcn->name);
    968  1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    969  1.1       jtc 	return(0);
    970  1.1       jtc }
    971  1.1       jtc 
    972  1.1       jtc /*
    973  1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    974  1.1       jtc  *
    975  1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    976  1.1       jtc  * before being read by pax. For regular files, access time is restored after
    977  1.1       jtc  * the file has been copied. This database provides the same functionality for
    978  1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    979  1.1       jtc  * is more complex than files since directories may be read several times until
    980  1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    981  1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    982  1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    983  1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    984  1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    985  1.1       jtc  * directory entries left in this database are reset during final cleanup
    986  1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    987  1.1       jtc  */
    988  1.1       jtc 
    989  1.1       jtc /*
    990  1.1       jtc  * atdir_start()
    991  1.1       jtc  *	create the directory access time database for directories READ by pax.
    992  1.1       jtc  * Return:
    993  1.1       jtc  *	0 is created ok, -1 otherwise.
    994  1.1       jtc  */
    995  1.1       jtc 
    996  1.1       jtc #if __STDC__
    997  1.1       jtc int
    998  1.1       jtc atdir_start(void)
    999  1.1       jtc #else
   1000  1.1       jtc int
   1001  1.1       jtc atdir_start()
   1002  1.1       jtc #endif
   1003  1.1       jtc {
   1004  1.1       jtc 	if (atab != NULL)
   1005  1.1       jtc 		return(0);
   1006  1.1       jtc  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1007  1.7  christos                 tty_warn(1,
   1008  1.7  christos 		    "Cannot allocate space for directory access time table");
   1009  1.1       jtc                 return(-1);
   1010  1.1       jtc         }
   1011  1.1       jtc 	return(0);
   1012  1.1       jtc }
   1013  1.1       jtc 
   1014  1.1       jtc 
   1015  1.1       jtc /*
   1016  1.1       jtc  * atdir_end()
   1017  1.1       jtc  *	walk through the directory access time table and reset the access time
   1018  1.1       jtc  *	of any directory who still has an entry left in the database. These
   1019  1.1       jtc  *	entries are for directories READ by pax
   1020  1.1       jtc  */
   1021  1.1       jtc 
   1022  1.1       jtc #if __STDC__
   1023  1.1       jtc void
   1024  1.1       jtc atdir_end(void)
   1025  1.1       jtc #else
   1026  1.1       jtc void
   1027  1.1       jtc atdir_end()
   1028  1.1       jtc #endif
   1029  1.1       jtc {
   1030  1.5       tls 	ATDIR *pt;
   1031  1.5       tls 	int i;
   1032  1.1       jtc 
   1033  1.1       jtc 	if (atab == NULL)
   1034  1.1       jtc 		return;
   1035  1.1       jtc 	/*
   1036  1.1       jtc 	 * for each non-empty hash table entry reset all the directories
   1037  1.1       jtc 	 * chained there.
   1038  1.1       jtc 	 */
   1039  1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
   1040  1.1       jtc 		if ((pt = atab[i]) == NULL)
   1041  1.1       jtc 			continue;
   1042  1.1       jtc 		/*
   1043  1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
   1044  1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
   1045  1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
   1046  1.1       jtc 		 */
   1047  1.1       jtc 		for (; pt != NULL; pt = pt->fow)
   1048  1.1       jtc 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1049  1.1       jtc 	}
   1050  1.1       jtc }
   1051  1.1       jtc 
   1052  1.1       jtc /*
   1053  1.1       jtc  * add_atdir()
   1054  1.1       jtc  *	add a directory to the directory access time table. Table is hashed
   1055  1.1       jtc  *	and chained by inode number. This is for directories READ by pax
   1056  1.1       jtc  */
   1057  1.1       jtc 
   1058  1.1       jtc #if __STDC__
   1059  1.1       jtc void
   1060  1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1061  1.1       jtc #else
   1062  1.1       jtc void
   1063  1.1       jtc add_atdir(fname, dev, ino, mtime, atime)
   1064  1.1       jtc 	char *fname;
   1065  1.1       jtc 	dev_t dev;
   1066  1.1       jtc 	ino_t ino;
   1067  1.1       jtc 	time_t mtime;
   1068  1.1       jtc 	time_t atime;
   1069  1.1       jtc #endif
   1070  1.1       jtc {
   1071  1.5       tls 	ATDIR *pt;
   1072  1.5       tls 	u_int indx;
   1073  1.1       jtc 
   1074  1.1       jtc 	if (atab == NULL)
   1075  1.1       jtc 		return;
   1076  1.1       jtc 
   1077  1.1       jtc 	/*
   1078  1.1       jtc 	 * make sure this directory is not already in the table, if so just
   1079  1.1       jtc 	 * return (the older entry always has the correct time). The only
   1080  1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
   1081  1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
   1082  1.1       jtc 	 * subtree before all the post-order visits have been made).
   1083  1.1       jtc 	 */
   1084  1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1085  1.1       jtc 	if ((pt = atab[indx]) != NULL) {
   1086  1.1       jtc 		while (pt != NULL) {
   1087  1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
   1088  1.1       jtc 				break;
   1089  1.1       jtc 			pt = pt->fow;
   1090  1.1       jtc 		}
   1091  1.1       jtc 
   1092  1.1       jtc 		/*
   1093  1.1       jtc 		 * oops, already there. Leave it alone.
   1094  1.1       jtc 		 */
   1095  1.1       jtc 		if (pt != NULL)
   1096  1.1       jtc 			return;
   1097  1.1       jtc 	}
   1098  1.1       jtc 
   1099  1.1       jtc 	/*
   1100  1.1       jtc 	 * add it to the front of the hash chain
   1101  1.1       jtc 	 */
   1102  1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1103  1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1104  1.1       jtc 			pt->dev = dev;
   1105  1.1       jtc 			pt->ino = ino;
   1106  1.1       jtc 			pt->mtime = mtime;
   1107  1.1       jtc 			pt->atime = atime;
   1108  1.1       jtc 			pt->fow = atab[indx];
   1109  1.1       jtc 			atab[indx] = pt;
   1110  1.1       jtc 			return;
   1111  1.1       jtc 		}
   1112  1.1       jtc 		(void)free((char *)pt);
   1113  1.1       jtc 	}
   1114  1.1       jtc 
   1115  1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1116  1.1       jtc 	return;
   1117  1.1       jtc }
   1118  1.1       jtc 
   1119  1.1       jtc /*
   1120  1.1       jtc  * get_atdir()
   1121  1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1122  1.1       jtc  *	and modification time you want to set to. If found, the modification
   1123  1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1124  1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1125  1.1       jtc  *	pax
   1126  1.1       jtc  * Return:
   1127  1.1       jtc  *	0 if found, -1 if not found.
   1128  1.1       jtc  */
   1129  1.1       jtc 
   1130  1.1       jtc #if __STDC__
   1131  1.1       jtc int
   1132  1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1133  1.1       jtc #else
   1134  1.1       jtc int
   1135  1.1       jtc get_atdir(dev, ino, mtime, atime)
   1136  1.1       jtc 	dev_t dev;
   1137  1.1       jtc 	ino_t ino;
   1138  1.1       jtc 	time_t *mtime;
   1139  1.1       jtc 	time_t *atime;
   1140  1.1       jtc #endif
   1141  1.1       jtc {
   1142  1.5       tls 	ATDIR *pt;
   1143  1.5       tls 	ATDIR **ppt;
   1144  1.5       tls 	u_int indx;
   1145  1.1       jtc 
   1146  1.1       jtc 	if (atab == NULL)
   1147  1.1       jtc 		return(-1);
   1148  1.1       jtc 	/*
   1149  1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1150  1.1       jtc 	 */
   1151  1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1152  1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1153  1.1       jtc 		return(-1);
   1154  1.1       jtc 
   1155  1.1       jtc 	ppt = &(atab[indx]);
   1156  1.1       jtc 	while (pt != NULL) {
   1157  1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1158  1.1       jtc 			break;
   1159  1.1       jtc 		/*
   1160  1.1       jtc 		 * no match, go to next one
   1161  1.1       jtc 		 */
   1162  1.1       jtc 		ppt = &(pt->fow);
   1163  1.1       jtc 		pt = pt->fow;
   1164  1.1       jtc 	}
   1165  1.1       jtc 
   1166  1.1       jtc 	/*
   1167  1.1       jtc 	 * return if we did not find it.
   1168  1.1       jtc 	 */
   1169  1.1       jtc 	if (pt == NULL)
   1170  1.1       jtc 		return(-1);
   1171  1.1       jtc 
   1172  1.1       jtc 	/*
   1173  1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1174  1.1       jtc 	 */
   1175  1.1       jtc 	*ppt = pt->fow;
   1176  1.1       jtc 	*mtime = pt->mtime;
   1177  1.1       jtc 	*atime = pt->atime;
   1178  1.1       jtc 	(void)free((char *)pt->name);
   1179  1.1       jtc 	(void)free((char *)pt);
   1180  1.1       jtc 	return(0);
   1181  1.1       jtc }
   1182  1.1       jtc 
   1183  1.1       jtc /*
   1184  1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1185  1.1       jtc  * by pax).
   1186  1.1       jtc  *
   1187  1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1188  1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1189  1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1190  1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1191  1.1       jtc  * that these directories may have been created with file permissions which
   1192  1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1193  1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1194  1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1195  1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1196  1.1       jtc  * files have been extracted (or copied), these directories have their times
   1197  1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1198  1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1199  1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1200  1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1201  1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1202  1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1203  1.1       jtc  * then the file name.
   1204  1.1       jtc  */
   1205  1.1       jtc 
   1206  1.1       jtc /*
   1207  1.1       jtc  * dir_start()
   1208  1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1209  1.1       jtc  *	by pax.
   1210  1.1       jtc  * Return:
   1211  1.1       jtc  *	0 if ok, -1 otherwise
   1212  1.1       jtc  */
   1213  1.1       jtc 
   1214  1.1       jtc #if __STDC__
   1215  1.1       jtc int
   1216  1.1       jtc dir_start(void)
   1217  1.1       jtc #else
   1218  1.1       jtc int
   1219  1.1       jtc dir_start()
   1220  1.1       jtc #endif
   1221  1.1       jtc {
   1222  1.1       jtc 	char *pt;
   1223  1.1       jtc 
   1224  1.1       jtc 	if (dirfd != -1)
   1225  1.1       jtc 		return(0);
   1226  1.1       jtc 
   1227  1.1       jtc 	/*
   1228  1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1229  1.1       jtc 	 */
   1230  1.6     lukem 	pt = strdup("/tmp/paxXXXXXX");
   1231  1.6     lukem 	if (pt == NULL) {
   1232  1.7  christos 		tty_warn(1, "Unable to allocate memory");
   1233  1.6     lukem 		return(-1);
   1234  1.6     lukem 	}
   1235  1.6     lukem 	if ((dirfd = mkstemp(pt)) >= 0) {
   1236  1.1       jtc 		(void)unlink(pt);
   1237  1.6     lukem 		free(pt);
   1238  1.1       jtc 		return(0);
   1239  1.1       jtc 	}
   1240  1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1241  1.7  christos 	    pt);
   1242  1.6     lukem 	free(pt);
   1243  1.1       jtc 	return(-1);
   1244  1.1       jtc }
   1245  1.1       jtc 
   1246  1.1       jtc /*
   1247  1.1       jtc  * add_dir()
   1248  1.1       jtc  *	add the mode and times for a newly CREATED directory
   1249  1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1250  1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1251  1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1252  1.1       jtc  *	for the case where we created a file and found that the resulting
   1253  1.1       jtc  *	directory was not writeable and the user asked for file modes to NOT
   1254  1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1255  1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1256  1.1       jtc  *	pax spec)
   1257  1.1       jtc  */
   1258  1.1       jtc 
   1259  1.1       jtc #if __STDC__
   1260  1.1       jtc void
   1261  1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1262  1.1       jtc #else
   1263  1.1       jtc void
   1264  1.1       jtc add_dir(name, nlen, psb, frc_mode)
   1265  1.1       jtc 	char *name;
   1266  1.1       jtc 	int nlen;
   1267  1.1       jtc 	struct stat *psb;
   1268  1.1       jtc 	int frc_mode;
   1269  1.1       jtc #endif
   1270  1.1       jtc {
   1271  1.1       jtc 	DIRDATA dblk;
   1272  1.1       jtc 
   1273  1.1       jtc 	if (dirfd < 0)
   1274  1.1       jtc 		return;
   1275  1.1       jtc 
   1276  1.1       jtc 	/*
   1277  1.1       jtc 	 * get current position (where file name will start) so we can store it
   1278  1.1       jtc 	 * in the trailer
   1279  1.1       jtc 	 */
   1280  1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1281  1.7  christos 		tty_warn(1,
   1282  1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1283  1.1       jtc 		return;
   1284  1.1       jtc 	}
   1285  1.1       jtc 
   1286  1.1       jtc 	/*
   1287  1.1       jtc 	 * write the file name followed by the trailer
   1288  1.1       jtc 	 */
   1289  1.1       jtc 	dblk.nlen = nlen + 1;
   1290  1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1291  1.1       jtc 	dblk.mtime = psb->st_mtime;
   1292  1.1       jtc 	dblk.atime = psb->st_atime;
   1293  1.1       jtc 	dblk.frc_mode = frc_mode;
   1294  1.1       jtc 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1295  1.1       jtc 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1296  1.1       jtc 		++dircnt;
   1297  1.1       jtc 		return;
   1298  1.1       jtc 	}
   1299  1.1       jtc 
   1300  1.7  christos 	tty_warn(1,
   1301  1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1302  1.1       jtc 	return;
   1303  1.1       jtc }
   1304  1.1       jtc 
   1305  1.1       jtc /*
   1306  1.1       jtc  * proc_dir()
   1307  1.1       jtc  *	process all file modes and times stored for directories CREATED
   1308  1.1       jtc  *	by pax
   1309  1.1       jtc  */
   1310  1.1       jtc 
   1311  1.1       jtc #if __STDC__
   1312  1.1       jtc void
   1313  1.1       jtc proc_dir(void)
   1314  1.1       jtc #else
   1315  1.1       jtc void
   1316  1.1       jtc proc_dir()
   1317  1.1       jtc #endif
   1318  1.1       jtc {
   1319  1.1       jtc 	char name[PAXPATHLEN+1];
   1320  1.1       jtc 	DIRDATA dblk;
   1321  1.1       jtc 	u_long cnt;
   1322  1.1       jtc 
   1323  1.1       jtc 	if (dirfd < 0)
   1324  1.1       jtc 		return;
   1325  1.1       jtc 	/*
   1326  1.1       jtc 	 * read backwards through the file and process each directory
   1327  1.1       jtc 	 */
   1328  1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1329  1.1       jtc 		/*
   1330  1.1       jtc 		 * read the trailer, then the file name, if this fails
   1331  1.1       jtc 		 * just give up.
   1332  1.1       jtc 		 */
   1333  1.1       jtc 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1334  1.1       jtc 			break;
   1335  1.1       jtc 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1336  1.1       jtc 			break;
   1337  1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1338  1.1       jtc 			break;
   1339  1.1       jtc 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
   1340  1.1       jtc 			break;
   1341  1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1342  1.1       jtc 			break;
   1343  1.1       jtc 
   1344  1.1       jtc 		/*
   1345  1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1346  1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1347  1.1       jtc 		 */
   1348  1.1       jtc 		if (pmode || dblk.frc_mode)
   1349  1.1       jtc 			set_pmode(name, dblk.mode);
   1350  1.1       jtc 		if (patime || pmtime)
   1351  1.1       jtc 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1352  1.1       jtc 	}
   1353  1.1       jtc 
   1354  1.1       jtc 	(void)close(dirfd);
   1355  1.1       jtc 	dirfd = -1;
   1356  1.1       jtc 	if (cnt != dircnt)
   1357  1.7  christos 		tty_warn(1,
   1358  1.7  christos 		    "Unable to set mode and times for created directories");
   1359  1.1       jtc 	return;
   1360  1.1       jtc }
   1361  1.1       jtc 
   1362  1.1       jtc /*
   1363  1.1       jtc  * database independent routines
   1364  1.1       jtc  */
   1365  1.1       jtc 
   1366  1.1       jtc /*
   1367  1.1       jtc  * st_hash()
   1368  1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1369  1.1       jtc  *	end of file, as this provides far better distribution than any other
   1370  1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1371  1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1372  1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1373  1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1374  1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1375  1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1376  1.1       jtc  * Return:
   1377  1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1378  1.1       jtc  */
   1379  1.1       jtc 
   1380  1.1       jtc #if __STDC__
   1381  1.1       jtc u_int
   1382  1.1       jtc st_hash(char *name, int len, int tabsz)
   1383  1.1       jtc #else
   1384  1.1       jtc u_int
   1385  1.1       jtc st_hash(name, len, tabsz)
   1386  1.1       jtc 	char *name;
   1387  1.1       jtc 	int len;
   1388  1.1       jtc 	int tabsz;
   1389  1.1       jtc #endif
   1390  1.1       jtc {
   1391  1.5       tls 	char *pt;
   1392  1.5       tls 	char *dest;
   1393  1.5       tls 	char *end;
   1394  1.5       tls 	int i;
   1395  1.5       tls 	u_int key = 0;
   1396  1.5       tls 	int steps;
   1397  1.5       tls 	int res;
   1398  1.1       jtc 	u_int val;
   1399  1.1       jtc 
   1400  1.1       jtc 	/*
   1401  1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1402  1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1403  1.1       jtc 	 * spread out the keys)
   1404  1.1       jtc 	 */
   1405  1.1       jtc 	if (len > MAXKEYLEN) {
   1406  1.1       jtc                 pt = &(name[len - MAXKEYLEN]);
   1407  1.1       jtc 		len = MAXKEYLEN;
   1408  1.1       jtc 	} else
   1409  1.1       jtc 		pt = name;
   1410  1.1       jtc 
   1411  1.1       jtc 	/*
   1412  1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1413  1.1       jtc 	 * there is a runt to deal with
   1414  1.1       jtc 	 */
   1415  1.1       jtc 	steps = len/sizeof(u_int);
   1416  1.1       jtc 	res = len % sizeof(u_int);
   1417  1.1       jtc 
   1418  1.1       jtc 	/*
   1419  1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1420  1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1421  1.1       jtc 	 * could avoid the expensive copy.
   1422  1.1       jtc 	 */
   1423  1.1       jtc 	for (i = 0; i < steps; ++i) {
   1424  1.1       jtc 		end = pt + sizeof(u_int);
   1425  1.1       jtc 		dest = (char *)&val;
   1426  1.1       jtc 		while (pt < end)
   1427  1.1       jtc 			*dest++ = *pt++;
   1428  1.1       jtc 		key += val;
   1429  1.1       jtc 	}
   1430  1.1       jtc 
   1431  1.1       jtc 	/*
   1432  1.1       jtc 	 * add in the runt padded with zero to the right
   1433  1.1       jtc 	 */
   1434  1.1       jtc 	if (res) {
   1435  1.1       jtc 		val = 0;
   1436  1.1       jtc 		end = pt + res;
   1437  1.1       jtc 		dest = (char *)&val;
   1438  1.1       jtc 		while (pt < end)
   1439  1.1       jtc 			*dest++ = *pt++;
   1440  1.1       jtc 		key += val;
   1441  1.1       jtc 	}
   1442  1.1       jtc 
   1443  1.1       jtc 	/*
   1444  1.1       jtc 	 * return the result mod the table size
   1445  1.1       jtc 	 */
   1446  1.1       jtc 	return(key % tabsz);
   1447  1.1       jtc }
   1448