Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.9.2.1
      1  1.9.2.1  wrstuden /*	$NetBSD: tables.c,v 1.9.2.1 1999/12/27 18:27:10 wrstuden Exp $	*/
      2      1.4       cgd 
      3      1.1       jtc /*-
      4      1.1       jtc  * Copyright (c) 1992 Keith Muller.
      5      1.1       jtc  * Copyright (c) 1992, 1993
      6      1.1       jtc  *	The Regents of the University of California.  All rights reserved.
      7      1.1       jtc  *
      8      1.1       jtc  * This code is derived from software contributed to Berkeley by
      9      1.1       jtc  * Keith Muller of the University of California, San Diego.
     10      1.1       jtc  *
     11      1.1       jtc  * Redistribution and use in source and binary forms, with or without
     12      1.1       jtc  * modification, are permitted provided that the following conditions
     13      1.1       jtc  * are met:
     14      1.1       jtc  * 1. Redistributions of source code must retain the above copyright
     15      1.1       jtc  *    notice, this list of conditions and the following disclaimer.
     16      1.1       jtc  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.1       jtc  *    notice, this list of conditions and the following disclaimer in the
     18      1.1       jtc  *    documentation and/or other materials provided with the distribution.
     19      1.1       jtc  * 3. All advertising materials mentioning features or use of this software
     20      1.1       jtc  *    must display the following acknowledgement:
     21      1.1       jtc  *	This product includes software developed by the University of
     22      1.1       jtc  *	California, Berkeley and its contributors.
     23      1.1       jtc  * 4. Neither the name of the University nor the names of its contributors
     24      1.1       jtc  *    may be used to endorse or promote products derived from this software
     25      1.1       jtc  *    without specific prior written permission.
     26      1.1       jtc  *
     27      1.1       jtc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28      1.1       jtc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29      1.1       jtc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30      1.1       jtc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31      1.1       jtc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32      1.1       jtc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33      1.1       jtc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34      1.1       jtc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35      1.1       jtc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36      1.1       jtc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37      1.1       jtc  * SUCH DAMAGE.
     38      1.1       jtc  */
     39      1.1       jtc 
     40      1.7  christos #include <sys/cdefs.h>
     41      1.1       jtc #ifndef lint
     42      1.4       cgd #if 0
     43      1.4       cgd static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44      1.4       cgd #else
     45  1.9.2.1  wrstuden __RCSID("$NetBSD: tables.c,v 1.9.2.1 1999/12/27 18:27:10 wrstuden Exp $");
     46      1.4       cgd #endif
     47      1.1       jtc #endif /* not lint */
     48      1.1       jtc 
     49      1.1       jtc #include <sys/types.h>
     50      1.1       jtc #include <sys/time.h>
     51      1.1       jtc #include <sys/stat.h>
     52      1.1       jtc #include <sys/param.h>
     53      1.1       jtc #include <stdio.h>
     54      1.1       jtc #include <ctype.h>
     55      1.8    kleink #include <fcntl.h>
     56      1.9    kleink #include <paths.h>
     57      1.1       jtc #include <string.h>
     58      1.1       jtc #include <unistd.h>
     59      1.1       jtc #include <errno.h>
     60      1.1       jtc #include <stdlib.h>
     61      1.1       jtc #include "pax.h"
     62      1.1       jtc #include "tables.h"
     63      1.1       jtc #include "extern.h"
     64      1.1       jtc 
     65      1.1       jtc /*
     66      1.1       jtc  * Routines for controlling the contents of all the different databases pax
     67      1.1       jtc  * keeps. Tables are dynamically created only when they are needed. The
     68      1.1       jtc  * goal was speed and the ability to work with HUGE archives. The databases
     69      1.1       jtc  * were kept simple, but do have complex rules for when the contents change.
     70      1.1       jtc  * As of this writing, the posix library functions were more complex than
     71      1.1       jtc  * needed for this application (pax databases have very short lifetimes and
     72      1.1       jtc  * do not survive after pax is finished). Pax is required to handle very
     73      1.1       jtc  * large archives. These database routines carefully combine memory usage and
     74      1.1       jtc  * temporary file storage in ways which will not significantly impact runtime
     75      1.1       jtc  * performance while allowing the largest possible archives to be handled.
     76      1.1       jtc  * Trying to force the fit to the posix databases routines was not considered
     77      1.1       jtc  * time well spent.
     78      1.1       jtc  */
     79      1.1       jtc 
     80      1.1       jtc static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81      1.1       jtc static FTM **ftab = NULL;	/* file time table for updating arch */
     82      1.1       jtc static NAMT **ntab = NULL;	/* interactive rename storage table */
     83      1.1       jtc static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84      1.1       jtc static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85      1.1       jtc static int dirfd = -1;		/* storage for setting created dir time/mode */
     86      1.1       jtc static u_long dircnt;		/* entries in dir time/mode storage */
     87      1.1       jtc static int ffd = -1;		/* tmp file for file time table name storage */
     88      1.1       jtc 
     89      1.1       jtc static DEVT *chk_dev __P((dev_t, int));
     90      1.1       jtc 
     91      1.1       jtc /*
     92      1.1       jtc  * hard link table routines
     93      1.1       jtc  *
     94      1.1       jtc  * The hard link table tries to detect hard links to files using the device and
     95      1.1       jtc  * inode values. We do this when writing an archive, so we can tell the format
     96      1.1       jtc  * write routine that this file is a hard link to another file. The format
     97      1.1       jtc  * write routine then can store this file in whatever way it wants (as a hard
     98      1.1       jtc  * link if the format supports that like tar, or ignore this info like cpio).
     99      1.1       jtc  * (Actually a field in the format driver table tells us if the format wants
    100      1.1       jtc  * hard link info. if not, we do not waste time looking for them). We also use
    101      1.1       jtc  * the same table when reading an archive. In that situation, this table is
    102      1.1       jtc  * used by the format read routine to detect hard links from stored dev and
    103      1.1       jtc  * inode numbers (like cpio). This will allow pax to create a link when one
    104      1.1       jtc  * can be detected by the archive format.
    105      1.1       jtc  */
    106      1.1       jtc 
    107      1.1       jtc /*
    108      1.1       jtc  * lnk_start
    109      1.1       jtc  *	Creates the hard link table.
    110      1.1       jtc  * Return:
    111      1.1       jtc  *	0 if created, -1 if failure
    112      1.1       jtc  */
    113      1.1       jtc 
    114      1.1       jtc #if __STDC__
    115      1.1       jtc int
    116      1.1       jtc lnk_start(void)
    117      1.1       jtc #else
    118      1.1       jtc int
    119      1.1       jtc lnk_start()
    120      1.1       jtc #endif
    121      1.1       jtc {
    122      1.1       jtc 	if (ltab != NULL)
    123      1.1       jtc 		return(0);
    124      1.1       jtc  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    125      1.7  christos                 tty_warn(1, "Cannot allocate memory for hard link table");
    126      1.1       jtc                 return(-1);
    127      1.1       jtc         }
    128      1.1       jtc 	return(0);
    129      1.1       jtc }
    130      1.1       jtc 
    131      1.1       jtc /*
    132      1.1       jtc  * chk_lnk()
    133      1.1       jtc  *	Looks up entry in hard link hash table. If found, it copies the name
    134      1.1       jtc  *	of the file it is linked to (we already saw that file) into ln_name.
    135      1.1       jtc  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    136      1.1       jtc  *	database. (We have seen all the links to this file). If not found,
    137      1.1       jtc  *	we add the file to the database if it has the potential for having
    138      1.1       jtc  *	hard links to other files we may process (it has a link count > 1)
    139      1.1       jtc  * Return:
    140      1.1       jtc  *	if found returns 1; if not found returns 0; -1 on error
    141      1.1       jtc  */
    142      1.1       jtc 
    143      1.1       jtc #if __STDC__
    144      1.1       jtc int
    145      1.5       tls chk_lnk(ARCHD *arcn)
    146      1.1       jtc #else
    147      1.1       jtc int
    148      1.1       jtc chk_lnk(arcn)
    149      1.5       tls 	ARCHD *arcn;
    150      1.1       jtc #endif
    151      1.1       jtc {
    152      1.5       tls 	HRDLNK *pt;
    153      1.5       tls 	HRDLNK **ppt;
    154      1.5       tls 	u_int indx;
    155      1.1       jtc 
    156      1.1       jtc 	if (ltab == NULL)
    157      1.1       jtc 		return(-1);
    158      1.1       jtc 	/*
    159      1.1       jtc 	 * ignore those nodes that cannot have hard links
    160      1.1       jtc 	 */
    161      1.1       jtc 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    162      1.1       jtc 		return(0);
    163      1.1       jtc 
    164      1.1       jtc 	/*
    165      1.1       jtc 	 * hash inode number and look for this file
    166      1.1       jtc 	 */
    167      1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    168      1.1       jtc 	if ((pt = ltab[indx]) != NULL) {
    169      1.1       jtc 		/*
    170      1.1       jtc 		 * it's hash chain in not empty, walk down looking for it
    171      1.1       jtc 		 */
    172      1.1       jtc 		ppt = &(ltab[indx]);
    173      1.1       jtc 		while (pt != NULL) {
    174      1.1       jtc 			if ((pt->ino == arcn->sb.st_ino) &&
    175      1.1       jtc 			    (pt->dev == arcn->sb.st_dev))
    176      1.1       jtc 				break;
    177      1.1       jtc 			ppt = &(pt->fow);
    178      1.1       jtc 			pt = pt->fow;
    179      1.1       jtc 		}
    180      1.1       jtc 
    181      1.1       jtc 		if (pt != NULL) {
    182      1.1       jtc 			/*
    183      1.1       jtc 			 * found a link. set the node type and copy in the
    184      1.1       jtc 			 * name of the file it is to link to. we need to
    185      1.1       jtc 			 * handle hardlinks to regular files differently than
    186      1.1       jtc 			 * other links.
    187      1.1       jtc 			 */
    188      1.1       jtc 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    189      1.1       jtc 				PAXPATHLEN+1);
    190      1.1       jtc 			if (arcn->type == PAX_REG)
    191      1.1       jtc 				arcn->type = PAX_HRG;
    192      1.1       jtc 			else
    193      1.1       jtc 				arcn->type = PAX_HLK;
    194      1.1       jtc 
    195      1.1       jtc 			/*
    196      1.1       jtc 			 * if we have found all the links to this file, remove
    197      1.1       jtc 			 * it from the database
    198      1.1       jtc 			 */
    199      1.1       jtc 			if (--pt->nlink <= 1) {
    200      1.1       jtc 				*ppt = pt->fow;
    201      1.1       jtc 				(void)free((char *)pt->name);
    202      1.1       jtc 				(void)free((char *)pt);
    203      1.1       jtc 			}
    204      1.1       jtc 			return(1);
    205      1.1       jtc 		}
    206      1.1       jtc 	}
    207      1.1       jtc 
    208      1.1       jtc 	/*
    209      1.1       jtc 	 * we never saw this file before. It has links so we add it to the
    210      1.1       jtc 	 * front of this hash chain
    211      1.1       jtc 	 */
    212      1.1       jtc 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    213      1.1       jtc 		if ((pt->name = strdup(arcn->name)) != NULL) {
    214      1.1       jtc 			pt->dev = arcn->sb.st_dev;
    215      1.1       jtc 			pt->ino = arcn->sb.st_ino;
    216      1.1       jtc 			pt->nlink = arcn->sb.st_nlink;
    217      1.1       jtc 			pt->fow = ltab[indx];
    218      1.1       jtc 			ltab[indx] = pt;
    219      1.1       jtc 			return(0);
    220      1.1       jtc 		}
    221      1.1       jtc 		(void)free((char *)pt);
    222      1.1       jtc 	}
    223      1.1       jtc 
    224      1.7  christos 	tty_warn(1, "Hard link table out of memory");
    225      1.1       jtc 	return(-1);
    226      1.1       jtc }
    227      1.1       jtc 
    228      1.1       jtc /*
    229      1.1       jtc  * purg_lnk
    230      1.1       jtc  *	remove reference for a file that we may have added to the data base as
    231      1.1       jtc  *	a potential source for hard links. We ended up not using the file, so
    232      1.1       jtc  *	we do not want to accidently point another file at it later on.
    233      1.1       jtc  */
    234      1.1       jtc 
    235      1.1       jtc #if __STDC__
    236      1.1       jtc void
    237      1.5       tls purg_lnk(ARCHD *arcn)
    238      1.1       jtc #else
    239      1.1       jtc void
    240      1.1       jtc purg_lnk(arcn)
    241      1.5       tls 	ARCHD *arcn;
    242      1.1       jtc #endif
    243      1.1       jtc {
    244      1.5       tls 	HRDLNK *pt;
    245      1.5       tls 	HRDLNK **ppt;
    246      1.5       tls 	u_int indx;
    247      1.1       jtc 
    248      1.1       jtc 	if (ltab == NULL)
    249      1.1       jtc 		return;
    250      1.1       jtc 	/*
    251      1.1       jtc 	 * do not bother to look if it could not be in the database
    252      1.1       jtc 	 */
    253      1.1       jtc 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    254      1.1       jtc 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    255      1.1       jtc 		return;
    256      1.1       jtc 
    257      1.1       jtc 	/*
    258      1.1       jtc 	 * find the hash chain for this inode value, if empty return
    259      1.1       jtc 	 */
    260      1.1       jtc 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    261      1.1       jtc 	if ((pt = ltab[indx]) == NULL)
    262      1.1       jtc 		return;
    263      1.1       jtc 
    264      1.1       jtc 	/*
    265      1.1       jtc 	 * walk down the list looking for the inode/dev pair, unlink and
    266      1.1       jtc 	 * free if found
    267      1.1       jtc 	 */
    268      1.1       jtc 	ppt = &(ltab[indx]);
    269      1.1       jtc 	while (pt != NULL) {
    270      1.1       jtc 		if ((pt->ino == arcn->sb.st_ino) &&
    271      1.1       jtc 		    (pt->dev == arcn->sb.st_dev))
    272      1.1       jtc 			break;
    273      1.1       jtc 		ppt = &(pt->fow);
    274      1.1       jtc 		pt = pt->fow;
    275      1.1       jtc 	}
    276      1.1       jtc 	if (pt == NULL)
    277      1.1       jtc 		return;
    278      1.1       jtc 
    279      1.1       jtc 	/*
    280      1.1       jtc 	 * remove and free it
    281      1.1       jtc 	 */
    282      1.1       jtc 	*ppt = pt->fow;
    283      1.1       jtc 	(void)free((char *)pt->name);
    284      1.1       jtc 	(void)free((char *)pt);
    285      1.1       jtc }
    286      1.1       jtc 
    287      1.1       jtc /*
    288      1.1       jtc  * lnk_end()
    289      1.1       jtc  *	pull apart a existing link table so we can reuse it. We do this between
    290      1.1       jtc  *	read and write phases of append with update. (The format may have
    291      1.1       jtc  *	used the link table, and we need to start with a fresh table for the
    292      1.1       jtc  *	write phase
    293      1.1       jtc  */
    294      1.1       jtc 
    295      1.1       jtc #if __STDC__
    296      1.1       jtc void
    297      1.1       jtc lnk_end(void)
    298      1.1       jtc #else
    299      1.1       jtc void
    300      1.1       jtc lnk_end()
    301      1.1       jtc #endif
    302      1.1       jtc {
    303      1.5       tls 	int i;
    304      1.5       tls 	HRDLNK *pt;
    305      1.5       tls 	HRDLNK *ppt;
    306      1.1       jtc 
    307      1.1       jtc 	if (ltab == NULL)
    308      1.1       jtc 		return;
    309      1.1       jtc 
    310      1.1       jtc 	for (i = 0; i < L_TAB_SZ; ++i) {
    311      1.1       jtc 		if (ltab[i] == NULL)
    312      1.1       jtc 			continue;
    313      1.1       jtc 		pt = ltab[i];
    314      1.1       jtc 		ltab[i] = NULL;
    315      1.1       jtc 
    316      1.1       jtc 		/*
    317      1.1       jtc 		 * free up each entry on this chain
    318      1.1       jtc 		 */
    319      1.1       jtc 		while (pt != NULL) {
    320      1.1       jtc 			ppt = pt;
    321      1.1       jtc 			pt = ppt->fow;
    322      1.1       jtc 			(void)free((char *)ppt->name);
    323      1.1       jtc 			(void)free((char *)ppt);
    324      1.1       jtc 		}
    325      1.1       jtc 	}
    326      1.1       jtc 	return;
    327      1.1       jtc }
    328      1.1       jtc 
    329      1.1       jtc /*
    330      1.1       jtc  * modification time table routines
    331      1.1       jtc  *
    332      1.1       jtc  * The modification time table keeps track of last modification times for all
    333      1.1       jtc  * files stored in an archive during a write phase when -u is set. We only
    334      1.1       jtc  * add a file to the archive if it is newer than a file with the same name
    335      1.1       jtc  * already stored on the archive (if there is no other file with the same
    336      1.1       jtc  * name on the archive it is added). This applies to writes and appends.
    337      1.1       jtc  * An append with an -u must read the archive and store the modification time
    338      1.1       jtc  * for every file on that archive before starting the write phase. It is clear
    339      1.1       jtc  * that this is one HUGE database. To save memory space, the actual file names
    340      1.1       jtc  * are stored in a scatch file and indexed by an in memory hash table. The
    341      1.1       jtc  * hash table is indexed by hashing the file path. The nodes in the table store
    342      1.1       jtc  * the length of the filename and the lseek offset within the scratch file
    343      1.1       jtc  * where the actual name is stored. Since there are never any deletions to this
    344      1.1       jtc  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    345      1.1       jtc  * not exhibit any locality at all (files in the database are rarely
    346      1.1       jtc  * looked up more than once...). So caching is just a waste of memory. The
    347      1.1       jtc  * only limitation is the amount of scatch file space available to store the
    348      1.1       jtc  * path names.
    349      1.1       jtc  */
    350      1.1       jtc 
    351      1.1       jtc /*
    352      1.1       jtc  * ftime_start()
    353      1.1       jtc  *	create the file time hash table and open for read/write the scratch
    354      1.1       jtc  *	file. (after created it is unlinked, so when we exit we leave
    355      1.1       jtc  *	no witnesses).
    356      1.1       jtc  * Return:
    357      1.1       jtc  *	0 if the table and file was created ok, -1 otherwise
    358      1.1       jtc  */
    359      1.1       jtc 
    360      1.1       jtc #if __STDC__
    361      1.1       jtc int
    362      1.1       jtc ftime_start(void)
    363      1.1       jtc #else
    364      1.1       jtc int
    365      1.1       jtc ftime_start()
    366      1.1       jtc #endif
    367      1.1       jtc {
    368      1.9    kleink 	const char *tmpdir;
    369      1.9    kleink 	char template[MAXPATHLEN];
    370      1.1       jtc 
    371      1.1       jtc 	if (ftab != NULL)
    372      1.1       jtc 		return(0);
    373      1.1       jtc  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    374      1.7  christos                 tty_warn(1, "Cannot allocate memory for file time table");
    375      1.1       jtc                 return(-1);
    376      1.1       jtc         }
    377      1.1       jtc 
    378      1.1       jtc 	/*
    379      1.1       jtc 	 * get random name and create temporary scratch file, unlink name
    380      1.1       jtc 	 * so it will get removed on exit
    381      1.1       jtc 	 */
    382      1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
    383      1.9    kleink 		tmpdir = _PATH_TMP;
    384      1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
    385      1.9    kleink 	if ((ffd = mkstemp(template)) == -1) {
    386      1.9    kleink 		syswarn(1, errno, "Unable to create temporary file: %s",
    387      1.9    kleink 		    template);
    388      1.1       jtc 		return(-1);
    389      1.1       jtc 	}
    390      1.1       jtc 
    391      1.9    kleink 	(void)unlink(template);
    392      1.1       jtc 	return(0);
    393      1.1       jtc }
    394      1.1       jtc 
    395      1.1       jtc /*
    396      1.1       jtc  * chk_ftime()
    397      1.1       jtc  *	looks up entry in file time hash table. If not found, the file is
    398      1.1       jtc  *	added to the hash table and the file named stored in the scratch file.
    399      1.1       jtc  *	If a file with the same name is found, the file times are compared and
    400      1.1       jtc  *	the most recent file time is retained. If the new file was younger (or
    401      1.1       jtc  *	was not in the database) the new file is selected for storage.
    402      1.1       jtc  * Return:
    403      1.1       jtc  *	0 if file should be added to the archive, 1 if it should be skipped,
    404      1.1       jtc  *	-1 on error
    405      1.1       jtc  */
    406      1.1       jtc 
    407      1.1       jtc #if __STDC__
    408      1.1       jtc int
    409      1.5       tls chk_ftime(ARCHD *arcn)
    410      1.1       jtc #else
    411      1.1       jtc int
    412      1.1       jtc chk_ftime(arcn)
    413      1.5       tls 	ARCHD *arcn;
    414      1.1       jtc #endif
    415      1.1       jtc {
    416      1.5       tls 	FTM *pt;
    417      1.5       tls 	int namelen;
    418      1.5       tls 	u_int indx;
    419      1.1       jtc 	char ckname[PAXPATHLEN+1];
    420      1.1       jtc 
    421      1.1       jtc 	/*
    422      1.1       jtc 	 * no info, go ahead and add to archive
    423      1.1       jtc 	 */
    424      1.1       jtc 	if (ftab == NULL)
    425      1.1       jtc 		return(0);
    426      1.1       jtc 
    427      1.1       jtc 	/*
    428      1.1       jtc 	 * hash the pathname and look up in table
    429      1.1       jtc 	 */
    430      1.1       jtc 	namelen = arcn->nlen;
    431      1.1       jtc 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    432      1.1       jtc 	if ((pt = ftab[indx]) != NULL) {
    433      1.1       jtc 		/*
    434      1.1       jtc 		 * the hash chain is not empty, walk down looking for match
    435      1.1       jtc 		 * only read up the path names if the lengths match, speeds
    436      1.1       jtc 		 * up the search a lot
    437      1.1       jtc 		 */
    438      1.1       jtc 		while (pt != NULL) {
    439      1.1       jtc 			if (pt->namelen == namelen) {
    440      1.1       jtc 				/*
    441      1.1       jtc 				 * potential match, have to read the name
    442      1.1       jtc 				 * from the scratch file.
    443      1.1       jtc 				 */
    444      1.1       jtc 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    445      1.1       jtc 					syswarn(1, errno,
    446      1.1       jtc 					    "Failed ftime table seek");
    447      1.1       jtc 					return(-1);
    448      1.1       jtc 				}
    449      1.1       jtc 				if (read(ffd, ckname, namelen) != namelen) {
    450      1.1       jtc 					syswarn(1, errno,
    451      1.1       jtc 					    "Failed ftime table read");
    452      1.1       jtc 					return(-1);
    453      1.1       jtc 				}
    454      1.1       jtc 
    455      1.1       jtc 				/*
    456      1.1       jtc 				 * if the names match, we are done
    457      1.1       jtc 				 */
    458      1.1       jtc 				if (!strncmp(ckname, arcn->name, namelen))
    459      1.1       jtc 					break;
    460      1.1       jtc 			}
    461      1.1       jtc 
    462      1.1       jtc 			/*
    463      1.1       jtc 			 * try the next entry on the chain
    464      1.1       jtc 			 */
    465      1.1       jtc 			pt = pt->fow;
    466      1.1       jtc 		}
    467      1.1       jtc 
    468      1.1       jtc 		if (pt != NULL) {
    469      1.1       jtc 			/*
    470      1.1       jtc 			 * found the file, compare the times, save the newer
    471      1.1       jtc 			 */
    472      1.1       jtc 			if (arcn->sb.st_mtime > pt->mtime) {
    473      1.1       jtc 				/*
    474      1.1       jtc 				 * file is newer
    475      1.1       jtc 				 */
    476      1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    477      1.1       jtc 				return(0);
    478      1.1       jtc 			}
    479      1.1       jtc 			/*
    480      1.1       jtc 			 * file is older
    481      1.1       jtc 			 */
    482      1.1       jtc 			return(1);
    483      1.1       jtc 		}
    484      1.1       jtc 	}
    485      1.1       jtc 
    486      1.1       jtc 	/*
    487      1.1       jtc 	 * not in table, add it
    488      1.1       jtc 	 */
    489      1.1       jtc 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    490      1.1       jtc 		/*
    491      1.1       jtc 		 * add the name at the end of the scratch file, saving the
    492      1.1       jtc 		 * offset. add the file to the head of the hash chain
    493      1.1       jtc 		 */
    494      1.1       jtc 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    495      1.1       jtc 			if (write(ffd, arcn->name, namelen) == namelen) {
    496      1.1       jtc 				pt->mtime = arcn->sb.st_mtime;
    497      1.1       jtc 				pt->namelen = namelen;
    498      1.1       jtc 				pt->fow = ftab[indx];
    499      1.1       jtc 				ftab[indx] = pt;
    500      1.1       jtc 				return(0);
    501      1.1       jtc 			}
    502      1.1       jtc 			syswarn(1, errno, "Failed write to file time table");
    503      1.1       jtc 		} else
    504      1.1       jtc 			syswarn(1, errno, "Failed seek on file time table");
    505      1.1       jtc 	} else
    506      1.7  christos 		tty_warn(1, "File time table ran out of memory");
    507      1.1       jtc 
    508      1.1       jtc 	if (pt != NULL)
    509      1.1       jtc 		(void)free((char *)pt);
    510      1.1       jtc 	return(-1);
    511      1.1       jtc }
    512      1.1       jtc 
    513      1.1       jtc /*
    514      1.1       jtc  * Interactive rename table routines
    515      1.1       jtc  *
    516      1.1       jtc  * The interactive rename table keeps track of the new names that the user
    517      1.1       jtc  * assignes to files from tty input. Since this map is unique for each file
    518      1.1       jtc  * we must store it in case there is a reference to the file later in archive
    519      1.1       jtc  * (a link). Otherwise we will be unable to find the file we know was
    520      1.1       jtc  * extracted. The remapping of these files is stored in a memory based hash
    521      1.1       jtc  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    522      1.1       jtc  * be a very large table).
    523      1.1       jtc  */
    524      1.1       jtc 
    525      1.1       jtc /*
    526      1.1       jtc  * name_start()
    527      1.1       jtc  *	create the interactive rename table
    528      1.1       jtc  * Return:
    529      1.1       jtc  *	0 if successful, -1 otherwise
    530      1.1       jtc  */
    531      1.1       jtc 
    532      1.1       jtc #if __STDC__
    533      1.1       jtc int
    534      1.1       jtc name_start(void)
    535      1.1       jtc #else
    536      1.1       jtc int
    537      1.1       jtc name_start()
    538      1.1       jtc #endif
    539      1.1       jtc {
    540      1.1       jtc 	if (ntab != NULL)
    541      1.1       jtc 		return(0);
    542      1.1       jtc  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    543      1.7  christos                 tty_warn(1,
    544      1.7  christos 		    "Cannot allocate memory for interactive rename table");
    545      1.1       jtc                 return(-1);
    546      1.1       jtc         }
    547      1.1       jtc 	return(0);
    548      1.1       jtc }
    549      1.1       jtc 
    550      1.1       jtc /*
    551      1.1       jtc  * add_name()
    552      1.1       jtc  *	add the new name to old name mapping just created by the user.
    553      1.1       jtc  *	If an old name mapping is found (there may be duplicate names on an
    554      1.1       jtc  *	archive) only the most recent is kept.
    555      1.1       jtc  * Return:
    556      1.1       jtc  *	0 if added, -1 otherwise
    557      1.1       jtc  */
    558      1.1       jtc 
    559      1.1       jtc #if __STDC__
    560      1.1       jtc int
    561      1.5       tls add_name(char *oname, int onamelen, char *nname)
    562      1.1       jtc #else
    563      1.1       jtc int
    564      1.1       jtc add_name(oname, onamelen, nname)
    565      1.5       tls 	char *oname;
    566      1.1       jtc 	int onamelen;
    567      1.1       jtc 	char *nname;
    568      1.1       jtc #endif
    569      1.1       jtc {
    570      1.5       tls 	NAMT *pt;
    571      1.5       tls 	u_int indx;
    572      1.1       jtc 
    573      1.1       jtc 	if (ntab == NULL) {
    574      1.1       jtc 		/*
    575      1.1       jtc 		 * should never happen
    576      1.1       jtc 		 */
    577      1.7  christos 		tty_warn(0, "No interactive rename table, links may fail\n");
    578      1.1       jtc 		return(0);
    579      1.1       jtc 	}
    580      1.1       jtc 
    581      1.1       jtc 	/*
    582      1.1       jtc 	 * look to see if we have already mapped this file, if so we
    583      1.1       jtc 	 * will update it
    584      1.1       jtc 	 */
    585      1.1       jtc 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    586      1.1       jtc 	if ((pt = ntab[indx]) != NULL) {
    587      1.1       jtc 		/*
    588      1.1       jtc 		 * look down the has chain for the file
    589      1.1       jtc 		 */
    590      1.1       jtc 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    591      1.1       jtc 			pt = pt->fow;
    592      1.1       jtc 
    593      1.1       jtc 		if (pt != NULL) {
    594      1.1       jtc 			/*
    595      1.1       jtc 			 * found an old mapping, replace it with the new one
    596      1.1       jtc 			 * the user just input (if it is different)
    597      1.1       jtc 			 */
    598      1.1       jtc 			if (strcmp(nname, pt->nname) == 0)
    599      1.1       jtc 				return(0);
    600      1.1       jtc 
    601      1.1       jtc 			(void)free((char *)pt->nname);
    602      1.1       jtc 			if ((pt->nname = strdup(nname)) == NULL) {
    603      1.7  christos 				tty_warn(1, "Cannot update rename table");
    604      1.1       jtc 				return(-1);
    605      1.1       jtc 			}
    606      1.1       jtc 			return(0);
    607      1.1       jtc 		}
    608      1.1       jtc 	}
    609      1.1       jtc 
    610      1.1       jtc 	/*
    611      1.1       jtc 	 * this is a new mapping, add it to the table
    612      1.1       jtc 	 */
    613      1.1       jtc 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    614      1.1       jtc 		if ((pt->oname = strdup(oname)) != NULL) {
    615      1.1       jtc 			if ((pt->nname = strdup(nname)) != NULL) {
    616      1.1       jtc 				pt->fow = ntab[indx];
    617      1.1       jtc 				ntab[indx] = pt;
    618      1.1       jtc 				return(0);
    619      1.1       jtc 			}
    620      1.1       jtc 			(void)free((char *)pt->oname);
    621      1.1       jtc 		}
    622      1.1       jtc 		(void)free((char *)pt);
    623      1.1       jtc 	}
    624      1.7  christos 	tty_warn(1, "Interactive rename table out of memory");
    625      1.1       jtc 	return(-1);
    626      1.1       jtc }
    627      1.1       jtc 
    628      1.1       jtc /*
    629      1.1       jtc  * sub_name()
    630      1.1       jtc  *	look up a link name to see if it points at a file that has been
    631      1.1       jtc  *	remapped by the user. If found, the link is adjusted to contain the
    632      1.1       jtc  *	new name (oname is the link to name)
    633      1.1       jtc  */
    634      1.1       jtc 
    635      1.1       jtc #if __STDC__
    636      1.1       jtc void
    637      1.5       tls sub_name(char *oname, int *onamelen)
    638      1.1       jtc #else
    639      1.1       jtc void
    640      1.1       jtc sub_name(oname, onamelen)
    641      1.5       tls 	char *oname;
    642      1.1       jtc 	int *onamelen;
    643      1.1       jtc #endif
    644      1.1       jtc {
    645      1.5       tls 	NAMT *pt;
    646      1.5       tls 	u_int indx;
    647      1.1       jtc 
    648      1.1       jtc 	if (ntab == NULL)
    649      1.1       jtc 		return;
    650      1.1       jtc 	/*
    651      1.1       jtc 	 * look the name up in the hash table
    652      1.1       jtc 	 */
    653      1.1       jtc 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    654      1.1       jtc 	if ((pt = ntab[indx]) == NULL)
    655      1.1       jtc 		return;
    656      1.1       jtc 
    657      1.1       jtc 	while (pt != NULL) {
    658      1.1       jtc 		/*
    659      1.1       jtc 		 * walk down the hash cahin looking for a match
    660      1.1       jtc 		 */
    661      1.1       jtc 		if (strcmp(oname, pt->oname) == 0) {
    662      1.1       jtc 			/*
    663      1.1       jtc 			 * found it, replace it with the new name
    664      1.1       jtc 			 * and return (we know that oname has enough space)
    665      1.1       jtc 			 */
    666      1.1       jtc 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    667      1.1       jtc 			return;
    668      1.1       jtc 		}
    669      1.1       jtc 		pt = pt->fow;
    670      1.1       jtc 	}
    671      1.1       jtc 
    672      1.1       jtc 	/*
    673      1.1       jtc 	 * no match, just return
    674      1.1       jtc 	 */
    675      1.1       jtc 	return;
    676      1.1       jtc }
    677      1.1       jtc 
    678      1.1       jtc /*
    679      1.1       jtc  * device/inode mapping table routines
    680      1.1       jtc  * (used with formats that store device and inodes fields)
    681      1.1       jtc  *
    682      1.1       jtc  * device/inode mapping tables remap the device field in a archive header. The
    683      1.1       jtc  * device/inode fields are used to determine when files are hard links to each
    684      1.1       jtc  * other. However these values have very little meaning outside of that. This
    685      1.1       jtc  * database is used to solve one of two different problems.
    686      1.1       jtc  *
    687      1.1       jtc  * 1) when files are appended to an archive, while the new files may have hard
    688      1.1       jtc  * links to each other, you cannot determine if they have hard links to any
    689      1.1       jtc  * file already stored on the archive from a prior run of pax. We must assume
    690      1.1       jtc  * that these inode/device pairs are unique only within a SINGLE run of pax
    691      1.1       jtc  * (which adds a set of files to an archive). So we have to make sure the
    692      1.1       jtc  * inode/dev pairs we add each time are always unique. We do this by observing
    693      1.1       jtc  * while the inode field is very dense, the use of the dev field is fairly
    694      1.1       jtc  * sparse. Within each run of pax, we remap any device number of a new archive
    695      1.1       jtc  * member that has a device number used in a prior run and already stored in a
    696      1.1       jtc  * file on the archive. During the read phase of the append, we store the
    697      1.1       jtc  * device numbers used and mark them to not be used by any file during the
    698      1.1       jtc  * write phase. If during write we go to use one of those old device numbers,
    699      1.1       jtc  * we remap it to a new value.
    700      1.1       jtc  *
    701      1.1       jtc  * 2) Often the fields in the archive header used to store these values are
    702      1.1       jtc  * too small to store the entire value. The result is an inode or device value
    703      1.1       jtc  * which can be truncated. This really can foul up an archive. With truncation
    704      1.1       jtc  * we end up creating links between files that are really not links (after
    705      1.1       jtc  * truncation the inodes are the same value). We address that by detecting
    706      1.1       jtc  * truncation and forcing a remap of the device field to split truncated
    707      1.1       jtc  * inodes away from each other. Each truncation creates a pattern of bits that
    708      1.1       jtc  * are removed. We use this pattern of truncated bits to partition the inodes
    709      1.1       jtc  * on a single device to many different devices (each one represented by the
    710      1.1       jtc  * truncated bit pattern). All inodes on the same device that have the same
    711      1.1       jtc  * truncation pattern are mapped to the same new device. Two inodes that
    712      1.1       jtc  * truncate to the same value clearly will always have different truncation
    713      1.1       jtc  * bit patterns, so they will be split from away each other. When we spot
    714      1.1       jtc  * device truncation we remap the device number to a non truncated value.
    715      1.1       jtc  * (for more info see table.h for the data structures involved).
    716      1.1       jtc  */
    717      1.1       jtc 
    718      1.1       jtc /*
    719      1.1       jtc  * dev_start()
    720      1.1       jtc  *	create the device mapping table
    721      1.1       jtc  * Return:
    722      1.1       jtc  *	0 if successful, -1 otherwise
    723      1.1       jtc  */
    724      1.1       jtc 
    725      1.1       jtc #if __STDC__
    726      1.1       jtc int
    727      1.1       jtc dev_start(void)
    728      1.1       jtc #else
    729      1.1       jtc int
    730      1.1       jtc dev_start()
    731      1.1       jtc #endif
    732      1.1       jtc {
    733      1.1       jtc 	if (dtab != NULL)
    734      1.1       jtc 		return(0);
    735      1.1       jtc  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    736      1.7  christos                 tty_warn(1, "Cannot allocate memory for device mapping table");
    737      1.1       jtc                 return(-1);
    738      1.1       jtc         }
    739      1.1       jtc 	return(0);
    740      1.1       jtc }
    741      1.1       jtc 
    742      1.1       jtc /*
    743      1.1       jtc  * add_dev()
    744      1.1       jtc  *	add a device number to the table. this will force the device to be
    745      1.1       jtc  *	remapped to a new value if it be used during a write phase. This
    746      1.1       jtc  *	function is called during the read phase of an append to prohibit the
    747      1.1       jtc  *	use of any device number already in the archive.
    748      1.1       jtc  * Return:
    749      1.1       jtc  *	0 if added ok, -1 otherwise
    750      1.1       jtc  */
    751      1.1       jtc 
    752      1.1       jtc #if __STDC__
    753      1.1       jtc int
    754      1.5       tls add_dev(ARCHD *arcn)
    755      1.1       jtc #else
    756      1.1       jtc int
    757      1.1       jtc add_dev(arcn)
    758      1.5       tls 	ARCHD *arcn;
    759      1.1       jtc #endif
    760      1.1       jtc {
    761      1.1       jtc 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    762      1.1       jtc 		return(-1);
    763      1.1       jtc 	return(0);
    764      1.1       jtc }
    765      1.1       jtc 
    766      1.1       jtc /*
    767      1.1       jtc  * chk_dev()
    768      1.1       jtc  *	check for a device value in the device table. If not found and the add
    769      1.1       jtc  *	flag is set, it is added. This does NOT assign any mapping values, just
    770      1.1       jtc  *	adds the device number as one that need to be remapped. If this device
    771      1.1       jtc  *	is alread mapped, just return with a pointer to that entry.
    772      1.1       jtc  * Return:
    773      1.1       jtc  *	pointer to the entry for this device in the device map table. Null
    774      1.1       jtc  *	if the add flag is not set and the device is not in the table (it is
    775      1.1       jtc  *	not been seen yet). If add is set and the device cannot be added, null
    776      1.1       jtc  *	is returned (indicates an error).
    777      1.1       jtc  */
    778      1.1       jtc 
    779      1.1       jtc #if __STDC__
    780      1.1       jtc static DEVT *
    781      1.1       jtc chk_dev(dev_t dev, int add)
    782      1.1       jtc #else
    783      1.1       jtc static DEVT *
    784      1.1       jtc chk_dev(dev, add)
    785      1.1       jtc 	dev_t dev;
    786      1.1       jtc 	int add;
    787      1.1       jtc #endif
    788      1.1       jtc {
    789      1.5       tls 	DEVT *pt;
    790      1.5       tls 	u_int indx;
    791      1.1       jtc 
    792      1.1       jtc 	if (dtab == NULL)
    793      1.1       jtc 		return(NULL);
    794      1.1       jtc 	/*
    795      1.1       jtc 	 * look to see if this device is already in the table
    796      1.1       jtc 	 */
    797      1.1       jtc 	indx = ((unsigned)dev) % D_TAB_SZ;
    798      1.1       jtc 	if ((pt = dtab[indx]) != NULL) {
    799      1.1       jtc 		while ((pt != NULL) && (pt->dev != dev))
    800      1.1       jtc 			pt = pt->fow;
    801      1.1       jtc 
    802      1.1       jtc 		/*
    803      1.1       jtc 		 * found it, return a pointer to it
    804      1.1       jtc 		 */
    805      1.1       jtc 		if (pt != NULL)
    806      1.1       jtc 			return(pt);
    807      1.1       jtc 	}
    808      1.1       jtc 
    809      1.1       jtc 	/*
    810      1.1       jtc 	 * not in table, we add it only if told to as this may just be a check
    811      1.1       jtc 	 * to see if a device number is being used.
    812      1.1       jtc 	 */
    813      1.1       jtc 	if (add == 0)
    814      1.1       jtc 		return(NULL);
    815      1.1       jtc 
    816      1.1       jtc 	/*
    817      1.1       jtc 	 * allocate a node for this device and add it to the front of the hash
    818      1.1       jtc 	 * chain. Note we do not assign remaps values here, so the pt->list
    819      1.1       jtc 	 * list must be NULL.
    820      1.1       jtc 	 */
    821      1.1       jtc 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    822      1.7  christos 		tty_warn(1, "Device map table out of memory");
    823      1.1       jtc 		return(NULL);
    824      1.1       jtc 	}
    825      1.1       jtc 	pt->dev = dev;
    826      1.1       jtc 	pt->list = NULL;
    827      1.1       jtc 	pt->fow = dtab[indx];
    828      1.1       jtc 	dtab[indx] = pt;
    829      1.1       jtc 	return(pt);
    830      1.1       jtc }
    831      1.1       jtc /*
    832      1.1       jtc  * map_dev()
    833      1.1       jtc  *	given an inode and device storage mask (the mask has a 1 for each bit
    834      1.1       jtc  *	the archive format is able to store in a header), we check for inode
    835      1.1       jtc  *	and device truncation and remap the device as required. Device mapping
    836      1.1       jtc  *	can also occur when during the read phase of append a device number was
    837      1.1       jtc  *	seen (and was marked as do not use during the write phase). WE ASSUME
    838      1.1       jtc  *	that unsigned longs are the same size or bigger than the fields used
    839      1.1       jtc  *	for ino_t and dev_t. If not the types will have to be changed.
    840      1.1       jtc  * Return:
    841      1.1       jtc  *	0 if all ok, -1 otherwise.
    842      1.1       jtc  */
    843      1.1       jtc 
    844      1.1       jtc #if __STDC__
    845      1.1       jtc int
    846      1.5       tls map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    847      1.1       jtc #else
    848      1.1       jtc int
    849      1.1       jtc map_dev(arcn, dev_mask, ino_mask)
    850      1.5       tls 	ARCHD *arcn;
    851      1.1       jtc 	u_long dev_mask;
    852      1.1       jtc 	u_long ino_mask;
    853      1.1       jtc #endif
    854      1.1       jtc {
    855      1.5       tls 	DEVT *pt;
    856      1.5       tls 	DLIST *dpt;
    857      1.1       jtc 	static dev_t lastdev = 0;	/* next device number to try */
    858      1.1       jtc 	int trc_ino = 0;
    859      1.1       jtc 	int trc_dev = 0;
    860      1.1       jtc 	ino_t trunc_bits = 0;
    861      1.1       jtc 	ino_t nino;
    862      1.1       jtc 
    863      1.1       jtc 	if (dtab == NULL)
    864      1.1       jtc 		return(0);
    865      1.1       jtc 	/*
    866      1.1       jtc 	 * check for device and inode truncation, and extract the truncated
    867      1.1       jtc 	 * bit pattern.
    868      1.1       jtc 	 */
    869      1.1       jtc 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    870      1.1       jtc 		++trc_dev;
    871      1.1       jtc 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    872      1.1       jtc 		++trc_ino;
    873      1.1       jtc 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    874      1.1       jtc 	}
    875      1.1       jtc 
    876      1.1       jtc 	/*
    877      1.1       jtc 	 * see if this device is already being mapped, look up the device
    878      1.1       jtc 	 * then find the truncation bit pattern which applies
    879      1.1       jtc 	 */
    880      1.1       jtc 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    881      1.1       jtc 		/*
    882      1.1       jtc 		 * this device is already marked to be remapped
    883      1.1       jtc 		 */
    884      1.1       jtc 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    885      1.1       jtc 			if (dpt->trunc_bits == trunc_bits)
    886      1.1       jtc 				break;
    887      1.1       jtc 
    888      1.1       jtc 		if (dpt != NULL) {
    889      1.1       jtc 			/*
    890      1.1       jtc 			 * we are being remapped for this device and pattern
    891      1.1       jtc 			 * change the device number to be stored and return
    892      1.1       jtc 			 */
    893      1.1       jtc 			arcn->sb.st_dev = dpt->dev;
    894      1.1       jtc 			arcn->sb.st_ino = nino;
    895      1.1       jtc 			return(0);
    896      1.1       jtc 		}
    897      1.1       jtc 	} else {
    898      1.1       jtc 		/*
    899      1.1       jtc 		 * this device is not being remapped YET. if we do not have any
    900      1.1       jtc 		 * form of truncation, we do not need a remap
    901      1.1       jtc 		 */
    902      1.1       jtc 		if (!trc_ino && !trc_dev)
    903      1.1       jtc 			return(0);
    904      1.1       jtc 
    905      1.1       jtc 		/*
    906      1.1       jtc 		 * we have truncation, have to add this as a device to remap
    907      1.1       jtc 		 */
    908      1.1       jtc 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    909      1.1       jtc 			goto bad;
    910      1.1       jtc 
    911      1.1       jtc 		/*
    912      1.1       jtc 		 * if we just have a truncated inode, we have to make sure that
    913      1.1       jtc 		 * all future inodes that do not truncate (they have the
    914      1.1       jtc 		 * truncation pattern of all 0's) continue to map to the same
    915      1.1       jtc 		 * device number. We probably have already written inodes with
    916      1.1       jtc 		 * this device number to the archive with the truncation
    917      1.1       jtc 		 * pattern of all 0's. So we add the mapping for all 0's to the
    918      1.1       jtc 		 * same device number.
    919      1.1       jtc 		 */
    920      1.1       jtc 		if (!trc_dev && (trunc_bits != 0)) {
    921      1.1       jtc 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    922      1.1       jtc 				goto bad;
    923      1.1       jtc 			dpt->trunc_bits = 0;
    924      1.1       jtc 			dpt->dev = arcn->sb.st_dev;
    925      1.1       jtc 			dpt->fow = pt->list;
    926      1.1       jtc 			pt->list = dpt;
    927      1.1       jtc 		}
    928      1.1       jtc 	}
    929      1.1       jtc 
    930      1.1       jtc 	/*
    931      1.1       jtc 	 * look for a device number not being used. We must watch for wrap
    932      1.1       jtc 	 * around on lastdev (so we do not get stuck looking forever!)
    933      1.1       jtc 	 */
    934      1.1       jtc 	while (++lastdev > 0) {
    935      1.1       jtc 		if (chk_dev(lastdev, 0) != NULL)
    936      1.1       jtc 			continue;
    937      1.1       jtc 		/*
    938      1.1       jtc 		 * found an unused value. If we have reached truncation point
    939      1.1       jtc 		 * for this format we are hosed, so we give up. Otherwise we
    940      1.1       jtc 		 * mark it as being used.
    941      1.1       jtc 		 */
    942      1.1       jtc 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    943      1.1       jtc 		    (chk_dev(lastdev, 1) == NULL))
    944      1.1       jtc 			goto bad;
    945      1.1       jtc 		break;
    946      1.1       jtc 	}
    947      1.1       jtc 
    948      1.1       jtc 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    949      1.1       jtc 		goto bad;
    950      1.1       jtc 
    951      1.1       jtc 	/*
    952      1.1       jtc 	 * got a new device number, store it under this truncation pattern.
    953      1.1       jtc 	 * change the device number this file is being stored with.
    954      1.1       jtc 	 */
    955      1.1       jtc 	dpt->trunc_bits = trunc_bits;
    956      1.1       jtc 	dpt->dev = lastdev;
    957      1.1       jtc 	dpt->fow = pt->list;
    958      1.1       jtc 	pt->list = dpt;
    959      1.1       jtc 	arcn->sb.st_dev = lastdev;
    960      1.1       jtc 	arcn->sb.st_ino = nino;
    961      1.1       jtc 	return(0);
    962      1.1       jtc 
    963      1.1       jtc     bad:
    964      1.7  christos 	tty_warn(1,
    965      1.7  christos 	    "Unable to fix truncated inode/device field when storing %s",
    966      1.1       jtc 	    arcn->name);
    967      1.7  christos 	tty_warn(0, "Archive may create improper hard links when extracted");
    968      1.1       jtc 	return(0);
    969      1.1       jtc }
    970      1.1       jtc 
    971      1.1       jtc /*
    972      1.1       jtc  * directory access/mod time reset table routines (for directories READ by pax)
    973      1.1       jtc  *
    974      1.1       jtc  * The pax -t flag requires that access times of archive files to be the same
    975      1.1       jtc  * before being read by pax. For regular files, access time is restored after
    976      1.1       jtc  * the file has been copied. This database provides the same functionality for
    977      1.1       jtc  * directories read during file tree traversal. Restoring directory access time
    978      1.1       jtc  * is more complex than files since directories may be read several times until
    979      1.1       jtc  * all the descendants in their subtree are visited by fts. Directory access
    980      1.1       jtc  * and modification times are stored during the fts pre-order visit (done
    981      1.1       jtc  * before any descendants in the subtree is visited) and restored after the
    982      1.1       jtc  * fts post-order visit (after all the descendants have been visited). In the
    983      1.1       jtc  * case of premature exit from a subtree (like from the effects of -n), any
    984      1.1       jtc  * directory entries left in this database are reset during final cleanup
    985      1.1       jtc  * operations of pax. Entries are hashed by inode number for fast lookup.
    986      1.1       jtc  */
    987      1.1       jtc 
    988      1.1       jtc /*
    989      1.1       jtc  * atdir_start()
    990      1.1       jtc  *	create the directory access time database for directories READ by pax.
    991      1.1       jtc  * Return:
    992      1.1       jtc  *	0 is created ok, -1 otherwise.
    993      1.1       jtc  */
    994      1.1       jtc 
    995      1.1       jtc #if __STDC__
    996      1.1       jtc int
    997      1.1       jtc atdir_start(void)
    998      1.1       jtc #else
    999      1.1       jtc int
   1000      1.1       jtc atdir_start()
   1001      1.1       jtc #endif
   1002      1.1       jtc {
   1003      1.1       jtc 	if (atab != NULL)
   1004      1.1       jtc 		return(0);
   1005      1.1       jtc  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1006      1.7  christos                 tty_warn(1,
   1007      1.7  christos 		    "Cannot allocate space for directory access time table");
   1008      1.1       jtc                 return(-1);
   1009      1.1       jtc         }
   1010      1.1       jtc 	return(0);
   1011      1.1       jtc }
   1012      1.1       jtc 
   1013      1.1       jtc 
   1014      1.1       jtc /*
   1015      1.1       jtc  * atdir_end()
   1016      1.1       jtc  *	walk through the directory access time table and reset the access time
   1017      1.1       jtc  *	of any directory who still has an entry left in the database. These
   1018      1.1       jtc  *	entries are for directories READ by pax
   1019      1.1       jtc  */
   1020      1.1       jtc 
   1021      1.1       jtc #if __STDC__
   1022      1.1       jtc void
   1023      1.1       jtc atdir_end(void)
   1024      1.1       jtc #else
   1025      1.1       jtc void
   1026      1.1       jtc atdir_end()
   1027      1.1       jtc #endif
   1028      1.1       jtc {
   1029      1.5       tls 	ATDIR *pt;
   1030      1.5       tls 	int i;
   1031      1.1       jtc 
   1032      1.1       jtc 	if (atab == NULL)
   1033      1.1       jtc 		return;
   1034      1.1       jtc 	/*
   1035      1.1       jtc 	 * for each non-empty hash table entry reset all the directories
   1036      1.1       jtc 	 * chained there.
   1037      1.1       jtc 	 */
   1038      1.1       jtc 	for (i = 0; i < A_TAB_SZ; ++i) {
   1039      1.1       jtc 		if ((pt = atab[i]) == NULL)
   1040      1.1       jtc 			continue;
   1041      1.1       jtc 		/*
   1042      1.1       jtc 		 * remember to force the times, set_ftime() looks at pmtime
   1043      1.1       jtc 		 * and patime, which only applies to things CREATED by pax,
   1044      1.1       jtc 		 * not read by pax. Read time reset is controlled by -t.
   1045      1.1       jtc 		 */
   1046      1.1       jtc 		for (; pt != NULL; pt = pt->fow)
   1047      1.1       jtc 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1048      1.1       jtc 	}
   1049      1.1       jtc }
   1050      1.1       jtc 
   1051      1.1       jtc /*
   1052      1.1       jtc  * add_atdir()
   1053      1.1       jtc  *	add a directory to the directory access time table. Table is hashed
   1054      1.1       jtc  *	and chained by inode number. This is for directories READ by pax
   1055      1.1       jtc  */
   1056      1.1       jtc 
   1057      1.1       jtc #if __STDC__
   1058      1.1       jtc void
   1059      1.1       jtc add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1060      1.1       jtc #else
   1061      1.1       jtc void
   1062      1.1       jtc add_atdir(fname, dev, ino, mtime, atime)
   1063      1.1       jtc 	char *fname;
   1064      1.1       jtc 	dev_t dev;
   1065      1.1       jtc 	ino_t ino;
   1066      1.1       jtc 	time_t mtime;
   1067      1.1       jtc 	time_t atime;
   1068      1.1       jtc #endif
   1069      1.1       jtc {
   1070      1.5       tls 	ATDIR *pt;
   1071      1.5       tls 	u_int indx;
   1072      1.1       jtc 
   1073      1.1       jtc 	if (atab == NULL)
   1074      1.1       jtc 		return;
   1075      1.1       jtc 
   1076      1.1       jtc 	/*
   1077      1.1       jtc 	 * make sure this directory is not already in the table, if so just
   1078      1.1       jtc 	 * return (the older entry always has the correct time). The only
   1079      1.1       jtc 	 * way this will happen is when the same subtree can be traversed by
   1080      1.1       jtc 	 * different args to pax and the -n option is aborting fts out of a
   1081      1.1       jtc 	 * subtree before all the post-order visits have been made).
   1082      1.1       jtc 	 */
   1083      1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1084      1.1       jtc 	if ((pt = atab[indx]) != NULL) {
   1085      1.1       jtc 		while (pt != NULL) {
   1086      1.1       jtc 			if ((pt->ino == ino) && (pt->dev == dev))
   1087      1.1       jtc 				break;
   1088      1.1       jtc 			pt = pt->fow;
   1089      1.1       jtc 		}
   1090      1.1       jtc 
   1091      1.1       jtc 		/*
   1092      1.1       jtc 		 * oops, already there. Leave it alone.
   1093      1.1       jtc 		 */
   1094      1.1       jtc 		if (pt != NULL)
   1095      1.1       jtc 			return;
   1096      1.1       jtc 	}
   1097      1.1       jtc 
   1098      1.1       jtc 	/*
   1099      1.1       jtc 	 * add it to the front of the hash chain
   1100      1.1       jtc 	 */
   1101      1.1       jtc 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1102      1.1       jtc 		if ((pt->name = strdup(fname)) != NULL) {
   1103      1.1       jtc 			pt->dev = dev;
   1104      1.1       jtc 			pt->ino = ino;
   1105      1.1       jtc 			pt->mtime = mtime;
   1106      1.1       jtc 			pt->atime = atime;
   1107      1.1       jtc 			pt->fow = atab[indx];
   1108      1.1       jtc 			atab[indx] = pt;
   1109      1.1       jtc 			return;
   1110      1.1       jtc 		}
   1111      1.1       jtc 		(void)free((char *)pt);
   1112      1.1       jtc 	}
   1113      1.1       jtc 
   1114      1.7  christos 	tty_warn(1, "Directory access time reset table ran out of memory");
   1115      1.1       jtc 	return;
   1116      1.1       jtc }
   1117      1.1       jtc 
   1118      1.1       jtc /*
   1119      1.1       jtc  * get_atdir()
   1120      1.1       jtc  *	look up a directory by inode and device number to obtain the access
   1121      1.1       jtc  *	and modification time you want to set to. If found, the modification
   1122      1.1       jtc  *	and access time parameters are set and the entry is removed from the
   1123      1.1       jtc  *	table (as it is no longer needed). These are for directories READ by
   1124      1.1       jtc  *	pax
   1125      1.1       jtc  * Return:
   1126      1.1       jtc  *	0 if found, -1 if not found.
   1127      1.1       jtc  */
   1128      1.1       jtc 
   1129      1.1       jtc #if __STDC__
   1130      1.1       jtc int
   1131      1.1       jtc get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1132      1.1       jtc #else
   1133      1.1       jtc int
   1134      1.1       jtc get_atdir(dev, ino, mtime, atime)
   1135      1.1       jtc 	dev_t dev;
   1136      1.1       jtc 	ino_t ino;
   1137      1.1       jtc 	time_t *mtime;
   1138      1.1       jtc 	time_t *atime;
   1139      1.1       jtc #endif
   1140      1.1       jtc {
   1141      1.5       tls 	ATDIR *pt;
   1142      1.5       tls 	ATDIR **ppt;
   1143      1.5       tls 	u_int indx;
   1144      1.1       jtc 
   1145      1.1       jtc 	if (atab == NULL)
   1146      1.1       jtc 		return(-1);
   1147      1.1       jtc 	/*
   1148      1.1       jtc 	 * hash by inode and search the chain for an inode and device match
   1149      1.1       jtc 	 */
   1150      1.1       jtc 	indx = ((unsigned)ino) % A_TAB_SZ;
   1151      1.1       jtc 	if ((pt = atab[indx]) == NULL)
   1152      1.1       jtc 		return(-1);
   1153      1.1       jtc 
   1154      1.1       jtc 	ppt = &(atab[indx]);
   1155      1.1       jtc 	while (pt != NULL) {
   1156      1.1       jtc 		if ((pt->ino == ino) && (pt->dev == dev))
   1157      1.1       jtc 			break;
   1158      1.1       jtc 		/*
   1159      1.1       jtc 		 * no match, go to next one
   1160      1.1       jtc 		 */
   1161      1.1       jtc 		ppt = &(pt->fow);
   1162      1.1       jtc 		pt = pt->fow;
   1163      1.1       jtc 	}
   1164      1.1       jtc 
   1165      1.1       jtc 	/*
   1166      1.1       jtc 	 * return if we did not find it.
   1167      1.1       jtc 	 */
   1168      1.1       jtc 	if (pt == NULL)
   1169      1.1       jtc 		return(-1);
   1170      1.1       jtc 
   1171      1.1       jtc 	/*
   1172      1.1       jtc 	 * found it. return the times and remove the entry from the table.
   1173      1.1       jtc 	 */
   1174      1.1       jtc 	*ppt = pt->fow;
   1175      1.1       jtc 	*mtime = pt->mtime;
   1176      1.1       jtc 	*atime = pt->atime;
   1177      1.1       jtc 	(void)free((char *)pt->name);
   1178      1.1       jtc 	(void)free((char *)pt);
   1179      1.1       jtc 	return(0);
   1180      1.1       jtc }
   1181      1.1       jtc 
   1182      1.1       jtc /*
   1183      1.1       jtc  * directory access mode and time storage routines (for directories CREATED
   1184      1.1       jtc  * by pax).
   1185      1.1       jtc  *
   1186      1.1       jtc  * Pax requires that extracted directories, by default, have their access/mod
   1187      1.1       jtc  * times and permissions set to the values specified in the archive. During the
   1188      1.1       jtc  * actions of extracting (and creating the destination subtree during -rw copy)
   1189      1.1       jtc  * directories extracted may be modified after being created. Even worse is
   1190      1.1       jtc  * that these directories may have been created with file permissions which
   1191      1.1       jtc  * prohibits any descendants of these directories from being extracted. When
   1192      1.1       jtc  * directories are created by pax, access rights may be added to permit the
   1193      1.1       jtc  * creation of files in their subtree. Every time pax creates a directory, the
   1194      1.1       jtc  * times and file permissions specified by the archive are stored. After all
   1195      1.1       jtc  * files have been extracted (or copied), these directories have their times
   1196      1.1       jtc  * and file modes reset to the stored values. The directory info is restored in
   1197      1.1       jtc  * reverse order as entries were added to the data file from root to leaf. To
   1198      1.1       jtc  * restore atime properly, we must go backwards. The data file consists of
   1199      1.1       jtc  * records with two parts, the file name followed by a DIRDATA trailer. The
   1200      1.1       jtc  * fixed sized trailer contains the size of the name plus the off_t location in
   1201      1.1       jtc  * the file. To restore we work backwards through the file reading the trailer
   1202      1.1       jtc  * then the file name.
   1203      1.1       jtc  */
   1204      1.1       jtc 
   1205      1.1       jtc /*
   1206      1.1       jtc  * dir_start()
   1207      1.1       jtc  *	set up the directory time and file mode storage for directories CREATED
   1208      1.1       jtc  *	by pax.
   1209      1.1       jtc  * Return:
   1210      1.1       jtc  *	0 if ok, -1 otherwise
   1211      1.1       jtc  */
   1212      1.1       jtc 
   1213      1.1       jtc #if __STDC__
   1214      1.1       jtc int
   1215      1.1       jtc dir_start(void)
   1216      1.1       jtc #else
   1217      1.1       jtc int
   1218      1.1       jtc dir_start()
   1219      1.1       jtc #endif
   1220      1.1       jtc {
   1221      1.9    kleink 	const char *tmpdir;
   1222      1.9    kleink 	char template[MAXPATHLEN];
   1223      1.1       jtc 
   1224      1.1       jtc 	if (dirfd != -1)
   1225      1.1       jtc 		return(0);
   1226      1.1       jtc 
   1227      1.1       jtc 	/*
   1228      1.1       jtc 	 * unlink the file so it goes away at termination by itself
   1229      1.1       jtc 	 */
   1230      1.9    kleink 	if ((tmpdir = getenv("TMPDIR")) == NULL)
   1231      1.9    kleink 		tmpdir = _PATH_TMP;
   1232      1.9    kleink 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
   1233      1.9    kleink 	if ((dirfd = mkstemp(template)) >= 0) {
   1234      1.9    kleink 		(void)unlink(template);
   1235      1.1       jtc 		return(0);
   1236      1.1       jtc 	}
   1237      1.7  christos 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1238      1.9    kleink 	    template);
   1239      1.1       jtc 	return(-1);
   1240      1.1       jtc }
   1241      1.1       jtc 
   1242      1.1       jtc /*
   1243      1.1       jtc  * add_dir()
   1244      1.1       jtc  *	add the mode and times for a newly CREATED directory
   1245      1.1       jtc  *	name is name of the directory, psb the stat buffer with the data in it,
   1246      1.1       jtc  *	frc_mode is a flag that says whether to force the setting of the mode
   1247      1.1       jtc  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1248      1.1       jtc  *	for the case where we created a file and found that the resulting
   1249      1.1       jtc  *	directory was not writeable and the user asked for file modes to NOT
   1250      1.1       jtc  *	be preserved. (we have to preserve what was created by default, so we
   1251      1.1       jtc  *	have to force the setting at the end. this is stated explicitly in the
   1252      1.1       jtc  *	pax spec)
   1253      1.1       jtc  */
   1254      1.1       jtc 
   1255      1.1       jtc #if __STDC__
   1256      1.1       jtc void
   1257      1.1       jtc add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1258      1.1       jtc #else
   1259      1.1       jtc void
   1260      1.1       jtc add_dir(name, nlen, psb, frc_mode)
   1261      1.1       jtc 	char *name;
   1262      1.1       jtc 	int nlen;
   1263      1.1       jtc 	struct stat *psb;
   1264      1.1       jtc 	int frc_mode;
   1265      1.1       jtc #endif
   1266      1.1       jtc {
   1267      1.1       jtc 	DIRDATA dblk;
   1268      1.1       jtc 
   1269      1.1       jtc 	if (dirfd < 0)
   1270      1.1       jtc 		return;
   1271      1.1       jtc 
   1272      1.1       jtc 	/*
   1273      1.1       jtc 	 * get current position (where file name will start) so we can store it
   1274      1.1       jtc 	 * in the trailer
   1275      1.1       jtc 	 */
   1276      1.1       jtc 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1277      1.7  christos 		tty_warn(1,
   1278      1.7  christos 		    "Unable to store mode and times for directory: %s",name);
   1279      1.1       jtc 		return;
   1280      1.1       jtc 	}
   1281      1.1       jtc 
   1282      1.1       jtc 	/*
   1283      1.1       jtc 	 * write the file name followed by the trailer
   1284      1.1       jtc 	 */
   1285      1.1       jtc 	dblk.nlen = nlen + 1;
   1286      1.1       jtc 	dblk.mode = psb->st_mode & 0xffff;
   1287      1.1       jtc 	dblk.mtime = psb->st_mtime;
   1288      1.1       jtc 	dblk.atime = psb->st_atime;
   1289  1.9.2.1  wrstuden 	dblk.fflags = psb->st_flags;
   1290      1.1       jtc 	dblk.frc_mode = frc_mode;
   1291      1.1       jtc 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1292      1.1       jtc 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1293      1.1       jtc 		++dircnt;
   1294      1.1       jtc 		return;
   1295      1.1       jtc 	}
   1296      1.1       jtc 
   1297      1.7  christos 	tty_warn(1,
   1298      1.7  christos 	    "Unable to store mode and times for created directory: %s",name);
   1299      1.1       jtc 	return;
   1300      1.1       jtc }
   1301      1.1       jtc 
   1302      1.1       jtc /*
   1303      1.1       jtc  * proc_dir()
   1304      1.1       jtc  *	process all file modes and times stored for directories CREATED
   1305      1.1       jtc  *	by pax
   1306      1.1       jtc  */
   1307      1.1       jtc 
   1308      1.1       jtc #if __STDC__
   1309      1.1       jtc void
   1310      1.1       jtc proc_dir(void)
   1311      1.1       jtc #else
   1312      1.1       jtc void
   1313      1.1       jtc proc_dir()
   1314      1.1       jtc #endif
   1315      1.1       jtc {
   1316      1.1       jtc 	char name[PAXPATHLEN+1];
   1317      1.1       jtc 	DIRDATA dblk;
   1318      1.1       jtc 	u_long cnt;
   1319      1.1       jtc 
   1320      1.1       jtc 	if (dirfd < 0)
   1321      1.1       jtc 		return;
   1322      1.1       jtc 	/*
   1323      1.1       jtc 	 * read backwards through the file and process each directory
   1324      1.1       jtc 	 */
   1325      1.1       jtc 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1326      1.1       jtc 		/*
   1327      1.1       jtc 		 * read the trailer, then the file name, if this fails
   1328      1.1       jtc 		 * just give up.
   1329      1.1       jtc 		 */
   1330      1.1       jtc 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1331      1.1       jtc 			break;
   1332      1.1       jtc 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1333      1.1       jtc 			break;
   1334      1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1335      1.1       jtc 			break;
   1336      1.1       jtc 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
   1337      1.1       jtc 			break;
   1338      1.1       jtc 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1339      1.1       jtc 			break;
   1340      1.1       jtc 
   1341      1.1       jtc 		/*
   1342      1.1       jtc 		 * frc_mode set, make sure we set the file modes even if
   1343      1.1       jtc 		 * the user didn't ask for it (see file_subs.c for more info)
   1344      1.1       jtc 		 */
   1345      1.1       jtc 		if (pmode || dblk.frc_mode)
   1346      1.1       jtc 			set_pmode(name, dblk.mode);
   1347      1.1       jtc 		if (patime || pmtime)
   1348      1.1       jtc 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1349  1.9.2.1  wrstuden 		if (pfflags)
   1350  1.9.2.1  wrstuden 			set_chflags(name, dblk.fflags);
   1351      1.1       jtc 	}
   1352      1.1       jtc 
   1353      1.1       jtc 	(void)close(dirfd);
   1354      1.1       jtc 	dirfd = -1;
   1355      1.1       jtc 	if (cnt != dircnt)
   1356      1.7  christos 		tty_warn(1,
   1357      1.7  christos 		    "Unable to set mode and times for created directories");
   1358      1.1       jtc 	return;
   1359      1.1       jtc }
   1360      1.1       jtc 
   1361      1.1       jtc /*
   1362      1.1       jtc  * database independent routines
   1363      1.1       jtc  */
   1364      1.1       jtc 
   1365      1.1       jtc /*
   1366      1.1       jtc  * st_hash()
   1367      1.1       jtc  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1368      1.1       jtc  *	end of file, as this provides far better distribution than any other
   1369      1.1       jtc  *	part of the name. For performance reasons we only care about the last
   1370      1.1       jtc  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1371      1.1       jtc  *	name). Was tested on 500,000 name file tree traversal from the root
   1372      1.1       jtc  *	and gave almost a perfectly uniform distribution of keys when used with
   1373      1.1       jtc  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1374      1.1       jtc  *	chars at a time and pads with 0 for last addition.
   1375      1.1       jtc  * Return:
   1376      1.1       jtc  *	the hash value of the string MOD (%) the table size.
   1377      1.1       jtc  */
   1378      1.1       jtc 
   1379      1.1       jtc #if __STDC__
   1380      1.1       jtc u_int
   1381      1.1       jtc st_hash(char *name, int len, int tabsz)
   1382      1.1       jtc #else
   1383      1.1       jtc u_int
   1384      1.1       jtc st_hash(name, len, tabsz)
   1385      1.1       jtc 	char *name;
   1386      1.1       jtc 	int len;
   1387      1.1       jtc 	int tabsz;
   1388      1.1       jtc #endif
   1389      1.1       jtc {
   1390      1.5       tls 	char *pt;
   1391      1.5       tls 	char *dest;
   1392      1.5       tls 	char *end;
   1393      1.5       tls 	int i;
   1394      1.5       tls 	u_int key = 0;
   1395      1.5       tls 	int steps;
   1396      1.5       tls 	int res;
   1397      1.1       jtc 	u_int val;
   1398      1.1       jtc 
   1399      1.1       jtc 	/*
   1400      1.1       jtc 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1401      1.1       jtc 	 * time here (remember these are pathnames, the tail is what will
   1402      1.1       jtc 	 * spread out the keys)
   1403      1.1       jtc 	 */
   1404      1.1       jtc 	if (len > MAXKEYLEN) {
   1405      1.1       jtc                 pt = &(name[len - MAXKEYLEN]);
   1406      1.1       jtc 		len = MAXKEYLEN;
   1407      1.1       jtc 	} else
   1408      1.1       jtc 		pt = name;
   1409      1.1       jtc 
   1410      1.1       jtc 	/*
   1411      1.1       jtc 	 * calculate the number of u_int size steps in the string and if
   1412      1.1       jtc 	 * there is a runt to deal with
   1413      1.1       jtc 	 */
   1414      1.1       jtc 	steps = len/sizeof(u_int);
   1415      1.1       jtc 	res = len % sizeof(u_int);
   1416      1.1       jtc 
   1417      1.1       jtc 	/*
   1418      1.1       jtc 	 * add up the value of the string in unsigned integer sized pieces
   1419      1.1       jtc 	 * too bad we cannot have unsigned int aligned strings, then we
   1420      1.1       jtc 	 * could avoid the expensive copy.
   1421      1.1       jtc 	 */
   1422      1.1       jtc 	for (i = 0; i < steps; ++i) {
   1423      1.1       jtc 		end = pt + sizeof(u_int);
   1424      1.1       jtc 		dest = (char *)&val;
   1425      1.1       jtc 		while (pt < end)
   1426      1.1       jtc 			*dest++ = *pt++;
   1427      1.1       jtc 		key += val;
   1428      1.1       jtc 	}
   1429      1.1       jtc 
   1430      1.1       jtc 	/*
   1431      1.1       jtc 	 * add in the runt padded with zero to the right
   1432      1.1       jtc 	 */
   1433      1.1       jtc 	if (res) {
   1434      1.1       jtc 		val = 0;
   1435      1.1       jtc 		end = pt + res;
   1436      1.1       jtc 		dest = (char *)&val;
   1437      1.1       jtc 		while (pt < end)
   1438      1.1       jtc 			*dest++ = *pt++;
   1439      1.1       jtc 		key += val;
   1440      1.1       jtc 	}
   1441      1.1       jtc 
   1442      1.1       jtc 	/*
   1443      1.1       jtc 	 * return the result mod the table size
   1444      1.1       jtc 	 */
   1445      1.1       jtc 	return(key % tabsz);
   1446      1.1       jtc }
   1447