Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.1.1.1
      1 /*-
      2  * Copyright (c) 1992 Keith Muller.
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * Keith Muller of the University of California, San Diego.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the University of
     20  *	California, Berkeley and its contributors.
     21  * 4. Neither the name of the University nor the names of its contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  */
     37 
     38 #ifndef lint
     39 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     40 #endif /* not lint */
     41 
     42 #include <sys/types.h>
     43 #include <sys/time.h>
     44 #include <sys/stat.h>
     45 #include <sys/param.h>
     46 #include <sys/fcntl.h>
     47 #include <stdio.h>
     48 #include <ctype.h>
     49 #include <string.h>
     50 #include <unistd.h>
     51 #include <errno.h>
     52 #include <stdlib.h>
     53 #include "pax.h"
     54 #include "tables.h"
     55 #include "extern.h"
     56 
     57 /*
     58  * Routines for controlling the contents of all the different databases pax
     59  * keeps. Tables are dynamically created only when they are needed. The
     60  * goal was speed and the ability to work with HUGE archives. The databases
     61  * were kept simple, but do have complex rules for when the contents change.
     62  * As of this writing, the posix library functions were more complex than
     63  * needed for this application (pax databases have very short lifetimes and
     64  * do not survive after pax is finished). Pax is required to handle very
     65  * large archives. These database routines carefully combine memory usage and
     66  * temporary file storage in ways which will not significantly impact runtime
     67  * performance while allowing the largest possible archives to be handled.
     68  * Trying to force the fit to the posix databases routines was not considered
     69  * time well spent.
     70  */
     71 
     72 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     73 static FTM **ftab = NULL;	/* file time table for updating arch */
     74 static NAMT **ntab = NULL;	/* interactive rename storage table */
     75 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     76 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     77 static int dirfd = -1;		/* storage for setting created dir time/mode */
     78 static u_long dircnt;		/* entries in dir time/mode storage */
     79 static int ffd = -1;		/* tmp file for file time table name storage */
     80 
     81 static DEVT *chk_dev __P((dev_t, int));
     82 
     83 /*
     84  * hard link table routines
     85  *
     86  * The hard link table tries to detect hard links to files using the device and
     87  * inode values. We do this when writing an archive, so we can tell the format
     88  * write routine that this file is a hard link to another file. The format
     89  * write routine then can store this file in whatever way it wants (as a hard
     90  * link if the format supports that like tar, or ignore this info like cpio).
     91  * (Actually a field in the format driver table tells us if the format wants
     92  * hard link info. if not, we do not waste time looking for them). We also use
     93  * the same table when reading an archive. In that situation, this table is
     94  * used by the format read routine to detect hard links from stored dev and
     95  * inode numbers (like cpio). This will allow pax to create a link when one
     96  * can be detected by the archive format.
     97  */
     98 
     99 /*
    100  * lnk_start
    101  *	Creates the hard link table.
    102  * Return:
    103  *	0 if created, -1 if failure
    104  */
    105 
    106 #if __STDC__
    107 int
    108 lnk_start(void)
    109 #else
    110 int
    111 lnk_start()
    112 #endif
    113 {
    114 	if (ltab != NULL)
    115 		return(0);
    116  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    117                 warn(1, "Cannot allocate memory for hard link table");
    118                 return(-1);
    119         }
    120 	return(0);
    121 }
    122 
    123 /*
    124  * chk_lnk()
    125  *	Looks up entry in hard link hash table. If found, it copies the name
    126  *	of the file it is linked to (we already saw that file) into ln_name.
    127  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    128  *	database. (We have seen all the links to this file). If not found,
    129  *	we add the file to the database if it has the potential for having
    130  *	hard links to other files we may process (it has a link count > 1)
    131  * Return:
    132  *	if found returns 1; if not found returns 0; -1 on error
    133  */
    134 
    135 #if __STDC__
    136 int
    137 chk_lnk(register ARCHD *arcn)
    138 #else
    139 int
    140 chk_lnk(arcn)
    141 	register ARCHD *arcn;
    142 #endif
    143 {
    144 	register HRDLNK *pt;
    145 	register HRDLNK **ppt;
    146 	register u_int indx;
    147 
    148 	if (ltab == NULL)
    149 		return(-1);
    150 	/*
    151 	 * ignore those nodes that cannot have hard links
    152 	 */
    153 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    154 		return(0);
    155 
    156 	/*
    157 	 * hash inode number and look for this file
    158 	 */
    159 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    160 	if ((pt = ltab[indx]) != NULL) {
    161 		/*
    162 		 * it's hash chain in not empty, walk down looking for it
    163 		 */
    164 		ppt = &(ltab[indx]);
    165 		while (pt != NULL) {
    166 			if ((pt->ino == arcn->sb.st_ino) &&
    167 			    (pt->dev == arcn->sb.st_dev))
    168 				break;
    169 			ppt = &(pt->fow);
    170 			pt = pt->fow;
    171 		}
    172 
    173 		if (pt != NULL) {
    174 			/*
    175 			 * found a link. set the node type and copy in the
    176 			 * name of the file it is to link to. we need to
    177 			 * handle hardlinks to regular files differently than
    178 			 * other links.
    179 			 */
    180 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    181 				PAXPATHLEN+1);
    182 			if (arcn->type == PAX_REG)
    183 				arcn->type = PAX_HRG;
    184 			else
    185 				arcn->type = PAX_HLK;
    186 
    187 			/*
    188 			 * if we have found all the links to this file, remove
    189 			 * it from the database
    190 			 */
    191 			if (--pt->nlink <= 1) {
    192 				*ppt = pt->fow;
    193 				(void)free((char *)pt->name);
    194 				(void)free((char *)pt);
    195 			}
    196 			return(1);
    197 		}
    198 	}
    199 
    200 	/*
    201 	 * we never saw this file before. It has links so we add it to the
    202 	 * front of this hash chain
    203 	 */
    204 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    205 		if ((pt->name = strdup(arcn->name)) != NULL) {
    206 			pt->dev = arcn->sb.st_dev;
    207 			pt->ino = arcn->sb.st_ino;
    208 			pt->nlink = arcn->sb.st_nlink;
    209 			pt->fow = ltab[indx];
    210 			ltab[indx] = pt;
    211 			return(0);
    212 		}
    213 		(void)free((char *)pt);
    214 	}
    215 
    216 	warn(1, "Hard link table out of memory");
    217 	return(-1);
    218 }
    219 
    220 /*
    221  * purg_lnk
    222  *	remove reference for a file that we may have added to the data base as
    223  *	a potential source for hard links. We ended up not using the file, so
    224  *	we do not want to accidently point another file at it later on.
    225  */
    226 
    227 #if __STDC__
    228 void
    229 purg_lnk(register ARCHD *arcn)
    230 #else
    231 void
    232 purg_lnk(arcn)
    233 	register ARCHD *arcn;
    234 #endif
    235 {
    236 	register HRDLNK *pt;
    237 	register HRDLNK **ppt;
    238 	register u_int indx;
    239 
    240 	if (ltab == NULL)
    241 		return;
    242 	/*
    243 	 * do not bother to look if it could not be in the database
    244 	 */
    245 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    246 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    247 		return;
    248 
    249 	/*
    250 	 * find the hash chain for this inode value, if empty return
    251 	 */
    252 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    253 	if ((pt = ltab[indx]) == NULL)
    254 		return;
    255 
    256 	/*
    257 	 * walk down the list looking for the inode/dev pair, unlink and
    258 	 * free if found
    259 	 */
    260 	ppt = &(ltab[indx]);
    261 	while (pt != NULL) {
    262 		if ((pt->ino == arcn->sb.st_ino) &&
    263 		    (pt->dev == arcn->sb.st_dev))
    264 			break;
    265 		ppt = &(pt->fow);
    266 		pt = pt->fow;
    267 	}
    268 	if (pt == NULL)
    269 		return;
    270 
    271 	/*
    272 	 * remove and free it
    273 	 */
    274 	*ppt = pt->fow;
    275 	(void)free((char *)pt->name);
    276 	(void)free((char *)pt);
    277 }
    278 
    279 /*
    280  * lnk_end()
    281  *	pull apart a existing link table so we can reuse it. We do this between
    282  *	read and write phases of append with update. (The format may have
    283  *	used the link table, and we need to start with a fresh table for the
    284  *	write phase
    285  */
    286 
    287 #if __STDC__
    288 void
    289 lnk_end(void)
    290 #else
    291 void
    292 lnk_end()
    293 #endif
    294 {
    295 	register int i;
    296 	register HRDLNK *pt;
    297 	register HRDLNK *ppt;
    298 
    299 	if (ltab == NULL)
    300 		return;
    301 
    302 	for (i = 0; i < L_TAB_SZ; ++i) {
    303 		if (ltab[i] == NULL)
    304 			continue;
    305 		pt = ltab[i];
    306 		ltab[i] = NULL;
    307 
    308 		/*
    309 		 * free up each entry on this chain
    310 		 */
    311 		while (pt != NULL) {
    312 			ppt = pt;
    313 			pt = ppt->fow;
    314 			(void)free((char *)ppt->name);
    315 			(void)free((char *)ppt);
    316 		}
    317 	}
    318 	return;
    319 }
    320 
    321 /*
    322  * modification time table routines
    323  *
    324  * The modification time table keeps track of last modification times for all
    325  * files stored in an archive during a write phase when -u is set. We only
    326  * add a file to the archive if it is newer than a file with the same name
    327  * already stored on the archive (if there is no other file with the same
    328  * name on the archive it is added). This applies to writes and appends.
    329  * An append with an -u must read the archive and store the modification time
    330  * for every file on that archive before starting the write phase. It is clear
    331  * that this is one HUGE database. To save memory space, the actual file names
    332  * are stored in a scatch file and indexed by an in memory hash table. The
    333  * hash table is indexed by hashing the file path. The nodes in the table store
    334  * the length of the filename and the lseek offset within the scratch file
    335  * where the actual name is stored. Since there are never any deletions to this
    336  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    337  * not exhibit any locality at all (files in the database are rarely
    338  * looked up more than once...). So caching is just a waste of memory. The
    339  * only limitation is the amount of scatch file space available to store the
    340  * path names.
    341  */
    342 
    343 /*
    344  * ftime_start()
    345  *	create the file time hash table and open for read/write the scratch
    346  *	file. (after created it is unlinked, so when we exit we leave
    347  *	no witnesses).
    348  * Return:
    349  *	0 if the table and file was created ok, -1 otherwise
    350  */
    351 
    352 #if __STDC__
    353 int
    354 ftime_start(void)
    355 #else
    356 int
    357 ftime_start()
    358 #endif
    359 {
    360 	char *pt;
    361 
    362 	if (ftab != NULL)
    363 		return(0);
    364  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    365                 warn(1, "Cannot allocate memory for file time table");
    366                 return(-1);
    367         }
    368 
    369 	/*
    370 	 * get random name and create temporary scratch file, unlink name
    371 	 * so it will get removed on exit
    372 	 */
    373 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
    374 		return(-1);
    375 	(void)unlink(pt);
    376 
    377 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
    378 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
    379 		return(-1);
    380 	}
    381 
    382 	(void)unlink(pt);
    383 	return(0);
    384 }
    385 
    386 /*
    387  * chk_ftime()
    388  *	looks up entry in file time hash table. If not found, the file is
    389  *	added to the hash table and the file named stored in the scratch file.
    390  *	If a file with the same name is found, the file times are compared and
    391  *	the most recent file time is retained. If the new file was younger (or
    392  *	was not in the database) the new file is selected for storage.
    393  * Return:
    394  *	0 if file should be added to the archive, 1 if it should be skipped,
    395  *	-1 on error
    396  */
    397 
    398 #if __STDC__
    399 int
    400 chk_ftime(register ARCHD *arcn)
    401 #else
    402 int
    403 chk_ftime(arcn)
    404 	register ARCHD *arcn;
    405 #endif
    406 {
    407 	register FTM *pt;
    408 	register int namelen;
    409 	register u_int indx;
    410 	char ckname[PAXPATHLEN+1];
    411 
    412 	/*
    413 	 * no info, go ahead and add to archive
    414 	 */
    415 	if (ftab == NULL)
    416 		return(0);
    417 
    418 	/*
    419 	 * hash the pathname and look up in table
    420 	 */
    421 	namelen = arcn->nlen;
    422 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    423 	if ((pt = ftab[indx]) != NULL) {
    424 		/*
    425 		 * the hash chain is not empty, walk down looking for match
    426 		 * only read up the path names if the lengths match, speeds
    427 		 * up the search a lot
    428 		 */
    429 		while (pt != NULL) {
    430 			if (pt->namelen == namelen) {
    431 				/*
    432 				 * potential match, have to read the name
    433 				 * from the scratch file.
    434 				 */
    435 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    436 					syswarn(1, errno,
    437 					    "Failed ftime table seek");
    438 					return(-1);
    439 				}
    440 				if (read(ffd, ckname, namelen) != namelen) {
    441 					syswarn(1, errno,
    442 					    "Failed ftime table read");
    443 					return(-1);
    444 				}
    445 
    446 				/*
    447 				 * if the names match, we are done
    448 				 */
    449 				if (!strncmp(ckname, arcn->name, namelen))
    450 					break;
    451 			}
    452 
    453 			/*
    454 			 * try the next entry on the chain
    455 			 */
    456 			pt = pt->fow;
    457 		}
    458 
    459 		if (pt != NULL) {
    460 			/*
    461 			 * found the file, compare the times, save the newer
    462 			 */
    463 			if (arcn->sb.st_mtime > pt->mtime) {
    464 				/*
    465 				 * file is newer
    466 				 */
    467 				pt->mtime = arcn->sb.st_mtime;
    468 				return(0);
    469 			}
    470 			/*
    471 			 * file is older
    472 			 */
    473 			return(1);
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * not in table, add it
    479 	 */
    480 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    481 		/*
    482 		 * add the name at the end of the scratch file, saving the
    483 		 * offset. add the file to the head of the hash chain
    484 		 */
    485 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    486 			if (write(ffd, arcn->name, namelen) == namelen) {
    487 				pt->mtime = arcn->sb.st_mtime;
    488 				pt->namelen = namelen;
    489 				pt->fow = ftab[indx];
    490 				ftab[indx] = pt;
    491 				return(0);
    492 			}
    493 			syswarn(1, errno, "Failed write to file time table");
    494 		} else
    495 			syswarn(1, errno, "Failed seek on file time table");
    496 	} else
    497 		warn(1, "File time table ran out of memory");
    498 
    499 	if (pt != NULL)
    500 		(void)free((char *)pt);
    501 	return(-1);
    502 }
    503 
    504 /*
    505  * Interactive rename table routines
    506  *
    507  * The interactive rename table keeps track of the new names that the user
    508  * assignes to files from tty input. Since this map is unique for each file
    509  * we must store it in case there is a reference to the file later in archive
    510  * (a link). Otherwise we will be unable to find the file we know was
    511  * extracted. The remapping of these files is stored in a memory based hash
    512  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    513  * be a very large table).
    514  */
    515 
    516 /*
    517  * name_start()
    518  *	create the interactive rename table
    519  * Return:
    520  *	0 if successful, -1 otherwise
    521  */
    522 
    523 #if __STDC__
    524 int
    525 name_start(void)
    526 #else
    527 int
    528 name_start()
    529 #endif
    530 {
    531 	if (ntab != NULL)
    532 		return(0);
    533  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    534                 warn(1, "Cannot allocate memory for interactive rename table");
    535                 return(-1);
    536         }
    537 	return(0);
    538 }
    539 
    540 /*
    541  * add_name()
    542  *	add the new name to old name mapping just created by the user.
    543  *	If an old name mapping is found (there may be duplicate names on an
    544  *	archive) only the most recent is kept.
    545  * Return:
    546  *	0 if added, -1 otherwise
    547  */
    548 
    549 #if __STDC__
    550 int
    551 add_name(register char *oname, int onamelen, char *nname)
    552 #else
    553 int
    554 add_name(oname, onamelen, nname)
    555 	register char *oname;
    556 	int onamelen;
    557 	char *nname;
    558 #endif
    559 {
    560 	register NAMT *pt;
    561 	register u_int indx;
    562 
    563 	if (ntab == NULL) {
    564 		/*
    565 		 * should never happen
    566 		 */
    567 		warn(0, "No interactive rename table, links may fail\n");
    568 		return(0);
    569 	}
    570 
    571 	/*
    572 	 * look to see if we have already mapped this file, if so we
    573 	 * will update it
    574 	 */
    575 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    576 	if ((pt = ntab[indx]) != NULL) {
    577 		/*
    578 		 * look down the has chain for the file
    579 		 */
    580 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    581 			pt = pt->fow;
    582 
    583 		if (pt != NULL) {
    584 			/*
    585 			 * found an old mapping, replace it with the new one
    586 			 * the user just input (if it is different)
    587 			 */
    588 			if (strcmp(nname, pt->nname) == 0)
    589 				return(0);
    590 
    591 			(void)free((char *)pt->nname);
    592 			if ((pt->nname = strdup(nname)) == NULL) {
    593 				warn(1, "Cannot update rename table");
    594 				return(-1);
    595 			}
    596 			return(0);
    597 		}
    598 	}
    599 
    600 	/*
    601 	 * this is a new mapping, add it to the table
    602 	 */
    603 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    604 		if ((pt->oname = strdup(oname)) != NULL) {
    605 			if ((pt->nname = strdup(nname)) != NULL) {
    606 				pt->fow = ntab[indx];
    607 				ntab[indx] = pt;
    608 				return(0);
    609 			}
    610 			(void)free((char *)pt->oname);
    611 		}
    612 		(void)free((char *)pt);
    613 	}
    614 	warn(1, "Interactive rename table out of memory");
    615 	return(-1);
    616 }
    617 
    618 /*
    619  * sub_name()
    620  *	look up a link name to see if it points at a file that has been
    621  *	remapped by the user. If found, the link is adjusted to contain the
    622  *	new name (oname is the link to name)
    623  */
    624 
    625 #if __STDC__
    626 void
    627 sub_name(register char *oname, int *onamelen)
    628 #else
    629 void
    630 sub_name(oname, onamelen)
    631 	register char *oname;
    632 	int *onamelen;
    633 #endif
    634 {
    635 	register NAMT *pt;
    636 	register u_int indx;
    637 
    638 	if (ntab == NULL)
    639 		return;
    640 	/*
    641 	 * look the name up in the hash table
    642 	 */
    643 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    644 	if ((pt = ntab[indx]) == NULL)
    645 		return;
    646 
    647 	while (pt != NULL) {
    648 		/*
    649 		 * walk down the hash cahin looking for a match
    650 		 */
    651 		if (strcmp(oname, pt->oname) == 0) {
    652 			/*
    653 			 * found it, replace it with the new name
    654 			 * and return (we know that oname has enough space)
    655 			 */
    656 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    657 			return;
    658 		}
    659 		pt = pt->fow;
    660 	}
    661 
    662 	/*
    663 	 * no match, just return
    664 	 */
    665 	return;
    666 }
    667 
    668 /*
    669  * device/inode mapping table routines
    670  * (used with formats that store device and inodes fields)
    671  *
    672  * device/inode mapping tables remap the device field in a archive header. The
    673  * device/inode fields are used to determine when files are hard links to each
    674  * other. However these values have very little meaning outside of that. This
    675  * database is used to solve one of two different problems.
    676  *
    677  * 1) when files are appended to an archive, while the new files may have hard
    678  * links to each other, you cannot determine if they have hard links to any
    679  * file already stored on the archive from a prior run of pax. We must assume
    680  * that these inode/device pairs are unique only within a SINGLE run of pax
    681  * (which adds a set of files to an archive). So we have to make sure the
    682  * inode/dev pairs we add each time are always unique. We do this by observing
    683  * while the inode field is very dense, the use of the dev field is fairly
    684  * sparse. Within each run of pax, we remap any device number of a new archive
    685  * member that has a device number used in a prior run and already stored in a
    686  * file on the archive. During the read phase of the append, we store the
    687  * device numbers used and mark them to not be used by any file during the
    688  * write phase. If during write we go to use one of those old device numbers,
    689  * we remap it to a new value.
    690  *
    691  * 2) Often the fields in the archive header used to store these values are
    692  * too small to store the entire value. The result is an inode or device value
    693  * which can be truncated. This really can foul up an archive. With truncation
    694  * we end up creating links between files that are really not links (after
    695  * truncation the inodes are the same value). We address that by detecting
    696  * truncation and forcing a remap of the device field to split truncated
    697  * inodes away from each other. Each truncation creates a pattern of bits that
    698  * are removed. We use this pattern of truncated bits to partition the inodes
    699  * on a single device to many different devices (each one represented by the
    700  * truncated bit pattern). All inodes on the same device that have the same
    701  * truncation pattern are mapped to the same new device. Two inodes that
    702  * truncate to the same value clearly will always have different truncation
    703  * bit patterns, so they will be split from away each other. When we spot
    704  * device truncation we remap the device number to a non truncated value.
    705  * (for more info see table.h for the data structures involved).
    706  */
    707 
    708 /*
    709  * dev_start()
    710  *	create the device mapping table
    711  * Return:
    712  *	0 if successful, -1 otherwise
    713  */
    714 
    715 #if __STDC__
    716 int
    717 dev_start(void)
    718 #else
    719 int
    720 dev_start()
    721 #endif
    722 {
    723 	if (dtab != NULL)
    724 		return(0);
    725  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    726                 warn(1, "Cannot allocate memory for device mapping table");
    727                 return(-1);
    728         }
    729 	return(0);
    730 }
    731 
    732 /*
    733  * add_dev()
    734  *	add a device number to the table. this will force the device to be
    735  *	remapped to a new value if it be used during a write phase. This
    736  *	function is called during the read phase of an append to prohibit the
    737  *	use of any device number already in the archive.
    738  * Return:
    739  *	0 if added ok, -1 otherwise
    740  */
    741 
    742 #if __STDC__
    743 int
    744 add_dev(register ARCHD *arcn)
    745 #else
    746 int
    747 add_dev(arcn)
    748 	register ARCHD *arcn;
    749 #endif
    750 {
    751 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    752 		return(-1);
    753 	return(0);
    754 }
    755 
    756 /*
    757  * chk_dev()
    758  *	check for a device value in the device table. If not found and the add
    759  *	flag is set, it is added. This does NOT assign any mapping values, just
    760  *	adds the device number as one that need to be remapped. If this device
    761  *	is alread mapped, just return with a pointer to that entry.
    762  * Return:
    763  *	pointer to the entry for this device in the device map table. Null
    764  *	if the add flag is not set and the device is not in the table (it is
    765  *	not been seen yet). If add is set and the device cannot be added, null
    766  *	is returned (indicates an error).
    767  */
    768 
    769 #if __STDC__
    770 static DEVT *
    771 chk_dev(dev_t dev, int add)
    772 #else
    773 static DEVT *
    774 chk_dev(dev, add)
    775 	dev_t dev;
    776 	int add;
    777 #endif
    778 {
    779 	register DEVT *pt;
    780 	register u_int indx;
    781 
    782 	if (dtab == NULL)
    783 		return(NULL);
    784 	/*
    785 	 * look to see if this device is already in the table
    786 	 */
    787 	indx = ((unsigned)dev) % D_TAB_SZ;
    788 	if ((pt = dtab[indx]) != NULL) {
    789 		while ((pt != NULL) && (pt->dev != dev))
    790 			pt = pt->fow;
    791 
    792 		/*
    793 		 * found it, return a pointer to it
    794 		 */
    795 		if (pt != NULL)
    796 			return(pt);
    797 	}
    798 
    799 	/*
    800 	 * not in table, we add it only if told to as this may just be a check
    801 	 * to see if a device number is being used.
    802 	 */
    803 	if (add == 0)
    804 		return(NULL);
    805 
    806 	/*
    807 	 * allocate a node for this device and add it to the front of the hash
    808 	 * chain. Note we do not assign remaps values here, so the pt->list
    809 	 * list must be NULL.
    810 	 */
    811 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    812 		warn(1, "Device map table out of memory");
    813 		return(NULL);
    814 	}
    815 	pt->dev = dev;
    816 	pt->list = NULL;
    817 	pt->fow = dtab[indx];
    818 	dtab[indx] = pt;
    819 	return(pt);
    820 }
    821 /*
    822  * map_dev()
    823  *	given an inode and device storage mask (the mask has a 1 for each bit
    824  *	the archive format is able to store in a header), we check for inode
    825  *	and device truncation and remap the device as required. Device mapping
    826  *	can also occur when during the read phase of append a device number was
    827  *	seen (and was marked as do not use during the write phase). WE ASSUME
    828  *	that unsigned longs are the same size or bigger than the fields used
    829  *	for ino_t and dev_t. If not the types will have to be changed.
    830  * Return:
    831  *	0 if all ok, -1 otherwise.
    832  */
    833 
    834 #if __STDC__
    835 int
    836 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    837 #else
    838 int
    839 map_dev(arcn, dev_mask, ino_mask)
    840 	register ARCHD *arcn;
    841 	u_long dev_mask;
    842 	u_long ino_mask;
    843 #endif
    844 {
    845 	register DEVT *pt;
    846 	register DLIST *dpt;
    847 	static dev_t lastdev = 0;	/* next device number to try */
    848 	int trc_ino = 0;
    849 	int trc_dev = 0;
    850 	ino_t trunc_bits = 0;
    851 	ino_t nino;
    852 
    853 	if (dtab == NULL)
    854 		return(0);
    855 	/*
    856 	 * check for device and inode truncation, and extract the truncated
    857 	 * bit pattern.
    858 	 */
    859 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    860 		++trc_dev;
    861 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    862 		++trc_ino;
    863 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    864 	}
    865 
    866 	/*
    867 	 * see if this device is already being mapped, look up the device
    868 	 * then find the truncation bit pattern which applies
    869 	 */
    870 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    871 		/*
    872 		 * this device is already marked to be remapped
    873 		 */
    874 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    875 			if (dpt->trunc_bits == trunc_bits)
    876 				break;
    877 
    878 		if (dpt != NULL) {
    879 			/*
    880 			 * we are being remapped for this device and pattern
    881 			 * change the device number to be stored and return
    882 			 */
    883 			arcn->sb.st_dev = dpt->dev;
    884 			arcn->sb.st_ino = nino;
    885 			return(0);
    886 		}
    887 	} else {
    888 		/*
    889 		 * this device is not being remapped YET. if we do not have any
    890 		 * form of truncation, we do not need a remap
    891 		 */
    892 		if (!trc_ino && !trc_dev)
    893 			return(0);
    894 
    895 		/*
    896 		 * we have truncation, have to add this as a device to remap
    897 		 */
    898 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    899 			goto bad;
    900 
    901 		/*
    902 		 * if we just have a truncated inode, we have to make sure that
    903 		 * all future inodes that do not truncate (they have the
    904 		 * truncation pattern of all 0's) continue to map to the same
    905 		 * device number. We probably have already written inodes with
    906 		 * this device number to the archive with the truncation
    907 		 * pattern of all 0's. So we add the mapping for all 0's to the
    908 		 * same device number.
    909 		 */
    910 		if (!trc_dev && (trunc_bits != 0)) {
    911 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    912 				goto bad;
    913 			dpt->trunc_bits = 0;
    914 			dpt->dev = arcn->sb.st_dev;
    915 			dpt->fow = pt->list;
    916 			pt->list = dpt;
    917 		}
    918 	}
    919 
    920 	/*
    921 	 * look for a device number not being used. We must watch for wrap
    922 	 * around on lastdev (so we do not get stuck looking forever!)
    923 	 */
    924 	while (++lastdev > 0) {
    925 		if (chk_dev(lastdev, 0) != NULL)
    926 			continue;
    927 		/*
    928 		 * found an unused value. If we have reached truncation point
    929 		 * for this format we are hosed, so we give up. Otherwise we
    930 		 * mark it as being used.
    931 		 */
    932 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    933 		    (chk_dev(lastdev, 1) == NULL))
    934 			goto bad;
    935 		break;
    936 	}
    937 
    938 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    939 		goto bad;
    940 
    941 	/*
    942 	 * got a new device number, store it under this truncation pattern.
    943 	 * change the device number this file is being stored with.
    944 	 */
    945 	dpt->trunc_bits = trunc_bits;
    946 	dpt->dev = lastdev;
    947 	dpt->fow = pt->list;
    948 	pt->list = dpt;
    949 	arcn->sb.st_dev = lastdev;
    950 	arcn->sb.st_ino = nino;
    951 	return(0);
    952 
    953     bad:
    954 	warn(1, "Unable to fix truncated inode/device field when storing %s",
    955 	    arcn->name);
    956 	warn(0, "Archive may create improper hard links when extracted");
    957 	return(0);
    958 }
    959 
    960 /*
    961  * directory access/mod time reset table routines (for directories READ by pax)
    962  *
    963  * The pax -t flag requires that access times of archive files to be the same
    964  * before being read by pax. For regular files, access time is restored after
    965  * the file has been copied. This database provides the same functionality for
    966  * directories read during file tree traversal. Restoring directory access time
    967  * is more complex than files since directories may be read several times until
    968  * all the descendants in their subtree are visited by fts. Directory access
    969  * and modification times are stored during the fts pre-order visit (done
    970  * before any descendants in the subtree is visited) and restored after the
    971  * fts post-order visit (after all the descendants have been visited). In the
    972  * case of premature exit from a subtree (like from the effects of -n), any
    973  * directory entries left in this database are reset during final cleanup
    974  * operations of pax. Entries are hashed by inode number for fast lookup.
    975  */
    976 
    977 /*
    978  * atdir_start()
    979  *	create the directory access time database for directories READ by pax.
    980  * Return:
    981  *	0 is created ok, -1 otherwise.
    982  */
    983 
    984 #if __STDC__
    985 int
    986 atdir_start(void)
    987 #else
    988 int
    989 atdir_start()
    990 #endif
    991 {
    992 	if (atab != NULL)
    993 		return(0);
    994  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    995                 warn(1,"Cannot allocate space for directory access time table");
    996                 return(-1);
    997         }
    998 	return(0);
    999 }
   1000 
   1001 
   1002 /*
   1003  * atdir_end()
   1004  *	walk through the directory access time table and reset the access time
   1005  *	of any directory who still has an entry left in the database. These
   1006  *	entries are for directories READ by pax
   1007  */
   1008 
   1009 #if __STDC__
   1010 void
   1011 atdir_end(void)
   1012 #else
   1013 void
   1014 atdir_end()
   1015 #endif
   1016 {
   1017 	register ATDIR *pt;
   1018 	register int i;
   1019 
   1020 	if (atab == NULL)
   1021 		return;
   1022 	/*
   1023 	 * for each non-empty hash table entry reset all the directories
   1024 	 * chained there.
   1025 	 */
   1026 	for (i = 0; i < A_TAB_SZ; ++i) {
   1027 		if ((pt = atab[i]) == NULL)
   1028 			continue;
   1029 		/*
   1030 		 * remember to force the times, set_ftime() looks at pmtime
   1031 		 * and patime, which only applies to things CREATED by pax,
   1032 		 * not read by pax. Read time reset is controlled by -t.
   1033 		 */
   1034 		for (; pt != NULL; pt = pt->fow)
   1035 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1036 	}
   1037 }
   1038 
   1039 /*
   1040  * add_atdir()
   1041  *	add a directory to the directory access time table. Table is hashed
   1042  *	and chained by inode number. This is for directories READ by pax
   1043  */
   1044 
   1045 #if __STDC__
   1046 void
   1047 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1048 #else
   1049 void
   1050 add_atdir(fname, dev, ino, mtime, atime)
   1051 	char *fname;
   1052 	dev_t dev;
   1053 	ino_t ino;
   1054 	time_t mtime;
   1055 	time_t atime;
   1056 #endif
   1057 {
   1058 	register ATDIR *pt;
   1059 	register u_int indx;
   1060 
   1061 	if (atab == NULL)
   1062 		return;
   1063 
   1064 	/*
   1065 	 * make sure this directory is not already in the table, if so just
   1066 	 * return (the older entry always has the correct time). The only
   1067 	 * way this will happen is when the same subtree can be traversed by
   1068 	 * different args to pax and the -n option is aborting fts out of a
   1069 	 * subtree before all the post-order visits have been made).
   1070 	 */
   1071 	indx = ((unsigned)ino) % A_TAB_SZ;
   1072 	if ((pt = atab[indx]) != NULL) {
   1073 		while (pt != NULL) {
   1074 			if ((pt->ino == ino) && (pt->dev == dev))
   1075 				break;
   1076 			pt = pt->fow;
   1077 		}
   1078 
   1079 		/*
   1080 		 * oops, already there. Leave it alone.
   1081 		 */
   1082 		if (pt != NULL)
   1083 			return;
   1084 	}
   1085 
   1086 	/*
   1087 	 * add it to the front of the hash chain
   1088 	 */
   1089 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1090 		if ((pt->name = strdup(fname)) != NULL) {
   1091 			pt->dev = dev;
   1092 			pt->ino = ino;
   1093 			pt->mtime = mtime;
   1094 			pt->atime = atime;
   1095 			pt->fow = atab[indx];
   1096 			atab[indx] = pt;
   1097 			return;
   1098 		}
   1099 		(void)free((char *)pt);
   1100 	}
   1101 
   1102 	warn(1, "Directory access time reset table ran out of memory");
   1103 	return;
   1104 }
   1105 
   1106 /*
   1107  * get_atdir()
   1108  *	look up a directory by inode and device number to obtain the access
   1109  *	and modification time you want to set to. If found, the modification
   1110  *	and access time parameters are set and the entry is removed from the
   1111  *	table (as it is no longer needed). These are for directories READ by
   1112  *	pax
   1113  * Return:
   1114  *	0 if found, -1 if not found.
   1115  */
   1116 
   1117 #if __STDC__
   1118 int
   1119 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1120 #else
   1121 int
   1122 get_atdir(dev, ino, mtime, atime)
   1123 	dev_t dev;
   1124 	ino_t ino;
   1125 	time_t *mtime;
   1126 	time_t *atime;
   1127 #endif
   1128 {
   1129 	register ATDIR *pt;
   1130 	register ATDIR **ppt;
   1131 	register u_int indx;
   1132 
   1133 	if (atab == NULL)
   1134 		return(-1);
   1135 	/*
   1136 	 * hash by inode and search the chain for an inode and device match
   1137 	 */
   1138 	indx = ((unsigned)ino) % A_TAB_SZ;
   1139 	if ((pt = atab[indx]) == NULL)
   1140 		return(-1);
   1141 
   1142 	ppt = &(atab[indx]);
   1143 	while (pt != NULL) {
   1144 		if ((pt->ino == ino) && (pt->dev == dev))
   1145 			break;
   1146 		/*
   1147 		 * no match, go to next one
   1148 		 */
   1149 		ppt = &(pt->fow);
   1150 		pt = pt->fow;
   1151 	}
   1152 
   1153 	/*
   1154 	 * return if we did not find it.
   1155 	 */
   1156 	if (pt == NULL)
   1157 		return(-1);
   1158 
   1159 	/*
   1160 	 * found it. return the times and remove the entry from the table.
   1161 	 */
   1162 	*ppt = pt->fow;
   1163 	*mtime = pt->mtime;
   1164 	*atime = pt->atime;
   1165 	(void)free((char *)pt->name);
   1166 	(void)free((char *)pt);
   1167 	return(0);
   1168 }
   1169 
   1170 /*
   1171  * directory access mode and time storage routines (for directories CREATED
   1172  * by pax).
   1173  *
   1174  * Pax requires that extracted directories, by default, have their access/mod
   1175  * times and permissions set to the values specified in the archive. During the
   1176  * actions of extracting (and creating the destination subtree during -rw copy)
   1177  * directories extracted may be modified after being created. Even worse is
   1178  * that these directories may have been created with file permissions which
   1179  * prohibits any descendants of these directories from being extracted. When
   1180  * directories are created by pax, access rights may be added to permit the
   1181  * creation of files in their subtree. Every time pax creates a directory, the
   1182  * times and file permissions specified by the archive are stored. After all
   1183  * files have been extracted (or copied), these directories have their times
   1184  * and file modes reset to the stored values. The directory info is restored in
   1185  * reverse order as entries were added to the data file from root to leaf. To
   1186  * restore atime properly, we must go backwards. The data file consists of
   1187  * records with two parts, the file name followed by a DIRDATA trailer. The
   1188  * fixed sized trailer contains the size of the name plus the off_t location in
   1189  * the file. To restore we work backwards through the file reading the trailer
   1190  * then the file name.
   1191  */
   1192 
   1193 /*
   1194  * dir_start()
   1195  *	set up the directory time and file mode storage for directories CREATED
   1196  *	by pax.
   1197  * Return:
   1198  *	0 if ok, -1 otherwise
   1199  */
   1200 
   1201 #if __STDC__
   1202 int
   1203 dir_start(void)
   1204 #else
   1205 int
   1206 dir_start()
   1207 #endif
   1208 {
   1209 	char *pt;
   1210 
   1211 	if (dirfd != -1)
   1212 		return(0);
   1213 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
   1214 		return(-1);
   1215 
   1216 	/*
   1217 	 * unlink the file so it goes away at termination by itself
   1218 	 */
   1219 	(void)unlink(pt);
   1220 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
   1221 		(void)unlink(pt);
   1222 		return(0);
   1223 	}
   1224 	warn(1, "Unable to create temporary file for directory times: %s", pt);
   1225 	return(-1);
   1226 }
   1227 
   1228 /*
   1229  * add_dir()
   1230  *	add the mode and times for a newly CREATED directory
   1231  *	name is name of the directory, psb the stat buffer with the data in it,
   1232  *	frc_mode is a flag that says whether to force the setting of the mode
   1233  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1234  *	for the case where we created a file and found that the resulting
   1235  *	directory was not writeable and the user asked for file modes to NOT
   1236  *	be preserved. (we have to preserve what was created by default, so we
   1237  *	have to force the setting at the end. this is stated explicitly in the
   1238  *	pax spec)
   1239  */
   1240 
   1241 #if __STDC__
   1242 void
   1243 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1244 #else
   1245 void
   1246 add_dir(name, nlen, psb, frc_mode)
   1247 	char *name;
   1248 	int nlen;
   1249 	struct stat *psb;
   1250 	int frc_mode;
   1251 #endif
   1252 {
   1253 	DIRDATA dblk;
   1254 
   1255 	if (dirfd < 0)
   1256 		return;
   1257 
   1258 	/*
   1259 	 * get current position (where file name will start) so we can store it
   1260 	 * in the trailer
   1261 	 */
   1262 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1263 		warn(1,"Unable to store mode and times for directory: %s",name);
   1264 		return;
   1265 	}
   1266 
   1267 	/*
   1268 	 * write the file name followed by the trailer
   1269 	 */
   1270 	dblk.nlen = nlen + 1;
   1271 	dblk.mode = psb->st_mode & 0xffff;
   1272 	dblk.mtime = psb->st_mtime;
   1273 	dblk.atime = psb->st_atime;
   1274 	dblk.frc_mode = frc_mode;
   1275 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1276 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1277 		++dircnt;
   1278 		return;
   1279 	}
   1280 
   1281 	warn(1,"Unable to store mode and times for created directory: %s",name);
   1282 	return;
   1283 }
   1284 
   1285 /*
   1286  * proc_dir()
   1287  *	process all file modes and times stored for directories CREATED
   1288  *	by pax
   1289  */
   1290 
   1291 #if __STDC__
   1292 void
   1293 proc_dir(void)
   1294 #else
   1295 void
   1296 proc_dir()
   1297 #endif
   1298 {
   1299 	char name[PAXPATHLEN+1];
   1300 	DIRDATA dblk;
   1301 	u_long cnt;
   1302 
   1303 	if (dirfd < 0)
   1304 		return;
   1305 	/*
   1306 	 * read backwards through the file and process each directory
   1307 	 */
   1308 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1309 		/*
   1310 		 * read the trailer, then the file name, if this fails
   1311 		 * just give up.
   1312 		 */
   1313 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1314 			break;
   1315 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1316 			break;
   1317 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1318 			break;
   1319 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
   1320 			break;
   1321 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1322 			break;
   1323 
   1324 		/*
   1325 		 * frc_mode set, make sure we set the file modes even if
   1326 		 * the user didn't ask for it (see file_subs.c for more info)
   1327 		 */
   1328 		if (pmode || dblk.frc_mode)
   1329 			set_pmode(name, dblk.mode);
   1330 		if (patime || pmtime)
   1331 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1332 	}
   1333 
   1334 	(void)close(dirfd);
   1335 	dirfd = -1;
   1336 	if (cnt != dircnt)
   1337 		warn(1,"Unable to set mode and times for created directories");
   1338 	return;
   1339 }
   1340 
   1341 /*
   1342  * database independent routines
   1343  */
   1344 
   1345 /*
   1346  * st_hash()
   1347  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1348  *	end of file, as this provides far better distribution than any other
   1349  *	part of the name. For performance reasons we only care about the last
   1350  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1351  *	name). Was tested on 500,000 name file tree traversal from the root
   1352  *	and gave almost a perfectly uniform distribution of keys when used with
   1353  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1354  *	chars at a time and pads with 0 for last addition.
   1355  * Return:
   1356  *	the hash value of the string MOD (%) the table size.
   1357  */
   1358 
   1359 #if __STDC__
   1360 u_int
   1361 st_hash(char *name, int len, int tabsz)
   1362 #else
   1363 u_int
   1364 st_hash(name, len, tabsz)
   1365 	char *name;
   1366 	int len;
   1367 	int tabsz;
   1368 #endif
   1369 {
   1370 	register char *pt;
   1371 	register char *dest;
   1372 	register char *end;
   1373 	register int i;
   1374 	register u_int key = 0;
   1375 	register int steps;
   1376 	register int res;
   1377 	u_int val;
   1378 
   1379 	/*
   1380 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1381 	 * time here (remember these are pathnames, the tail is what will
   1382 	 * spread out the keys)
   1383 	 */
   1384 	if (len > MAXKEYLEN) {
   1385                 pt = &(name[len - MAXKEYLEN]);
   1386 		len = MAXKEYLEN;
   1387 	} else
   1388 		pt = name;
   1389 
   1390 	/*
   1391 	 * calculate the number of u_int size steps in the string and if
   1392 	 * there is a runt to deal with
   1393 	 */
   1394 	steps = len/sizeof(u_int);
   1395 	res = len % sizeof(u_int);
   1396 
   1397 	/*
   1398 	 * add up the value of the string in unsigned integer sized pieces
   1399 	 * too bad we cannot have unsigned int aligned strings, then we
   1400 	 * could avoid the expensive copy.
   1401 	 */
   1402 	for (i = 0; i < steps; ++i) {
   1403 		end = pt + sizeof(u_int);
   1404 		dest = (char *)&val;
   1405 		while (pt < end)
   1406 			*dest++ = *pt++;
   1407 		key += val;
   1408 	}
   1409 
   1410 	/*
   1411 	 * add in the runt padded with zero to the right
   1412 	 */
   1413 	if (res) {
   1414 		val = 0;
   1415 		end = pt + res;
   1416 		dest = (char *)&val;
   1417 		while (pt < end)
   1418 			*dest++ = *pt++;
   1419 		key += val;
   1420 	}
   1421 
   1422 	/*
   1423 	 * return the result mod the table size
   1424 	 */
   1425 	return(key % tabsz);
   1426 }
   1427