tables.c revision 1.1.1.1 1 /*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #ifndef lint
39 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
40 #endif /* not lint */
41
42 #include <sys/types.h>
43 #include <sys/time.h>
44 #include <sys/stat.h>
45 #include <sys/param.h>
46 #include <sys/fcntl.h>
47 #include <stdio.h>
48 #include <ctype.h>
49 #include <string.h>
50 #include <unistd.h>
51 #include <errno.h>
52 #include <stdlib.h>
53 #include "pax.h"
54 #include "tables.h"
55 #include "extern.h"
56
57 /*
58 * Routines for controlling the contents of all the different databases pax
59 * keeps. Tables are dynamically created only when they are needed. The
60 * goal was speed and the ability to work with HUGE archives. The databases
61 * were kept simple, but do have complex rules for when the contents change.
62 * As of this writing, the posix library functions were more complex than
63 * needed for this application (pax databases have very short lifetimes and
64 * do not survive after pax is finished). Pax is required to handle very
65 * large archives. These database routines carefully combine memory usage and
66 * temporary file storage in ways which will not significantly impact runtime
67 * performance while allowing the largest possible archives to be handled.
68 * Trying to force the fit to the posix databases routines was not considered
69 * time well spent.
70 */
71
72 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
73 static FTM **ftab = NULL; /* file time table for updating arch */
74 static NAMT **ntab = NULL; /* interactive rename storage table */
75 static DEVT **dtab = NULL; /* device/inode mapping tables */
76 static ATDIR **atab = NULL; /* file tree directory time reset table */
77 static int dirfd = -1; /* storage for setting created dir time/mode */
78 static u_long dircnt; /* entries in dir time/mode storage */
79 static int ffd = -1; /* tmp file for file time table name storage */
80
81 static DEVT *chk_dev __P((dev_t, int));
82
83 /*
84 * hard link table routines
85 *
86 * The hard link table tries to detect hard links to files using the device and
87 * inode values. We do this when writing an archive, so we can tell the format
88 * write routine that this file is a hard link to another file. The format
89 * write routine then can store this file in whatever way it wants (as a hard
90 * link if the format supports that like tar, or ignore this info like cpio).
91 * (Actually a field in the format driver table tells us if the format wants
92 * hard link info. if not, we do not waste time looking for them). We also use
93 * the same table when reading an archive. In that situation, this table is
94 * used by the format read routine to detect hard links from stored dev and
95 * inode numbers (like cpio). This will allow pax to create a link when one
96 * can be detected by the archive format.
97 */
98
99 /*
100 * lnk_start
101 * Creates the hard link table.
102 * Return:
103 * 0 if created, -1 if failure
104 */
105
106 #if __STDC__
107 int
108 lnk_start(void)
109 #else
110 int
111 lnk_start()
112 #endif
113 {
114 if (ltab != NULL)
115 return(0);
116 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
117 warn(1, "Cannot allocate memory for hard link table");
118 return(-1);
119 }
120 return(0);
121 }
122
123 /*
124 * chk_lnk()
125 * Looks up entry in hard link hash table. If found, it copies the name
126 * of the file it is linked to (we already saw that file) into ln_name.
127 * lnkcnt is decremented and if goes to 1 the node is deleted from the
128 * database. (We have seen all the links to this file). If not found,
129 * we add the file to the database if it has the potential for having
130 * hard links to other files we may process (it has a link count > 1)
131 * Return:
132 * if found returns 1; if not found returns 0; -1 on error
133 */
134
135 #if __STDC__
136 int
137 chk_lnk(register ARCHD *arcn)
138 #else
139 int
140 chk_lnk(arcn)
141 register ARCHD *arcn;
142 #endif
143 {
144 register HRDLNK *pt;
145 register HRDLNK **ppt;
146 register u_int indx;
147
148 if (ltab == NULL)
149 return(-1);
150 /*
151 * ignore those nodes that cannot have hard links
152 */
153 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
154 return(0);
155
156 /*
157 * hash inode number and look for this file
158 */
159 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
160 if ((pt = ltab[indx]) != NULL) {
161 /*
162 * it's hash chain in not empty, walk down looking for it
163 */
164 ppt = &(ltab[indx]);
165 while (pt != NULL) {
166 if ((pt->ino == arcn->sb.st_ino) &&
167 (pt->dev == arcn->sb.st_dev))
168 break;
169 ppt = &(pt->fow);
170 pt = pt->fow;
171 }
172
173 if (pt != NULL) {
174 /*
175 * found a link. set the node type and copy in the
176 * name of the file it is to link to. we need to
177 * handle hardlinks to regular files differently than
178 * other links.
179 */
180 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
181 PAXPATHLEN+1);
182 if (arcn->type == PAX_REG)
183 arcn->type = PAX_HRG;
184 else
185 arcn->type = PAX_HLK;
186
187 /*
188 * if we have found all the links to this file, remove
189 * it from the database
190 */
191 if (--pt->nlink <= 1) {
192 *ppt = pt->fow;
193 (void)free((char *)pt->name);
194 (void)free((char *)pt);
195 }
196 return(1);
197 }
198 }
199
200 /*
201 * we never saw this file before. It has links so we add it to the
202 * front of this hash chain
203 */
204 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
205 if ((pt->name = strdup(arcn->name)) != NULL) {
206 pt->dev = arcn->sb.st_dev;
207 pt->ino = arcn->sb.st_ino;
208 pt->nlink = arcn->sb.st_nlink;
209 pt->fow = ltab[indx];
210 ltab[indx] = pt;
211 return(0);
212 }
213 (void)free((char *)pt);
214 }
215
216 warn(1, "Hard link table out of memory");
217 return(-1);
218 }
219
220 /*
221 * purg_lnk
222 * remove reference for a file that we may have added to the data base as
223 * a potential source for hard links. We ended up not using the file, so
224 * we do not want to accidently point another file at it later on.
225 */
226
227 #if __STDC__
228 void
229 purg_lnk(register ARCHD *arcn)
230 #else
231 void
232 purg_lnk(arcn)
233 register ARCHD *arcn;
234 #endif
235 {
236 register HRDLNK *pt;
237 register HRDLNK **ppt;
238 register u_int indx;
239
240 if (ltab == NULL)
241 return;
242 /*
243 * do not bother to look if it could not be in the database
244 */
245 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
246 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
247 return;
248
249 /*
250 * find the hash chain for this inode value, if empty return
251 */
252 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
253 if ((pt = ltab[indx]) == NULL)
254 return;
255
256 /*
257 * walk down the list looking for the inode/dev pair, unlink and
258 * free if found
259 */
260 ppt = &(ltab[indx]);
261 while (pt != NULL) {
262 if ((pt->ino == arcn->sb.st_ino) &&
263 (pt->dev == arcn->sb.st_dev))
264 break;
265 ppt = &(pt->fow);
266 pt = pt->fow;
267 }
268 if (pt == NULL)
269 return;
270
271 /*
272 * remove and free it
273 */
274 *ppt = pt->fow;
275 (void)free((char *)pt->name);
276 (void)free((char *)pt);
277 }
278
279 /*
280 * lnk_end()
281 * pull apart a existing link table so we can reuse it. We do this between
282 * read and write phases of append with update. (The format may have
283 * used the link table, and we need to start with a fresh table for the
284 * write phase
285 */
286
287 #if __STDC__
288 void
289 lnk_end(void)
290 #else
291 void
292 lnk_end()
293 #endif
294 {
295 register int i;
296 register HRDLNK *pt;
297 register HRDLNK *ppt;
298
299 if (ltab == NULL)
300 return;
301
302 for (i = 0; i < L_TAB_SZ; ++i) {
303 if (ltab[i] == NULL)
304 continue;
305 pt = ltab[i];
306 ltab[i] = NULL;
307
308 /*
309 * free up each entry on this chain
310 */
311 while (pt != NULL) {
312 ppt = pt;
313 pt = ppt->fow;
314 (void)free((char *)ppt->name);
315 (void)free((char *)ppt);
316 }
317 }
318 return;
319 }
320
321 /*
322 * modification time table routines
323 *
324 * The modification time table keeps track of last modification times for all
325 * files stored in an archive during a write phase when -u is set. We only
326 * add a file to the archive if it is newer than a file with the same name
327 * already stored on the archive (if there is no other file with the same
328 * name on the archive it is added). This applies to writes and appends.
329 * An append with an -u must read the archive and store the modification time
330 * for every file on that archive before starting the write phase. It is clear
331 * that this is one HUGE database. To save memory space, the actual file names
332 * are stored in a scatch file and indexed by an in memory hash table. The
333 * hash table is indexed by hashing the file path. The nodes in the table store
334 * the length of the filename and the lseek offset within the scratch file
335 * where the actual name is stored. Since there are never any deletions to this
336 * table, fragmentation of the scratch file is never a issue. Lookups seem to
337 * not exhibit any locality at all (files in the database are rarely
338 * looked up more than once...). So caching is just a waste of memory. The
339 * only limitation is the amount of scatch file space available to store the
340 * path names.
341 */
342
343 /*
344 * ftime_start()
345 * create the file time hash table and open for read/write the scratch
346 * file. (after created it is unlinked, so when we exit we leave
347 * no witnesses).
348 * Return:
349 * 0 if the table and file was created ok, -1 otherwise
350 */
351
352 #if __STDC__
353 int
354 ftime_start(void)
355 #else
356 int
357 ftime_start()
358 #endif
359 {
360 char *pt;
361
362 if (ftab != NULL)
363 return(0);
364 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
365 warn(1, "Cannot allocate memory for file time table");
366 return(-1);
367 }
368
369 /*
370 * get random name and create temporary scratch file, unlink name
371 * so it will get removed on exit
372 */
373 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
374 return(-1);
375 (void)unlink(pt);
376
377 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) {
378 syswarn(1, errno, "Unable to open temporary file: %s", pt);
379 return(-1);
380 }
381
382 (void)unlink(pt);
383 return(0);
384 }
385
386 /*
387 * chk_ftime()
388 * looks up entry in file time hash table. If not found, the file is
389 * added to the hash table and the file named stored in the scratch file.
390 * If a file with the same name is found, the file times are compared and
391 * the most recent file time is retained. If the new file was younger (or
392 * was not in the database) the new file is selected for storage.
393 * Return:
394 * 0 if file should be added to the archive, 1 if it should be skipped,
395 * -1 on error
396 */
397
398 #if __STDC__
399 int
400 chk_ftime(register ARCHD *arcn)
401 #else
402 int
403 chk_ftime(arcn)
404 register ARCHD *arcn;
405 #endif
406 {
407 register FTM *pt;
408 register int namelen;
409 register u_int indx;
410 char ckname[PAXPATHLEN+1];
411
412 /*
413 * no info, go ahead and add to archive
414 */
415 if (ftab == NULL)
416 return(0);
417
418 /*
419 * hash the pathname and look up in table
420 */
421 namelen = arcn->nlen;
422 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
423 if ((pt = ftab[indx]) != NULL) {
424 /*
425 * the hash chain is not empty, walk down looking for match
426 * only read up the path names if the lengths match, speeds
427 * up the search a lot
428 */
429 while (pt != NULL) {
430 if (pt->namelen == namelen) {
431 /*
432 * potential match, have to read the name
433 * from the scratch file.
434 */
435 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
436 syswarn(1, errno,
437 "Failed ftime table seek");
438 return(-1);
439 }
440 if (read(ffd, ckname, namelen) != namelen) {
441 syswarn(1, errno,
442 "Failed ftime table read");
443 return(-1);
444 }
445
446 /*
447 * if the names match, we are done
448 */
449 if (!strncmp(ckname, arcn->name, namelen))
450 break;
451 }
452
453 /*
454 * try the next entry on the chain
455 */
456 pt = pt->fow;
457 }
458
459 if (pt != NULL) {
460 /*
461 * found the file, compare the times, save the newer
462 */
463 if (arcn->sb.st_mtime > pt->mtime) {
464 /*
465 * file is newer
466 */
467 pt->mtime = arcn->sb.st_mtime;
468 return(0);
469 }
470 /*
471 * file is older
472 */
473 return(1);
474 }
475 }
476
477 /*
478 * not in table, add it
479 */
480 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
481 /*
482 * add the name at the end of the scratch file, saving the
483 * offset. add the file to the head of the hash chain
484 */
485 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
486 if (write(ffd, arcn->name, namelen) == namelen) {
487 pt->mtime = arcn->sb.st_mtime;
488 pt->namelen = namelen;
489 pt->fow = ftab[indx];
490 ftab[indx] = pt;
491 return(0);
492 }
493 syswarn(1, errno, "Failed write to file time table");
494 } else
495 syswarn(1, errno, "Failed seek on file time table");
496 } else
497 warn(1, "File time table ran out of memory");
498
499 if (pt != NULL)
500 (void)free((char *)pt);
501 return(-1);
502 }
503
504 /*
505 * Interactive rename table routines
506 *
507 * The interactive rename table keeps track of the new names that the user
508 * assignes to files from tty input. Since this map is unique for each file
509 * we must store it in case there is a reference to the file later in archive
510 * (a link). Otherwise we will be unable to find the file we know was
511 * extracted. The remapping of these files is stored in a memory based hash
512 * table (it is assumed since input must come from /dev/tty, it is unlikely to
513 * be a very large table).
514 */
515
516 /*
517 * name_start()
518 * create the interactive rename table
519 * Return:
520 * 0 if successful, -1 otherwise
521 */
522
523 #if __STDC__
524 int
525 name_start(void)
526 #else
527 int
528 name_start()
529 #endif
530 {
531 if (ntab != NULL)
532 return(0);
533 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
534 warn(1, "Cannot allocate memory for interactive rename table");
535 return(-1);
536 }
537 return(0);
538 }
539
540 /*
541 * add_name()
542 * add the new name to old name mapping just created by the user.
543 * If an old name mapping is found (there may be duplicate names on an
544 * archive) only the most recent is kept.
545 * Return:
546 * 0 if added, -1 otherwise
547 */
548
549 #if __STDC__
550 int
551 add_name(register char *oname, int onamelen, char *nname)
552 #else
553 int
554 add_name(oname, onamelen, nname)
555 register char *oname;
556 int onamelen;
557 char *nname;
558 #endif
559 {
560 register NAMT *pt;
561 register u_int indx;
562
563 if (ntab == NULL) {
564 /*
565 * should never happen
566 */
567 warn(0, "No interactive rename table, links may fail\n");
568 return(0);
569 }
570
571 /*
572 * look to see if we have already mapped this file, if so we
573 * will update it
574 */
575 indx = st_hash(oname, onamelen, N_TAB_SZ);
576 if ((pt = ntab[indx]) != NULL) {
577 /*
578 * look down the has chain for the file
579 */
580 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
581 pt = pt->fow;
582
583 if (pt != NULL) {
584 /*
585 * found an old mapping, replace it with the new one
586 * the user just input (if it is different)
587 */
588 if (strcmp(nname, pt->nname) == 0)
589 return(0);
590
591 (void)free((char *)pt->nname);
592 if ((pt->nname = strdup(nname)) == NULL) {
593 warn(1, "Cannot update rename table");
594 return(-1);
595 }
596 return(0);
597 }
598 }
599
600 /*
601 * this is a new mapping, add it to the table
602 */
603 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
604 if ((pt->oname = strdup(oname)) != NULL) {
605 if ((pt->nname = strdup(nname)) != NULL) {
606 pt->fow = ntab[indx];
607 ntab[indx] = pt;
608 return(0);
609 }
610 (void)free((char *)pt->oname);
611 }
612 (void)free((char *)pt);
613 }
614 warn(1, "Interactive rename table out of memory");
615 return(-1);
616 }
617
618 /*
619 * sub_name()
620 * look up a link name to see if it points at a file that has been
621 * remapped by the user. If found, the link is adjusted to contain the
622 * new name (oname is the link to name)
623 */
624
625 #if __STDC__
626 void
627 sub_name(register char *oname, int *onamelen)
628 #else
629 void
630 sub_name(oname, onamelen)
631 register char *oname;
632 int *onamelen;
633 #endif
634 {
635 register NAMT *pt;
636 register u_int indx;
637
638 if (ntab == NULL)
639 return;
640 /*
641 * look the name up in the hash table
642 */
643 indx = st_hash(oname, *onamelen, N_TAB_SZ);
644 if ((pt = ntab[indx]) == NULL)
645 return;
646
647 while (pt != NULL) {
648 /*
649 * walk down the hash cahin looking for a match
650 */
651 if (strcmp(oname, pt->oname) == 0) {
652 /*
653 * found it, replace it with the new name
654 * and return (we know that oname has enough space)
655 */
656 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
657 return;
658 }
659 pt = pt->fow;
660 }
661
662 /*
663 * no match, just return
664 */
665 return;
666 }
667
668 /*
669 * device/inode mapping table routines
670 * (used with formats that store device and inodes fields)
671 *
672 * device/inode mapping tables remap the device field in a archive header. The
673 * device/inode fields are used to determine when files are hard links to each
674 * other. However these values have very little meaning outside of that. This
675 * database is used to solve one of two different problems.
676 *
677 * 1) when files are appended to an archive, while the new files may have hard
678 * links to each other, you cannot determine if they have hard links to any
679 * file already stored on the archive from a prior run of pax. We must assume
680 * that these inode/device pairs are unique only within a SINGLE run of pax
681 * (which adds a set of files to an archive). So we have to make sure the
682 * inode/dev pairs we add each time are always unique. We do this by observing
683 * while the inode field is very dense, the use of the dev field is fairly
684 * sparse. Within each run of pax, we remap any device number of a new archive
685 * member that has a device number used in a prior run and already stored in a
686 * file on the archive. During the read phase of the append, we store the
687 * device numbers used and mark them to not be used by any file during the
688 * write phase. If during write we go to use one of those old device numbers,
689 * we remap it to a new value.
690 *
691 * 2) Often the fields in the archive header used to store these values are
692 * too small to store the entire value. The result is an inode or device value
693 * which can be truncated. This really can foul up an archive. With truncation
694 * we end up creating links between files that are really not links (after
695 * truncation the inodes are the same value). We address that by detecting
696 * truncation and forcing a remap of the device field to split truncated
697 * inodes away from each other. Each truncation creates a pattern of bits that
698 * are removed. We use this pattern of truncated bits to partition the inodes
699 * on a single device to many different devices (each one represented by the
700 * truncated bit pattern). All inodes on the same device that have the same
701 * truncation pattern are mapped to the same new device. Two inodes that
702 * truncate to the same value clearly will always have different truncation
703 * bit patterns, so they will be split from away each other. When we spot
704 * device truncation we remap the device number to a non truncated value.
705 * (for more info see table.h for the data structures involved).
706 */
707
708 /*
709 * dev_start()
710 * create the device mapping table
711 * Return:
712 * 0 if successful, -1 otherwise
713 */
714
715 #if __STDC__
716 int
717 dev_start(void)
718 #else
719 int
720 dev_start()
721 #endif
722 {
723 if (dtab != NULL)
724 return(0);
725 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
726 warn(1, "Cannot allocate memory for device mapping table");
727 return(-1);
728 }
729 return(0);
730 }
731
732 /*
733 * add_dev()
734 * add a device number to the table. this will force the device to be
735 * remapped to a new value if it be used during a write phase. This
736 * function is called during the read phase of an append to prohibit the
737 * use of any device number already in the archive.
738 * Return:
739 * 0 if added ok, -1 otherwise
740 */
741
742 #if __STDC__
743 int
744 add_dev(register ARCHD *arcn)
745 #else
746 int
747 add_dev(arcn)
748 register ARCHD *arcn;
749 #endif
750 {
751 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
752 return(-1);
753 return(0);
754 }
755
756 /*
757 * chk_dev()
758 * check for a device value in the device table. If not found and the add
759 * flag is set, it is added. This does NOT assign any mapping values, just
760 * adds the device number as one that need to be remapped. If this device
761 * is alread mapped, just return with a pointer to that entry.
762 * Return:
763 * pointer to the entry for this device in the device map table. Null
764 * if the add flag is not set and the device is not in the table (it is
765 * not been seen yet). If add is set and the device cannot be added, null
766 * is returned (indicates an error).
767 */
768
769 #if __STDC__
770 static DEVT *
771 chk_dev(dev_t dev, int add)
772 #else
773 static DEVT *
774 chk_dev(dev, add)
775 dev_t dev;
776 int add;
777 #endif
778 {
779 register DEVT *pt;
780 register u_int indx;
781
782 if (dtab == NULL)
783 return(NULL);
784 /*
785 * look to see if this device is already in the table
786 */
787 indx = ((unsigned)dev) % D_TAB_SZ;
788 if ((pt = dtab[indx]) != NULL) {
789 while ((pt != NULL) && (pt->dev != dev))
790 pt = pt->fow;
791
792 /*
793 * found it, return a pointer to it
794 */
795 if (pt != NULL)
796 return(pt);
797 }
798
799 /*
800 * not in table, we add it only if told to as this may just be a check
801 * to see if a device number is being used.
802 */
803 if (add == 0)
804 return(NULL);
805
806 /*
807 * allocate a node for this device and add it to the front of the hash
808 * chain. Note we do not assign remaps values here, so the pt->list
809 * list must be NULL.
810 */
811 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
812 warn(1, "Device map table out of memory");
813 return(NULL);
814 }
815 pt->dev = dev;
816 pt->list = NULL;
817 pt->fow = dtab[indx];
818 dtab[indx] = pt;
819 return(pt);
820 }
821 /*
822 * map_dev()
823 * given an inode and device storage mask (the mask has a 1 for each bit
824 * the archive format is able to store in a header), we check for inode
825 * and device truncation and remap the device as required. Device mapping
826 * can also occur when during the read phase of append a device number was
827 * seen (and was marked as do not use during the write phase). WE ASSUME
828 * that unsigned longs are the same size or bigger than the fields used
829 * for ino_t and dev_t. If not the types will have to be changed.
830 * Return:
831 * 0 if all ok, -1 otherwise.
832 */
833
834 #if __STDC__
835 int
836 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
837 #else
838 int
839 map_dev(arcn, dev_mask, ino_mask)
840 register ARCHD *arcn;
841 u_long dev_mask;
842 u_long ino_mask;
843 #endif
844 {
845 register DEVT *pt;
846 register DLIST *dpt;
847 static dev_t lastdev = 0; /* next device number to try */
848 int trc_ino = 0;
849 int trc_dev = 0;
850 ino_t trunc_bits = 0;
851 ino_t nino;
852
853 if (dtab == NULL)
854 return(0);
855 /*
856 * check for device and inode truncation, and extract the truncated
857 * bit pattern.
858 */
859 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
860 ++trc_dev;
861 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
862 ++trc_ino;
863 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
864 }
865
866 /*
867 * see if this device is already being mapped, look up the device
868 * then find the truncation bit pattern which applies
869 */
870 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
871 /*
872 * this device is already marked to be remapped
873 */
874 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
875 if (dpt->trunc_bits == trunc_bits)
876 break;
877
878 if (dpt != NULL) {
879 /*
880 * we are being remapped for this device and pattern
881 * change the device number to be stored and return
882 */
883 arcn->sb.st_dev = dpt->dev;
884 arcn->sb.st_ino = nino;
885 return(0);
886 }
887 } else {
888 /*
889 * this device is not being remapped YET. if we do not have any
890 * form of truncation, we do not need a remap
891 */
892 if (!trc_ino && !trc_dev)
893 return(0);
894
895 /*
896 * we have truncation, have to add this as a device to remap
897 */
898 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
899 goto bad;
900
901 /*
902 * if we just have a truncated inode, we have to make sure that
903 * all future inodes that do not truncate (they have the
904 * truncation pattern of all 0's) continue to map to the same
905 * device number. We probably have already written inodes with
906 * this device number to the archive with the truncation
907 * pattern of all 0's. So we add the mapping for all 0's to the
908 * same device number.
909 */
910 if (!trc_dev && (trunc_bits != 0)) {
911 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
912 goto bad;
913 dpt->trunc_bits = 0;
914 dpt->dev = arcn->sb.st_dev;
915 dpt->fow = pt->list;
916 pt->list = dpt;
917 }
918 }
919
920 /*
921 * look for a device number not being used. We must watch for wrap
922 * around on lastdev (so we do not get stuck looking forever!)
923 */
924 while (++lastdev > 0) {
925 if (chk_dev(lastdev, 0) != NULL)
926 continue;
927 /*
928 * found an unused value. If we have reached truncation point
929 * for this format we are hosed, so we give up. Otherwise we
930 * mark it as being used.
931 */
932 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
933 (chk_dev(lastdev, 1) == NULL))
934 goto bad;
935 break;
936 }
937
938 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
939 goto bad;
940
941 /*
942 * got a new device number, store it under this truncation pattern.
943 * change the device number this file is being stored with.
944 */
945 dpt->trunc_bits = trunc_bits;
946 dpt->dev = lastdev;
947 dpt->fow = pt->list;
948 pt->list = dpt;
949 arcn->sb.st_dev = lastdev;
950 arcn->sb.st_ino = nino;
951 return(0);
952
953 bad:
954 warn(1, "Unable to fix truncated inode/device field when storing %s",
955 arcn->name);
956 warn(0, "Archive may create improper hard links when extracted");
957 return(0);
958 }
959
960 /*
961 * directory access/mod time reset table routines (for directories READ by pax)
962 *
963 * The pax -t flag requires that access times of archive files to be the same
964 * before being read by pax. For regular files, access time is restored after
965 * the file has been copied. This database provides the same functionality for
966 * directories read during file tree traversal. Restoring directory access time
967 * is more complex than files since directories may be read several times until
968 * all the descendants in their subtree are visited by fts. Directory access
969 * and modification times are stored during the fts pre-order visit (done
970 * before any descendants in the subtree is visited) and restored after the
971 * fts post-order visit (after all the descendants have been visited). In the
972 * case of premature exit from a subtree (like from the effects of -n), any
973 * directory entries left in this database are reset during final cleanup
974 * operations of pax. Entries are hashed by inode number for fast lookup.
975 */
976
977 /*
978 * atdir_start()
979 * create the directory access time database for directories READ by pax.
980 * Return:
981 * 0 is created ok, -1 otherwise.
982 */
983
984 #if __STDC__
985 int
986 atdir_start(void)
987 #else
988 int
989 atdir_start()
990 #endif
991 {
992 if (atab != NULL)
993 return(0);
994 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
995 warn(1,"Cannot allocate space for directory access time table");
996 return(-1);
997 }
998 return(0);
999 }
1000
1001
1002 /*
1003 * atdir_end()
1004 * walk through the directory access time table and reset the access time
1005 * of any directory who still has an entry left in the database. These
1006 * entries are for directories READ by pax
1007 */
1008
1009 #if __STDC__
1010 void
1011 atdir_end(void)
1012 #else
1013 void
1014 atdir_end()
1015 #endif
1016 {
1017 register ATDIR *pt;
1018 register int i;
1019
1020 if (atab == NULL)
1021 return;
1022 /*
1023 * for each non-empty hash table entry reset all the directories
1024 * chained there.
1025 */
1026 for (i = 0; i < A_TAB_SZ; ++i) {
1027 if ((pt = atab[i]) == NULL)
1028 continue;
1029 /*
1030 * remember to force the times, set_ftime() looks at pmtime
1031 * and patime, which only applies to things CREATED by pax,
1032 * not read by pax. Read time reset is controlled by -t.
1033 */
1034 for (; pt != NULL; pt = pt->fow)
1035 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1036 }
1037 }
1038
1039 /*
1040 * add_atdir()
1041 * add a directory to the directory access time table. Table is hashed
1042 * and chained by inode number. This is for directories READ by pax
1043 */
1044
1045 #if __STDC__
1046 void
1047 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1048 #else
1049 void
1050 add_atdir(fname, dev, ino, mtime, atime)
1051 char *fname;
1052 dev_t dev;
1053 ino_t ino;
1054 time_t mtime;
1055 time_t atime;
1056 #endif
1057 {
1058 register ATDIR *pt;
1059 register u_int indx;
1060
1061 if (atab == NULL)
1062 return;
1063
1064 /*
1065 * make sure this directory is not already in the table, if so just
1066 * return (the older entry always has the correct time). The only
1067 * way this will happen is when the same subtree can be traversed by
1068 * different args to pax and the -n option is aborting fts out of a
1069 * subtree before all the post-order visits have been made).
1070 */
1071 indx = ((unsigned)ino) % A_TAB_SZ;
1072 if ((pt = atab[indx]) != NULL) {
1073 while (pt != NULL) {
1074 if ((pt->ino == ino) && (pt->dev == dev))
1075 break;
1076 pt = pt->fow;
1077 }
1078
1079 /*
1080 * oops, already there. Leave it alone.
1081 */
1082 if (pt != NULL)
1083 return;
1084 }
1085
1086 /*
1087 * add it to the front of the hash chain
1088 */
1089 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1090 if ((pt->name = strdup(fname)) != NULL) {
1091 pt->dev = dev;
1092 pt->ino = ino;
1093 pt->mtime = mtime;
1094 pt->atime = atime;
1095 pt->fow = atab[indx];
1096 atab[indx] = pt;
1097 return;
1098 }
1099 (void)free((char *)pt);
1100 }
1101
1102 warn(1, "Directory access time reset table ran out of memory");
1103 return;
1104 }
1105
1106 /*
1107 * get_atdir()
1108 * look up a directory by inode and device number to obtain the access
1109 * and modification time you want to set to. If found, the modification
1110 * and access time parameters are set and the entry is removed from the
1111 * table (as it is no longer needed). These are for directories READ by
1112 * pax
1113 * Return:
1114 * 0 if found, -1 if not found.
1115 */
1116
1117 #if __STDC__
1118 int
1119 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1120 #else
1121 int
1122 get_atdir(dev, ino, mtime, atime)
1123 dev_t dev;
1124 ino_t ino;
1125 time_t *mtime;
1126 time_t *atime;
1127 #endif
1128 {
1129 register ATDIR *pt;
1130 register ATDIR **ppt;
1131 register u_int indx;
1132
1133 if (atab == NULL)
1134 return(-1);
1135 /*
1136 * hash by inode and search the chain for an inode and device match
1137 */
1138 indx = ((unsigned)ino) % A_TAB_SZ;
1139 if ((pt = atab[indx]) == NULL)
1140 return(-1);
1141
1142 ppt = &(atab[indx]);
1143 while (pt != NULL) {
1144 if ((pt->ino == ino) && (pt->dev == dev))
1145 break;
1146 /*
1147 * no match, go to next one
1148 */
1149 ppt = &(pt->fow);
1150 pt = pt->fow;
1151 }
1152
1153 /*
1154 * return if we did not find it.
1155 */
1156 if (pt == NULL)
1157 return(-1);
1158
1159 /*
1160 * found it. return the times and remove the entry from the table.
1161 */
1162 *ppt = pt->fow;
1163 *mtime = pt->mtime;
1164 *atime = pt->atime;
1165 (void)free((char *)pt->name);
1166 (void)free((char *)pt);
1167 return(0);
1168 }
1169
1170 /*
1171 * directory access mode and time storage routines (for directories CREATED
1172 * by pax).
1173 *
1174 * Pax requires that extracted directories, by default, have their access/mod
1175 * times and permissions set to the values specified in the archive. During the
1176 * actions of extracting (and creating the destination subtree during -rw copy)
1177 * directories extracted may be modified after being created. Even worse is
1178 * that these directories may have been created with file permissions which
1179 * prohibits any descendants of these directories from being extracted. When
1180 * directories are created by pax, access rights may be added to permit the
1181 * creation of files in their subtree. Every time pax creates a directory, the
1182 * times and file permissions specified by the archive are stored. After all
1183 * files have been extracted (or copied), these directories have their times
1184 * and file modes reset to the stored values. The directory info is restored in
1185 * reverse order as entries were added to the data file from root to leaf. To
1186 * restore atime properly, we must go backwards. The data file consists of
1187 * records with two parts, the file name followed by a DIRDATA trailer. The
1188 * fixed sized trailer contains the size of the name plus the off_t location in
1189 * the file. To restore we work backwards through the file reading the trailer
1190 * then the file name.
1191 */
1192
1193 /*
1194 * dir_start()
1195 * set up the directory time and file mode storage for directories CREATED
1196 * by pax.
1197 * Return:
1198 * 0 if ok, -1 otherwise
1199 */
1200
1201 #if __STDC__
1202 int
1203 dir_start(void)
1204 #else
1205 int
1206 dir_start()
1207 #endif
1208 {
1209 char *pt;
1210
1211 if (dirfd != -1)
1212 return(0);
1213 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1214 return(-1);
1215
1216 /*
1217 * unlink the file so it goes away at termination by itself
1218 */
1219 (void)unlink(pt);
1220 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1221 (void)unlink(pt);
1222 return(0);
1223 }
1224 warn(1, "Unable to create temporary file for directory times: %s", pt);
1225 return(-1);
1226 }
1227
1228 /*
1229 * add_dir()
1230 * add the mode and times for a newly CREATED directory
1231 * name is name of the directory, psb the stat buffer with the data in it,
1232 * frc_mode is a flag that says whether to force the setting of the mode
1233 * (ignoring the user set values for preserving file mode). Frc_mode is
1234 * for the case where we created a file and found that the resulting
1235 * directory was not writeable and the user asked for file modes to NOT
1236 * be preserved. (we have to preserve what was created by default, so we
1237 * have to force the setting at the end. this is stated explicitly in the
1238 * pax spec)
1239 */
1240
1241 #if __STDC__
1242 void
1243 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1244 #else
1245 void
1246 add_dir(name, nlen, psb, frc_mode)
1247 char *name;
1248 int nlen;
1249 struct stat *psb;
1250 int frc_mode;
1251 #endif
1252 {
1253 DIRDATA dblk;
1254
1255 if (dirfd < 0)
1256 return;
1257
1258 /*
1259 * get current position (where file name will start) so we can store it
1260 * in the trailer
1261 */
1262 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1263 warn(1,"Unable to store mode and times for directory: %s",name);
1264 return;
1265 }
1266
1267 /*
1268 * write the file name followed by the trailer
1269 */
1270 dblk.nlen = nlen + 1;
1271 dblk.mode = psb->st_mode & 0xffff;
1272 dblk.mtime = psb->st_mtime;
1273 dblk.atime = psb->st_atime;
1274 dblk.frc_mode = frc_mode;
1275 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1276 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1277 ++dircnt;
1278 return;
1279 }
1280
1281 warn(1,"Unable to store mode and times for created directory: %s",name);
1282 return;
1283 }
1284
1285 /*
1286 * proc_dir()
1287 * process all file modes and times stored for directories CREATED
1288 * by pax
1289 */
1290
1291 #if __STDC__
1292 void
1293 proc_dir(void)
1294 #else
1295 void
1296 proc_dir()
1297 #endif
1298 {
1299 char name[PAXPATHLEN+1];
1300 DIRDATA dblk;
1301 u_long cnt;
1302
1303 if (dirfd < 0)
1304 return;
1305 /*
1306 * read backwards through the file and process each directory
1307 */
1308 for (cnt = 0; cnt < dircnt; ++cnt) {
1309 /*
1310 * read the trailer, then the file name, if this fails
1311 * just give up.
1312 */
1313 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1314 break;
1315 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1316 break;
1317 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1318 break;
1319 if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1320 break;
1321 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322 break;
1323
1324 /*
1325 * frc_mode set, make sure we set the file modes even if
1326 * the user didn't ask for it (see file_subs.c for more info)
1327 */
1328 if (pmode || dblk.frc_mode)
1329 set_pmode(name, dblk.mode);
1330 if (patime || pmtime)
1331 set_ftime(name, dblk.mtime, dblk.atime, 0);
1332 }
1333
1334 (void)close(dirfd);
1335 dirfd = -1;
1336 if (cnt != dircnt)
1337 warn(1,"Unable to set mode and times for created directories");
1338 return;
1339 }
1340
1341 /*
1342 * database independent routines
1343 */
1344
1345 /*
1346 * st_hash()
1347 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1348 * end of file, as this provides far better distribution than any other
1349 * part of the name. For performance reasons we only care about the last
1350 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1351 * name). Was tested on 500,000 name file tree traversal from the root
1352 * and gave almost a perfectly uniform distribution of keys when used with
1353 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1354 * chars at a time and pads with 0 for last addition.
1355 * Return:
1356 * the hash value of the string MOD (%) the table size.
1357 */
1358
1359 #if __STDC__
1360 u_int
1361 st_hash(char *name, int len, int tabsz)
1362 #else
1363 u_int
1364 st_hash(name, len, tabsz)
1365 char *name;
1366 int len;
1367 int tabsz;
1368 #endif
1369 {
1370 register char *pt;
1371 register char *dest;
1372 register char *end;
1373 register int i;
1374 register u_int key = 0;
1375 register int steps;
1376 register int res;
1377 u_int val;
1378
1379 /*
1380 * only look at the tail up to MAXKEYLEN, we do not need to waste
1381 * time here (remember these are pathnames, the tail is what will
1382 * spread out the keys)
1383 */
1384 if (len > MAXKEYLEN) {
1385 pt = &(name[len - MAXKEYLEN]);
1386 len = MAXKEYLEN;
1387 } else
1388 pt = name;
1389
1390 /*
1391 * calculate the number of u_int size steps in the string and if
1392 * there is a runt to deal with
1393 */
1394 steps = len/sizeof(u_int);
1395 res = len % sizeof(u_int);
1396
1397 /*
1398 * add up the value of the string in unsigned integer sized pieces
1399 * too bad we cannot have unsigned int aligned strings, then we
1400 * could avoid the expensive copy.
1401 */
1402 for (i = 0; i < steps; ++i) {
1403 end = pt + sizeof(u_int);
1404 dest = (char *)&val;
1405 while (pt < end)
1406 *dest++ = *pt++;
1407 key += val;
1408 }
1409
1410 /*
1411 * add in the runt padded with zero to the right
1412 */
1413 if (res) {
1414 val = 0;
1415 end = pt + res;
1416 dest = (char *)&val;
1417 while (pt < end)
1418 *dest++ = *pt++;
1419 key += val;
1420 }
1421
1422 /*
1423 * return the result mod the table size
1424 */
1425 return(key % tabsz);
1426 }
1427