Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.12
      1 /*	$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992 Keith Muller.
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * Keith Muller of the University of California, San Diego.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the University of
     22  *	California, Berkeley and its contributors.
     23  * 4. Neither the name of the University nor the names of its contributors
     24  *    may be used to endorse or promote products derived from this software
     25  *    without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  * SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 #ifndef lint
     42 #if 0
     43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44 #else
     45 __RCSID("$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $");
     46 #endif
     47 #endif /* not lint */
     48 
     49 #include <sys/types.h>
     50 #include <sys/time.h>
     51 #include <sys/stat.h>
     52 #include <sys/param.h>
     53 #include <stdio.h>
     54 #include <ctype.h>
     55 #include <fcntl.h>
     56 #include <paths.h>
     57 #include <string.h>
     58 #include <unistd.h>
     59 #include <errno.h>
     60 #include <stdlib.h>
     61 #include "pax.h"
     62 #include "tables.h"
     63 #include "extern.h"
     64 
     65 /*
     66  * Routines for controlling the contents of all the different databases pax
     67  * keeps. Tables are dynamically created only when they are needed. The
     68  * goal was speed and the ability to work with HUGE archives. The databases
     69  * were kept simple, but do have complex rules for when the contents change.
     70  * As of this writing, the posix library functions were more complex than
     71  * needed for this application (pax databases have very short lifetimes and
     72  * do not survive after pax is finished). Pax is required to handle very
     73  * large archives. These database routines carefully combine memory usage and
     74  * temporary file storage in ways which will not significantly impact runtime
     75  * performance while allowing the largest possible archives to be handled.
     76  * Trying to force the fit to the posix databases routines was not considered
     77  * time well spent.
     78  */
     79 
     80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81 static FTM **ftab = NULL;	/* file time table for updating arch */
     82 static NAMT **ntab = NULL;	/* interactive rename storage table */
     83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85 static int dirfd = -1;		/* storage for setting created dir time/mode */
     86 static u_long dircnt;		/* entries in dir time/mode storage */
     87 static int ffd = -1;		/* tmp file for file time table name storage */
     88 
     89 static DEVT *chk_dev __P((dev_t, int));
     90 
     91 /*
     92  * hard link table routines
     93  *
     94  * The hard link table tries to detect hard links to files using the device and
     95  * inode values. We do this when writing an archive, so we can tell the format
     96  * write routine that this file is a hard link to another file. The format
     97  * write routine then can store this file in whatever way it wants (as a hard
     98  * link if the format supports that like tar, or ignore this info like cpio).
     99  * (Actually a field in the format driver table tells us if the format wants
    100  * hard link info. if not, we do not waste time looking for them). We also use
    101  * the same table when reading an archive. In that situation, this table is
    102  * used by the format read routine to detect hard links from stored dev and
    103  * inode numbers (like cpio). This will allow pax to create a link when one
    104  * can be detected by the archive format.
    105  */
    106 
    107 /*
    108  * lnk_start
    109  *	Creates the hard link table.
    110  * Return:
    111  *	0 if created, -1 if failure
    112  */
    113 
    114 #if __STDC__
    115 int
    116 lnk_start(void)
    117 #else
    118 int
    119 lnk_start()
    120 #endif
    121 {
    122 	if (ltab != NULL)
    123 		return(0);
    124 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    125 		tty_warn(1, "Cannot allocate memory for hard link table");
    126 		return(-1);
    127 	}
    128 	return(0);
    129 }
    130 
    131 /*
    132  * chk_lnk()
    133  *	Looks up entry in hard link hash table. If found, it copies the name
    134  *	of the file it is linked to (we already saw that file) into ln_name.
    135  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    136  *	database. (We have seen all the links to this file). If not found,
    137  *	we add the file to the database if it has the potential for having
    138  *	hard links to other files we may process (it has a link count > 1)
    139  * Return:
    140  *	if found returns 1; if not found returns 0; -1 on error
    141  */
    142 
    143 #if __STDC__
    144 int
    145 chk_lnk(ARCHD *arcn)
    146 #else
    147 int
    148 chk_lnk(arcn)
    149 	ARCHD *arcn;
    150 #endif
    151 {
    152 	HRDLNK *pt;
    153 	HRDLNK **ppt;
    154 	u_int indx;
    155 
    156 	if (ltab == NULL)
    157 		return(-1);
    158 	/*
    159 	 * ignore those nodes that cannot have hard links
    160 	 */
    161 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    162 		return(0);
    163 
    164 	/*
    165 	 * hash inode number and look for this file
    166 	 */
    167 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    168 	if ((pt = ltab[indx]) != NULL) {
    169 		/*
    170 		 * it's hash chain in not empty, walk down looking for it
    171 		 */
    172 		ppt = &(ltab[indx]);
    173 		while (pt != NULL) {
    174 			if ((pt->ino == arcn->sb.st_ino) &&
    175 			    (pt->dev == arcn->sb.st_dev))
    176 				break;
    177 			ppt = &(pt->fow);
    178 			pt = pt->fow;
    179 		}
    180 
    181 		if (pt != NULL) {
    182 			/*
    183 			 * found a link. set the node type and copy in the
    184 			 * name of the file it is to link to. we need to
    185 			 * handle hardlinks to regular files differently than
    186 			 * other links.
    187 			 */
    188 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    189 				PAXPATHLEN+1);
    190 			if (arcn->type == PAX_REG)
    191 				arcn->type = PAX_HRG;
    192 			else
    193 				arcn->type = PAX_HLK;
    194 
    195 			/*
    196 			 * if we have found all the links to this file, remove
    197 			 * it from the database
    198 			 */
    199 			if (--pt->nlink <= 1) {
    200 				*ppt = pt->fow;
    201 				(void)free((char *)pt->name);
    202 				(void)free((char *)pt);
    203 			}
    204 			return(1);
    205 		}
    206 	}
    207 
    208 	/*
    209 	 * we never saw this file before. It has links so we add it to the
    210 	 * front of this hash chain
    211 	 */
    212 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    213 		if ((pt->name = strdup(arcn->name)) != NULL) {
    214 			pt->dev = arcn->sb.st_dev;
    215 			pt->ino = arcn->sb.st_ino;
    216 			pt->nlink = arcn->sb.st_nlink;
    217 			pt->fow = ltab[indx];
    218 			ltab[indx] = pt;
    219 			return(0);
    220 		}
    221 		(void)free((char *)pt);
    222 	}
    223 
    224 	tty_warn(1, "Hard link table out of memory");
    225 	return(-1);
    226 }
    227 
    228 /*
    229  * purg_lnk
    230  *	remove reference for a file that we may have added to the data base as
    231  *	a potential source for hard links. We ended up not using the file, so
    232  *	we do not want to accidently point another file at it later on.
    233  */
    234 
    235 #if __STDC__
    236 void
    237 purg_lnk(ARCHD *arcn)
    238 #else
    239 void
    240 purg_lnk(arcn)
    241 	ARCHD *arcn;
    242 #endif
    243 {
    244 	HRDLNK *pt;
    245 	HRDLNK **ppt;
    246 	u_int indx;
    247 
    248 	if (ltab == NULL)
    249 		return;
    250 	/*
    251 	 * do not bother to look if it could not be in the database
    252 	 */
    253 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    254 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    255 		return;
    256 
    257 	/*
    258 	 * find the hash chain for this inode value, if empty return
    259 	 */
    260 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    261 	if ((pt = ltab[indx]) == NULL)
    262 		return;
    263 
    264 	/*
    265 	 * walk down the list looking for the inode/dev pair, unlink and
    266 	 * free if found
    267 	 */
    268 	ppt = &(ltab[indx]);
    269 	while (pt != NULL) {
    270 		if ((pt->ino == arcn->sb.st_ino) &&
    271 		    (pt->dev == arcn->sb.st_dev))
    272 			break;
    273 		ppt = &(pt->fow);
    274 		pt = pt->fow;
    275 	}
    276 	if (pt == NULL)
    277 		return;
    278 
    279 	/*
    280 	 * remove and free it
    281 	 */
    282 	*ppt = pt->fow;
    283 	(void)free((char *)pt->name);
    284 	(void)free((char *)pt);
    285 }
    286 
    287 /*
    288  * lnk_end()
    289  *	pull apart a existing link table so we can reuse it. We do this between
    290  *	read and write phases of append with update. (The format may have
    291  *	used the link table, and we need to start with a fresh table for the
    292  *	write phase
    293  */
    294 
    295 #if __STDC__
    296 void
    297 lnk_end(void)
    298 #else
    299 void
    300 lnk_end()
    301 #endif
    302 {
    303 	int i;
    304 	HRDLNK *pt;
    305 	HRDLNK *ppt;
    306 
    307 	if (ltab == NULL)
    308 		return;
    309 
    310 	for (i = 0; i < L_TAB_SZ; ++i) {
    311 		if (ltab[i] == NULL)
    312 			continue;
    313 		pt = ltab[i];
    314 		ltab[i] = NULL;
    315 
    316 		/*
    317 		 * free up each entry on this chain
    318 		 */
    319 		while (pt != NULL) {
    320 			ppt = pt;
    321 			pt = ppt->fow;
    322 			(void)free((char *)ppt->name);
    323 			(void)free((char *)ppt);
    324 		}
    325 	}
    326 	return;
    327 }
    328 
    329 /*
    330  * modification time table routines
    331  *
    332  * The modification time table keeps track of last modification times for all
    333  * files stored in an archive during a write phase when -u is set. We only
    334  * add a file to the archive if it is newer than a file with the same name
    335  * already stored on the archive (if there is no other file with the same
    336  * name on the archive it is added). This applies to writes and appends.
    337  * An append with an -u must read the archive and store the modification time
    338  * for every file on that archive before starting the write phase. It is clear
    339  * that this is one HUGE database. To save memory space, the actual file names
    340  * are stored in a scatch file and indexed by an in memory hash table. The
    341  * hash table is indexed by hashing the file path. The nodes in the table store
    342  * the length of the filename and the lseek offset within the scratch file
    343  * where the actual name is stored. Since there are never any deletions to this
    344  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    345  * not exhibit any locality at all (files in the database are rarely
    346  * looked up more than once...). So caching is just a waste of memory. The
    347  * only limitation is the amount of scatch file space available to store the
    348  * path names.
    349  */
    350 
    351 /*
    352  * ftime_start()
    353  *	create the file time hash table and open for read/write the scratch
    354  *	file. (after created it is unlinked, so when we exit we leave
    355  *	no witnesses).
    356  * Return:
    357  *	0 if the table and file was created ok, -1 otherwise
    358  */
    359 
    360 #if __STDC__
    361 int
    362 ftime_start(void)
    363 #else
    364 int
    365 ftime_start()
    366 #endif
    367 {
    368 	const char *tmpdir;
    369 	char template[MAXPATHLEN];
    370 
    371 	if (ftab != NULL)
    372 		return(0);
    373 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    374 		tty_warn(1, "Cannot allocate memory for file time table");
    375 		return(-1);
    376 	}
    377 
    378 	/*
    379 	 * get random name and create temporary scratch file, unlink name
    380 	 * so it will get removed on exit
    381 	 */
    382 	if ((tmpdir = getenv("TMPDIR")) == NULL)
    383 		tmpdir = _PATH_TMP;
    384 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
    385 	if ((ffd = mkstemp(template)) == -1) {
    386 		syswarn(1, errno, "Unable to create temporary file: %s",
    387 		    template);
    388 		return(-1);
    389 	}
    390 
    391 	(void)unlink(template);
    392 	return(0);
    393 }
    394 
    395 /*
    396  * chk_ftime()
    397  *	looks up entry in file time hash table. If not found, the file is
    398  *	added to the hash table and the file named stored in the scratch file.
    399  *	If a file with the same name is found, the file times are compared and
    400  *	the most recent file time is retained. If the new file was younger (or
    401  *	was not in the database) the new file is selected for storage.
    402  * Return:
    403  *	0 if file should be added to the archive, 1 if it should be skipped,
    404  *	-1 on error
    405  */
    406 
    407 #if __STDC__
    408 int
    409 chk_ftime(ARCHD *arcn)
    410 #else
    411 int
    412 chk_ftime(arcn)
    413 	ARCHD *arcn;
    414 #endif
    415 {
    416 	FTM *pt;
    417 	int namelen;
    418 	u_int indx;
    419 	char ckname[PAXPATHLEN+1];
    420 
    421 	/*
    422 	 * no info, go ahead and add to archive
    423 	 */
    424 	if (ftab == NULL)
    425 		return(0);
    426 
    427 	/*
    428 	 * hash the pathname and look up in table
    429 	 */
    430 	namelen = arcn->nlen;
    431 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    432 	if ((pt = ftab[indx]) != NULL) {
    433 		/*
    434 		 * the hash chain is not empty, walk down looking for match
    435 		 * only read up the path names if the lengths match, speeds
    436 		 * up the search a lot
    437 		 */
    438 		while (pt != NULL) {
    439 			if (pt->namelen == namelen) {
    440 				/*
    441 				 * potential match, have to read the name
    442 				 * from the scratch file.
    443 				 */
    444 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    445 					syswarn(1, errno,
    446 					    "Failed ftime table seek");
    447 					return(-1);
    448 				}
    449 				if (xread(ffd, ckname, namelen) != namelen) {
    450 					syswarn(1, errno,
    451 					    "Failed ftime table read");
    452 					return(-1);
    453 				}
    454 
    455 				/*
    456 				 * if the names match, we are done
    457 				 */
    458 				if (!strncmp(ckname, arcn->name, namelen))
    459 					break;
    460 			}
    461 
    462 			/*
    463 			 * try the next entry on the chain
    464 			 */
    465 			pt = pt->fow;
    466 		}
    467 
    468 		if (pt != NULL) {
    469 			/*
    470 			 * found the file, compare the times, save the newer
    471 			 */
    472 			if (arcn->sb.st_mtime > pt->mtime) {
    473 				/*
    474 				 * file is newer
    475 				 */
    476 				pt->mtime = arcn->sb.st_mtime;
    477 				return(0);
    478 			}
    479 			/*
    480 			 * file is older
    481 			 */
    482 			return(1);
    483 		}
    484 	}
    485 
    486 	/*
    487 	 * not in table, add it
    488 	 */
    489 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    490 		/*
    491 		 * add the name at the end of the scratch file, saving the
    492 		 * offset. add the file to the head of the hash chain
    493 		 */
    494 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    495 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    496 				pt->mtime = arcn->sb.st_mtime;
    497 				pt->namelen = namelen;
    498 				pt->fow = ftab[indx];
    499 				ftab[indx] = pt;
    500 				return(0);
    501 			}
    502 			syswarn(1, errno, "Failed write to file time table");
    503 		} else
    504 			syswarn(1, errno, "Failed seek on file time table");
    505 	} else
    506 		tty_warn(1, "File time table ran out of memory");
    507 
    508 	if (pt != NULL)
    509 		(void)free((char *)pt);
    510 	return(-1);
    511 }
    512 
    513 /*
    514  * Interactive rename table routines
    515  *
    516  * The interactive rename table keeps track of the new names that the user
    517  * assigns to files from tty input. Since this map is unique for each file
    518  * we must store it in case there is a reference to the file later in archive
    519  * (a link). Otherwise we will be unable to find the file we know was
    520  * extracted. The remapping of these files is stored in a memory based hash
    521  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    522  * be a very large table).
    523  */
    524 
    525 /*
    526  * name_start()
    527  *	create the interactive rename table
    528  * Return:
    529  *	0 if successful, -1 otherwise
    530  */
    531 
    532 #if __STDC__
    533 int
    534 name_start(void)
    535 #else
    536 int
    537 name_start()
    538 #endif
    539 {
    540 	if (ntab != NULL)
    541 		return(0);
    542 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    543 		tty_warn(1,
    544 		    "Cannot allocate memory for interactive rename table");
    545 		return(-1);
    546 	}
    547 	return(0);
    548 }
    549 
    550 /*
    551  * add_name()
    552  *	add the new name to old name mapping just created by the user.
    553  *	If an old name mapping is found (there may be duplicate names on an
    554  *	archive) only the most recent is kept.
    555  * Return:
    556  *	0 if added, -1 otherwise
    557  */
    558 
    559 #if __STDC__
    560 int
    561 add_name(char *oname, int onamelen, char *nname)
    562 #else
    563 int
    564 add_name(oname, onamelen, nname)
    565 	char *oname;
    566 	int onamelen;
    567 	char *nname;
    568 #endif
    569 {
    570 	NAMT *pt;
    571 	u_int indx;
    572 
    573 	if (ntab == NULL) {
    574 		/*
    575 		 * should never happen
    576 		 */
    577 		tty_warn(0, "No interactive rename table, links may fail\n");
    578 		return(0);
    579 	}
    580 
    581 	/*
    582 	 * look to see if we have already mapped this file, if so we
    583 	 * will update it
    584 	 */
    585 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    586 	if ((pt = ntab[indx]) != NULL) {
    587 		/*
    588 		 * look down the has chain for the file
    589 		 */
    590 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    591 			pt = pt->fow;
    592 
    593 		if (pt != NULL) {
    594 			/*
    595 			 * found an old mapping, replace it with the new one
    596 			 * the user just input (if it is different)
    597 			 */
    598 			if (strcmp(nname, pt->nname) == 0)
    599 				return(0);
    600 
    601 			(void)free((char *)pt->nname);
    602 			if ((pt->nname = strdup(nname)) == NULL) {
    603 				tty_warn(1, "Cannot update rename table");
    604 				return(-1);
    605 			}
    606 			return(0);
    607 		}
    608 	}
    609 
    610 	/*
    611 	 * this is a new mapping, add it to the table
    612 	 */
    613 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    614 		if ((pt->oname = strdup(oname)) != NULL) {
    615 			if ((pt->nname = strdup(nname)) != NULL) {
    616 				pt->fow = ntab[indx];
    617 				ntab[indx] = pt;
    618 				return(0);
    619 			}
    620 			(void)free((char *)pt->oname);
    621 		}
    622 		(void)free((char *)pt);
    623 	}
    624 	tty_warn(1, "Interactive rename table out of memory");
    625 	return(-1);
    626 }
    627 
    628 /*
    629  * sub_name()
    630  *	look up a link name to see if it points at a file that has been
    631  *	remapped by the user. If found, the link is adjusted to contain the
    632  *	new name (oname is the link to name)
    633  */
    634 
    635 #if __STDC__
    636 void
    637 sub_name(char *oname, int *onamelen)
    638 #else
    639 void
    640 sub_name(oname, onamelen)
    641 	char *oname;
    642 	int *onamelen;
    643 #endif
    644 {
    645 	NAMT *pt;
    646 	u_int indx;
    647 
    648 	if (ntab == NULL)
    649 		return;
    650 	/*
    651 	 * look the name up in the hash table
    652 	 */
    653 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    654 	if ((pt = ntab[indx]) == NULL)
    655 		return;
    656 
    657 	while (pt != NULL) {
    658 		/*
    659 		 * walk down the hash cahin looking for a match
    660 		 */
    661 		if (strcmp(oname, pt->oname) == 0) {
    662 			/*
    663 			 * found it, replace it with the new name
    664 			 * and return (we know that oname has enough space)
    665 			 */
    666 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    667 			return;
    668 		}
    669 		pt = pt->fow;
    670 	}
    671 
    672 	/*
    673 	 * no match, just return
    674 	 */
    675 	return;
    676 }
    677 
    678 /*
    679  * device/inode mapping table routines
    680  * (used with formats that store device and inodes fields)
    681  *
    682  * device/inode mapping tables remap the device field in a archive header. The
    683  * device/inode fields are used to determine when files are hard links to each
    684  * other. However these values have very little meaning outside of that. This
    685  * database is used to solve one of two different problems.
    686  *
    687  * 1) when files are appended to an archive, while the new files may have hard
    688  * links to each other, you cannot determine if they have hard links to any
    689  * file already stored on the archive from a prior run of pax. We must assume
    690  * that these inode/device pairs are unique only within a SINGLE run of pax
    691  * (which adds a set of files to an archive). So we have to make sure the
    692  * inode/dev pairs we add each time are always unique. We do this by observing
    693  * while the inode field is very dense, the use of the dev field is fairly
    694  * sparse. Within each run of pax, we remap any device number of a new archive
    695  * member that has a device number used in a prior run and already stored in a
    696  * file on the archive. During the read phase of the append, we store the
    697  * device numbers used and mark them to not be used by any file during the
    698  * write phase. If during write we go to use one of those old device numbers,
    699  * we remap it to a new value.
    700  *
    701  * 2) Often the fields in the archive header used to store these values are
    702  * too small to store the entire value. The result is an inode or device value
    703  * which can be truncated. This really can foul up an archive. With truncation
    704  * we end up creating links between files that are really not links (after
    705  * truncation the inodes are the same value). We address that by detecting
    706  * truncation and forcing a remap of the device field to split truncated
    707  * inodes away from each other. Each truncation creates a pattern of bits that
    708  * are removed. We use this pattern of truncated bits to partition the inodes
    709  * on a single device to many different devices (each one represented by the
    710  * truncated bit pattern). All inodes on the same device that have the same
    711  * truncation pattern are mapped to the same new device. Two inodes that
    712  * truncate to the same value clearly will always have different truncation
    713  * bit patterns, so they will be split from away each other. When we spot
    714  * device truncation we remap the device number to a non truncated value.
    715  * (for more info see table.h for the data structures involved).
    716  */
    717 
    718 /*
    719  * dev_start()
    720  *	create the device mapping table
    721  * Return:
    722  *	0 if successful, -1 otherwise
    723  */
    724 
    725 #if __STDC__
    726 int
    727 dev_start(void)
    728 #else
    729 int
    730 dev_start()
    731 #endif
    732 {
    733 	if (dtab != NULL)
    734 		return(0);
    735 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    736 		tty_warn(1, "Cannot allocate memory for device mapping table");
    737 		return(-1);
    738 	}
    739 	return(0);
    740 }
    741 
    742 /*
    743  * add_dev()
    744  *	add a device number to the table. this will force the device to be
    745  *	remapped to a new value if it be used during a write phase. This
    746  *	function is called during the read phase of an append to prohibit the
    747  *	use of any device number already in the archive.
    748  * Return:
    749  *	0 if added ok, -1 otherwise
    750  */
    751 
    752 #if __STDC__
    753 int
    754 add_dev(ARCHD *arcn)
    755 #else
    756 int
    757 add_dev(arcn)
    758 	ARCHD *arcn;
    759 #endif
    760 {
    761 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    762 		return(-1);
    763 	return(0);
    764 }
    765 
    766 /*
    767  * chk_dev()
    768  *	check for a device value in the device table. If not found and the add
    769  *	flag is set, it is added. This does NOT assign any mapping values, just
    770  *	adds the device number as one that need to be remapped. If this device
    771  *	is already mapped, just return with a pointer to that entry.
    772  * Return:
    773  *	pointer to the entry for this device in the device map table. Null
    774  *	if the add flag is not set and the device is not in the table (it is
    775  *	not been seen yet). If add is set and the device cannot be added, null
    776  *	is returned (indicates an error).
    777  */
    778 
    779 #if __STDC__
    780 static DEVT *
    781 chk_dev(dev_t dev, int add)
    782 #else
    783 static DEVT *
    784 chk_dev(dev, add)
    785 	dev_t dev;
    786 	int add;
    787 #endif
    788 {
    789 	DEVT *pt;
    790 	u_int indx;
    791 
    792 	if (dtab == NULL)
    793 		return(NULL);
    794 	/*
    795 	 * look to see if this device is already in the table
    796 	 */
    797 	indx = ((unsigned)dev) % D_TAB_SZ;
    798 	if ((pt = dtab[indx]) != NULL) {
    799 		while ((pt != NULL) && (pt->dev != dev))
    800 			pt = pt->fow;
    801 
    802 		/*
    803 		 * found it, return a pointer to it
    804 		 */
    805 		if (pt != NULL)
    806 			return(pt);
    807 	}
    808 
    809 	/*
    810 	 * not in table, we add it only if told to as this may just be a check
    811 	 * to see if a device number is being used.
    812 	 */
    813 	if (add == 0)
    814 		return(NULL);
    815 
    816 	/*
    817 	 * allocate a node for this device and add it to the front of the hash
    818 	 * chain. Note we do not assign remaps values here, so the pt->list
    819 	 * list must be NULL.
    820 	 */
    821 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    822 		tty_warn(1, "Device map table out of memory");
    823 		return(NULL);
    824 	}
    825 	pt->dev = dev;
    826 	pt->list = NULL;
    827 	pt->fow = dtab[indx];
    828 	dtab[indx] = pt;
    829 	return(pt);
    830 }
    831 /*
    832  * map_dev()
    833  *	given an inode and device storage mask (the mask has a 1 for each bit
    834  *	the archive format is able to store in a header), we check for inode
    835  *	and device truncation and remap the device as required. Device mapping
    836  *	can also occur when during the read phase of append a device number was
    837  *	seen (and was marked as do not use during the write phase). WE ASSUME
    838  *	that unsigned longs are the same size or bigger than the fields used
    839  *	for ino_t and dev_t. If not the types will have to be changed.
    840  * Return:
    841  *	0 if all ok, -1 otherwise.
    842  */
    843 
    844 #if __STDC__
    845 int
    846 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    847 #else
    848 int
    849 map_dev(arcn, dev_mask, ino_mask)
    850 	ARCHD *arcn;
    851 	u_long dev_mask;
    852 	u_long ino_mask;
    853 #endif
    854 {
    855 	DEVT *pt;
    856 	DLIST *dpt;
    857 	static dev_t lastdev = 0;	/* next device number to try */
    858 	int trc_ino = 0;
    859 	int trc_dev = 0;
    860 	ino_t trunc_bits = 0;
    861 	ino_t nino;
    862 
    863 	if (dtab == NULL)
    864 		return(0);
    865 	/*
    866 	 * check for device and inode truncation, and extract the truncated
    867 	 * bit pattern.
    868 	 */
    869 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    870 		++trc_dev;
    871 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    872 		++trc_ino;
    873 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    874 	}
    875 
    876 	/*
    877 	 * see if this device is already being mapped, look up the device
    878 	 * then find the truncation bit pattern which applies
    879 	 */
    880 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    881 		/*
    882 		 * this device is already marked to be remapped
    883 		 */
    884 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    885 			if (dpt->trunc_bits == trunc_bits)
    886 				break;
    887 
    888 		if (dpt != NULL) {
    889 			/*
    890 			 * we are being remapped for this device and pattern
    891 			 * change the device number to be stored and return
    892 			 */
    893 			arcn->sb.st_dev = dpt->dev;
    894 			arcn->sb.st_ino = nino;
    895 			return(0);
    896 		}
    897 	} else {
    898 		/*
    899 		 * this device is not being remapped YET. if we do not have any
    900 		 * form of truncation, we do not need a remap
    901 		 */
    902 		if (!trc_ino && !trc_dev)
    903 			return(0);
    904 
    905 		/*
    906 		 * we have truncation, have to add this as a device to remap
    907 		 */
    908 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    909 			goto bad;
    910 
    911 		/*
    912 		 * if we just have a truncated inode, we have to make sure that
    913 		 * all future inodes that do not truncate (they have the
    914 		 * truncation pattern of all 0's) continue to map to the same
    915 		 * device number. We probably have already written inodes with
    916 		 * this device number to the archive with the truncation
    917 		 * pattern of all 0's. So we add the mapping for all 0's to the
    918 		 * same device number.
    919 		 */
    920 		if (!trc_dev && (trunc_bits != 0)) {
    921 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    922 				goto bad;
    923 			dpt->trunc_bits = 0;
    924 			dpt->dev = arcn->sb.st_dev;
    925 			dpt->fow = pt->list;
    926 			pt->list = dpt;
    927 		}
    928 	}
    929 
    930 	/*
    931 	 * look for a device number not being used. We must watch for wrap
    932 	 * around on lastdev (so we do not get stuck looking forever!)
    933 	 */
    934 	while (++lastdev > 0) {
    935 		if (chk_dev(lastdev, 0) != NULL)
    936 			continue;
    937 		/*
    938 		 * found an unused value. If we have reached truncation point
    939 		 * for this format we are hosed, so we give up. Otherwise we
    940 		 * mark it as being used.
    941 		 */
    942 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    943 		    (chk_dev(lastdev, 1) == NULL))
    944 			goto bad;
    945 		break;
    946 	}
    947 
    948 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    949 		goto bad;
    950 
    951 	/*
    952 	 * got a new device number, store it under this truncation pattern.
    953 	 * change the device number this file is being stored with.
    954 	 */
    955 	dpt->trunc_bits = trunc_bits;
    956 	dpt->dev = lastdev;
    957 	dpt->fow = pt->list;
    958 	pt->list = dpt;
    959 	arcn->sb.st_dev = lastdev;
    960 	arcn->sb.st_ino = nino;
    961 	return(0);
    962 
    963     bad:
    964 	tty_warn(1,
    965 	    "Unable to fix truncated inode/device field when storing %s",
    966 	    arcn->name);
    967 	tty_warn(0, "Archive may create improper hard links when extracted");
    968 	return(0);
    969 }
    970 
    971 /*
    972  * directory access/mod time reset table routines (for directories READ by pax)
    973  *
    974  * The pax -t flag requires that access times of archive files to be the same
    975  * before being read by pax. For regular files, access time is restored after
    976  * the file has been copied. This database provides the same functionality for
    977  * directories read during file tree traversal. Restoring directory access time
    978  * is more complex than files since directories may be read several times until
    979  * all the descendants in their subtree are visited by fts. Directory access
    980  * and modification times are stored during the fts pre-order visit (done
    981  * before any descendants in the subtree is visited) and restored after the
    982  * fts post-order visit (after all the descendants have been visited). In the
    983  * case of premature exit from a subtree (like from the effects of -n), any
    984  * directory entries left in this database are reset during final cleanup
    985  * operations of pax. Entries are hashed by inode number for fast lookup.
    986  */
    987 
    988 /*
    989  * atdir_start()
    990  *	create the directory access time database for directories READ by pax.
    991  * Return:
    992  *	0 is created ok, -1 otherwise.
    993  */
    994 
    995 #if __STDC__
    996 int
    997 atdir_start(void)
    998 #else
    999 int
   1000 atdir_start()
   1001 #endif
   1002 {
   1003 	if (atab != NULL)
   1004 		return(0);
   1005 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1006 		tty_warn(1,
   1007 		    "Cannot allocate space for directory access time table");
   1008 		return(-1);
   1009 	}
   1010 	return(0);
   1011 }
   1012 
   1013 
   1014 /*
   1015  * atdir_end()
   1016  *	walk through the directory access time table and reset the access time
   1017  *	of any directory who still has an entry left in the database. These
   1018  *	entries are for directories READ by pax
   1019  */
   1020 
   1021 #if __STDC__
   1022 void
   1023 atdir_end(void)
   1024 #else
   1025 void
   1026 atdir_end()
   1027 #endif
   1028 {
   1029 	ATDIR *pt;
   1030 	int i;
   1031 
   1032 	if (atab == NULL)
   1033 		return;
   1034 	/*
   1035 	 * for each non-empty hash table entry reset all the directories
   1036 	 * chained there.
   1037 	 */
   1038 	for (i = 0; i < A_TAB_SZ; ++i) {
   1039 		if ((pt = atab[i]) == NULL)
   1040 			continue;
   1041 		/*
   1042 		 * remember to force the times, set_ftime() looks at pmtime
   1043 		 * and patime, which only applies to things CREATED by pax,
   1044 		 * not read by pax. Read time reset is controlled by -t.
   1045 		 */
   1046 		for (; pt != NULL; pt = pt->fow)
   1047 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1048 	}
   1049 }
   1050 
   1051 /*
   1052  * add_atdir()
   1053  *	add a directory to the directory access time table. Table is hashed
   1054  *	and chained by inode number. This is for directories READ by pax
   1055  */
   1056 
   1057 #if __STDC__
   1058 void
   1059 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1060 #else
   1061 void
   1062 add_atdir(fname, dev, ino, mtime, atime)
   1063 	char *fname;
   1064 	dev_t dev;
   1065 	ino_t ino;
   1066 	time_t mtime;
   1067 	time_t atime;
   1068 #endif
   1069 {
   1070 	ATDIR *pt;
   1071 	u_int indx;
   1072 
   1073 	if (atab == NULL)
   1074 		return;
   1075 
   1076 	/*
   1077 	 * make sure this directory is not already in the table, if so just
   1078 	 * return (the older entry always has the correct time). The only
   1079 	 * way this will happen is when the same subtree can be traversed by
   1080 	 * different args to pax and the -n option is aborting fts out of a
   1081 	 * subtree before all the post-order visits have been made).
   1082 	 */
   1083 	indx = ((unsigned)ino) % A_TAB_SZ;
   1084 	if ((pt = atab[indx]) != NULL) {
   1085 		while (pt != NULL) {
   1086 			if ((pt->ino == ino) && (pt->dev == dev))
   1087 				break;
   1088 			pt = pt->fow;
   1089 		}
   1090 
   1091 		/*
   1092 		 * oops, already there. Leave it alone.
   1093 		 */
   1094 		if (pt != NULL)
   1095 			return;
   1096 	}
   1097 
   1098 	/*
   1099 	 * add it to the front of the hash chain
   1100 	 */
   1101 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1102 		if ((pt->name = strdup(fname)) != NULL) {
   1103 			pt->dev = dev;
   1104 			pt->ino = ino;
   1105 			pt->mtime = mtime;
   1106 			pt->atime = atime;
   1107 			pt->fow = atab[indx];
   1108 			atab[indx] = pt;
   1109 			return;
   1110 		}
   1111 		(void)free((char *)pt);
   1112 	}
   1113 
   1114 	tty_warn(1, "Directory access time reset table ran out of memory");
   1115 	return;
   1116 }
   1117 
   1118 /*
   1119  * get_atdir()
   1120  *	look up a directory by inode and device number to obtain the access
   1121  *	and modification time you want to set to. If found, the modification
   1122  *	and access time parameters are set and the entry is removed from the
   1123  *	table (as it is no longer needed). These are for directories READ by
   1124  *	pax
   1125  * Return:
   1126  *	0 if found, -1 if not found.
   1127  */
   1128 
   1129 #if __STDC__
   1130 int
   1131 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1132 #else
   1133 int
   1134 get_atdir(dev, ino, mtime, atime)
   1135 	dev_t dev;
   1136 	ino_t ino;
   1137 	time_t *mtime;
   1138 	time_t *atime;
   1139 #endif
   1140 {
   1141 	ATDIR *pt;
   1142 	ATDIR **ppt;
   1143 	u_int indx;
   1144 
   1145 	if (atab == NULL)
   1146 		return(-1);
   1147 	/*
   1148 	 * hash by inode and search the chain for an inode and device match
   1149 	 */
   1150 	indx = ((unsigned)ino) % A_TAB_SZ;
   1151 	if ((pt = atab[indx]) == NULL)
   1152 		return(-1);
   1153 
   1154 	ppt = &(atab[indx]);
   1155 	while (pt != NULL) {
   1156 		if ((pt->ino == ino) && (pt->dev == dev))
   1157 			break;
   1158 		/*
   1159 		 * no match, go to next one
   1160 		 */
   1161 		ppt = &(pt->fow);
   1162 		pt = pt->fow;
   1163 	}
   1164 
   1165 	/*
   1166 	 * return if we did not find it.
   1167 	 */
   1168 	if (pt == NULL)
   1169 		return(-1);
   1170 
   1171 	/*
   1172 	 * found it. return the times and remove the entry from the table.
   1173 	 */
   1174 	*ppt = pt->fow;
   1175 	*mtime = pt->mtime;
   1176 	*atime = pt->atime;
   1177 	(void)free((char *)pt->name);
   1178 	(void)free((char *)pt);
   1179 	return(0);
   1180 }
   1181 
   1182 /*
   1183  * directory access mode and time storage routines (for directories CREATED
   1184  * by pax).
   1185  *
   1186  * Pax requires that extracted directories, by default, have their access/mod
   1187  * times and permissions set to the values specified in the archive. During the
   1188  * actions of extracting (and creating the destination subtree during -rw copy)
   1189  * directories extracted may be modified after being created. Even worse is
   1190  * that these directories may have been created with file permissions which
   1191  * prohibits any descendants of these directories from being extracted. When
   1192  * directories are created by pax, access rights may be added to permit the
   1193  * creation of files in their subtree. Every time pax creates a directory, the
   1194  * times and file permissions specified by the archive are stored. After all
   1195  * files have been extracted (or copied), these directories have their times
   1196  * and file modes reset to the stored values. The directory info is restored in
   1197  * reverse order as entries were added to the data file from root to leaf. To
   1198  * restore atime properly, we must go backwards. The data file consists of
   1199  * records with two parts, the file name followed by a DIRDATA trailer. The
   1200  * fixed sized trailer contains the size of the name plus the off_t location in
   1201  * the file. To restore we work backwards through the file reading the trailer
   1202  * then the file name.
   1203  */
   1204 
   1205 /*
   1206  * dir_start()
   1207  *	set up the directory time and file mode storage for directories CREATED
   1208  *	by pax.
   1209  * Return:
   1210  *	0 if ok, -1 otherwise
   1211  */
   1212 
   1213 #if __STDC__
   1214 int
   1215 dir_start(void)
   1216 #else
   1217 int
   1218 dir_start()
   1219 #endif
   1220 {
   1221 	const char *tmpdir;
   1222 	char template[MAXPATHLEN];
   1223 
   1224 	if (dirfd != -1)
   1225 		return(0);
   1226 
   1227 	/*
   1228 	 * unlink the file so it goes away at termination by itself
   1229 	 */
   1230 	if ((tmpdir = getenv("TMPDIR")) == NULL)
   1231 		tmpdir = _PATH_TMP;
   1232 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
   1233 	if ((dirfd = mkstemp(template)) >= 0) {
   1234 		(void)unlink(template);
   1235 		return(0);
   1236 	}
   1237 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1238 	    template);
   1239 	return(-1);
   1240 }
   1241 
   1242 /*
   1243  * add_dir()
   1244  *	add the mode and times for a newly CREATED directory
   1245  *	name is name of the directory, psb the stat buffer with the data in it,
   1246  *	frc_mode is a flag that says whether to force the setting of the mode
   1247  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1248  *	for the case where we created a file and found that the resulting
   1249  *	directory was not writeable and the user asked for file modes to NOT
   1250  *	be preserved. (we have to preserve what was created by default, so we
   1251  *	have to force the setting at the end. this is stated explicitly in the
   1252  *	pax spec)
   1253  */
   1254 
   1255 #if __STDC__
   1256 void
   1257 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1258 #else
   1259 void
   1260 add_dir(name, nlen, psb, frc_mode)
   1261 	char *name;
   1262 	int nlen;
   1263 	struct stat *psb;
   1264 	int frc_mode;
   1265 #endif
   1266 {
   1267 	DIRDATA dblk;
   1268 
   1269 	if (dirfd < 0)
   1270 		return;
   1271 
   1272 	/*
   1273 	 * get current position (where file name will start) so we can store it
   1274 	 * in the trailer
   1275 	 */
   1276 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1277 		tty_warn(1,
   1278 		    "Unable to store mode and times for directory: %s",name);
   1279 		return;
   1280 	}
   1281 
   1282 	/*
   1283 	 * write the file name followed by the trailer
   1284 	 */
   1285 	dblk.nlen = nlen + 1;
   1286 	dblk.mode = psb->st_mode & 0xffff;
   1287 	dblk.mtime = psb->st_mtime;
   1288 	dblk.atime = psb->st_atime;
   1289 	dblk.fflags = psb->st_flags;
   1290 	dblk.frc_mode = frc_mode;
   1291 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1292 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1293 		++dircnt;
   1294 		return;
   1295 	}
   1296 
   1297 	tty_warn(1,
   1298 	    "Unable to store mode and times for created directory: %s",name);
   1299 	return;
   1300 }
   1301 
   1302 /*
   1303  * proc_dir()
   1304  *	process all file modes and times stored for directories CREATED
   1305  *	by pax
   1306  */
   1307 
   1308 #if __STDC__
   1309 void
   1310 proc_dir(void)
   1311 #else
   1312 void
   1313 proc_dir()
   1314 #endif
   1315 {
   1316 	char name[PAXPATHLEN+1];
   1317 	DIRDATA dblk;
   1318 	u_long cnt;
   1319 
   1320 	if (dirfd < 0)
   1321 		return;
   1322 	/*
   1323 	 * read backwards through the file and process each directory
   1324 	 */
   1325 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1326 		/*
   1327 		 * read the trailer, then the file name, if this fails
   1328 		 * just give up.
   1329 		 */
   1330 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1331 			break;
   1332 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1333 			break;
   1334 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1335 			break;
   1336 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1337 			break;
   1338 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1339 			break;
   1340 
   1341 		/*
   1342 		 * frc_mode set, make sure we set the file modes even if
   1343 		 * the user didn't ask for it (see file_subs.c for more info)
   1344 		 */
   1345 		if (pmode || dblk.frc_mode)
   1346 			set_pmode(name, dblk.mode);
   1347 		if (patime || pmtime)
   1348 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1349 		if (pfflags)
   1350 			set_chflags(name, dblk.fflags);
   1351 	}
   1352 
   1353 	(void)close(dirfd);
   1354 	dirfd = -1;
   1355 	if (cnt != dircnt)
   1356 		tty_warn(1,
   1357 		    "Unable to set mode and times for created directories");
   1358 	return;
   1359 }
   1360 
   1361 /*
   1362  * database independent routines
   1363  */
   1364 
   1365 /*
   1366  * st_hash()
   1367  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1368  *	end of file, as this provides far better distribution than any other
   1369  *	part of the name. For performance reasons we only care about the last
   1370  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1371  *	name). Was tested on 500,000 name file tree traversal from the root
   1372  *	and gave almost a perfectly uniform distribution of keys when used with
   1373  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1374  *	chars at a time and pads with 0 for last addition.
   1375  * Return:
   1376  *	the hash value of the string MOD (%) the table size.
   1377  */
   1378 
   1379 #if __STDC__
   1380 u_int
   1381 st_hash(char *name, int len, int tabsz)
   1382 #else
   1383 u_int
   1384 st_hash(name, len, tabsz)
   1385 	char *name;
   1386 	int len;
   1387 	int tabsz;
   1388 #endif
   1389 {
   1390 	char *pt;
   1391 	char *dest;
   1392 	char *end;
   1393 	int i;
   1394 	u_int key = 0;
   1395 	int steps;
   1396 	int res;
   1397 	u_int val;
   1398 
   1399 	/*
   1400 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1401 	 * time here (remember these are pathnames, the tail is what will
   1402 	 * spread out the keys)
   1403 	 */
   1404 	if (len > MAXKEYLEN) {
   1405 		pt = &(name[len - MAXKEYLEN]);
   1406 		len = MAXKEYLEN;
   1407 	} else
   1408 		pt = name;
   1409 
   1410 	/*
   1411 	 * calculate the number of u_int size steps in the string and if
   1412 	 * there is a runt to deal with
   1413 	 */
   1414 	steps = len/sizeof(u_int);
   1415 	res = len % sizeof(u_int);
   1416 
   1417 	/*
   1418 	 * add up the value of the string in unsigned integer sized pieces
   1419 	 * too bad we cannot have unsigned int aligned strings, then we
   1420 	 * could avoid the expensive copy.
   1421 	 */
   1422 	for (i = 0; i < steps; ++i) {
   1423 		end = pt + sizeof(u_int);
   1424 		dest = (char *)&val;
   1425 		while (pt < end)
   1426 			*dest++ = *pt++;
   1427 		key += val;
   1428 	}
   1429 
   1430 	/*
   1431 	 * add in the runt padded with zero to the right
   1432 	 */
   1433 	if (res) {
   1434 		val = 0;
   1435 		end = pt + res;
   1436 		dest = (char *)&val;
   1437 		while (pt < end)
   1438 			*dest++ = *pt++;
   1439 		key += val;
   1440 	}
   1441 
   1442 	/*
   1443 	 * return the result mod the table size
   1444 	 */
   1445 	return(key % tabsz);
   1446 }
   1447