tables.c revision 1.12 1 /* $NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $ */
2
3 /*-
4 * Copyright (c) 1992 Keith Muller.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Keith Muller of the University of California, San Diego.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.12 2000/02/17 03:12:26 itohy Exp $");
46 #endif
47 #endif /* not lint */
48
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64
65 /*
66 * Routines for controlling the contents of all the different databases pax
67 * keeps. Tables are dynamically created only when they are needed. The
68 * goal was speed and the ability to work with HUGE archives. The databases
69 * were kept simple, but do have complex rules for when the contents change.
70 * As of this writing, the posix library functions were more complex than
71 * needed for this application (pax databases have very short lifetimes and
72 * do not survive after pax is finished). Pax is required to handle very
73 * large archives. These database routines carefully combine memory usage and
74 * temporary file storage in ways which will not significantly impact runtime
75 * performance while allowing the largest possible archives to be handled.
76 * Trying to force the fit to the posix databases routines was not considered
77 * time well spent.
78 */
79
80 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
81 static FTM **ftab = NULL; /* file time table for updating arch */
82 static NAMT **ntab = NULL; /* interactive rename storage table */
83 static DEVT **dtab = NULL; /* device/inode mapping tables */
84 static ATDIR **atab = NULL; /* file tree directory time reset table */
85 static int dirfd = -1; /* storage for setting created dir time/mode */
86 static u_long dircnt; /* entries in dir time/mode storage */
87 static int ffd = -1; /* tmp file for file time table name storage */
88
89 static DEVT *chk_dev __P((dev_t, int));
90
91 /*
92 * hard link table routines
93 *
94 * The hard link table tries to detect hard links to files using the device and
95 * inode values. We do this when writing an archive, so we can tell the format
96 * write routine that this file is a hard link to another file. The format
97 * write routine then can store this file in whatever way it wants (as a hard
98 * link if the format supports that like tar, or ignore this info like cpio).
99 * (Actually a field in the format driver table tells us if the format wants
100 * hard link info. if not, we do not waste time looking for them). We also use
101 * the same table when reading an archive. In that situation, this table is
102 * used by the format read routine to detect hard links from stored dev and
103 * inode numbers (like cpio). This will allow pax to create a link when one
104 * can be detected by the archive format.
105 */
106
107 /*
108 * lnk_start
109 * Creates the hard link table.
110 * Return:
111 * 0 if created, -1 if failure
112 */
113
114 #if __STDC__
115 int
116 lnk_start(void)
117 #else
118 int
119 lnk_start()
120 #endif
121 {
122 if (ltab != NULL)
123 return(0);
124 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
125 tty_warn(1, "Cannot allocate memory for hard link table");
126 return(-1);
127 }
128 return(0);
129 }
130
131 /*
132 * chk_lnk()
133 * Looks up entry in hard link hash table. If found, it copies the name
134 * of the file it is linked to (we already saw that file) into ln_name.
135 * lnkcnt is decremented and if goes to 1 the node is deleted from the
136 * database. (We have seen all the links to this file). If not found,
137 * we add the file to the database if it has the potential for having
138 * hard links to other files we may process (it has a link count > 1)
139 * Return:
140 * if found returns 1; if not found returns 0; -1 on error
141 */
142
143 #if __STDC__
144 int
145 chk_lnk(ARCHD *arcn)
146 #else
147 int
148 chk_lnk(arcn)
149 ARCHD *arcn;
150 #endif
151 {
152 HRDLNK *pt;
153 HRDLNK **ppt;
154 u_int indx;
155
156 if (ltab == NULL)
157 return(-1);
158 /*
159 * ignore those nodes that cannot have hard links
160 */
161 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
162 return(0);
163
164 /*
165 * hash inode number and look for this file
166 */
167 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
168 if ((pt = ltab[indx]) != NULL) {
169 /*
170 * it's hash chain in not empty, walk down looking for it
171 */
172 ppt = &(ltab[indx]);
173 while (pt != NULL) {
174 if ((pt->ino == arcn->sb.st_ino) &&
175 (pt->dev == arcn->sb.st_dev))
176 break;
177 ppt = &(pt->fow);
178 pt = pt->fow;
179 }
180
181 if (pt != NULL) {
182 /*
183 * found a link. set the node type and copy in the
184 * name of the file it is to link to. we need to
185 * handle hardlinks to regular files differently than
186 * other links.
187 */
188 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
189 PAXPATHLEN+1);
190 if (arcn->type == PAX_REG)
191 arcn->type = PAX_HRG;
192 else
193 arcn->type = PAX_HLK;
194
195 /*
196 * if we have found all the links to this file, remove
197 * it from the database
198 */
199 if (--pt->nlink <= 1) {
200 *ppt = pt->fow;
201 (void)free((char *)pt->name);
202 (void)free((char *)pt);
203 }
204 return(1);
205 }
206 }
207
208 /*
209 * we never saw this file before. It has links so we add it to the
210 * front of this hash chain
211 */
212 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
213 if ((pt->name = strdup(arcn->name)) != NULL) {
214 pt->dev = arcn->sb.st_dev;
215 pt->ino = arcn->sb.st_ino;
216 pt->nlink = arcn->sb.st_nlink;
217 pt->fow = ltab[indx];
218 ltab[indx] = pt;
219 return(0);
220 }
221 (void)free((char *)pt);
222 }
223
224 tty_warn(1, "Hard link table out of memory");
225 return(-1);
226 }
227
228 /*
229 * purg_lnk
230 * remove reference for a file that we may have added to the data base as
231 * a potential source for hard links. We ended up not using the file, so
232 * we do not want to accidently point another file at it later on.
233 */
234
235 #if __STDC__
236 void
237 purg_lnk(ARCHD *arcn)
238 #else
239 void
240 purg_lnk(arcn)
241 ARCHD *arcn;
242 #endif
243 {
244 HRDLNK *pt;
245 HRDLNK **ppt;
246 u_int indx;
247
248 if (ltab == NULL)
249 return;
250 /*
251 * do not bother to look if it could not be in the database
252 */
253 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
254 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
255 return;
256
257 /*
258 * find the hash chain for this inode value, if empty return
259 */
260 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
261 if ((pt = ltab[indx]) == NULL)
262 return;
263
264 /*
265 * walk down the list looking for the inode/dev pair, unlink and
266 * free if found
267 */
268 ppt = &(ltab[indx]);
269 while (pt != NULL) {
270 if ((pt->ino == arcn->sb.st_ino) &&
271 (pt->dev == arcn->sb.st_dev))
272 break;
273 ppt = &(pt->fow);
274 pt = pt->fow;
275 }
276 if (pt == NULL)
277 return;
278
279 /*
280 * remove and free it
281 */
282 *ppt = pt->fow;
283 (void)free((char *)pt->name);
284 (void)free((char *)pt);
285 }
286
287 /*
288 * lnk_end()
289 * pull apart a existing link table so we can reuse it. We do this between
290 * read and write phases of append with update. (The format may have
291 * used the link table, and we need to start with a fresh table for the
292 * write phase
293 */
294
295 #if __STDC__
296 void
297 lnk_end(void)
298 #else
299 void
300 lnk_end()
301 #endif
302 {
303 int i;
304 HRDLNK *pt;
305 HRDLNK *ppt;
306
307 if (ltab == NULL)
308 return;
309
310 for (i = 0; i < L_TAB_SZ; ++i) {
311 if (ltab[i] == NULL)
312 continue;
313 pt = ltab[i];
314 ltab[i] = NULL;
315
316 /*
317 * free up each entry on this chain
318 */
319 while (pt != NULL) {
320 ppt = pt;
321 pt = ppt->fow;
322 (void)free((char *)ppt->name);
323 (void)free((char *)ppt);
324 }
325 }
326 return;
327 }
328
329 /*
330 * modification time table routines
331 *
332 * The modification time table keeps track of last modification times for all
333 * files stored in an archive during a write phase when -u is set. We only
334 * add a file to the archive if it is newer than a file with the same name
335 * already stored on the archive (if there is no other file with the same
336 * name on the archive it is added). This applies to writes and appends.
337 * An append with an -u must read the archive and store the modification time
338 * for every file on that archive before starting the write phase. It is clear
339 * that this is one HUGE database. To save memory space, the actual file names
340 * are stored in a scatch file and indexed by an in memory hash table. The
341 * hash table is indexed by hashing the file path. The nodes in the table store
342 * the length of the filename and the lseek offset within the scratch file
343 * where the actual name is stored. Since there are never any deletions to this
344 * table, fragmentation of the scratch file is never a issue. Lookups seem to
345 * not exhibit any locality at all (files in the database are rarely
346 * looked up more than once...). So caching is just a waste of memory. The
347 * only limitation is the amount of scatch file space available to store the
348 * path names.
349 */
350
351 /*
352 * ftime_start()
353 * create the file time hash table and open for read/write the scratch
354 * file. (after created it is unlinked, so when we exit we leave
355 * no witnesses).
356 * Return:
357 * 0 if the table and file was created ok, -1 otherwise
358 */
359
360 #if __STDC__
361 int
362 ftime_start(void)
363 #else
364 int
365 ftime_start()
366 #endif
367 {
368 const char *tmpdir;
369 char template[MAXPATHLEN];
370
371 if (ftab != NULL)
372 return(0);
373 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
374 tty_warn(1, "Cannot allocate memory for file time table");
375 return(-1);
376 }
377
378 /*
379 * get random name and create temporary scratch file, unlink name
380 * so it will get removed on exit
381 */
382 if ((tmpdir = getenv("TMPDIR")) == NULL)
383 tmpdir = _PATH_TMP;
384 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
385 if ((ffd = mkstemp(template)) == -1) {
386 syswarn(1, errno, "Unable to create temporary file: %s",
387 template);
388 return(-1);
389 }
390
391 (void)unlink(template);
392 return(0);
393 }
394
395 /*
396 * chk_ftime()
397 * looks up entry in file time hash table. If not found, the file is
398 * added to the hash table and the file named stored in the scratch file.
399 * If a file with the same name is found, the file times are compared and
400 * the most recent file time is retained. If the new file was younger (or
401 * was not in the database) the new file is selected for storage.
402 * Return:
403 * 0 if file should be added to the archive, 1 if it should be skipped,
404 * -1 on error
405 */
406
407 #if __STDC__
408 int
409 chk_ftime(ARCHD *arcn)
410 #else
411 int
412 chk_ftime(arcn)
413 ARCHD *arcn;
414 #endif
415 {
416 FTM *pt;
417 int namelen;
418 u_int indx;
419 char ckname[PAXPATHLEN+1];
420
421 /*
422 * no info, go ahead and add to archive
423 */
424 if (ftab == NULL)
425 return(0);
426
427 /*
428 * hash the pathname and look up in table
429 */
430 namelen = arcn->nlen;
431 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
432 if ((pt = ftab[indx]) != NULL) {
433 /*
434 * the hash chain is not empty, walk down looking for match
435 * only read up the path names if the lengths match, speeds
436 * up the search a lot
437 */
438 while (pt != NULL) {
439 if (pt->namelen == namelen) {
440 /*
441 * potential match, have to read the name
442 * from the scratch file.
443 */
444 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
445 syswarn(1, errno,
446 "Failed ftime table seek");
447 return(-1);
448 }
449 if (xread(ffd, ckname, namelen) != namelen) {
450 syswarn(1, errno,
451 "Failed ftime table read");
452 return(-1);
453 }
454
455 /*
456 * if the names match, we are done
457 */
458 if (!strncmp(ckname, arcn->name, namelen))
459 break;
460 }
461
462 /*
463 * try the next entry on the chain
464 */
465 pt = pt->fow;
466 }
467
468 if (pt != NULL) {
469 /*
470 * found the file, compare the times, save the newer
471 */
472 if (arcn->sb.st_mtime > pt->mtime) {
473 /*
474 * file is newer
475 */
476 pt->mtime = arcn->sb.st_mtime;
477 return(0);
478 }
479 /*
480 * file is older
481 */
482 return(1);
483 }
484 }
485
486 /*
487 * not in table, add it
488 */
489 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
490 /*
491 * add the name at the end of the scratch file, saving the
492 * offset. add the file to the head of the hash chain
493 */
494 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
495 if (xwrite(ffd, arcn->name, namelen) == namelen) {
496 pt->mtime = arcn->sb.st_mtime;
497 pt->namelen = namelen;
498 pt->fow = ftab[indx];
499 ftab[indx] = pt;
500 return(0);
501 }
502 syswarn(1, errno, "Failed write to file time table");
503 } else
504 syswarn(1, errno, "Failed seek on file time table");
505 } else
506 tty_warn(1, "File time table ran out of memory");
507
508 if (pt != NULL)
509 (void)free((char *)pt);
510 return(-1);
511 }
512
513 /*
514 * Interactive rename table routines
515 *
516 * The interactive rename table keeps track of the new names that the user
517 * assigns to files from tty input. Since this map is unique for each file
518 * we must store it in case there is a reference to the file later in archive
519 * (a link). Otherwise we will be unable to find the file we know was
520 * extracted. The remapping of these files is stored in a memory based hash
521 * table (it is assumed since input must come from /dev/tty, it is unlikely to
522 * be a very large table).
523 */
524
525 /*
526 * name_start()
527 * create the interactive rename table
528 * Return:
529 * 0 if successful, -1 otherwise
530 */
531
532 #if __STDC__
533 int
534 name_start(void)
535 #else
536 int
537 name_start()
538 #endif
539 {
540 if (ntab != NULL)
541 return(0);
542 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
543 tty_warn(1,
544 "Cannot allocate memory for interactive rename table");
545 return(-1);
546 }
547 return(0);
548 }
549
550 /*
551 * add_name()
552 * add the new name to old name mapping just created by the user.
553 * If an old name mapping is found (there may be duplicate names on an
554 * archive) only the most recent is kept.
555 * Return:
556 * 0 if added, -1 otherwise
557 */
558
559 #if __STDC__
560 int
561 add_name(char *oname, int onamelen, char *nname)
562 #else
563 int
564 add_name(oname, onamelen, nname)
565 char *oname;
566 int onamelen;
567 char *nname;
568 #endif
569 {
570 NAMT *pt;
571 u_int indx;
572
573 if (ntab == NULL) {
574 /*
575 * should never happen
576 */
577 tty_warn(0, "No interactive rename table, links may fail\n");
578 return(0);
579 }
580
581 /*
582 * look to see if we have already mapped this file, if so we
583 * will update it
584 */
585 indx = st_hash(oname, onamelen, N_TAB_SZ);
586 if ((pt = ntab[indx]) != NULL) {
587 /*
588 * look down the has chain for the file
589 */
590 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
591 pt = pt->fow;
592
593 if (pt != NULL) {
594 /*
595 * found an old mapping, replace it with the new one
596 * the user just input (if it is different)
597 */
598 if (strcmp(nname, pt->nname) == 0)
599 return(0);
600
601 (void)free((char *)pt->nname);
602 if ((pt->nname = strdup(nname)) == NULL) {
603 tty_warn(1, "Cannot update rename table");
604 return(-1);
605 }
606 return(0);
607 }
608 }
609
610 /*
611 * this is a new mapping, add it to the table
612 */
613 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
614 if ((pt->oname = strdup(oname)) != NULL) {
615 if ((pt->nname = strdup(nname)) != NULL) {
616 pt->fow = ntab[indx];
617 ntab[indx] = pt;
618 return(0);
619 }
620 (void)free((char *)pt->oname);
621 }
622 (void)free((char *)pt);
623 }
624 tty_warn(1, "Interactive rename table out of memory");
625 return(-1);
626 }
627
628 /*
629 * sub_name()
630 * look up a link name to see if it points at a file that has been
631 * remapped by the user. If found, the link is adjusted to contain the
632 * new name (oname is the link to name)
633 */
634
635 #if __STDC__
636 void
637 sub_name(char *oname, int *onamelen)
638 #else
639 void
640 sub_name(oname, onamelen)
641 char *oname;
642 int *onamelen;
643 #endif
644 {
645 NAMT *pt;
646 u_int indx;
647
648 if (ntab == NULL)
649 return;
650 /*
651 * look the name up in the hash table
652 */
653 indx = st_hash(oname, *onamelen, N_TAB_SZ);
654 if ((pt = ntab[indx]) == NULL)
655 return;
656
657 while (pt != NULL) {
658 /*
659 * walk down the hash cahin looking for a match
660 */
661 if (strcmp(oname, pt->oname) == 0) {
662 /*
663 * found it, replace it with the new name
664 * and return (we know that oname has enough space)
665 */
666 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
667 return;
668 }
669 pt = pt->fow;
670 }
671
672 /*
673 * no match, just return
674 */
675 return;
676 }
677
678 /*
679 * device/inode mapping table routines
680 * (used with formats that store device and inodes fields)
681 *
682 * device/inode mapping tables remap the device field in a archive header. The
683 * device/inode fields are used to determine when files are hard links to each
684 * other. However these values have very little meaning outside of that. This
685 * database is used to solve one of two different problems.
686 *
687 * 1) when files are appended to an archive, while the new files may have hard
688 * links to each other, you cannot determine if they have hard links to any
689 * file already stored on the archive from a prior run of pax. We must assume
690 * that these inode/device pairs are unique only within a SINGLE run of pax
691 * (which adds a set of files to an archive). So we have to make sure the
692 * inode/dev pairs we add each time are always unique. We do this by observing
693 * while the inode field is very dense, the use of the dev field is fairly
694 * sparse. Within each run of pax, we remap any device number of a new archive
695 * member that has a device number used in a prior run and already stored in a
696 * file on the archive. During the read phase of the append, we store the
697 * device numbers used and mark them to not be used by any file during the
698 * write phase. If during write we go to use one of those old device numbers,
699 * we remap it to a new value.
700 *
701 * 2) Often the fields in the archive header used to store these values are
702 * too small to store the entire value. The result is an inode or device value
703 * which can be truncated. This really can foul up an archive. With truncation
704 * we end up creating links between files that are really not links (after
705 * truncation the inodes are the same value). We address that by detecting
706 * truncation and forcing a remap of the device field to split truncated
707 * inodes away from each other. Each truncation creates a pattern of bits that
708 * are removed. We use this pattern of truncated bits to partition the inodes
709 * on a single device to many different devices (each one represented by the
710 * truncated bit pattern). All inodes on the same device that have the same
711 * truncation pattern are mapped to the same new device. Two inodes that
712 * truncate to the same value clearly will always have different truncation
713 * bit patterns, so they will be split from away each other. When we spot
714 * device truncation we remap the device number to a non truncated value.
715 * (for more info see table.h for the data structures involved).
716 */
717
718 /*
719 * dev_start()
720 * create the device mapping table
721 * Return:
722 * 0 if successful, -1 otherwise
723 */
724
725 #if __STDC__
726 int
727 dev_start(void)
728 #else
729 int
730 dev_start()
731 #endif
732 {
733 if (dtab != NULL)
734 return(0);
735 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
736 tty_warn(1, "Cannot allocate memory for device mapping table");
737 return(-1);
738 }
739 return(0);
740 }
741
742 /*
743 * add_dev()
744 * add a device number to the table. this will force the device to be
745 * remapped to a new value if it be used during a write phase. This
746 * function is called during the read phase of an append to prohibit the
747 * use of any device number already in the archive.
748 * Return:
749 * 0 if added ok, -1 otherwise
750 */
751
752 #if __STDC__
753 int
754 add_dev(ARCHD *arcn)
755 #else
756 int
757 add_dev(arcn)
758 ARCHD *arcn;
759 #endif
760 {
761 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
762 return(-1);
763 return(0);
764 }
765
766 /*
767 * chk_dev()
768 * check for a device value in the device table. If not found and the add
769 * flag is set, it is added. This does NOT assign any mapping values, just
770 * adds the device number as one that need to be remapped. If this device
771 * is already mapped, just return with a pointer to that entry.
772 * Return:
773 * pointer to the entry for this device in the device map table. Null
774 * if the add flag is not set and the device is not in the table (it is
775 * not been seen yet). If add is set and the device cannot be added, null
776 * is returned (indicates an error).
777 */
778
779 #if __STDC__
780 static DEVT *
781 chk_dev(dev_t dev, int add)
782 #else
783 static DEVT *
784 chk_dev(dev, add)
785 dev_t dev;
786 int add;
787 #endif
788 {
789 DEVT *pt;
790 u_int indx;
791
792 if (dtab == NULL)
793 return(NULL);
794 /*
795 * look to see if this device is already in the table
796 */
797 indx = ((unsigned)dev) % D_TAB_SZ;
798 if ((pt = dtab[indx]) != NULL) {
799 while ((pt != NULL) && (pt->dev != dev))
800 pt = pt->fow;
801
802 /*
803 * found it, return a pointer to it
804 */
805 if (pt != NULL)
806 return(pt);
807 }
808
809 /*
810 * not in table, we add it only if told to as this may just be a check
811 * to see if a device number is being used.
812 */
813 if (add == 0)
814 return(NULL);
815
816 /*
817 * allocate a node for this device and add it to the front of the hash
818 * chain. Note we do not assign remaps values here, so the pt->list
819 * list must be NULL.
820 */
821 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
822 tty_warn(1, "Device map table out of memory");
823 return(NULL);
824 }
825 pt->dev = dev;
826 pt->list = NULL;
827 pt->fow = dtab[indx];
828 dtab[indx] = pt;
829 return(pt);
830 }
831 /*
832 * map_dev()
833 * given an inode and device storage mask (the mask has a 1 for each bit
834 * the archive format is able to store in a header), we check for inode
835 * and device truncation and remap the device as required. Device mapping
836 * can also occur when during the read phase of append a device number was
837 * seen (and was marked as do not use during the write phase). WE ASSUME
838 * that unsigned longs are the same size or bigger than the fields used
839 * for ino_t and dev_t. If not the types will have to be changed.
840 * Return:
841 * 0 if all ok, -1 otherwise.
842 */
843
844 #if __STDC__
845 int
846 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
847 #else
848 int
849 map_dev(arcn, dev_mask, ino_mask)
850 ARCHD *arcn;
851 u_long dev_mask;
852 u_long ino_mask;
853 #endif
854 {
855 DEVT *pt;
856 DLIST *dpt;
857 static dev_t lastdev = 0; /* next device number to try */
858 int trc_ino = 0;
859 int trc_dev = 0;
860 ino_t trunc_bits = 0;
861 ino_t nino;
862
863 if (dtab == NULL)
864 return(0);
865 /*
866 * check for device and inode truncation, and extract the truncated
867 * bit pattern.
868 */
869 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
870 ++trc_dev;
871 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
872 ++trc_ino;
873 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
874 }
875
876 /*
877 * see if this device is already being mapped, look up the device
878 * then find the truncation bit pattern which applies
879 */
880 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
881 /*
882 * this device is already marked to be remapped
883 */
884 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
885 if (dpt->trunc_bits == trunc_bits)
886 break;
887
888 if (dpt != NULL) {
889 /*
890 * we are being remapped for this device and pattern
891 * change the device number to be stored and return
892 */
893 arcn->sb.st_dev = dpt->dev;
894 arcn->sb.st_ino = nino;
895 return(0);
896 }
897 } else {
898 /*
899 * this device is not being remapped YET. if we do not have any
900 * form of truncation, we do not need a remap
901 */
902 if (!trc_ino && !trc_dev)
903 return(0);
904
905 /*
906 * we have truncation, have to add this as a device to remap
907 */
908 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
909 goto bad;
910
911 /*
912 * if we just have a truncated inode, we have to make sure that
913 * all future inodes that do not truncate (they have the
914 * truncation pattern of all 0's) continue to map to the same
915 * device number. We probably have already written inodes with
916 * this device number to the archive with the truncation
917 * pattern of all 0's. So we add the mapping for all 0's to the
918 * same device number.
919 */
920 if (!trc_dev && (trunc_bits != 0)) {
921 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
922 goto bad;
923 dpt->trunc_bits = 0;
924 dpt->dev = arcn->sb.st_dev;
925 dpt->fow = pt->list;
926 pt->list = dpt;
927 }
928 }
929
930 /*
931 * look for a device number not being used. We must watch for wrap
932 * around on lastdev (so we do not get stuck looking forever!)
933 */
934 while (++lastdev > 0) {
935 if (chk_dev(lastdev, 0) != NULL)
936 continue;
937 /*
938 * found an unused value. If we have reached truncation point
939 * for this format we are hosed, so we give up. Otherwise we
940 * mark it as being used.
941 */
942 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
943 (chk_dev(lastdev, 1) == NULL))
944 goto bad;
945 break;
946 }
947
948 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
949 goto bad;
950
951 /*
952 * got a new device number, store it under this truncation pattern.
953 * change the device number this file is being stored with.
954 */
955 dpt->trunc_bits = trunc_bits;
956 dpt->dev = lastdev;
957 dpt->fow = pt->list;
958 pt->list = dpt;
959 arcn->sb.st_dev = lastdev;
960 arcn->sb.st_ino = nino;
961 return(0);
962
963 bad:
964 tty_warn(1,
965 "Unable to fix truncated inode/device field when storing %s",
966 arcn->name);
967 tty_warn(0, "Archive may create improper hard links when extracted");
968 return(0);
969 }
970
971 /*
972 * directory access/mod time reset table routines (for directories READ by pax)
973 *
974 * The pax -t flag requires that access times of archive files to be the same
975 * before being read by pax. For regular files, access time is restored after
976 * the file has been copied. This database provides the same functionality for
977 * directories read during file tree traversal. Restoring directory access time
978 * is more complex than files since directories may be read several times until
979 * all the descendants in their subtree are visited by fts. Directory access
980 * and modification times are stored during the fts pre-order visit (done
981 * before any descendants in the subtree is visited) and restored after the
982 * fts post-order visit (after all the descendants have been visited). In the
983 * case of premature exit from a subtree (like from the effects of -n), any
984 * directory entries left in this database are reset during final cleanup
985 * operations of pax. Entries are hashed by inode number for fast lookup.
986 */
987
988 /*
989 * atdir_start()
990 * create the directory access time database for directories READ by pax.
991 * Return:
992 * 0 is created ok, -1 otherwise.
993 */
994
995 #if __STDC__
996 int
997 atdir_start(void)
998 #else
999 int
1000 atdir_start()
1001 #endif
1002 {
1003 if (atab != NULL)
1004 return(0);
1005 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1006 tty_warn(1,
1007 "Cannot allocate space for directory access time table");
1008 return(-1);
1009 }
1010 return(0);
1011 }
1012
1013
1014 /*
1015 * atdir_end()
1016 * walk through the directory access time table and reset the access time
1017 * of any directory who still has an entry left in the database. These
1018 * entries are for directories READ by pax
1019 */
1020
1021 #if __STDC__
1022 void
1023 atdir_end(void)
1024 #else
1025 void
1026 atdir_end()
1027 #endif
1028 {
1029 ATDIR *pt;
1030 int i;
1031
1032 if (atab == NULL)
1033 return;
1034 /*
1035 * for each non-empty hash table entry reset all the directories
1036 * chained there.
1037 */
1038 for (i = 0; i < A_TAB_SZ; ++i) {
1039 if ((pt = atab[i]) == NULL)
1040 continue;
1041 /*
1042 * remember to force the times, set_ftime() looks at pmtime
1043 * and patime, which only applies to things CREATED by pax,
1044 * not read by pax. Read time reset is controlled by -t.
1045 */
1046 for (; pt != NULL; pt = pt->fow)
1047 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1048 }
1049 }
1050
1051 /*
1052 * add_atdir()
1053 * add a directory to the directory access time table. Table is hashed
1054 * and chained by inode number. This is for directories READ by pax
1055 */
1056
1057 #if __STDC__
1058 void
1059 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1060 #else
1061 void
1062 add_atdir(fname, dev, ino, mtime, atime)
1063 char *fname;
1064 dev_t dev;
1065 ino_t ino;
1066 time_t mtime;
1067 time_t atime;
1068 #endif
1069 {
1070 ATDIR *pt;
1071 u_int indx;
1072
1073 if (atab == NULL)
1074 return;
1075
1076 /*
1077 * make sure this directory is not already in the table, if so just
1078 * return (the older entry always has the correct time). The only
1079 * way this will happen is when the same subtree can be traversed by
1080 * different args to pax and the -n option is aborting fts out of a
1081 * subtree before all the post-order visits have been made).
1082 */
1083 indx = ((unsigned)ino) % A_TAB_SZ;
1084 if ((pt = atab[indx]) != NULL) {
1085 while (pt != NULL) {
1086 if ((pt->ino == ino) && (pt->dev == dev))
1087 break;
1088 pt = pt->fow;
1089 }
1090
1091 /*
1092 * oops, already there. Leave it alone.
1093 */
1094 if (pt != NULL)
1095 return;
1096 }
1097
1098 /*
1099 * add it to the front of the hash chain
1100 */
1101 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1102 if ((pt->name = strdup(fname)) != NULL) {
1103 pt->dev = dev;
1104 pt->ino = ino;
1105 pt->mtime = mtime;
1106 pt->atime = atime;
1107 pt->fow = atab[indx];
1108 atab[indx] = pt;
1109 return;
1110 }
1111 (void)free((char *)pt);
1112 }
1113
1114 tty_warn(1, "Directory access time reset table ran out of memory");
1115 return;
1116 }
1117
1118 /*
1119 * get_atdir()
1120 * look up a directory by inode and device number to obtain the access
1121 * and modification time you want to set to. If found, the modification
1122 * and access time parameters are set and the entry is removed from the
1123 * table (as it is no longer needed). These are for directories READ by
1124 * pax
1125 * Return:
1126 * 0 if found, -1 if not found.
1127 */
1128
1129 #if __STDC__
1130 int
1131 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1132 #else
1133 int
1134 get_atdir(dev, ino, mtime, atime)
1135 dev_t dev;
1136 ino_t ino;
1137 time_t *mtime;
1138 time_t *atime;
1139 #endif
1140 {
1141 ATDIR *pt;
1142 ATDIR **ppt;
1143 u_int indx;
1144
1145 if (atab == NULL)
1146 return(-1);
1147 /*
1148 * hash by inode and search the chain for an inode and device match
1149 */
1150 indx = ((unsigned)ino) % A_TAB_SZ;
1151 if ((pt = atab[indx]) == NULL)
1152 return(-1);
1153
1154 ppt = &(atab[indx]);
1155 while (pt != NULL) {
1156 if ((pt->ino == ino) && (pt->dev == dev))
1157 break;
1158 /*
1159 * no match, go to next one
1160 */
1161 ppt = &(pt->fow);
1162 pt = pt->fow;
1163 }
1164
1165 /*
1166 * return if we did not find it.
1167 */
1168 if (pt == NULL)
1169 return(-1);
1170
1171 /*
1172 * found it. return the times and remove the entry from the table.
1173 */
1174 *ppt = pt->fow;
1175 *mtime = pt->mtime;
1176 *atime = pt->atime;
1177 (void)free((char *)pt->name);
1178 (void)free((char *)pt);
1179 return(0);
1180 }
1181
1182 /*
1183 * directory access mode and time storage routines (for directories CREATED
1184 * by pax).
1185 *
1186 * Pax requires that extracted directories, by default, have their access/mod
1187 * times and permissions set to the values specified in the archive. During the
1188 * actions of extracting (and creating the destination subtree during -rw copy)
1189 * directories extracted may be modified after being created. Even worse is
1190 * that these directories may have been created with file permissions which
1191 * prohibits any descendants of these directories from being extracted. When
1192 * directories are created by pax, access rights may be added to permit the
1193 * creation of files in their subtree. Every time pax creates a directory, the
1194 * times and file permissions specified by the archive are stored. After all
1195 * files have been extracted (or copied), these directories have their times
1196 * and file modes reset to the stored values. The directory info is restored in
1197 * reverse order as entries were added to the data file from root to leaf. To
1198 * restore atime properly, we must go backwards. The data file consists of
1199 * records with two parts, the file name followed by a DIRDATA trailer. The
1200 * fixed sized trailer contains the size of the name plus the off_t location in
1201 * the file. To restore we work backwards through the file reading the trailer
1202 * then the file name.
1203 */
1204
1205 /*
1206 * dir_start()
1207 * set up the directory time and file mode storage for directories CREATED
1208 * by pax.
1209 * Return:
1210 * 0 if ok, -1 otherwise
1211 */
1212
1213 #if __STDC__
1214 int
1215 dir_start(void)
1216 #else
1217 int
1218 dir_start()
1219 #endif
1220 {
1221 const char *tmpdir;
1222 char template[MAXPATHLEN];
1223
1224 if (dirfd != -1)
1225 return(0);
1226
1227 /*
1228 * unlink the file so it goes away at termination by itself
1229 */
1230 if ((tmpdir = getenv("TMPDIR")) == NULL)
1231 tmpdir = _PATH_TMP;
1232 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1233 if ((dirfd = mkstemp(template)) >= 0) {
1234 (void)unlink(template);
1235 return(0);
1236 }
1237 tty_warn(1, "Unable to create temporary file for directory times: %s",
1238 template);
1239 return(-1);
1240 }
1241
1242 /*
1243 * add_dir()
1244 * add the mode and times for a newly CREATED directory
1245 * name is name of the directory, psb the stat buffer with the data in it,
1246 * frc_mode is a flag that says whether to force the setting of the mode
1247 * (ignoring the user set values for preserving file mode). Frc_mode is
1248 * for the case where we created a file and found that the resulting
1249 * directory was not writeable and the user asked for file modes to NOT
1250 * be preserved. (we have to preserve what was created by default, so we
1251 * have to force the setting at the end. this is stated explicitly in the
1252 * pax spec)
1253 */
1254
1255 #if __STDC__
1256 void
1257 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1258 #else
1259 void
1260 add_dir(name, nlen, psb, frc_mode)
1261 char *name;
1262 int nlen;
1263 struct stat *psb;
1264 int frc_mode;
1265 #endif
1266 {
1267 DIRDATA dblk;
1268
1269 if (dirfd < 0)
1270 return;
1271
1272 /*
1273 * get current position (where file name will start) so we can store it
1274 * in the trailer
1275 */
1276 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1277 tty_warn(1,
1278 "Unable to store mode and times for directory: %s",name);
1279 return;
1280 }
1281
1282 /*
1283 * write the file name followed by the trailer
1284 */
1285 dblk.nlen = nlen + 1;
1286 dblk.mode = psb->st_mode & 0xffff;
1287 dblk.mtime = psb->st_mtime;
1288 dblk.atime = psb->st_atime;
1289 dblk.fflags = psb->st_flags;
1290 dblk.frc_mode = frc_mode;
1291 if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1292 (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1293 ++dircnt;
1294 return;
1295 }
1296
1297 tty_warn(1,
1298 "Unable to store mode and times for created directory: %s",name);
1299 return;
1300 }
1301
1302 /*
1303 * proc_dir()
1304 * process all file modes and times stored for directories CREATED
1305 * by pax
1306 */
1307
1308 #if __STDC__
1309 void
1310 proc_dir(void)
1311 #else
1312 void
1313 proc_dir()
1314 #endif
1315 {
1316 char name[PAXPATHLEN+1];
1317 DIRDATA dblk;
1318 u_long cnt;
1319
1320 if (dirfd < 0)
1321 return;
1322 /*
1323 * read backwards through the file and process each directory
1324 */
1325 for (cnt = 0; cnt < dircnt; ++cnt) {
1326 /*
1327 * read the trailer, then the file name, if this fails
1328 * just give up.
1329 */
1330 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1331 break;
1332 if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1333 break;
1334 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1335 break;
1336 if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1337 break;
1338 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1339 break;
1340
1341 /*
1342 * frc_mode set, make sure we set the file modes even if
1343 * the user didn't ask for it (see file_subs.c for more info)
1344 */
1345 if (pmode || dblk.frc_mode)
1346 set_pmode(name, dblk.mode);
1347 if (patime || pmtime)
1348 set_ftime(name, dblk.mtime, dblk.atime, 0);
1349 if (pfflags)
1350 set_chflags(name, dblk.fflags);
1351 }
1352
1353 (void)close(dirfd);
1354 dirfd = -1;
1355 if (cnt != dircnt)
1356 tty_warn(1,
1357 "Unable to set mode and times for created directories");
1358 return;
1359 }
1360
1361 /*
1362 * database independent routines
1363 */
1364
1365 /*
1366 * st_hash()
1367 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1368 * end of file, as this provides far better distribution than any other
1369 * part of the name. For performance reasons we only care about the last
1370 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1371 * name). Was tested on 500,000 name file tree traversal from the root
1372 * and gave almost a perfectly uniform distribution of keys when used with
1373 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1374 * chars at a time and pads with 0 for last addition.
1375 * Return:
1376 * the hash value of the string MOD (%) the table size.
1377 */
1378
1379 #if __STDC__
1380 u_int
1381 st_hash(char *name, int len, int tabsz)
1382 #else
1383 u_int
1384 st_hash(name, len, tabsz)
1385 char *name;
1386 int len;
1387 int tabsz;
1388 #endif
1389 {
1390 char *pt;
1391 char *dest;
1392 char *end;
1393 int i;
1394 u_int key = 0;
1395 int steps;
1396 int res;
1397 u_int val;
1398
1399 /*
1400 * only look at the tail up to MAXKEYLEN, we do not need to waste
1401 * time here (remember these are pathnames, the tail is what will
1402 * spread out the keys)
1403 */
1404 if (len > MAXKEYLEN) {
1405 pt = &(name[len - MAXKEYLEN]);
1406 len = MAXKEYLEN;
1407 } else
1408 pt = name;
1409
1410 /*
1411 * calculate the number of u_int size steps in the string and if
1412 * there is a runt to deal with
1413 */
1414 steps = len/sizeof(u_int);
1415 res = len % sizeof(u_int);
1416
1417 /*
1418 * add up the value of the string in unsigned integer sized pieces
1419 * too bad we cannot have unsigned int aligned strings, then we
1420 * could avoid the expensive copy.
1421 */
1422 for (i = 0; i < steps; ++i) {
1423 end = pt + sizeof(u_int);
1424 dest = (char *)&val;
1425 while (pt < end)
1426 *dest++ = *pt++;
1427 key += val;
1428 }
1429
1430 /*
1431 * add in the runt padded with zero to the right
1432 */
1433 if (res) {
1434 val = 0;
1435 end = pt + res;
1436 dest = (char *)&val;
1437 while (pt < end)
1438 *dest++ = *pt++;
1439 key += val;
1440 }
1441
1442 /*
1443 * return the result mod the table size
1444 */
1445 return(key % tabsz);
1446 }
1447