tables.c revision 1.13 1 /* $NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1992 Keith Muller.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Keith Muller of the University of California, San Diego.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $");
46 #endif
47 #endif /* not lint */
48
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64
65 /*
66 * Routines for controlling the contents of all the different databases pax
67 * keeps. Tables are dynamically created only when they are needed. The
68 * goal was speed and the ability to work with HUGE archives. The databases
69 * were kept simple, but do have complex rules for when the contents change.
70 * As of this writing, the posix library functions were more complex than
71 * needed for this application (pax databases have very short lifetimes and
72 * do not survive after pax is finished). Pax is required to handle very
73 * large archives. These database routines carefully combine memory usage and
74 * temporary file storage in ways which will not significantly impact runtime
75 * performance while allowing the largest possible archives to be handled.
76 * Trying to force the fit to the posix databases routines was not considered
77 * time well spent.
78 */
79
80 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
81 static FTM **ftab = NULL; /* file time table for updating arch */
82 static NAMT **ntab = NULL; /* interactive rename storage table */
83 static DEVT **dtab = NULL; /* device/inode mapping tables */
84 static ATDIR **atab = NULL; /* file tree directory time reset table */
85 #ifdef DIRS_USE_FILE
86 static int dirfd = -1; /* storage for setting created dir time/mode */
87 static u_long dircnt; /* entries in dir time/mode storage */
88 #endif
89 static int ffd = -1; /* tmp file for file time table name storage */
90
91 static DEVT *chk_dev __P((dev_t, int));
92
93 /*
94 * hard link table routines
95 *
96 * The hard link table tries to detect hard links to files using the device and
97 * inode values. We do this when writing an archive, so we can tell the format
98 * write routine that this file is a hard link to another file. The format
99 * write routine then can store this file in whatever way it wants (as a hard
100 * link if the format supports that like tar, or ignore this info like cpio).
101 * (Actually a field in the format driver table tells us if the format wants
102 * hard link info. if not, we do not waste time looking for them). We also use
103 * the same table when reading an archive. In that situation, this table is
104 * used by the format read routine to detect hard links from stored dev and
105 * inode numbers (like cpio). This will allow pax to create a link when one
106 * can be detected by the archive format.
107 */
108
109 /*
110 * lnk_start
111 * Creates the hard link table.
112 * Return:
113 * 0 if created, -1 if failure
114 */
115
116 #if __STDC__
117 int
118 lnk_start(void)
119 #else
120 int
121 lnk_start()
122 #endif
123 {
124 if (ltab != NULL)
125 return(0);
126 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
127 tty_warn(1, "Cannot allocate memory for hard link table");
128 return(-1);
129 }
130 return(0);
131 }
132
133 /*
134 * chk_lnk()
135 * Looks up entry in hard link hash table. If found, it copies the name
136 * of the file it is linked to (we already saw that file) into ln_name.
137 * lnkcnt is decremented and if goes to 1 the node is deleted from the
138 * database. (We have seen all the links to this file). If not found,
139 * we add the file to the database if it has the potential for having
140 * hard links to other files we may process (it has a link count > 1)
141 * Return:
142 * if found returns 1; if not found returns 0; -1 on error
143 */
144
145 #if __STDC__
146 int
147 chk_lnk(ARCHD *arcn)
148 #else
149 int
150 chk_lnk(arcn)
151 ARCHD *arcn;
152 #endif
153 {
154 HRDLNK *pt;
155 HRDLNK **ppt;
156 u_int indx;
157
158 if (ltab == NULL)
159 return(-1);
160 /*
161 * ignore those nodes that cannot have hard links
162 */
163 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
164 return(0);
165
166 /*
167 * hash inode number and look for this file
168 */
169 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
170 if ((pt = ltab[indx]) != NULL) {
171 /*
172 * it's hash chain in not empty, walk down looking for it
173 */
174 ppt = &(ltab[indx]);
175 while (pt != NULL) {
176 if ((pt->ino == arcn->sb.st_ino) &&
177 (pt->dev == arcn->sb.st_dev))
178 break;
179 ppt = &(pt->fow);
180 pt = pt->fow;
181 }
182
183 if (pt != NULL) {
184 /*
185 * found a link. set the node type and copy in the
186 * name of the file it is to link to. we need to
187 * handle hardlinks to regular files differently than
188 * other links.
189 */
190 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
191 PAXPATHLEN+1);
192 if (arcn->type == PAX_REG)
193 arcn->type = PAX_HRG;
194 else
195 arcn->type = PAX_HLK;
196
197 /*
198 * if we have found all the links to this file, remove
199 * it from the database
200 */
201 if (--pt->nlink <= 1) {
202 *ppt = pt->fow;
203 (void)free((char *)pt->name);
204 (void)free((char *)pt);
205 }
206 return(1);
207 }
208 }
209
210 /*
211 * we never saw this file before. It has links so we add it to the
212 * front of this hash chain
213 */
214 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
215 if ((pt->name = strdup(arcn->name)) != NULL) {
216 pt->dev = arcn->sb.st_dev;
217 pt->ino = arcn->sb.st_ino;
218 pt->nlink = arcn->sb.st_nlink;
219 pt->fow = ltab[indx];
220 ltab[indx] = pt;
221 return(0);
222 }
223 (void)free((char *)pt);
224 }
225
226 tty_warn(1, "Hard link table out of memory");
227 return(-1);
228 }
229
230 /*
231 * purg_lnk
232 * remove reference for a file that we may have added to the data base as
233 * a potential source for hard links. We ended up not using the file, so
234 * we do not want to accidently point another file at it later on.
235 */
236
237 #if __STDC__
238 void
239 purg_lnk(ARCHD *arcn)
240 #else
241 void
242 purg_lnk(arcn)
243 ARCHD *arcn;
244 #endif
245 {
246 HRDLNK *pt;
247 HRDLNK **ppt;
248 u_int indx;
249
250 if (ltab == NULL)
251 return;
252 /*
253 * do not bother to look if it could not be in the database
254 */
255 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
256 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
257 return;
258
259 /*
260 * find the hash chain for this inode value, if empty return
261 */
262 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
263 if ((pt = ltab[indx]) == NULL)
264 return;
265
266 /*
267 * walk down the list looking for the inode/dev pair, unlink and
268 * free if found
269 */
270 ppt = &(ltab[indx]);
271 while (pt != NULL) {
272 if ((pt->ino == arcn->sb.st_ino) &&
273 (pt->dev == arcn->sb.st_dev))
274 break;
275 ppt = &(pt->fow);
276 pt = pt->fow;
277 }
278 if (pt == NULL)
279 return;
280
281 /*
282 * remove and free it
283 */
284 *ppt = pt->fow;
285 (void)free((char *)pt->name);
286 (void)free((char *)pt);
287 }
288
289 /*
290 * lnk_end()
291 * pull apart a existing link table so we can reuse it. We do this between
292 * read and write phases of append with update. (The format may have
293 * used the link table, and we need to start with a fresh table for the
294 * write phase
295 */
296
297 #if __STDC__
298 void
299 lnk_end(void)
300 #else
301 void
302 lnk_end()
303 #endif
304 {
305 int i;
306 HRDLNK *pt;
307 HRDLNK *ppt;
308
309 if (ltab == NULL)
310 return;
311
312 for (i = 0; i < L_TAB_SZ; ++i) {
313 if (ltab[i] == NULL)
314 continue;
315 pt = ltab[i];
316 ltab[i] = NULL;
317
318 /*
319 * free up each entry on this chain
320 */
321 while (pt != NULL) {
322 ppt = pt;
323 pt = ppt->fow;
324 (void)free((char *)ppt->name);
325 (void)free((char *)ppt);
326 }
327 }
328 return;
329 }
330
331 /*
332 * modification time table routines
333 *
334 * The modification time table keeps track of last modification times for all
335 * files stored in an archive during a write phase when -u is set. We only
336 * add a file to the archive if it is newer than a file with the same name
337 * already stored on the archive (if there is no other file with the same
338 * name on the archive it is added). This applies to writes and appends.
339 * An append with an -u must read the archive and store the modification time
340 * for every file on that archive before starting the write phase. It is clear
341 * that this is one HUGE database. To save memory space, the actual file names
342 * are stored in a scatch file and indexed by an in memory hash table. The
343 * hash table is indexed by hashing the file path. The nodes in the table store
344 * the length of the filename and the lseek offset within the scratch file
345 * where the actual name is stored. Since there are never any deletions to this
346 * table, fragmentation of the scratch file is never a issue. Lookups seem to
347 * not exhibit any locality at all (files in the database are rarely
348 * looked up more than once...). So caching is just a waste of memory. The
349 * only limitation is the amount of scatch file space available to store the
350 * path names.
351 */
352
353 /*
354 * ftime_start()
355 * create the file time hash table and open for read/write the scratch
356 * file. (after created it is unlinked, so when we exit we leave
357 * no witnesses).
358 * Return:
359 * 0 if the table and file was created ok, -1 otherwise
360 */
361
362 #if __STDC__
363 int
364 ftime_start(void)
365 #else
366 int
367 ftime_start()
368 #endif
369 {
370 const char *tmpdir;
371 char template[MAXPATHLEN];
372
373 if (ftab != NULL)
374 return(0);
375 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
376 tty_warn(1, "Cannot allocate memory for file time table");
377 return(-1);
378 }
379
380 /*
381 * get random name and create temporary scratch file, unlink name
382 * so it will get removed on exit
383 */
384 if ((tmpdir = getenv("TMPDIR")) == NULL)
385 tmpdir = _PATH_TMP;
386 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
387 if ((ffd = mkstemp(template)) == -1) {
388 syswarn(1, errno, "Unable to create temporary file: %s",
389 template);
390 return(-1);
391 }
392
393 (void)unlink(template);
394 return(0);
395 }
396
397 /*
398 * chk_ftime()
399 * looks up entry in file time hash table. If not found, the file is
400 * added to the hash table and the file named stored in the scratch file.
401 * If a file with the same name is found, the file times are compared and
402 * the most recent file time is retained. If the new file was younger (or
403 * was not in the database) the new file is selected for storage.
404 * Return:
405 * 0 if file should be added to the archive, 1 if it should be skipped,
406 * -1 on error
407 */
408
409 #if __STDC__
410 int
411 chk_ftime(ARCHD *arcn)
412 #else
413 int
414 chk_ftime(arcn)
415 ARCHD *arcn;
416 #endif
417 {
418 FTM *pt;
419 int namelen;
420 u_int indx;
421 char ckname[PAXPATHLEN+1];
422
423 /*
424 * no info, go ahead and add to archive
425 */
426 if (ftab == NULL)
427 return(0);
428
429 /*
430 * hash the pathname and look up in table
431 */
432 namelen = arcn->nlen;
433 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
434 if ((pt = ftab[indx]) != NULL) {
435 /*
436 * the hash chain is not empty, walk down looking for match
437 * only read up the path names if the lengths match, speeds
438 * up the search a lot
439 */
440 while (pt != NULL) {
441 if (pt->namelen == namelen) {
442 /*
443 * potential match, have to read the name
444 * from the scratch file.
445 */
446 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
447 syswarn(1, errno,
448 "Failed ftime table seek");
449 return(-1);
450 }
451 if (xread(ffd, ckname, namelen) != namelen) {
452 syswarn(1, errno,
453 "Failed ftime table read");
454 return(-1);
455 }
456
457 /*
458 * if the names match, we are done
459 */
460 if (!strncmp(ckname, arcn->name, namelen))
461 break;
462 }
463
464 /*
465 * try the next entry on the chain
466 */
467 pt = pt->fow;
468 }
469
470 if (pt != NULL) {
471 /*
472 * found the file, compare the times, save the newer
473 */
474 if (arcn->sb.st_mtime > pt->mtime) {
475 /*
476 * file is newer
477 */
478 pt->mtime = arcn->sb.st_mtime;
479 return(0);
480 }
481 /*
482 * file is older
483 */
484 return(1);
485 }
486 }
487
488 /*
489 * not in table, add it
490 */
491 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
492 /*
493 * add the name at the end of the scratch file, saving the
494 * offset. add the file to the head of the hash chain
495 */
496 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
497 if (xwrite(ffd, arcn->name, namelen) == namelen) {
498 pt->mtime = arcn->sb.st_mtime;
499 pt->namelen = namelen;
500 pt->fow = ftab[indx];
501 ftab[indx] = pt;
502 return(0);
503 }
504 syswarn(1, errno, "Failed write to file time table");
505 } else
506 syswarn(1, errno, "Failed seek on file time table");
507 } else
508 tty_warn(1, "File time table ran out of memory");
509
510 if (pt != NULL)
511 (void)free((char *)pt);
512 return(-1);
513 }
514
515 /*
516 * Interactive rename table routines
517 *
518 * The interactive rename table keeps track of the new names that the user
519 * assigns to files from tty input. Since this map is unique for each file
520 * we must store it in case there is a reference to the file later in archive
521 * (a link). Otherwise we will be unable to find the file we know was
522 * extracted. The remapping of these files is stored in a memory based hash
523 * table (it is assumed since input must come from /dev/tty, it is unlikely to
524 * be a very large table).
525 */
526
527 /*
528 * name_start()
529 * create the interactive rename table
530 * Return:
531 * 0 if successful, -1 otherwise
532 */
533
534 #if __STDC__
535 int
536 name_start(void)
537 #else
538 int
539 name_start()
540 #endif
541 {
542 if (ntab != NULL)
543 return(0);
544 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
545 tty_warn(1,
546 "Cannot allocate memory for interactive rename table");
547 return(-1);
548 }
549 return(0);
550 }
551
552 /*
553 * add_name()
554 * add the new name to old name mapping just created by the user.
555 * If an old name mapping is found (there may be duplicate names on an
556 * archive) only the most recent is kept.
557 * Return:
558 * 0 if added, -1 otherwise
559 */
560
561 #if __STDC__
562 int
563 add_name(char *oname, int onamelen, char *nname)
564 #else
565 int
566 add_name(oname, onamelen, nname)
567 char *oname;
568 int onamelen;
569 char *nname;
570 #endif
571 {
572 NAMT *pt;
573 u_int indx;
574
575 if (ntab == NULL) {
576 /*
577 * should never happen
578 */
579 tty_warn(0, "No interactive rename table, links may fail\n");
580 return(0);
581 }
582
583 /*
584 * look to see if we have already mapped this file, if so we
585 * will update it
586 */
587 indx = st_hash(oname, onamelen, N_TAB_SZ);
588 if ((pt = ntab[indx]) != NULL) {
589 /*
590 * look down the has chain for the file
591 */
592 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
593 pt = pt->fow;
594
595 if (pt != NULL) {
596 /*
597 * found an old mapping, replace it with the new one
598 * the user just input (if it is different)
599 */
600 if (strcmp(nname, pt->nname) == 0)
601 return(0);
602
603 (void)free((char *)pt->nname);
604 if ((pt->nname = strdup(nname)) == NULL) {
605 tty_warn(1, "Cannot update rename table");
606 return(-1);
607 }
608 return(0);
609 }
610 }
611
612 /*
613 * this is a new mapping, add it to the table
614 */
615 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
616 if ((pt->oname = strdup(oname)) != NULL) {
617 if ((pt->nname = strdup(nname)) != NULL) {
618 pt->fow = ntab[indx];
619 ntab[indx] = pt;
620 return(0);
621 }
622 (void)free((char *)pt->oname);
623 }
624 (void)free((char *)pt);
625 }
626 tty_warn(1, "Interactive rename table out of memory");
627 return(-1);
628 }
629
630 /*
631 * sub_name()
632 * look up a link name to see if it points at a file that has been
633 * remapped by the user. If found, the link is adjusted to contain the
634 * new name (oname is the link to name)
635 */
636
637 #if __STDC__
638 void
639 sub_name(char *oname, int *onamelen)
640 #else
641 void
642 sub_name(oname, onamelen)
643 char *oname;
644 int *onamelen;
645 #endif
646 {
647 NAMT *pt;
648 u_int indx;
649
650 if (ntab == NULL)
651 return;
652 /*
653 * look the name up in the hash table
654 */
655 indx = st_hash(oname, *onamelen, N_TAB_SZ);
656 if ((pt = ntab[indx]) == NULL)
657 return;
658
659 while (pt != NULL) {
660 /*
661 * walk down the hash cahin looking for a match
662 */
663 if (strcmp(oname, pt->oname) == 0) {
664 /*
665 * found it, replace it with the new name
666 * and return (we know that oname has enough space)
667 */
668 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
669 return;
670 }
671 pt = pt->fow;
672 }
673
674 /*
675 * no match, just return
676 */
677 return;
678 }
679
680 /*
681 * device/inode mapping table routines
682 * (used with formats that store device and inodes fields)
683 *
684 * device/inode mapping tables remap the device field in a archive header. The
685 * device/inode fields are used to determine when files are hard links to each
686 * other. However these values have very little meaning outside of that. This
687 * database is used to solve one of two different problems.
688 *
689 * 1) when files are appended to an archive, while the new files may have hard
690 * links to each other, you cannot determine if they have hard links to any
691 * file already stored on the archive from a prior run of pax. We must assume
692 * that these inode/device pairs are unique only within a SINGLE run of pax
693 * (which adds a set of files to an archive). So we have to make sure the
694 * inode/dev pairs we add each time are always unique. We do this by observing
695 * while the inode field is very dense, the use of the dev field is fairly
696 * sparse. Within each run of pax, we remap any device number of a new archive
697 * member that has a device number used in a prior run and already stored in a
698 * file on the archive. During the read phase of the append, we store the
699 * device numbers used and mark them to not be used by any file during the
700 * write phase. If during write we go to use one of those old device numbers,
701 * we remap it to a new value.
702 *
703 * 2) Often the fields in the archive header used to store these values are
704 * too small to store the entire value. The result is an inode or device value
705 * which can be truncated. This really can foul up an archive. With truncation
706 * we end up creating links between files that are really not links (after
707 * truncation the inodes are the same value). We address that by detecting
708 * truncation and forcing a remap of the device field to split truncated
709 * inodes away from each other. Each truncation creates a pattern of bits that
710 * are removed. We use this pattern of truncated bits to partition the inodes
711 * on a single device to many different devices (each one represented by the
712 * truncated bit pattern). All inodes on the same device that have the same
713 * truncation pattern are mapped to the same new device. Two inodes that
714 * truncate to the same value clearly will always have different truncation
715 * bit patterns, so they will be split from away each other. When we spot
716 * device truncation we remap the device number to a non truncated value.
717 * (for more info see table.h for the data structures involved).
718 */
719
720 /*
721 * dev_start()
722 * create the device mapping table
723 * Return:
724 * 0 if successful, -1 otherwise
725 */
726
727 #if __STDC__
728 int
729 dev_start(void)
730 #else
731 int
732 dev_start()
733 #endif
734 {
735 if (dtab != NULL)
736 return(0);
737 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
738 tty_warn(1, "Cannot allocate memory for device mapping table");
739 return(-1);
740 }
741 return(0);
742 }
743
744 /*
745 * add_dev()
746 * add a device number to the table. this will force the device to be
747 * remapped to a new value if it be used during a write phase. This
748 * function is called during the read phase of an append to prohibit the
749 * use of any device number already in the archive.
750 * Return:
751 * 0 if added ok, -1 otherwise
752 */
753
754 #if __STDC__
755 int
756 add_dev(ARCHD *arcn)
757 #else
758 int
759 add_dev(arcn)
760 ARCHD *arcn;
761 #endif
762 {
763 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
764 return(-1);
765 return(0);
766 }
767
768 /*
769 * chk_dev()
770 * check for a device value in the device table. If not found and the add
771 * flag is set, it is added. This does NOT assign any mapping values, just
772 * adds the device number as one that need to be remapped. If this device
773 * is already mapped, just return with a pointer to that entry.
774 * Return:
775 * pointer to the entry for this device in the device map table. Null
776 * if the add flag is not set and the device is not in the table (it is
777 * not been seen yet). If add is set and the device cannot be added, null
778 * is returned (indicates an error).
779 */
780
781 #if __STDC__
782 static DEVT *
783 chk_dev(dev_t dev, int add)
784 #else
785 static DEVT *
786 chk_dev(dev, add)
787 dev_t dev;
788 int add;
789 #endif
790 {
791 DEVT *pt;
792 u_int indx;
793
794 if (dtab == NULL)
795 return(NULL);
796 /*
797 * look to see if this device is already in the table
798 */
799 indx = ((unsigned)dev) % D_TAB_SZ;
800 if ((pt = dtab[indx]) != NULL) {
801 while ((pt != NULL) && (pt->dev != dev))
802 pt = pt->fow;
803
804 /*
805 * found it, return a pointer to it
806 */
807 if (pt != NULL)
808 return(pt);
809 }
810
811 /*
812 * not in table, we add it only if told to as this may just be a check
813 * to see if a device number is being used.
814 */
815 if (add == 0)
816 return(NULL);
817
818 /*
819 * allocate a node for this device and add it to the front of the hash
820 * chain. Note we do not assign remaps values here, so the pt->list
821 * list must be NULL.
822 */
823 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
824 tty_warn(1, "Device map table out of memory");
825 return(NULL);
826 }
827 pt->dev = dev;
828 pt->list = NULL;
829 pt->fow = dtab[indx];
830 dtab[indx] = pt;
831 return(pt);
832 }
833 /*
834 * map_dev()
835 * given an inode and device storage mask (the mask has a 1 for each bit
836 * the archive format is able to store in a header), we check for inode
837 * and device truncation and remap the device as required. Device mapping
838 * can also occur when during the read phase of append a device number was
839 * seen (and was marked as do not use during the write phase). WE ASSUME
840 * that unsigned longs are the same size or bigger than the fields used
841 * for ino_t and dev_t. If not the types will have to be changed.
842 * Return:
843 * 0 if all ok, -1 otherwise.
844 */
845
846 #if __STDC__
847 int
848 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
849 #else
850 int
851 map_dev(arcn, dev_mask, ino_mask)
852 ARCHD *arcn;
853 u_long dev_mask;
854 u_long ino_mask;
855 #endif
856 {
857 DEVT *pt;
858 DLIST *dpt;
859 static dev_t lastdev = 0; /* next device number to try */
860 int trc_ino = 0;
861 int trc_dev = 0;
862 ino_t trunc_bits = 0;
863 ino_t nino;
864
865 if (dtab == NULL)
866 return(0);
867 /*
868 * check for device and inode truncation, and extract the truncated
869 * bit pattern.
870 */
871 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
872 ++trc_dev;
873 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
874 ++trc_ino;
875 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
876 }
877
878 /*
879 * see if this device is already being mapped, look up the device
880 * then find the truncation bit pattern which applies
881 */
882 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
883 /*
884 * this device is already marked to be remapped
885 */
886 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
887 if (dpt->trunc_bits == trunc_bits)
888 break;
889
890 if (dpt != NULL) {
891 /*
892 * we are being remapped for this device and pattern
893 * change the device number to be stored and return
894 */
895 arcn->sb.st_dev = dpt->dev;
896 arcn->sb.st_ino = nino;
897 return(0);
898 }
899 } else {
900 /*
901 * this device is not being remapped YET. if we do not have any
902 * form of truncation, we do not need a remap
903 */
904 if (!trc_ino && !trc_dev)
905 return(0);
906
907 /*
908 * we have truncation, have to add this as a device to remap
909 */
910 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
911 goto bad;
912
913 /*
914 * if we just have a truncated inode, we have to make sure that
915 * all future inodes that do not truncate (they have the
916 * truncation pattern of all 0's) continue to map to the same
917 * device number. We probably have already written inodes with
918 * this device number to the archive with the truncation
919 * pattern of all 0's. So we add the mapping for all 0's to the
920 * same device number.
921 */
922 if (!trc_dev && (trunc_bits != 0)) {
923 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
924 goto bad;
925 dpt->trunc_bits = 0;
926 dpt->dev = arcn->sb.st_dev;
927 dpt->fow = pt->list;
928 pt->list = dpt;
929 }
930 }
931
932 /*
933 * look for a device number not being used. We must watch for wrap
934 * around on lastdev (so we do not get stuck looking forever!)
935 */
936 while (++lastdev > 0) {
937 if (chk_dev(lastdev, 0) != NULL)
938 continue;
939 /*
940 * found an unused value. If we have reached truncation point
941 * for this format we are hosed, so we give up. Otherwise we
942 * mark it as being used.
943 */
944 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
945 (chk_dev(lastdev, 1) == NULL))
946 goto bad;
947 break;
948 }
949
950 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
951 goto bad;
952
953 /*
954 * got a new device number, store it under this truncation pattern.
955 * change the device number this file is being stored with.
956 */
957 dpt->trunc_bits = trunc_bits;
958 dpt->dev = lastdev;
959 dpt->fow = pt->list;
960 pt->list = dpt;
961 arcn->sb.st_dev = lastdev;
962 arcn->sb.st_ino = nino;
963 return(0);
964
965 bad:
966 tty_warn(1,
967 "Unable to fix truncated inode/device field when storing %s",
968 arcn->name);
969 tty_warn(0, "Archive may create improper hard links when extracted");
970 return(0);
971 }
972
973 /*
974 * directory access/mod time reset table routines (for directories READ by pax)
975 *
976 * The pax -t flag requires that access times of archive files to be the same
977 * before being read by pax. For regular files, access time is restored after
978 * the file has been copied. This database provides the same functionality for
979 * directories read during file tree traversal. Restoring directory access time
980 * is more complex than files since directories may be read several times until
981 * all the descendants in their subtree are visited by fts. Directory access
982 * and modification times are stored during the fts pre-order visit (done
983 * before any descendants in the subtree is visited) and restored after the
984 * fts post-order visit (after all the descendants have been visited). In the
985 * case of premature exit from a subtree (like from the effects of -n), any
986 * directory entries left in this database are reset during final cleanup
987 * operations of pax. Entries are hashed by inode number for fast lookup.
988 */
989
990 /*
991 * atdir_start()
992 * create the directory access time database for directories READ by pax.
993 * Return:
994 * 0 is created ok, -1 otherwise.
995 */
996
997 #if __STDC__
998 int
999 atdir_start(void)
1000 #else
1001 int
1002 atdir_start()
1003 #endif
1004 {
1005 if (atab != NULL)
1006 return(0);
1007 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1008 tty_warn(1,
1009 "Cannot allocate space for directory access time table");
1010 return(-1);
1011 }
1012 return(0);
1013 }
1014
1015
1016 /*
1017 * atdir_end()
1018 * walk through the directory access time table and reset the access time
1019 * of any directory who still has an entry left in the database. These
1020 * entries are for directories READ by pax
1021 */
1022
1023 #if __STDC__
1024 void
1025 atdir_end(void)
1026 #else
1027 void
1028 atdir_end()
1029 #endif
1030 {
1031 ATDIR *pt;
1032 int i;
1033
1034 if (atab == NULL)
1035 return;
1036 /*
1037 * for each non-empty hash table entry reset all the directories
1038 * chained there.
1039 */
1040 for (i = 0; i < A_TAB_SZ; ++i) {
1041 if ((pt = atab[i]) == NULL)
1042 continue;
1043 /*
1044 * remember to force the times, set_ftime() looks at pmtime
1045 * and patime, which only applies to things CREATED by pax,
1046 * not read by pax. Read time reset is controlled by -t.
1047 */
1048 for (; pt != NULL; pt = pt->fow)
1049 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1050 }
1051 }
1052
1053 /*
1054 * add_atdir()
1055 * add a directory to the directory access time table. Table is hashed
1056 * and chained by inode number. This is for directories READ by pax
1057 */
1058
1059 #if __STDC__
1060 void
1061 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1062 #else
1063 void
1064 add_atdir(fname, dev, ino, mtime, atime)
1065 char *fname;
1066 dev_t dev;
1067 ino_t ino;
1068 time_t mtime;
1069 time_t atime;
1070 #endif
1071 {
1072 ATDIR *pt;
1073 u_int indx;
1074
1075 if (atab == NULL)
1076 return;
1077
1078 /*
1079 * make sure this directory is not already in the table, if so just
1080 * return (the older entry always has the correct time). The only
1081 * way this will happen is when the same subtree can be traversed by
1082 * different args to pax and the -n option is aborting fts out of a
1083 * subtree before all the post-order visits have been made).
1084 */
1085 indx = ((unsigned)ino) % A_TAB_SZ;
1086 if ((pt = atab[indx]) != NULL) {
1087 while (pt != NULL) {
1088 if ((pt->ino == ino) && (pt->dev == dev))
1089 break;
1090 pt = pt->fow;
1091 }
1092
1093 /*
1094 * oops, already there. Leave it alone.
1095 */
1096 if (pt != NULL)
1097 return;
1098 }
1099
1100 /*
1101 * add it to the front of the hash chain
1102 */
1103 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1104 if ((pt->name = strdup(fname)) != NULL) {
1105 pt->dev = dev;
1106 pt->ino = ino;
1107 pt->mtime = mtime;
1108 pt->atime = atime;
1109 pt->fow = atab[indx];
1110 atab[indx] = pt;
1111 return;
1112 }
1113 (void)free((char *)pt);
1114 }
1115
1116 tty_warn(1, "Directory access time reset table ran out of memory");
1117 return;
1118 }
1119
1120 /*
1121 * get_atdir()
1122 * look up a directory by inode and device number to obtain the access
1123 * and modification time you want to set to. If found, the modification
1124 * and access time parameters are set and the entry is removed from the
1125 * table (as it is no longer needed). These are for directories READ by
1126 * pax
1127 * Return:
1128 * 0 if found, -1 if not found.
1129 */
1130
1131 #if __STDC__
1132 int
1133 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1134 #else
1135 int
1136 get_atdir(dev, ino, mtime, atime)
1137 dev_t dev;
1138 ino_t ino;
1139 time_t *mtime;
1140 time_t *atime;
1141 #endif
1142 {
1143 ATDIR *pt;
1144 ATDIR **ppt;
1145 u_int indx;
1146
1147 if (atab == NULL)
1148 return(-1);
1149 /*
1150 * hash by inode and search the chain for an inode and device match
1151 */
1152 indx = ((unsigned)ino) % A_TAB_SZ;
1153 if ((pt = atab[indx]) == NULL)
1154 return(-1);
1155
1156 ppt = &(atab[indx]);
1157 while (pt != NULL) {
1158 if ((pt->ino == ino) && (pt->dev == dev))
1159 break;
1160 /*
1161 * no match, go to next one
1162 */
1163 ppt = &(pt->fow);
1164 pt = pt->fow;
1165 }
1166
1167 /*
1168 * return if we did not find it.
1169 */
1170 if (pt == NULL)
1171 return(-1);
1172
1173 /*
1174 * found it. return the times and remove the entry from the table.
1175 */
1176 *ppt = pt->fow;
1177 *mtime = pt->mtime;
1178 *atime = pt->atime;
1179 (void)free((char *)pt->name);
1180 (void)free((char *)pt);
1181 return(0);
1182 }
1183
1184 /*
1185 * directory access mode and time storage routines (for directories CREATED
1186 * by pax).
1187 *
1188 * Pax requires that extracted directories, by default, have their access/mod
1189 * times and permissions set to the values specified in the archive. During the
1190 * actions of extracting (and creating the destination subtree during -rw copy)
1191 * directories extracted may be modified after being created. Even worse is
1192 * that these directories may have been created with file permissions which
1193 * prohibits any descendants of these directories from being extracted. When
1194 * directories are created by pax, access rights may be added to permit the
1195 * creation of files in their subtree. Every time pax creates a directory, the
1196 * times and file permissions specified by the archive are stored. After all
1197 * files have been extracted (or copied), these directories have their times
1198 * and file modes reset to the stored values. The directory info is restored in
1199 * reverse order as entries were added to the data file from root to leaf. To
1200 * restore atime properly, we must go backwards. The data file consists of
1201 * records with two parts, the file name followed by a DIRDATA trailer. The
1202 * fixed sized trailer contains the size of the name plus the off_t location in
1203 * the file. To restore we work backwards through the file reading the trailer
1204 * then the file name.
1205 */
1206
1207 #ifndef DIRS_USE_FILE
1208 static DIRDATA *dirdata_head;
1209 #endif
1210
1211 /*
1212 * dir_start()
1213 * set up the directory time and file mode storage for directories CREATED
1214 * by pax.
1215 * Return:
1216 * 0 if ok, -1 otherwise
1217 */
1218
1219 #if __STDC__
1220 int
1221 dir_start(void)
1222 #else
1223 int
1224 dir_start()
1225 #endif
1226 {
1227 #ifdef DIRS_USE_FILE
1228 const char *tmpdir;
1229 char template[MAXPATHLEN];
1230
1231 if (dirfd != -1)
1232 return(0);
1233
1234 /*
1235 * unlink the file so it goes away at termination by itself
1236 */
1237 if ((tmpdir = getenv("TMPDIR")) == NULL)
1238 tmpdir = _PATH_TMP;
1239 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1240 if ((dirfd = mkstemp(template)) >= 0) {
1241 (void)unlink(template);
1242 return(0);
1243 }
1244 tty_warn(1, "Unable to create temporary file for directory times: %s",
1245 template);
1246 return(-1);
1247 #else
1248 return (0);
1249 #endif /* DIRS_USE_FILE */
1250 }
1251
1252 /*
1253 * add_dir()
1254 * add the mode and times for a newly CREATED directory
1255 * name is name of the directory, psb the stat buffer with the data in it,
1256 * frc_mode is a flag that says whether to force the setting of the mode
1257 * (ignoring the user set values for preserving file mode). Frc_mode is
1258 * for the case where we created a file and found that the resulting
1259 * directory was not writeable and the user asked for file modes to NOT
1260 * be preserved. (we have to preserve what was created by default, so we
1261 * have to force the setting at the end. this is stated explicitly in the
1262 * pax spec)
1263 */
1264
1265 #if __STDC__
1266 void
1267 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1268 #else
1269 void
1270 add_dir(name, nlen, psb, frc_mode)
1271 char *name;
1272 int nlen;
1273 struct stat *psb;
1274 int frc_mode;
1275 #endif
1276 {
1277 #ifdef DIRS_USE_FILE
1278 DIRDATA dblk;
1279
1280 if (dirfd < 0)
1281 return;
1282
1283 /*
1284 * get current position (where file name will start) so we can store it
1285 * in the trailer
1286 */
1287 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1288 tty_warn(1,
1289 "Unable to store mode and times for directory: %s",name);
1290 return;
1291 }
1292
1293 /*
1294 * write the file name followed by the trailer
1295 */
1296 dblk.nlen = nlen + 1;
1297 dblk.mode = psb->st_mode & 0xffff;
1298 dblk.mtime = psb->st_mtime;
1299 dblk.atime = psb->st_atime;
1300 dblk.fflags = psb->st_flags;
1301 dblk.frc_mode = frc_mode;
1302 if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1303 (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1304 ++dircnt;
1305 return;
1306 }
1307
1308 tty_warn(1,
1309 "Unable to store mode and times for created directory: %s",name);
1310 return;
1311 #else
1312 DIRDATA *dblk;
1313
1314 if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1315 (dblk->name = strdup(name)) == NULL) {
1316 tty_warn(1,
1317 "Unable to store mode and times for directory: %s",name);
1318 if (dblk != NULL)
1319 free(dblk);
1320 return;
1321 }
1322
1323 dblk->mode = psb->st_mode & 0xffff;
1324 dblk->mtime = psb->st_mtime;
1325 dblk->atime = psb->st_atime;
1326 dblk->fflags = psb->st_flags;
1327 dblk->frc_mode = frc_mode;
1328
1329 dblk->next = dirdata_head;
1330 dirdata_head = dblk;
1331 return;
1332 #endif /* DIRS_USE_FILE */
1333 }
1334
1335 /*
1336 * proc_dir()
1337 * process all file modes and times stored for directories CREATED
1338 * by pax
1339 */
1340
1341 #if __STDC__
1342 void
1343 proc_dir(void)
1344 #else
1345 void
1346 proc_dir()
1347 #endif
1348 {
1349 #ifdef DIRS_USE_FILE
1350 char name[PAXPATHLEN+1];
1351 DIRDATA dblk;
1352 u_long cnt;
1353
1354 if (dirfd < 0)
1355 return;
1356 /*
1357 * read backwards through the file and process each directory
1358 */
1359 for (cnt = 0; cnt < dircnt; ++cnt) {
1360 /*
1361 * read the trailer, then the file name, if this fails
1362 * just give up.
1363 */
1364 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1365 break;
1366 if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1367 break;
1368 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1369 break;
1370 if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1371 break;
1372 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1373 break;
1374
1375 /*
1376 * frc_mode set, make sure we set the file modes even if
1377 * the user didn't ask for it (see file_subs.c for more info)
1378 */
1379 if (pmode || dblk.frc_mode)
1380 set_pmode(name, dblk.mode);
1381 if (patime || pmtime)
1382 set_ftime(name, dblk.mtime, dblk.atime, 0);
1383 if (pfflags)
1384 set_chflags(name, dblk.fflags);
1385 }
1386
1387 (void)close(dirfd);
1388 dirfd = -1;
1389 if (cnt != dircnt)
1390 tty_warn(1,
1391 "Unable to set mode and times for created directories");
1392 return;
1393 #else
1394 DIRDATA *dblk;
1395
1396 for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1397 dirdata_head = dblk->next;
1398
1399 /*
1400 * frc_mode set, make sure we set the file modes even if
1401 * the user didn't ask for it (see file_subs.c for more info)
1402 */
1403 if (pmode || dblk->frc_mode)
1404 set_pmode(dblk->name, dblk->mode);
1405 if (patime || pmtime)
1406 set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1407 if (pfflags)
1408 set_chflags(dblk->name, dblk->fflags);
1409
1410 free(dblk->name);
1411 free(dblk);
1412 }
1413 #endif /* DIRS_USE_FILE */
1414 }
1415
1416 /*
1417 * database independent routines
1418 */
1419
1420 /*
1421 * st_hash()
1422 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1423 * end of file, as this provides far better distribution than any other
1424 * part of the name. For performance reasons we only care about the last
1425 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1426 * name). Was tested on 500,000 name file tree traversal from the root
1427 * and gave almost a perfectly uniform distribution of keys when used with
1428 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1429 * chars at a time and pads with 0 for last addition.
1430 * Return:
1431 * the hash value of the string MOD (%) the table size.
1432 */
1433
1434 #if __STDC__
1435 u_int
1436 st_hash(char *name, int len, int tabsz)
1437 #else
1438 u_int
1439 st_hash(name, len, tabsz)
1440 char *name;
1441 int len;
1442 int tabsz;
1443 #endif
1444 {
1445 char *pt;
1446 char *dest;
1447 char *end;
1448 int i;
1449 u_int key = 0;
1450 int steps;
1451 int res;
1452 u_int val;
1453
1454 /*
1455 * only look at the tail up to MAXKEYLEN, we do not need to waste
1456 * time here (remember these are pathnames, the tail is what will
1457 * spread out the keys)
1458 */
1459 if (len > MAXKEYLEN) {
1460 pt = &(name[len - MAXKEYLEN]);
1461 len = MAXKEYLEN;
1462 } else
1463 pt = name;
1464
1465 /*
1466 * calculate the number of u_int size steps in the string and if
1467 * there is a runt to deal with
1468 */
1469 steps = len/sizeof(u_int);
1470 res = len % sizeof(u_int);
1471
1472 /*
1473 * add up the value of the string in unsigned integer sized pieces
1474 * too bad we cannot have unsigned int aligned strings, then we
1475 * could avoid the expensive copy.
1476 */
1477 for (i = 0; i < steps; ++i) {
1478 end = pt + sizeof(u_int);
1479 dest = (char *)&val;
1480 while (pt < end)
1481 *dest++ = *pt++;
1482 key += val;
1483 }
1484
1485 /*
1486 * add in the runt padded with zero to the right
1487 */
1488 if (res) {
1489 val = 0;
1490 end = pt + res;
1491 dest = (char *)&val;
1492 while (pt < end)
1493 *dest++ = *pt++;
1494 key += val;
1495 }
1496
1497 /*
1498 * return the result mod the table size
1499 */
1500 return(key % tabsz);
1501 }
1502