Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.13
      1 /*	$NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992 Keith Muller.
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * Keith Muller of the University of California, San Diego.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the University of
     22  *	California, Berkeley and its contributors.
     23  * 4. Neither the name of the University nor the names of its contributors
     24  *    may be used to endorse or promote products derived from this software
     25  *    without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  * SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 #ifndef lint
     42 #if 0
     43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44 #else
     45 __RCSID("$NetBSD: tables.c,v 1.13 2000/03/21 02:15:24 thorpej Exp $");
     46 #endif
     47 #endif /* not lint */
     48 
     49 #include <sys/types.h>
     50 #include <sys/time.h>
     51 #include <sys/stat.h>
     52 #include <sys/param.h>
     53 #include <stdio.h>
     54 #include <ctype.h>
     55 #include <fcntl.h>
     56 #include <paths.h>
     57 #include <string.h>
     58 #include <unistd.h>
     59 #include <errno.h>
     60 #include <stdlib.h>
     61 #include "pax.h"
     62 #include "tables.h"
     63 #include "extern.h"
     64 
     65 /*
     66  * Routines for controlling the contents of all the different databases pax
     67  * keeps. Tables are dynamically created only when they are needed. The
     68  * goal was speed and the ability to work with HUGE archives. The databases
     69  * were kept simple, but do have complex rules for when the contents change.
     70  * As of this writing, the posix library functions were more complex than
     71  * needed for this application (pax databases have very short lifetimes and
     72  * do not survive after pax is finished). Pax is required to handle very
     73  * large archives. These database routines carefully combine memory usage and
     74  * temporary file storage in ways which will not significantly impact runtime
     75  * performance while allowing the largest possible archives to be handled.
     76  * Trying to force the fit to the posix databases routines was not considered
     77  * time well spent.
     78  */
     79 
     80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81 static FTM **ftab = NULL;	/* file time table for updating arch */
     82 static NAMT **ntab = NULL;	/* interactive rename storage table */
     83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85 #ifdef DIRS_USE_FILE
     86 static int dirfd = -1;		/* storage for setting created dir time/mode */
     87 static u_long dircnt;		/* entries in dir time/mode storage */
     88 #endif
     89 static int ffd = -1;		/* tmp file for file time table name storage */
     90 
     91 static DEVT *chk_dev __P((dev_t, int));
     92 
     93 /*
     94  * hard link table routines
     95  *
     96  * The hard link table tries to detect hard links to files using the device and
     97  * inode values. We do this when writing an archive, so we can tell the format
     98  * write routine that this file is a hard link to another file. The format
     99  * write routine then can store this file in whatever way it wants (as a hard
    100  * link if the format supports that like tar, or ignore this info like cpio).
    101  * (Actually a field in the format driver table tells us if the format wants
    102  * hard link info. if not, we do not waste time looking for them). We also use
    103  * the same table when reading an archive. In that situation, this table is
    104  * used by the format read routine to detect hard links from stored dev and
    105  * inode numbers (like cpio). This will allow pax to create a link when one
    106  * can be detected by the archive format.
    107  */
    108 
    109 /*
    110  * lnk_start
    111  *	Creates the hard link table.
    112  * Return:
    113  *	0 if created, -1 if failure
    114  */
    115 
    116 #if __STDC__
    117 int
    118 lnk_start(void)
    119 #else
    120 int
    121 lnk_start()
    122 #endif
    123 {
    124 	if (ltab != NULL)
    125 		return(0);
    126 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    127 		tty_warn(1, "Cannot allocate memory for hard link table");
    128 		return(-1);
    129 	}
    130 	return(0);
    131 }
    132 
    133 /*
    134  * chk_lnk()
    135  *	Looks up entry in hard link hash table. If found, it copies the name
    136  *	of the file it is linked to (we already saw that file) into ln_name.
    137  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    138  *	database. (We have seen all the links to this file). If not found,
    139  *	we add the file to the database if it has the potential for having
    140  *	hard links to other files we may process (it has a link count > 1)
    141  * Return:
    142  *	if found returns 1; if not found returns 0; -1 on error
    143  */
    144 
    145 #if __STDC__
    146 int
    147 chk_lnk(ARCHD *arcn)
    148 #else
    149 int
    150 chk_lnk(arcn)
    151 	ARCHD *arcn;
    152 #endif
    153 {
    154 	HRDLNK *pt;
    155 	HRDLNK **ppt;
    156 	u_int indx;
    157 
    158 	if (ltab == NULL)
    159 		return(-1);
    160 	/*
    161 	 * ignore those nodes that cannot have hard links
    162 	 */
    163 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    164 		return(0);
    165 
    166 	/*
    167 	 * hash inode number and look for this file
    168 	 */
    169 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    170 	if ((pt = ltab[indx]) != NULL) {
    171 		/*
    172 		 * it's hash chain in not empty, walk down looking for it
    173 		 */
    174 		ppt = &(ltab[indx]);
    175 		while (pt != NULL) {
    176 			if ((pt->ino == arcn->sb.st_ino) &&
    177 			    (pt->dev == arcn->sb.st_dev))
    178 				break;
    179 			ppt = &(pt->fow);
    180 			pt = pt->fow;
    181 		}
    182 
    183 		if (pt != NULL) {
    184 			/*
    185 			 * found a link. set the node type and copy in the
    186 			 * name of the file it is to link to. we need to
    187 			 * handle hardlinks to regular files differently than
    188 			 * other links.
    189 			 */
    190 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    191 				PAXPATHLEN+1);
    192 			if (arcn->type == PAX_REG)
    193 				arcn->type = PAX_HRG;
    194 			else
    195 				arcn->type = PAX_HLK;
    196 
    197 			/*
    198 			 * if we have found all the links to this file, remove
    199 			 * it from the database
    200 			 */
    201 			if (--pt->nlink <= 1) {
    202 				*ppt = pt->fow;
    203 				(void)free((char *)pt->name);
    204 				(void)free((char *)pt);
    205 			}
    206 			return(1);
    207 		}
    208 	}
    209 
    210 	/*
    211 	 * we never saw this file before. It has links so we add it to the
    212 	 * front of this hash chain
    213 	 */
    214 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    215 		if ((pt->name = strdup(arcn->name)) != NULL) {
    216 			pt->dev = arcn->sb.st_dev;
    217 			pt->ino = arcn->sb.st_ino;
    218 			pt->nlink = arcn->sb.st_nlink;
    219 			pt->fow = ltab[indx];
    220 			ltab[indx] = pt;
    221 			return(0);
    222 		}
    223 		(void)free((char *)pt);
    224 	}
    225 
    226 	tty_warn(1, "Hard link table out of memory");
    227 	return(-1);
    228 }
    229 
    230 /*
    231  * purg_lnk
    232  *	remove reference for a file that we may have added to the data base as
    233  *	a potential source for hard links. We ended up not using the file, so
    234  *	we do not want to accidently point another file at it later on.
    235  */
    236 
    237 #if __STDC__
    238 void
    239 purg_lnk(ARCHD *arcn)
    240 #else
    241 void
    242 purg_lnk(arcn)
    243 	ARCHD *arcn;
    244 #endif
    245 {
    246 	HRDLNK *pt;
    247 	HRDLNK **ppt;
    248 	u_int indx;
    249 
    250 	if (ltab == NULL)
    251 		return;
    252 	/*
    253 	 * do not bother to look if it could not be in the database
    254 	 */
    255 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    256 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    257 		return;
    258 
    259 	/*
    260 	 * find the hash chain for this inode value, if empty return
    261 	 */
    262 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    263 	if ((pt = ltab[indx]) == NULL)
    264 		return;
    265 
    266 	/*
    267 	 * walk down the list looking for the inode/dev pair, unlink and
    268 	 * free if found
    269 	 */
    270 	ppt = &(ltab[indx]);
    271 	while (pt != NULL) {
    272 		if ((pt->ino == arcn->sb.st_ino) &&
    273 		    (pt->dev == arcn->sb.st_dev))
    274 			break;
    275 		ppt = &(pt->fow);
    276 		pt = pt->fow;
    277 	}
    278 	if (pt == NULL)
    279 		return;
    280 
    281 	/*
    282 	 * remove and free it
    283 	 */
    284 	*ppt = pt->fow;
    285 	(void)free((char *)pt->name);
    286 	(void)free((char *)pt);
    287 }
    288 
    289 /*
    290  * lnk_end()
    291  *	pull apart a existing link table so we can reuse it. We do this between
    292  *	read and write phases of append with update. (The format may have
    293  *	used the link table, and we need to start with a fresh table for the
    294  *	write phase
    295  */
    296 
    297 #if __STDC__
    298 void
    299 lnk_end(void)
    300 #else
    301 void
    302 lnk_end()
    303 #endif
    304 {
    305 	int i;
    306 	HRDLNK *pt;
    307 	HRDLNK *ppt;
    308 
    309 	if (ltab == NULL)
    310 		return;
    311 
    312 	for (i = 0; i < L_TAB_SZ; ++i) {
    313 		if (ltab[i] == NULL)
    314 			continue;
    315 		pt = ltab[i];
    316 		ltab[i] = NULL;
    317 
    318 		/*
    319 		 * free up each entry on this chain
    320 		 */
    321 		while (pt != NULL) {
    322 			ppt = pt;
    323 			pt = ppt->fow;
    324 			(void)free((char *)ppt->name);
    325 			(void)free((char *)ppt);
    326 		}
    327 	}
    328 	return;
    329 }
    330 
    331 /*
    332  * modification time table routines
    333  *
    334  * The modification time table keeps track of last modification times for all
    335  * files stored in an archive during a write phase when -u is set. We only
    336  * add a file to the archive if it is newer than a file with the same name
    337  * already stored on the archive (if there is no other file with the same
    338  * name on the archive it is added). This applies to writes and appends.
    339  * An append with an -u must read the archive and store the modification time
    340  * for every file on that archive before starting the write phase. It is clear
    341  * that this is one HUGE database. To save memory space, the actual file names
    342  * are stored in a scatch file and indexed by an in memory hash table. The
    343  * hash table is indexed by hashing the file path. The nodes in the table store
    344  * the length of the filename and the lseek offset within the scratch file
    345  * where the actual name is stored. Since there are never any deletions to this
    346  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    347  * not exhibit any locality at all (files in the database are rarely
    348  * looked up more than once...). So caching is just a waste of memory. The
    349  * only limitation is the amount of scatch file space available to store the
    350  * path names.
    351  */
    352 
    353 /*
    354  * ftime_start()
    355  *	create the file time hash table and open for read/write the scratch
    356  *	file. (after created it is unlinked, so when we exit we leave
    357  *	no witnesses).
    358  * Return:
    359  *	0 if the table and file was created ok, -1 otherwise
    360  */
    361 
    362 #if __STDC__
    363 int
    364 ftime_start(void)
    365 #else
    366 int
    367 ftime_start()
    368 #endif
    369 {
    370 	const char *tmpdir;
    371 	char template[MAXPATHLEN];
    372 
    373 	if (ftab != NULL)
    374 		return(0);
    375 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    376 		tty_warn(1, "Cannot allocate memory for file time table");
    377 		return(-1);
    378 	}
    379 
    380 	/*
    381 	 * get random name and create temporary scratch file, unlink name
    382 	 * so it will get removed on exit
    383 	 */
    384 	if ((tmpdir = getenv("TMPDIR")) == NULL)
    385 		tmpdir = _PATH_TMP;
    386 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
    387 	if ((ffd = mkstemp(template)) == -1) {
    388 		syswarn(1, errno, "Unable to create temporary file: %s",
    389 		    template);
    390 		return(-1);
    391 	}
    392 
    393 	(void)unlink(template);
    394 	return(0);
    395 }
    396 
    397 /*
    398  * chk_ftime()
    399  *	looks up entry in file time hash table. If not found, the file is
    400  *	added to the hash table and the file named stored in the scratch file.
    401  *	If a file with the same name is found, the file times are compared and
    402  *	the most recent file time is retained. If the new file was younger (or
    403  *	was not in the database) the new file is selected for storage.
    404  * Return:
    405  *	0 if file should be added to the archive, 1 if it should be skipped,
    406  *	-1 on error
    407  */
    408 
    409 #if __STDC__
    410 int
    411 chk_ftime(ARCHD *arcn)
    412 #else
    413 int
    414 chk_ftime(arcn)
    415 	ARCHD *arcn;
    416 #endif
    417 {
    418 	FTM *pt;
    419 	int namelen;
    420 	u_int indx;
    421 	char ckname[PAXPATHLEN+1];
    422 
    423 	/*
    424 	 * no info, go ahead and add to archive
    425 	 */
    426 	if (ftab == NULL)
    427 		return(0);
    428 
    429 	/*
    430 	 * hash the pathname and look up in table
    431 	 */
    432 	namelen = arcn->nlen;
    433 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    434 	if ((pt = ftab[indx]) != NULL) {
    435 		/*
    436 		 * the hash chain is not empty, walk down looking for match
    437 		 * only read up the path names if the lengths match, speeds
    438 		 * up the search a lot
    439 		 */
    440 		while (pt != NULL) {
    441 			if (pt->namelen == namelen) {
    442 				/*
    443 				 * potential match, have to read the name
    444 				 * from the scratch file.
    445 				 */
    446 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    447 					syswarn(1, errno,
    448 					    "Failed ftime table seek");
    449 					return(-1);
    450 				}
    451 				if (xread(ffd, ckname, namelen) != namelen) {
    452 					syswarn(1, errno,
    453 					    "Failed ftime table read");
    454 					return(-1);
    455 				}
    456 
    457 				/*
    458 				 * if the names match, we are done
    459 				 */
    460 				if (!strncmp(ckname, arcn->name, namelen))
    461 					break;
    462 			}
    463 
    464 			/*
    465 			 * try the next entry on the chain
    466 			 */
    467 			pt = pt->fow;
    468 		}
    469 
    470 		if (pt != NULL) {
    471 			/*
    472 			 * found the file, compare the times, save the newer
    473 			 */
    474 			if (arcn->sb.st_mtime > pt->mtime) {
    475 				/*
    476 				 * file is newer
    477 				 */
    478 				pt->mtime = arcn->sb.st_mtime;
    479 				return(0);
    480 			}
    481 			/*
    482 			 * file is older
    483 			 */
    484 			return(1);
    485 		}
    486 	}
    487 
    488 	/*
    489 	 * not in table, add it
    490 	 */
    491 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    492 		/*
    493 		 * add the name at the end of the scratch file, saving the
    494 		 * offset. add the file to the head of the hash chain
    495 		 */
    496 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    497 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    498 				pt->mtime = arcn->sb.st_mtime;
    499 				pt->namelen = namelen;
    500 				pt->fow = ftab[indx];
    501 				ftab[indx] = pt;
    502 				return(0);
    503 			}
    504 			syswarn(1, errno, "Failed write to file time table");
    505 		} else
    506 			syswarn(1, errno, "Failed seek on file time table");
    507 	} else
    508 		tty_warn(1, "File time table ran out of memory");
    509 
    510 	if (pt != NULL)
    511 		(void)free((char *)pt);
    512 	return(-1);
    513 }
    514 
    515 /*
    516  * Interactive rename table routines
    517  *
    518  * The interactive rename table keeps track of the new names that the user
    519  * assigns to files from tty input. Since this map is unique for each file
    520  * we must store it in case there is a reference to the file later in archive
    521  * (a link). Otherwise we will be unable to find the file we know was
    522  * extracted. The remapping of these files is stored in a memory based hash
    523  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    524  * be a very large table).
    525  */
    526 
    527 /*
    528  * name_start()
    529  *	create the interactive rename table
    530  * Return:
    531  *	0 if successful, -1 otherwise
    532  */
    533 
    534 #if __STDC__
    535 int
    536 name_start(void)
    537 #else
    538 int
    539 name_start()
    540 #endif
    541 {
    542 	if (ntab != NULL)
    543 		return(0);
    544 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    545 		tty_warn(1,
    546 		    "Cannot allocate memory for interactive rename table");
    547 		return(-1);
    548 	}
    549 	return(0);
    550 }
    551 
    552 /*
    553  * add_name()
    554  *	add the new name to old name mapping just created by the user.
    555  *	If an old name mapping is found (there may be duplicate names on an
    556  *	archive) only the most recent is kept.
    557  * Return:
    558  *	0 if added, -1 otherwise
    559  */
    560 
    561 #if __STDC__
    562 int
    563 add_name(char *oname, int onamelen, char *nname)
    564 #else
    565 int
    566 add_name(oname, onamelen, nname)
    567 	char *oname;
    568 	int onamelen;
    569 	char *nname;
    570 #endif
    571 {
    572 	NAMT *pt;
    573 	u_int indx;
    574 
    575 	if (ntab == NULL) {
    576 		/*
    577 		 * should never happen
    578 		 */
    579 		tty_warn(0, "No interactive rename table, links may fail\n");
    580 		return(0);
    581 	}
    582 
    583 	/*
    584 	 * look to see if we have already mapped this file, if so we
    585 	 * will update it
    586 	 */
    587 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    588 	if ((pt = ntab[indx]) != NULL) {
    589 		/*
    590 		 * look down the has chain for the file
    591 		 */
    592 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    593 			pt = pt->fow;
    594 
    595 		if (pt != NULL) {
    596 			/*
    597 			 * found an old mapping, replace it with the new one
    598 			 * the user just input (if it is different)
    599 			 */
    600 			if (strcmp(nname, pt->nname) == 0)
    601 				return(0);
    602 
    603 			(void)free((char *)pt->nname);
    604 			if ((pt->nname = strdup(nname)) == NULL) {
    605 				tty_warn(1, "Cannot update rename table");
    606 				return(-1);
    607 			}
    608 			return(0);
    609 		}
    610 	}
    611 
    612 	/*
    613 	 * this is a new mapping, add it to the table
    614 	 */
    615 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    616 		if ((pt->oname = strdup(oname)) != NULL) {
    617 			if ((pt->nname = strdup(nname)) != NULL) {
    618 				pt->fow = ntab[indx];
    619 				ntab[indx] = pt;
    620 				return(0);
    621 			}
    622 			(void)free((char *)pt->oname);
    623 		}
    624 		(void)free((char *)pt);
    625 	}
    626 	tty_warn(1, "Interactive rename table out of memory");
    627 	return(-1);
    628 }
    629 
    630 /*
    631  * sub_name()
    632  *	look up a link name to see if it points at a file that has been
    633  *	remapped by the user. If found, the link is adjusted to contain the
    634  *	new name (oname is the link to name)
    635  */
    636 
    637 #if __STDC__
    638 void
    639 sub_name(char *oname, int *onamelen)
    640 #else
    641 void
    642 sub_name(oname, onamelen)
    643 	char *oname;
    644 	int *onamelen;
    645 #endif
    646 {
    647 	NAMT *pt;
    648 	u_int indx;
    649 
    650 	if (ntab == NULL)
    651 		return;
    652 	/*
    653 	 * look the name up in the hash table
    654 	 */
    655 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    656 	if ((pt = ntab[indx]) == NULL)
    657 		return;
    658 
    659 	while (pt != NULL) {
    660 		/*
    661 		 * walk down the hash cahin looking for a match
    662 		 */
    663 		if (strcmp(oname, pt->oname) == 0) {
    664 			/*
    665 			 * found it, replace it with the new name
    666 			 * and return (we know that oname has enough space)
    667 			 */
    668 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    669 			return;
    670 		}
    671 		pt = pt->fow;
    672 	}
    673 
    674 	/*
    675 	 * no match, just return
    676 	 */
    677 	return;
    678 }
    679 
    680 /*
    681  * device/inode mapping table routines
    682  * (used with formats that store device and inodes fields)
    683  *
    684  * device/inode mapping tables remap the device field in a archive header. The
    685  * device/inode fields are used to determine when files are hard links to each
    686  * other. However these values have very little meaning outside of that. This
    687  * database is used to solve one of two different problems.
    688  *
    689  * 1) when files are appended to an archive, while the new files may have hard
    690  * links to each other, you cannot determine if they have hard links to any
    691  * file already stored on the archive from a prior run of pax. We must assume
    692  * that these inode/device pairs are unique only within a SINGLE run of pax
    693  * (which adds a set of files to an archive). So we have to make sure the
    694  * inode/dev pairs we add each time are always unique. We do this by observing
    695  * while the inode field is very dense, the use of the dev field is fairly
    696  * sparse. Within each run of pax, we remap any device number of a new archive
    697  * member that has a device number used in a prior run and already stored in a
    698  * file on the archive. During the read phase of the append, we store the
    699  * device numbers used and mark them to not be used by any file during the
    700  * write phase. If during write we go to use one of those old device numbers,
    701  * we remap it to a new value.
    702  *
    703  * 2) Often the fields in the archive header used to store these values are
    704  * too small to store the entire value. The result is an inode or device value
    705  * which can be truncated. This really can foul up an archive. With truncation
    706  * we end up creating links between files that are really not links (after
    707  * truncation the inodes are the same value). We address that by detecting
    708  * truncation and forcing a remap of the device field to split truncated
    709  * inodes away from each other. Each truncation creates a pattern of bits that
    710  * are removed. We use this pattern of truncated bits to partition the inodes
    711  * on a single device to many different devices (each one represented by the
    712  * truncated bit pattern). All inodes on the same device that have the same
    713  * truncation pattern are mapped to the same new device. Two inodes that
    714  * truncate to the same value clearly will always have different truncation
    715  * bit patterns, so they will be split from away each other. When we spot
    716  * device truncation we remap the device number to a non truncated value.
    717  * (for more info see table.h for the data structures involved).
    718  */
    719 
    720 /*
    721  * dev_start()
    722  *	create the device mapping table
    723  * Return:
    724  *	0 if successful, -1 otherwise
    725  */
    726 
    727 #if __STDC__
    728 int
    729 dev_start(void)
    730 #else
    731 int
    732 dev_start()
    733 #endif
    734 {
    735 	if (dtab != NULL)
    736 		return(0);
    737 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    738 		tty_warn(1, "Cannot allocate memory for device mapping table");
    739 		return(-1);
    740 	}
    741 	return(0);
    742 }
    743 
    744 /*
    745  * add_dev()
    746  *	add a device number to the table. this will force the device to be
    747  *	remapped to a new value if it be used during a write phase. This
    748  *	function is called during the read phase of an append to prohibit the
    749  *	use of any device number already in the archive.
    750  * Return:
    751  *	0 if added ok, -1 otherwise
    752  */
    753 
    754 #if __STDC__
    755 int
    756 add_dev(ARCHD *arcn)
    757 #else
    758 int
    759 add_dev(arcn)
    760 	ARCHD *arcn;
    761 #endif
    762 {
    763 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    764 		return(-1);
    765 	return(0);
    766 }
    767 
    768 /*
    769  * chk_dev()
    770  *	check for a device value in the device table. If not found and the add
    771  *	flag is set, it is added. This does NOT assign any mapping values, just
    772  *	adds the device number as one that need to be remapped. If this device
    773  *	is already mapped, just return with a pointer to that entry.
    774  * Return:
    775  *	pointer to the entry for this device in the device map table. Null
    776  *	if the add flag is not set and the device is not in the table (it is
    777  *	not been seen yet). If add is set and the device cannot be added, null
    778  *	is returned (indicates an error).
    779  */
    780 
    781 #if __STDC__
    782 static DEVT *
    783 chk_dev(dev_t dev, int add)
    784 #else
    785 static DEVT *
    786 chk_dev(dev, add)
    787 	dev_t dev;
    788 	int add;
    789 #endif
    790 {
    791 	DEVT *pt;
    792 	u_int indx;
    793 
    794 	if (dtab == NULL)
    795 		return(NULL);
    796 	/*
    797 	 * look to see if this device is already in the table
    798 	 */
    799 	indx = ((unsigned)dev) % D_TAB_SZ;
    800 	if ((pt = dtab[indx]) != NULL) {
    801 		while ((pt != NULL) && (pt->dev != dev))
    802 			pt = pt->fow;
    803 
    804 		/*
    805 		 * found it, return a pointer to it
    806 		 */
    807 		if (pt != NULL)
    808 			return(pt);
    809 	}
    810 
    811 	/*
    812 	 * not in table, we add it only if told to as this may just be a check
    813 	 * to see if a device number is being used.
    814 	 */
    815 	if (add == 0)
    816 		return(NULL);
    817 
    818 	/*
    819 	 * allocate a node for this device and add it to the front of the hash
    820 	 * chain. Note we do not assign remaps values here, so the pt->list
    821 	 * list must be NULL.
    822 	 */
    823 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    824 		tty_warn(1, "Device map table out of memory");
    825 		return(NULL);
    826 	}
    827 	pt->dev = dev;
    828 	pt->list = NULL;
    829 	pt->fow = dtab[indx];
    830 	dtab[indx] = pt;
    831 	return(pt);
    832 }
    833 /*
    834  * map_dev()
    835  *	given an inode and device storage mask (the mask has a 1 for each bit
    836  *	the archive format is able to store in a header), we check for inode
    837  *	and device truncation and remap the device as required. Device mapping
    838  *	can also occur when during the read phase of append a device number was
    839  *	seen (and was marked as do not use during the write phase). WE ASSUME
    840  *	that unsigned longs are the same size or bigger than the fields used
    841  *	for ino_t and dev_t. If not the types will have to be changed.
    842  * Return:
    843  *	0 if all ok, -1 otherwise.
    844  */
    845 
    846 #if __STDC__
    847 int
    848 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    849 #else
    850 int
    851 map_dev(arcn, dev_mask, ino_mask)
    852 	ARCHD *arcn;
    853 	u_long dev_mask;
    854 	u_long ino_mask;
    855 #endif
    856 {
    857 	DEVT *pt;
    858 	DLIST *dpt;
    859 	static dev_t lastdev = 0;	/* next device number to try */
    860 	int trc_ino = 0;
    861 	int trc_dev = 0;
    862 	ino_t trunc_bits = 0;
    863 	ino_t nino;
    864 
    865 	if (dtab == NULL)
    866 		return(0);
    867 	/*
    868 	 * check for device and inode truncation, and extract the truncated
    869 	 * bit pattern.
    870 	 */
    871 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    872 		++trc_dev;
    873 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    874 		++trc_ino;
    875 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    876 	}
    877 
    878 	/*
    879 	 * see if this device is already being mapped, look up the device
    880 	 * then find the truncation bit pattern which applies
    881 	 */
    882 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    883 		/*
    884 		 * this device is already marked to be remapped
    885 		 */
    886 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    887 			if (dpt->trunc_bits == trunc_bits)
    888 				break;
    889 
    890 		if (dpt != NULL) {
    891 			/*
    892 			 * we are being remapped for this device and pattern
    893 			 * change the device number to be stored and return
    894 			 */
    895 			arcn->sb.st_dev = dpt->dev;
    896 			arcn->sb.st_ino = nino;
    897 			return(0);
    898 		}
    899 	} else {
    900 		/*
    901 		 * this device is not being remapped YET. if we do not have any
    902 		 * form of truncation, we do not need a remap
    903 		 */
    904 		if (!trc_ino && !trc_dev)
    905 			return(0);
    906 
    907 		/*
    908 		 * we have truncation, have to add this as a device to remap
    909 		 */
    910 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    911 			goto bad;
    912 
    913 		/*
    914 		 * if we just have a truncated inode, we have to make sure that
    915 		 * all future inodes that do not truncate (they have the
    916 		 * truncation pattern of all 0's) continue to map to the same
    917 		 * device number. We probably have already written inodes with
    918 		 * this device number to the archive with the truncation
    919 		 * pattern of all 0's. So we add the mapping for all 0's to the
    920 		 * same device number.
    921 		 */
    922 		if (!trc_dev && (trunc_bits != 0)) {
    923 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    924 				goto bad;
    925 			dpt->trunc_bits = 0;
    926 			dpt->dev = arcn->sb.st_dev;
    927 			dpt->fow = pt->list;
    928 			pt->list = dpt;
    929 		}
    930 	}
    931 
    932 	/*
    933 	 * look for a device number not being used. We must watch for wrap
    934 	 * around on lastdev (so we do not get stuck looking forever!)
    935 	 */
    936 	while (++lastdev > 0) {
    937 		if (chk_dev(lastdev, 0) != NULL)
    938 			continue;
    939 		/*
    940 		 * found an unused value. If we have reached truncation point
    941 		 * for this format we are hosed, so we give up. Otherwise we
    942 		 * mark it as being used.
    943 		 */
    944 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    945 		    (chk_dev(lastdev, 1) == NULL))
    946 			goto bad;
    947 		break;
    948 	}
    949 
    950 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    951 		goto bad;
    952 
    953 	/*
    954 	 * got a new device number, store it under this truncation pattern.
    955 	 * change the device number this file is being stored with.
    956 	 */
    957 	dpt->trunc_bits = trunc_bits;
    958 	dpt->dev = lastdev;
    959 	dpt->fow = pt->list;
    960 	pt->list = dpt;
    961 	arcn->sb.st_dev = lastdev;
    962 	arcn->sb.st_ino = nino;
    963 	return(0);
    964 
    965     bad:
    966 	tty_warn(1,
    967 	    "Unable to fix truncated inode/device field when storing %s",
    968 	    arcn->name);
    969 	tty_warn(0, "Archive may create improper hard links when extracted");
    970 	return(0);
    971 }
    972 
    973 /*
    974  * directory access/mod time reset table routines (for directories READ by pax)
    975  *
    976  * The pax -t flag requires that access times of archive files to be the same
    977  * before being read by pax. For regular files, access time is restored after
    978  * the file has been copied. This database provides the same functionality for
    979  * directories read during file tree traversal. Restoring directory access time
    980  * is more complex than files since directories may be read several times until
    981  * all the descendants in their subtree are visited by fts. Directory access
    982  * and modification times are stored during the fts pre-order visit (done
    983  * before any descendants in the subtree is visited) and restored after the
    984  * fts post-order visit (after all the descendants have been visited). In the
    985  * case of premature exit from a subtree (like from the effects of -n), any
    986  * directory entries left in this database are reset during final cleanup
    987  * operations of pax. Entries are hashed by inode number for fast lookup.
    988  */
    989 
    990 /*
    991  * atdir_start()
    992  *	create the directory access time database for directories READ by pax.
    993  * Return:
    994  *	0 is created ok, -1 otherwise.
    995  */
    996 
    997 #if __STDC__
    998 int
    999 atdir_start(void)
   1000 #else
   1001 int
   1002 atdir_start()
   1003 #endif
   1004 {
   1005 	if (atab != NULL)
   1006 		return(0);
   1007 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1008 		tty_warn(1,
   1009 		    "Cannot allocate space for directory access time table");
   1010 		return(-1);
   1011 	}
   1012 	return(0);
   1013 }
   1014 
   1015 
   1016 /*
   1017  * atdir_end()
   1018  *	walk through the directory access time table and reset the access time
   1019  *	of any directory who still has an entry left in the database. These
   1020  *	entries are for directories READ by pax
   1021  */
   1022 
   1023 #if __STDC__
   1024 void
   1025 atdir_end(void)
   1026 #else
   1027 void
   1028 atdir_end()
   1029 #endif
   1030 {
   1031 	ATDIR *pt;
   1032 	int i;
   1033 
   1034 	if (atab == NULL)
   1035 		return;
   1036 	/*
   1037 	 * for each non-empty hash table entry reset all the directories
   1038 	 * chained there.
   1039 	 */
   1040 	for (i = 0; i < A_TAB_SZ; ++i) {
   1041 		if ((pt = atab[i]) == NULL)
   1042 			continue;
   1043 		/*
   1044 		 * remember to force the times, set_ftime() looks at pmtime
   1045 		 * and patime, which only applies to things CREATED by pax,
   1046 		 * not read by pax. Read time reset is controlled by -t.
   1047 		 */
   1048 		for (; pt != NULL; pt = pt->fow)
   1049 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * add_atdir()
   1055  *	add a directory to the directory access time table. Table is hashed
   1056  *	and chained by inode number. This is for directories READ by pax
   1057  */
   1058 
   1059 #if __STDC__
   1060 void
   1061 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1062 #else
   1063 void
   1064 add_atdir(fname, dev, ino, mtime, atime)
   1065 	char *fname;
   1066 	dev_t dev;
   1067 	ino_t ino;
   1068 	time_t mtime;
   1069 	time_t atime;
   1070 #endif
   1071 {
   1072 	ATDIR *pt;
   1073 	u_int indx;
   1074 
   1075 	if (atab == NULL)
   1076 		return;
   1077 
   1078 	/*
   1079 	 * make sure this directory is not already in the table, if so just
   1080 	 * return (the older entry always has the correct time). The only
   1081 	 * way this will happen is when the same subtree can be traversed by
   1082 	 * different args to pax and the -n option is aborting fts out of a
   1083 	 * subtree before all the post-order visits have been made).
   1084 	 */
   1085 	indx = ((unsigned)ino) % A_TAB_SZ;
   1086 	if ((pt = atab[indx]) != NULL) {
   1087 		while (pt != NULL) {
   1088 			if ((pt->ino == ino) && (pt->dev == dev))
   1089 				break;
   1090 			pt = pt->fow;
   1091 		}
   1092 
   1093 		/*
   1094 		 * oops, already there. Leave it alone.
   1095 		 */
   1096 		if (pt != NULL)
   1097 			return;
   1098 	}
   1099 
   1100 	/*
   1101 	 * add it to the front of the hash chain
   1102 	 */
   1103 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1104 		if ((pt->name = strdup(fname)) != NULL) {
   1105 			pt->dev = dev;
   1106 			pt->ino = ino;
   1107 			pt->mtime = mtime;
   1108 			pt->atime = atime;
   1109 			pt->fow = atab[indx];
   1110 			atab[indx] = pt;
   1111 			return;
   1112 		}
   1113 		(void)free((char *)pt);
   1114 	}
   1115 
   1116 	tty_warn(1, "Directory access time reset table ran out of memory");
   1117 	return;
   1118 }
   1119 
   1120 /*
   1121  * get_atdir()
   1122  *	look up a directory by inode and device number to obtain the access
   1123  *	and modification time you want to set to. If found, the modification
   1124  *	and access time parameters are set and the entry is removed from the
   1125  *	table (as it is no longer needed). These are for directories READ by
   1126  *	pax
   1127  * Return:
   1128  *	0 if found, -1 if not found.
   1129  */
   1130 
   1131 #if __STDC__
   1132 int
   1133 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1134 #else
   1135 int
   1136 get_atdir(dev, ino, mtime, atime)
   1137 	dev_t dev;
   1138 	ino_t ino;
   1139 	time_t *mtime;
   1140 	time_t *atime;
   1141 #endif
   1142 {
   1143 	ATDIR *pt;
   1144 	ATDIR **ppt;
   1145 	u_int indx;
   1146 
   1147 	if (atab == NULL)
   1148 		return(-1);
   1149 	/*
   1150 	 * hash by inode and search the chain for an inode and device match
   1151 	 */
   1152 	indx = ((unsigned)ino) % A_TAB_SZ;
   1153 	if ((pt = atab[indx]) == NULL)
   1154 		return(-1);
   1155 
   1156 	ppt = &(atab[indx]);
   1157 	while (pt != NULL) {
   1158 		if ((pt->ino == ino) && (pt->dev == dev))
   1159 			break;
   1160 		/*
   1161 		 * no match, go to next one
   1162 		 */
   1163 		ppt = &(pt->fow);
   1164 		pt = pt->fow;
   1165 	}
   1166 
   1167 	/*
   1168 	 * return if we did not find it.
   1169 	 */
   1170 	if (pt == NULL)
   1171 		return(-1);
   1172 
   1173 	/*
   1174 	 * found it. return the times and remove the entry from the table.
   1175 	 */
   1176 	*ppt = pt->fow;
   1177 	*mtime = pt->mtime;
   1178 	*atime = pt->atime;
   1179 	(void)free((char *)pt->name);
   1180 	(void)free((char *)pt);
   1181 	return(0);
   1182 }
   1183 
   1184 /*
   1185  * directory access mode and time storage routines (for directories CREATED
   1186  * by pax).
   1187  *
   1188  * Pax requires that extracted directories, by default, have their access/mod
   1189  * times and permissions set to the values specified in the archive. During the
   1190  * actions of extracting (and creating the destination subtree during -rw copy)
   1191  * directories extracted may be modified after being created. Even worse is
   1192  * that these directories may have been created with file permissions which
   1193  * prohibits any descendants of these directories from being extracted. When
   1194  * directories are created by pax, access rights may be added to permit the
   1195  * creation of files in their subtree. Every time pax creates a directory, the
   1196  * times and file permissions specified by the archive are stored. After all
   1197  * files have been extracted (or copied), these directories have their times
   1198  * and file modes reset to the stored values. The directory info is restored in
   1199  * reverse order as entries were added to the data file from root to leaf. To
   1200  * restore atime properly, we must go backwards. The data file consists of
   1201  * records with two parts, the file name followed by a DIRDATA trailer. The
   1202  * fixed sized trailer contains the size of the name plus the off_t location in
   1203  * the file. To restore we work backwards through the file reading the trailer
   1204  * then the file name.
   1205  */
   1206 
   1207 #ifndef DIRS_USE_FILE
   1208 static DIRDATA *dirdata_head;
   1209 #endif
   1210 
   1211 /*
   1212  * dir_start()
   1213  *	set up the directory time and file mode storage for directories CREATED
   1214  *	by pax.
   1215  * Return:
   1216  *	0 if ok, -1 otherwise
   1217  */
   1218 
   1219 #if __STDC__
   1220 int
   1221 dir_start(void)
   1222 #else
   1223 int
   1224 dir_start()
   1225 #endif
   1226 {
   1227 #ifdef DIRS_USE_FILE
   1228 	const char *tmpdir;
   1229 	char template[MAXPATHLEN];
   1230 
   1231 	if (dirfd != -1)
   1232 		return(0);
   1233 
   1234 	/*
   1235 	 * unlink the file so it goes away at termination by itself
   1236 	 */
   1237 	if ((tmpdir = getenv("TMPDIR")) == NULL)
   1238 		tmpdir = _PATH_TMP;
   1239 	(void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
   1240 	if ((dirfd = mkstemp(template)) >= 0) {
   1241 		(void)unlink(template);
   1242 		return(0);
   1243 	}
   1244 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1245 	    template);
   1246 	return(-1);
   1247 #else
   1248 	return (0);
   1249 #endif /* DIRS_USE_FILE */
   1250 }
   1251 
   1252 /*
   1253  * add_dir()
   1254  *	add the mode and times for a newly CREATED directory
   1255  *	name is name of the directory, psb the stat buffer with the data in it,
   1256  *	frc_mode is a flag that says whether to force the setting of the mode
   1257  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1258  *	for the case where we created a file and found that the resulting
   1259  *	directory was not writeable and the user asked for file modes to NOT
   1260  *	be preserved. (we have to preserve what was created by default, so we
   1261  *	have to force the setting at the end. this is stated explicitly in the
   1262  *	pax spec)
   1263  */
   1264 
   1265 #if __STDC__
   1266 void
   1267 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1268 #else
   1269 void
   1270 add_dir(name, nlen, psb, frc_mode)
   1271 	char *name;
   1272 	int nlen;
   1273 	struct stat *psb;
   1274 	int frc_mode;
   1275 #endif
   1276 {
   1277 #ifdef DIRS_USE_FILE
   1278 	DIRDATA dblk;
   1279 
   1280 	if (dirfd < 0)
   1281 		return;
   1282 
   1283 	/*
   1284 	 * get current position (where file name will start) so we can store it
   1285 	 * in the trailer
   1286 	 */
   1287 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1288 		tty_warn(1,
   1289 		    "Unable to store mode and times for directory: %s",name);
   1290 		return;
   1291 	}
   1292 
   1293 	/*
   1294 	 * write the file name followed by the trailer
   1295 	 */
   1296 	dblk.nlen = nlen + 1;
   1297 	dblk.mode = psb->st_mode & 0xffff;
   1298 	dblk.mtime = psb->st_mtime;
   1299 	dblk.atime = psb->st_atime;
   1300 	dblk.fflags = psb->st_flags;
   1301 	dblk.frc_mode = frc_mode;
   1302 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1303 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1304 		++dircnt;
   1305 		return;
   1306 	}
   1307 
   1308 	tty_warn(1,
   1309 	    "Unable to store mode and times for created directory: %s",name);
   1310 	return;
   1311 #else
   1312 	DIRDATA *dblk;
   1313 
   1314 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1315 	    (dblk->name = strdup(name)) == NULL) {
   1316 		tty_warn(1,
   1317 		    "Unable to store mode and times for directory: %s",name);
   1318 		if (dblk != NULL)
   1319 			free(dblk);
   1320 		return;
   1321 	}
   1322 
   1323 	dblk->mode = psb->st_mode & 0xffff;
   1324 	dblk->mtime = psb->st_mtime;
   1325 	dblk->atime = psb->st_atime;
   1326 	dblk->fflags = psb->st_flags;
   1327 	dblk->frc_mode = frc_mode;
   1328 
   1329 	dblk->next = dirdata_head;
   1330 	dirdata_head = dblk;
   1331 	return;
   1332 #endif /* DIRS_USE_FILE */
   1333 }
   1334 
   1335 /*
   1336  * proc_dir()
   1337  *	process all file modes and times stored for directories CREATED
   1338  *	by pax
   1339  */
   1340 
   1341 #if __STDC__
   1342 void
   1343 proc_dir(void)
   1344 #else
   1345 void
   1346 proc_dir()
   1347 #endif
   1348 {
   1349 #ifdef DIRS_USE_FILE
   1350 	char name[PAXPATHLEN+1];
   1351 	DIRDATA dblk;
   1352 	u_long cnt;
   1353 
   1354 	if (dirfd < 0)
   1355 		return;
   1356 	/*
   1357 	 * read backwards through the file and process each directory
   1358 	 */
   1359 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1360 		/*
   1361 		 * read the trailer, then the file name, if this fails
   1362 		 * just give up.
   1363 		 */
   1364 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1365 			break;
   1366 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1367 			break;
   1368 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1369 			break;
   1370 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1371 			break;
   1372 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1373 			break;
   1374 
   1375 		/*
   1376 		 * frc_mode set, make sure we set the file modes even if
   1377 		 * the user didn't ask for it (see file_subs.c for more info)
   1378 		 */
   1379 		if (pmode || dblk.frc_mode)
   1380 			set_pmode(name, dblk.mode);
   1381 		if (patime || pmtime)
   1382 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1383 		if (pfflags)
   1384 			set_chflags(name, dblk.fflags);
   1385 	}
   1386 
   1387 	(void)close(dirfd);
   1388 	dirfd = -1;
   1389 	if (cnt != dircnt)
   1390 		tty_warn(1,
   1391 		    "Unable to set mode and times for created directories");
   1392 	return;
   1393 #else
   1394 	DIRDATA *dblk;
   1395 
   1396 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1397 		dirdata_head = dblk->next;
   1398 
   1399 		/*
   1400 		 * frc_mode set, make sure we set the file modes even if
   1401 		 * the user didn't ask for it (see file_subs.c for more info)
   1402 		 */
   1403 		if (pmode || dblk->frc_mode)
   1404 			set_pmode(dblk->name, dblk->mode);
   1405 		if (patime || pmtime)
   1406 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
   1407 		if (pfflags)
   1408 			set_chflags(dblk->name, dblk->fflags);
   1409 
   1410 		free(dblk->name);
   1411 		free(dblk);
   1412 	}
   1413 #endif /* DIRS_USE_FILE */
   1414 }
   1415 
   1416 /*
   1417  * database independent routines
   1418  */
   1419 
   1420 /*
   1421  * st_hash()
   1422  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1423  *	end of file, as this provides far better distribution than any other
   1424  *	part of the name. For performance reasons we only care about the last
   1425  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1426  *	name). Was tested on 500,000 name file tree traversal from the root
   1427  *	and gave almost a perfectly uniform distribution of keys when used with
   1428  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1429  *	chars at a time and pads with 0 for last addition.
   1430  * Return:
   1431  *	the hash value of the string MOD (%) the table size.
   1432  */
   1433 
   1434 #if __STDC__
   1435 u_int
   1436 st_hash(char *name, int len, int tabsz)
   1437 #else
   1438 u_int
   1439 st_hash(name, len, tabsz)
   1440 	char *name;
   1441 	int len;
   1442 	int tabsz;
   1443 #endif
   1444 {
   1445 	char *pt;
   1446 	char *dest;
   1447 	char *end;
   1448 	int i;
   1449 	u_int key = 0;
   1450 	int steps;
   1451 	int res;
   1452 	u_int val;
   1453 
   1454 	/*
   1455 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1456 	 * time here (remember these are pathnames, the tail is what will
   1457 	 * spread out the keys)
   1458 	 */
   1459 	if (len > MAXKEYLEN) {
   1460 		pt = &(name[len - MAXKEYLEN]);
   1461 		len = MAXKEYLEN;
   1462 	} else
   1463 		pt = name;
   1464 
   1465 	/*
   1466 	 * calculate the number of u_int size steps in the string and if
   1467 	 * there is a runt to deal with
   1468 	 */
   1469 	steps = len/sizeof(u_int);
   1470 	res = len % sizeof(u_int);
   1471 
   1472 	/*
   1473 	 * add up the value of the string in unsigned integer sized pieces
   1474 	 * too bad we cannot have unsigned int aligned strings, then we
   1475 	 * could avoid the expensive copy.
   1476 	 */
   1477 	for (i = 0; i < steps; ++i) {
   1478 		end = pt + sizeof(u_int);
   1479 		dest = (char *)&val;
   1480 		while (pt < end)
   1481 			*dest++ = *pt++;
   1482 		key += val;
   1483 	}
   1484 
   1485 	/*
   1486 	 * add in the runt padded with zero to the right
   1487 	 */
   1488 	if (res) {
   1489 		val = 0;
   1490 		end = pt + res;
   1491 		dest = (char *)&val;
   1492 		while (pt < end)
   1493 			*dest++ = *pt++;
   1494 		key += val;
   1495 	}
   1496 
   1497 	/*
   1498 	 * return the result mod the table size
   1499 	 */
   1500 	return(key % tabsz);
   1501 }
   1502