tables.c revision 1.15 1 /* $NetBSD: tables.c,v 1.15 2001/10/25 05:33:33 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1992 Keith Muller.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Keith Muller of the University of California, San Diego.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
44 #else
45 __RCSID("$NetBSD: tables.c,v 1.15 2001/10/25 05:33:33 lukem Exp $");
46 #endif
47 #endif /* not lint */
48
49 #include <sys/types.h>
50 #include <sys/time.h>
51 #include <sys/stat.h>
52 #include <sys/param.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <fcntl.h>
56 #include <paths.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <errno.h>
60 #include <stdlib.h>
61 #include "pax.h"
62 #include "tables.h"
63 #include "extern.h"
64
65 /*
66 * Routines for controlling the contents of all the different databases pax
67 * keeps. Tables are dynamically created only when they are needed. The
68 * goal was speed and the ability to work with HUGE archives. The databases
69 * were kept simple, but do have complex rules for when the contents change.
70 * As of this writing, the posix library functions were more complex than
71 * needed for this application (pax databases have very short lifetimes and
72 * do not survive after pax is finished). Pax is required to handle very
73 * large archives. These database routines carefully combine memory usage and
74 * temporary file storage in ways which will not significantly impact runtime
75 * performance while allowing the largest possible archives to be handled.
76 * Trying to force the fit to the posix databases routines was not considered
77 * time well spent.
78 */
79
80 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
81 static FTM **ftab = NULL; /* file time table for updating arch */
82 static NAMT **ntab = NULL; /* interactive rename storage table */
83 static DEVT **dtab = NULL; /* device/inode mapping tables */
84 static ATDIR **atab = NULL; /* file tree directory time reset table */
85 #ifdef DIRS_USE_FILE
86 static int dirfd = -1; /* storage for setting created dir time/mode */
87 static u_long dircnt; /* entries in dir time/mode storage */
88 #endif
89 static int ffd = -1; /* tmp file for file time table name storage */
90
91 static DEVT *chk_dev(dev_t, int);
92
93 /*
94 * hard link table routines
95 *
96 * The hard link table tries to detect hard links to files using the device and
97 * inode values. We do this when writing an archive, so we can tell the format
98 * write routine that this file is a hard link to another file. The format
99 * write routine then can store this file in whatever way it wants (as a hard
100 * link if the format supports that like tar, or ignore this info like cpio).
101 * (Actually a field in the format driver table tells us if the format wants
102 * hard link info. if not, we do not waste time looking for them). We also use
103 * the same table when reading an archive. In that situation, this table is
104 * used by the format read routine to detect hard links from stored dev and
105 * inode numbers (like cpio). This will allow pax to create a link when one
106 * can be detected by the archive format.
107 */
108
109 /*
110 * lnk_start
111 * Creates the hard link table.
112 * Return:
113 * 0 if created, -1 if failure
114 */
115
116 int
117 lnk_start(void)
118 {
119 if (ltab != NULL)
120 return(0);
121 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
122 tty_warn(1, "Cannot allocate memory for hard link table");
123 return(-1);
124 }
125 return(0);
126 }
127
128 /*
129 * chk_lnk()
130 * Looks up entry in hard link hash table. If found, it copies the name
131 * of the file it is linked to (we already saw that file) into ln_name.
132 * lnkcnt is decremented and if goes to 1 the node is deleted from the
133 * database. (We have seen all the links to this file). If not found,
134 * we add the file to the database if it has the potential for having
135 * hard links to other files we may process (it has a link count > 1)
136 * Return:
137 * if found returns 1; if not found returns 0; -1 on error
138 */
139
140 int
141 chk_lnk(ARCHD *arcn)
142 {
143 HRDLNK *pt;
144 HRDLNK **ppt;
145 u_int indx;
146
147 if (ltab == NULL)
148 return(-1);
149 /*
150 * ignore those nodes that cannot have hard links
151 */
152 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
153 return(0);
154
155 /*
156 * hash inode number and look for this file
157 */
158 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
159 if ((pt = ltab[indx]) != NULL) {
160 /*
161 * it's hash chain in not empty, walk down looking for it
162 */
163 ppt = &(ltab[indx]);
164 while (pt != NULL) {
165 if ((pt->ino == arcn->sb.st_ino) &&
166 (pt->dev == arcn->sb.st_dev))
167 break;
168 ppt = &(pt->fow);
169 pt = pt->fow;
170 }
171
172 if (pt != NULL) {
173 /*
174 * found a link. set the node type and copy in the
175 * name of the file it is to link to. we need to
176 * handle hardlinks to regular files differently than
177 * other links.
178 */
179 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
180 PAXPATHLEN+1);
181 if (arcn->type == PAX_REG)
182 arcn->type = PAX_HRG;
183 else
184 arcn->type = PAX_HLK;
185
186 /*
187 * if we have found all the links to this file, remove
188 * it from the database
189 */
190 if (--pt->nlink <= 1) {
191 *ppt = pt->fow;
192 (void)free((char *)pt->name);
193 (void)free((char *)pt);
194 }
195 return(1);
196 }
197 }
198
199 /*
200 * we never saw this file before. It has links so we add it to the
201 * front of this hash chain
202 */
203 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
204 if ((pt->name = strdup(arcn->name)) != NULL) {
205 pt->dev = arcn->sb.st_dev;
206 pt->ino = arcn->sb.st_ino;
207 pt->nlink = arcn->sb.st_nlink;
208 pt->fow = ltab[indx];
209 ltab[indx] = pt;
210 return(0);
211 }
212 (void)free((char *)pt);
213 }
214
215 tty_warn(1, "Hard link table out of memory");
216 return(-1);
217 }
218
219 /*
220 * purg_lnk
221 * remove reference for a file that we may have added to the data base as
222 * a potential source for hard links. We ended up not using the file, so
223 * we do not want to accidently point another file at it later on.
224 */
225
226 void
227 purg_lnk(ARCHD *arcn)
228 {
229 HRDLNK *pt;
230 HRDLNK **ppt;
231 u_int indx;
232
233 if (ltab == NULL)
234 return;
235 /*
236 * do not bother to look if it could not be in the database
237 */
238 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
239 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
240 return;
241
242 /*
243 * find the hash chain for this inode value, if empty return
244 */
245 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
246 if ((pt = ltab[indx]) == NULL)
247 return;
248
249 /*
250 * walk down the list looking for the inode/dev pair, unlink and
251 * free if found
252 */
253 ppt = &(ltab[indx]);
254 while (pt != NULL) {
255 if ((pt->ino == arcn->sb.st_ino) &&
256 (pt->dev == arcn->sb.st_dev))
257 break;
258 ppt = &(pt->fow);
259 pt = pt->fow;
260 }
261 if (pt == NULL)
262 return;
263
264 /*
265 * remove and free it
266 */
267 *ppt = pt->fow;
268 (void)free((char *)pt->name);
269 (void)free((char *)pt);
270 }
271
272 /*
273 * lnk_end()
274 * pull apart a existing link table so we can reuse it. We do this between
275 * read and write phases of append with update. (The format may have
276 * used the link table, and we need to start with a fresh table for the
277 * write phase
278 */
279
280 void
281 lnk_end(void)
282 {
283 int i;
284 HRDLNK *pt;
285 HRDLNK *ppt;
286
287 if (ltab == NULL)
288 return;
289
290 for (i = 0; i < L_TAB_SZ; ++i) {
291 if (ltab[i] == NULL)
292 continue;
293 pt = ltab[i];
294 ltab[i] = NULL;
295
296 /*
297 * free up each entry on this chain
298 */
299 while (pt != NULL) {
300 ppt = pt;
301 pt = ppt->fow;
302 (void)free((char *)ppt->name);
303 (void)free((char *)ppt);
304 }
305 }
306 return;
307 }
308
309 /*
310 * modification time table routines
311 *
312 * The modification time table keeps track of last modification times for all
313 * files stored in an archive during a write phase when -u is set. We only
314 * add a file to the archive if it is newer than a file with the same name
315 * already stored on the archive (if there is no other file with the same
316 * name on the archive it is added). This applies to writes and appends.
317 * An append with an -u must read the archive and store the modification time
318 * for every file on that archive before starting the write phase. It is clear
319 * that this is one HUGE database. To save memory space, the actual file names
320 * are stored in a scatch file and indexed by an in memory hash table. The
321 * hash table is indexed by hashing the file path. The nodes in the table store
322 * the length of the filename and the lseek offset within the scratch file
323 * where the actual name is stored. Since there are never any deletions to this
324 * table, fragmentation of the scratch file is never a issue. Lookups seem to
325 * not exhibit any locality at all (files in the database are rarely
326 * looked up more than once...). So caching is just a waste of memory. The
327 * only limitation is the amount of scatch file space available to store the
328 * path names.
329 */
330
331 /*
332 * ftime_start()
333 * create the file time hash table and open for read/write the scratch
334 * file. (after created it is unlinked, so when we exit we leave
335 * no witnesses).
336 * Return:
337 * 0 if the table and file was created ok, -1 otherwise
338 */
339
340 int
341 ftime_start(void)
342 {
343 const char *tmpdir;
344 char template[MAXPATHLEN];
345
346 if (ftab != NULL)
347 return(0);
348 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
349 tty_warn(1, "Cannot allocate memory for file time table");
350 return(-1);
351 }
352
353 /*
354 * get random name and create temporary scratch file, unlink name
355 * so it will get removed on exit
356 */
357 if ((tmpdir = getenv("TMPDIR")) == NULL)
358 tmpdir = _PATH_TMP;
359 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
360 if ((ffd = mkstemp(template)) == -1) {
361 syswarn(1, errno, "Unable to create temporary file: %s",
362 template);
363 return(-1);
364 }
365
366 (void)unlink(template);
367 return(0);
368 }
369
370 /*
371 * chk_ftime()
372 * looks up entry in file time hash table. If not found, the file is
373 * added to the hash table and the file named stored in the scratch file.
374 * If a file with the same name is found, the file times are compared and
375 * the most recent file time is retained. If the new file was younger (or
376 * was not in the database) the new file is selected for storage.
377 * Return:
378 * 0 if file should be added to the archive, 1 if it should be skipped,
379 * -1 on error
380 */
381
382 int
383 chk_ftime(ARCHD *arcn)
384 {
385 FTM *pt;
386 int namelen;
387 u_int indx;
388 char ckname[PAXPATHLEN+1];
389
390 /*
391 * no info, go ahead and add to archive
392 */
393 if (ftab == NULL)
394 return(0);
395
396 /*
397 * hash the pathname and look up in table
398 */
399 namelen = arcn->nlen;
400 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
401 if ((pt = ftab[indx]) != NULL) {
402 /*
403 * the hash chain is not empty, walk down looking for match
404 * only read up the path names if the lengths match, speeds
405 * up the search a lot
406 */
407 while (pt != NULL) {
408 if (pt->namelen == namelen) {
409 /*
410 * potential match, have to read the name
411 * from the scratch file.
412 */
413 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
414 syswarn(1, errno,
415 "Failed ftime table seek");
416 return(-1);
417 }
418 if (xread(ffd, ckname, namelen) != namelen) {
419 syswarn(1, errno,
420 "Failed ftime table read");
421 return(-1);
422 }
423
424 /*
425 * if the names match, we are done
426 */
427 if (!strncmp(ckname, arcn->name, namelen))
428 break;
429 }
430
431 /*
432 * try the next entry on the chain
433 */
434 pt = pt->fow;
435 }
436
437 if (pt != NULL) {
438 /*
439 * found the file, compare the times, save the newer
440 */
441 if (arcn->sb.st_mtime > pt->mtime) {
442 /*
443 * file is newer
444 */
445 pt->mtime = arcn->sb.st_mtime;
446 return(0);
447 }
448 /*
449 * file is older
450 */
451 return(1);
452 }
453 }
454
455 /*
456 * not in table, add it
457 */
458 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
459 /*
460 * add the name at the end of the scratch file, saving the
461 * offset. add the file to the head of the hash chain
462 */
463 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
464 if (xwrite(ffd, arcn->name, namelen) == namelen) {
465 pt->mtime = arcn->sb.st_mtime;
466 pt->namelen = namelen;
467 pt->fow = ftab[indx];
468 ftab[indx] = pt;
469 return(0);
470 }
471 syswarn(1, errno, "Failed write to file time table");
472 } else
473 syswarn(1, errno, "Failed seek on file time table");
474 } else
475 tty_warn(1, "File time table ran out of memory");
476
477 if (pt != NULL)
478 (void)free((char *)pt);
479 return(-1);
480 }
481
482 /*
483 * Interactive rename table routines
484 *
485 * The interactive rename table keeps track of the new names that the user
486 * assigns to files from tty input. Since this map is unique for each file
487 * we must store it in case there is a reference to the file later in archive
488 * (a link). Otherwise we will be unable to find the file we know was
489 * extracted. The remapping of these files is stored in a memory based hash
490 * table (it is assumed since input must come from /dev/tty, it is unlikely to
491 * be a very large table).
492 */
493
494 /*
495 * name_start()
496 * create the interactive rename table
497 * Return:
498 * 0 if successful, -1 otherwise
499 */
500
501 int
502 name_start(void)
503 {
504 if (ntab != NULL)
505 return(0);
506 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
507 tty_warn(1,
508 "Cannot allocate memory for interactive rename table");
509 return(-1);
510 }
511 return(0);
512 }
513
514 /*
515 * add_name()
516 * add the new name to old name mapping just created by the user.
517 * If an old name mapping is found (there may be duplicate names on an
518 * archive) only the most recent is kept.
519 * Return:
520 * 0 if added, -1 otherwise
521 */
522
523 int
524 add_name(char *oname, int onamelen, char *nname)
525 {
526 NAMT *pt;
527 u_int indx;
528
529 if (ntab == NULL) {
530 /*
531 * should never happen
532 */
533 tty_warn(0, "No interactive rename table, links may fail\n");
534 return(0);
535 }
536
537 /*
538 * look to see if we have already mapped this file, if so we
539 * will update it
540 */
541 indx = st_hash(oname, onamelen, N_TAB_SZ);
542 if ((pt = ntab[indx]) != NULL) {
543 /*
544 * look down the has chain for the file
545 */
546 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
547 pt = pt->fow;
548
549 if (pt != NULL) {
550 /*
551 * found an old mapping, replace it with the new one
552 * the user just input (if it is different)
553 */
554 if (strcmp(nname, pt->nname) == 0)
555 return(0);
556
557 (void)free((char *)pt->nname);
558 if ((pt->nname = strdup(nname)) == NULL) {
559 tty_warn(1, "Cannot update rename table");
560 return(-1);
561 }
562 return(0);
563 }
564 }
565
566 /*
567 * this is a new mapping, add it to the table
568 */
569 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
570 if ((pt->oname = strdup(oname)) != NULL) {
571 if ((pt->nname = strdup(nname)) != NULL) {
572 pt->fow = ntab[indx];
573 ntab[indx] = pt;
574 return(0);
575 }
576 (void)free((char *)pt->oname);
577 }
578 (void)free((char *)pt);
579 }
580 tty_warn(1, "Interactive rename table out of memory");
581 return(-1);
582 }
583
584 /*
585 * sub_name()
586 * look up a link name to see if it points at a file that has been
587 * remapped by the user. If found, the link is adjusted to contain the
588 * new name (oname is the link to name)
589 */
590
591 void
592 sub_name(char *oname, int *onamelen)
593 {
594 NAMT *pt;
595 u_int indx;
596
597 if (ntab == NULL)
598 return;
599 /*
600 * look the name up in the hash table
601 */
602 indx = st_hash(oname, *onamelen, N_TAB_SZ);
603 if ((pt = ntab[indx]) == NULL)
604 return;
605
606 while (pt != NULL) {
607 /*
608 * walk down the hash chain looking for a match
609 */
610 if (strcmp(oname, pt->oname) == 0) {
611 /*
612 * found it, replace it with the new name
613 * and return (we know that oname has enough space)
614 */
615 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
616 return;
617 }
618 pt = pt->fow;
619 }
620
621 /*
622 * no match, just return
623 */
624 return;
625 }
626
627 /*
628 * device/inode mapping table routines
629 * (used with formats that store device and inodes fields)
630 *
631 * device/inode mapping tables remap the device field in a archive header. The
632 * device/inode fields are used to determine when files are hard links to each
633 * other. However these values have very little meaning outside of that. This
634 * database is used to solve one of two different problems.
635 *
636 * 1) when files are appended to an archive, while the new files may have hard
637 * links to each other, you cannot determine if they have hard links to any
638 * file already stored on the archive from a prior run of pax. We must assume
639 * that these inode/device pairs are unique only within a SINGLE run of pax
640 * (which adds a set of files to an archive). So we have to make sure the
641 * inode/dev pairs we add each time are always unique. We do this by observing
642 * while the inode field is very dense, the use of the dev field is fairly
643 * sparse. Within each run of pax, we remap any device number of a new archive
644 * member that has a device number used in a prior run and already stored in a
645 * file on the archive. During the read phase of the append, we store the
646 * device numbers used and mark them to not be used by any file during the
647 * write phase. If during write we go to use one of those old device numbers,
648 * we remap it to a new value.
649 *
650 * 2) Often the fields in the archive header used to store these values are
651 * too small to store the entire value. The result is an inode or device value
652 * which can be truncated. This really can foul up an archive. With truncation
653 * we end up creating links between files that are really not links (after
654 * truncation the inodes are the same value). We address that by detecting
655 * truncation and forcing a remap of the device field to split truncated
656 * inodes away from each other. Each truncation creates a pattern of bits that
657 * are removed. We use this pattern of truncated bits to partition the inodes
658 * on a single device to many different devices (each one represented by the
659 * truncated bit pattern). All inodes on the same device that have the same
660 * truncation pattern are mapped to the same new device. Two inodes that
661 * truncate to the same value clearly will always have different truncation
662 * bit patterns, so they will be split from away each other. When we spot
663 * device truncation we remap the device number to a non truncated value.
664 * (for more info see table.h for the data structures involved).
665 */
666
667 /*
668 * dev_start()
669 * create the device mapping table
670 * Return:
671 * 0 if successful, -1 otherwise
672 */
673
674 int
675 dev_start(void)
676 {
677 if (dtab != NULL)
678 return(0);
679 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
680 tty_warn(1, "Cannot allocate memory for device mapping table");
681 return(-1);
682 }
683 return(0);
684 }
685
686 /*
687 * add_dev()
688 * add a device number to the table. this will force the device to be
689 * remapped to a new value if it be used during a write phase. This
690 * function is called during the read phase of an append to prohibit the
691 * use of any device number already in the archive.
692 * Return:
693 * 0 if added ok, -1 otherwise
694 */
695
696 int
697 add_dev(ARCHD *arcn)
698 {
699 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
700 return(-1);
701 return(0);
702 }
703
704 /*
705 * chk_dev()
706 * check for a device value in the device table. If not found and the add
707 * flag is set, it is added. This does NOT assign any mapping values, just
708 * adds the device number as one that need to be remapped. If this device
709 * is already mapped, just return with a pointer to that entry.
710 * Return:
711 * pointer to the entry for this device in the device map table. Null
712 * if the add flag is not set and the device is not in the table (it is
713 * not been seen yet). If add is set and the device cannot be added, null
714 * is returned (indicates an error).
715 */
716
717 static DEVT *
718 chk_dev(dev_t dev, int add)
719 {
720 DEVT *pt;
721 u_int indx;
722
723 if (dtab == NULL)
724 return(NULL);
725 /*
726 * look to see if this device is already in the table
727 */
728 indx = ((unsigned)dev) % D_TAB_SZ;
729 if ((pt = dtab[indx]) != NULL) {
730 while ((pt != NULL) && (pt->dev != dev))
731 pt = pt->fow;
732
733 /*
734 * found it, return a pointer to it
735 */
736 if (pt != NULL)
737 return(pt);
738 }
739
740 /*
741 * not in table, we add it only if told to as this may just be a check
742 * to see if a device number is being used.
743 */
744 if (add == 0)
745 return(NULL);
746
747 /*
748 * allocate a node for this device and add it to the front of the hash
749 * chain. Note we do not assign remaps values here, so the pt->list
750 * list must be NULL.
751 */
752 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
753 tty_warn(1, "Device map table out of memory");
754 return(NULL);
755 }
756 pt->dev = dev;
757 pt->list = NULL;
758 pt->fow = dtab[indx];
759 dtab[indx] = pt;
760 return(pt);
761 }
762 /*
763 * map_dev()
764 * given an inode and device storage mask (the mask has a 1 for each bit
765 * the archive format is able to store in a header), we check for inode
766 * and device truncation and remap the device as required. Device mapping
767 * can also occur when during the read phase of append a device number was
768 * seen (and was marked as do not use during the write phase). WE ASSUME
769 * that unsigned longs are the same size or bigger than the fields used
770 * for ino_t and dev_t. If not the types will have to be changed.
771 * Return:
772 * 0 if all ok, -1 otherwise.
773 */
774
775 int
776 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
777 {
778 DEVT *pt;
779 DLIST *dpt;
780 static dev_t lastdev = 0; /* next device number to try */
781 int trc_ino = 0;
782 int trc_dev = 0;
783 ino_t trunc_bits = 0;
784 ino_t nino;
785
786 if (dtab == NULL)
787 return(0);
788 /*
789 * check for device and inode truncation, and extract the truncated
790 * bit pattern.
791 */
792 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
793 ++trc_dev;
794 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
795 ++trc_ino;
796 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
797 }
798
799 /*
800 * see if this device is already being mapped, look up the device
801 * then find the truncation bit pattern which applies
802 */
803 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
804 /*
805 * this device is already marked to be remapped
806 */
807 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
808 if (dpt->trunc_bits == trunc_bits)
809 break;
810
811 if (dpt != NULL) {
812 /*
813 * we are being remapped for this device and pattern
814 * change the device number to be stored and return
815 */
816 arcn->sb.st_dev = dpt->dev;
817 arcn->sb.st_ino = nino;
818 return(0);
819 }
820 } else {
821 /*
822 * this device is not being remapped YET. if we do not have any
823 * form of truncation, we do not need a remap
824 */
825 if (!trc_ino && !trc_dev)
826 return(0);
827
828 /*
829 * we have truncation, have to add this as a device to remap
830 */
831 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
832 goto bad;
833
834 /*
835 * if we just have a truncated inode, we have to make sure that
836 * all future inodes that do not truncate (they have the
837 * truncation pattern of all 0's) continue to map to the same
838 * device number. We probably have already written inodes with
839 * this device number to the archive with the truncation
840 * pattern of all 0's. So we add the mapping for all 0's to the
841 * same device number.
842 */
843 if (!trc_dev && (trunc_bits != 0)) {
844 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
845 goto bad;
846 dpt->trunc_bits = 0;
847 dpt->dev = arcn->sb.st_dev;
848 dpt->fow = pt->list;
849 pt->list = dpt;
850 }
851 }
852
853 /*
854 * look for a device number not being used. We must watch for wrap
855 * around on lastdev (so we do not get stuck looking forever!)
856 */
857 while (++lastdev > 0) {
858 if (chk_dev(lastdev, 0) != NULL)
859 continue;
860 /*
861 * found an unused value. If we have reached truncation point
862 * for this format we are hosed, so we give up. Otherwise we
863 * mark it as being used.
864 */
865 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
866 (chk_dev(lastdev, 1) == NULL))
867 goto bad;
868 break;
869 }
870
871 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
872 goto bad;
873
874 /*
875 * got a new device number, store it under this truncation pattern.
876 * change the device number this file is being stored with.
877 */
878 dpt->trunc_bits = trunc_bits;
879 dpt->dev = lastdev;
880 dpt->fow = pt->list;
881 pt->list = dpt;
882 arcn->sb.st_dev = lastdev;
883 arcn->sb.st_ino = nino;
884 return(0);
885
886 bad:
887 tty_warn(1,
888 "Unable to fix truncated inode/device field when storing %s",
889 arcn->name);
890 tty_warn(0, "Archive may create improper hard links when extracted");
891 return(0);
892 }
893
894 /*
895 * directory access/mod time reset table routines (for directories READ by pax)
896 *
897 * The pax -t flag requires that access times of archive files to be the same
898 * before being read by pax. For regular files, access time is restored after
899 * the file has been copied. This database provides the same functionality for
900 * directories read during file tree traversal. Restoring directory access time
901 * is more complex than files since directories may be read several times until
902 * all the descendants in their subtree are visited by fts. Directory access
903 * and modification times are stored during the fts pre-order visit (done
904 * before any descendants in the subtree is visited) and restored after the
905 * fts post-order visit (after all the descendants have been visited). In the
906 * case of premature exit from a subtree (like from the effects of -n), any
907 * directory entries left in this database are reset during final cleanup
908 * operations of pax. Entries are hashed by inode number for fast lookup.
909 */
910
911 /*
912 * atdir_start()
913 * create the directory access time database for directories READ by pax.
914 * Return:
915 * 0 is created ok, -1 otherwise.
916 */
917
918 int
919 atdir_start(void)
920 {
921 if (atab != NULL)
922 return(0);
923 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
924 tty_warn(1,
925 "Cannot allocate space for directory access time table");
926 return(-1);
927 }
928 return(0);
929 }
930
931
932 /*
933 * atdir_end()
934 * walk through the directory access time table and reset the access time
935 * of any directory who still has an entry left in the database. These
936 * entries are for directories READ by pax
937 */
938
939 void
940 atdir_end(void)
941 {
942 ATDIR *pt;
943 int i;
944
945 if (atab == NULL)
946 return;
947 /*
948 * for each non-empty hash table entry reset all the directories
949 * chained there.
950 */
951 for (i = 0; i < A_TAB_SZ; ++i) {
952 if ((pt = atab[i]) == NULL)
953 continue;
954 /*
955 * remember to force the times, set_ftime() looks at pmtime
956 * and patime, which only applies to things CREATED by pax,
957 * not read by pax. Read time reset is controlled by -t.
958 */
959 for (; pt != NULL; pt = pt->fow)
960 set_ftime(pt->name, pt->mtime, pt->atime, 1);
961 }
962 }
963
964 /*
965 * add_atdir()
966 * add a directory to the directory access time table. Table is hashed
967 * and chained by inode number. This is for directories READ by pax
968 */
969
970 void
971 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
972 {
973 ATDIR *pt;
974 u_int indx;
975
976 if (atab == NULL)
977 return;
978
979 /*
980 * make sure this directory is not already in the table, if so just
981 * return (the older entry always has the correct time). The only
982 * way this will happen is when the same subtree can be traversed by
983 * different args to pax and the -n option is aborting fts out of a
984 * subtree before all the post-order visits have been made).
985 */
986 indx = ((unsigned)ino) % A_TAB_SZ;
987 if ((pt = atab[indx]) != NULL) {
988 while (pt != NULL) {
989 if ((pt->ino == ino) && (pt->dev == dev))
990 break;
991 pt = pt->fow;
992 }
993
994 /*
995 * oops, already there. Leave it alone.
996 */
997 if (pt != NULL)
998 return;
999 }
1000
1001 /*
1002 * add it to the front of the hash chain
1003 */
1004 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1005 if ((pt->name = strdup(fname)) != NULL) {
1006 pt->dev = dev;
1007 pt->ino = ino;
1008 pt->mtime = mtime;
1009 pt->atime = atime;
1010 pt->fow = atab[indx];
1011 atab[indx] = pt;
1012 return;
1013 }
1014 (void)free((char *)pt);
1015 }
1016
1017 tty_warn(1, "Directory access time reset table ran out of memory");
1018 return;
1019 }
1020
1021 /*
1022 * get_atdir()
1023 * look up a directory by inode and device number to obtain the access
1024 * and modification time you want to set to. If found, the modification
1025 * and access time parameters are set and the entry is removed from the
1026 * table (as it is no longer needed). These are for directories READ by
1027 * pax
1028 * Return:
1029 * 0 if found, -1 if not found.
1030 */
1031
1032 int
1033 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1034 {
1035 ATDIR *pt;
1036 ATDIR **ppt;
1037 u_int indx;
1038
1039 if (atab == NULL)
1040 return(-1);
1041 /*
1042 * hash by inode and search the chain for an inode and device match
1043 */
1044 indx = ((unsigned)ino) % A_TAB_SZ;
1045 if ((pt = atab[indx]) == NULL)
1046 return(-1);
1047
1048 ppt = &(atab[indx]);
1049 while (pt != NULL) {
1050 if ((pt->ino == ino) && (pt->dev == dev))
1051 break;
1052 /*
1053 * no match, go to next one
1054 */
1055 ppt = &(pt->fow);
1056 pt = pt->fow;
1057 }
1058
1059 /*
1060 * return if we did not find it.
1061 */
1062 if (pt == NULL)
1063 return(-1);
1064
1065 /*
1066 * found it. return the times and remove the entry from the table.
1067 */
1068 *ppt = pt->fow;
1069 *mtime = pt->mtime;
1070 *atime = pt->atime;
1071 (void)free((char *)pt->name);
1072 (void)free((char *)pt);
1073 return(0);
1074 }
1075
1076 /*
1077 * directory access mode and time storage routines (for directories CREATED
1078 * by pax).
1079 *
1080 * Pax requires that extracted directories, by default, have their access/mod
1081 * times and permissions set to the values specified in the archive. During the
1082 * actions of extracting (and creating the destination subtree during -rw copy)
1083 * directories extracted may be modified after being created. Even worse is
1084 * that these directories may have been created with file permissions which
1085 * prohibits any descendants of these directories from being extracted. When
1086 * directories are created by pax, access rights may be added to permit the
1087 * creation of files in their subtree. Every time pax creates a directory, the
1088 * times and file permissions specified by the archive are stored. After all
1089 * files have been extracted (or copied), these directories have their times
1090 * and file modes reset to the stored values. The directory info is restored in
1091 * reverse order as entries were added to the data file from root to leaf. To
1092 * restore atime properly, we must go backwards. The data file consists of
1093 * records with two parts, the file name followed by a DIRDATA trailer. The
1094 * fixed sized trailer contains the size of the name plus the off_t location in
1095 * the file. To restore we work backwards through the file reading the trailer
1096 * then the file name.
1097 */
1098
1099 #ifndef DIRS_USE_FILE
1100 static DIRDATA *dirdata_head;
1101 #endif
1102
1103 /*
1104 * dir_start()
1105 * set up the directory time and file mode storage for directories CREATED
1106 * by pax.
1107 * Return:
1108 * 0 if ok, -1 otherwise
1109 */
1110
1111 int
1112 dir_start(void)
1113 {
1114 #ifdef DIRS_USE_FILE
1115 const char *tmpdir;
1116 char template[MAXPATHLEN];
1117
1118 if (dirfd != -1)
1119 return(0);
1120
1121 /*
1122 * unlink the file so it goes away at termination by itself
1123 */
1124 if ((tmpdir = getenv("TMPDIR")) == NULL)
1125 tmpdir = _PATH_TMP;
1126 (void)snprintf(template, sizeof(template), "%s/%s", tmpdir, TMPFILE);
1127 if ((dirfd = mkstemp(template)) >= 0) {
1128 (void)unlink(template);
1129 return(0);
1130 }
1131 tty_warn(1, "Unable to create temporary file for directory times: %s",
1132 template);
1133 return(-1);
1134 #else
1135 return (0);
1136 #endif /* DIRS_USE_FILE */
1137 }
1138
1139 /*
1140 * add_dir()
1141 * add the mode and times for a newly CREATED directory
1142 * name is name of the directory, psb the stat buffer with the data in it,
1143 * frc_mode is a flag that says whether to force the setting of the mode
1144 * (ignoring the user set values for preserving file mode). Frc_mode is
1145 * for the case where we created a file and found that the resulting
1146 * directory was not writeable and the user asked for file modes to NOT
1147 * be preserved. (we have to preserve what was created by default, so we
1148 * have to force the setting at the end. this is stated explicitly in the
1149 * pax spec)
1150 */
1151
1152 void
1153 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1154 {
1155 #ifdef DIRS_USE_FILE
1156 DIRDATA dblk;
1157
1158 if (dirfd < 0)
1159 return;
1160
1161 /*
1162 * get current position (where file name will start) so we can store it
1163 * in the trailer
1164 */
1165 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1166 tty_warn(1,
1167 "Unable to store mode and times for directory: %s",name);
1168 return;
1169 }
1170
1171 /*
1172 * write the file name followed by the trailer
1173 */
1174 dblk.nlen = nlen + 1;
1175 dblk.mode = psb->st_mode & 0xffff;
1176 dblk.mtime = psb->st_mtime;
1177 dblk.atime = psb->st_atime;
1178 dblk.fflags = psb->st_flags;
1179 dblk.frc_mode = frc_mode;
1180 if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
1181 (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1182 ++dircnt;
1183 return;
1184 }
1185
1186 tty_warn(1,
1187 "Unable to store mode and times for created directory: %s",name);
1188 return;
1189 #else
1190 DIRDATA *dblk;
1191
1192 if ((dblk = malloc(sizeof(*dblk))) == NULL ||
1193 (dblk->name = strdup(name)) == NULL) {
1194 tty_warn(1,
1195 "Unable to store mode and times for directory: %s",name);
1196 if (dblk != NULL)
1197 free(dblk);
1198 return;
1199 }
1200
1201 dblk->mode = psb->st_mode & 0xffff;
1202 dblk->mtime = psb->st_mtime;
1203 dblk->atime = psb->st_atime;
1204 dblk->fflags = psb->st_flags;
1205 dblk->frc_mode = frc_mode;
1206
1207 dblk->next = dirdata_head;
1208 dirdata_head = dblk;
1209 return;
1210 #endif /* DIRS_USE_FILE */
1211 }
1212
1213 /*
1214 * proc_dir()
1215 * process all file modes and times stored for directories CREATED
1216 * by pax
1217 */
1218
1219 void
1220 proc_dir(void)
1221 {
1222 #ifdef DIRS_USE_FILE
1223 char name[PAXPATHLEN+1];
1224 DIRDATA dblk;
1225 u_long cnt;
1226
1227 if (dirfd < 0)
1228 return;
1229 /*
1230 * read backwards through the file and process each directory
1231 */
1232 for (cnt = 0; cnt < dircnt; ++cnt) {
1233 /*
1234 * read the trailer, then the file name, if this fails
1235 * just give up.
1236 */
1237 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1238 break;
1239 if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1240 break;
1241 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1242 break;
1243 if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
1244 break;
1245 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1246 break;
1247
1248 /*
1249 * frc_mode set, make sure we set the file modes even if
1250 * the user didn't ask for it (see file_subs.c for more info)
1251 */
1252 if (pmode || dblk.frc_mode)
1253 set_pmode(name, dblk.mode);
1254 if (patime || pmtime)
1255 set_ftime(name, dblk.mtime, dblk.atime, 0);
1256 if (pfflags)
1257 set_chflags(name, dblk.fflags);
1258 }
1259
1260 (void)close(dirfd);
1261 dirfd = -1;
1262 if (cnt != dircnt)
1263 tty_warn(1,
1264 "Unable to set mode and times for created directories");
1265 return;
1266 #else
1267 DIRDATA *dblk;
1268
1269 for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
1270 dirdata_head = dblk->next;
1271
1272 /*
1273 * frc_mode set, make sure we set the file modes even if
1274 * the user didn't ask for it (see file_subs.c for more info)
1275 */
1276 if (pmode || dblk->frc_mode)
1277 set_pmode(dblk->name, dblk->mode);
1278 if (patime || pmtime)
1279 set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1280 if (pfflags)
1281 set_chflags(dblk->name, dblk->fflags);
1282
1283 free(dblk->name);
1284 free(dblk);
1285 }
1286 #endif /* DIRS_USE_FILE */
1287 }
1288
1289 /*
1290 * database independent routines
1291 */
1292
1293 /*
1294 * st_hash()
1295 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1296 * end of file, as this provides far better distribution than any other
1297 * part of the name. For performance reasons we only care about the last
1298 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1299 * name). Was tested on 500,000 name file tree traversal from the root
1300 * and gave almost a perfectly uniform distribution of keys when used with
1301 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1302 * chars at a time and pads with 0 for last addition.
1303 * Return:
1304 * the hash value of the string MOD (%) the table size.
1305 */
1306
1307 u_int
1308 st_hash(char *name, int len, int tabsz)
1309 {
1310 char *pt;
1311 char *dest;
1312 char *end;
1313 int i;
1314 u_int key = 0;
1315 int steps;
1316 int res;
1317 u_int val;
1318
1319 /*
1320 * only look at the tail up to MAXKEYLEN, we do not need to waste
1321 * time here (remember these are pathnames, the tail is what will
1322 * spread out the keys)
1323 */
1324 if (len > MAXKEYLEN) {
1325 pt = &(name[len - MAXKEYLEN]);
1326 len = MAXKEYLEN;
1327 } else
1328 pt = name;
1329
1330 /*
1331 * calculate the number of u_int size steps in the string and if
1332 * there is a runt to deal with
1333 */
1334 steps = len/sizeof(u_int);
1335 res = len % sizeof(u_int);
1336
1337 /*
1338 * add up the value of the string in unsigned integer sized pieces
1339 * too bad we cannot have unsigned int aligned strings, then we
1340 * could avoid the expensive copy.
1341 */
1342 for (i = 0; i < steps; ++i) {
1343 end = pt + sizeof(u_int);
1344 dest = (char *)&val;
1345 while (pt < end)
1346 *dest++ = *pt++;
1347 key += val;
1348 }
1349
1350 /*
1351 * add in the runt padded with zero to the right
1352 */
1353 if (res) {
1354 val = 0;
1355 end = pt + res;
1356 dest = (char *)&val;
1357 while (pt < end)
1358 *dest++ = *pt++;
1359 key += val;
1360 }
1361
1362 /*
1363 * return the result mod the table size
1364 */
1365 return(key % tabsz);
1366 }
1367