Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.22
      1 /*	$NetBSD: tables.c,v 1.22 2003/10/13 07:41:22 agc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992 Keith Muller.
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * Keith Muller of the University of California, San Diego.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #if defined(__RCSID) && !defined(lint)
     38 #if 0
     39 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     40 #else
     41 __RCSID("$NetBSD: tables.c,v 1.22 2003/10/13 07:41:22 agc Exp $");
     42 #endif
     43 #endif /* not lint */
     44 
     45 #include <sys/types.h>
     46 #include <sys/time.h>
     47 #include <sys/stat.h>
     48 #include <sys/param.h>
     49 #include <stdio.h>
     50 #include <ctype.h>
     51 #include <fcntl.h>
     52 #include <paths.h>
     53 #include <string.h>
     54 #include <unistd.h>
     55 #include <errno.h>
     56 #include <stdlib.h>
     57 #include "pax.h"
     58 #include "tables.h"
     59 #include "extern.h"
     60 
     61 /*
     62  * Routines for controlling the contents of all the different databases pax
     63  * keeps. Tables are dynamically created only when they are needed. The
     64  * goal was speed and the ability to work with HUGE archives. The databases
     65  * were kept simple, but do have complex rules for when the contents change.
     66  * As of this writing, the posix library functions were more complex than
     67  * needed for this application (pax databases have very short lifetimes and
     68  * do not survive after pax is finished). Pax is required to handle very
     69  * large archives. These database routines carefully combine memory usage and
     70  * temporary file storage in ways which will not significantly impact runtime
     71  * performance while allowing the largest possible archives to be handled.
     72  * Trying to force the fit to the posix database routines was not considered
     73  * time well spent.
     74  */
     75 
     76 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     77 static FTM **ftab = NULL;	/* file time table for updating arch */
     78 static NAMT **ntab = NULL;	/* interactive rename storage table */
     79 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     80 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     81 #ifdef DIRS_USE_FILE
     82 static int dirfd = -1;		/* storage for setting created dir time/mode */
     83 static u_long dircnt;		/* entries in dir time/mode storage */
     84 #endif
     85 static int ffd = -1;		/* tmp file for file time table name storage */
     86 
     87 static DEVT *chk_dev(dev_t, int);
     88 
     89 /*
     90  * hard link table routines
     91  *
     92  * The hard link table tries to detect hard links to files using the device and
     93  * inode values. We do this when writing an archive, so we can tell the format
     94  * write routine that this file is a hard link to another file. The format
     95  * write routine then can store this file in whatever way it wants (as a hard
     96  * link if the format supports that like tar, or ignore this info like cpio).
     97  * (Actually a field in the format driver table tells us if the format wants
     98  * hard link info. if not, we do not waste time looking for them). We also use
     99  * the same table when reading an archive. In that situation, this table is
    100  * used by the format read routine to detect hard links from stored dev and
    101  * inode numbers (like cpio). This will allow pax to create a link when one
    102  * can be detected by the archive format.
    103  */
    104 
    105 /*
    106  * lnk_start
    107  *	Creates the hard link table.
    108  * Return:
    109  *	0 if created, -1 if failure
    110  */
    111 
    112 int
    113 lnk_start(void)
    114 {
    115 	if (ltab != NULL)
    116 		return(0);
    117 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    118 		tty_warn(1, "Cannot allocate memory for hard link table");
    119 		return(-1);
    120 	}
    121 	return(0);
    122 }
    123 
    124 /*
    125  * chk_lnk()
    126  *	Looks up entry in hard link hash table. If found, it copies the name
    127  *	of the file it is linked to (we already saw that file) into ln_name.
    128  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    129  *	database. (We have seen all the links to this file). If not found,
    130  *	we add the file to the database if it has the potential for having
    131  *	hard links to other files we may process (it has a link count > 1)
    132  * Return:
    133  *	if found returns 1; if not found returns 0; -1 on error
    134  */
    135 
    136 int
    137 chk_lnk(ARCHD *arcn)
    138 {
    139 	HRDLNK *pt;
    140 	HRDLNK **ppt;
    141 	u_int indx;
    142 
    143 	if (ltab == NULL)
    144 		return(-1);
    145 	/*
    146 	 * ignore those nodes that cannot have hard links
    147 	 */
    148 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    149 		return(0);
    150 
    151 	/*
    152 	 * hash inode number and look for this file
    153 	 */
    154 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    155 	if ((pt = ltab[indx]) != NULL) {
    156 		/*
    157 		 * it's hash chain in not empty, walk down looking for it
    158 		 */
    159 		ppt = &(ltab[indx]);
    160 		while (pt != NULL) {
    161 			if ((pt->ino == arcn->sb.st_ino) &&
    162 			    (pt->dev == arcn->sb.st_dev))
    163 				break;
    164 			ppt = &(pt->fow);
    165 			pt = pt->fow;
    166 		}
    167 
    168 		if (pt != NULL) {
    169 			/*
    170 			 * found a link. set the node type and copy in the
    171 			 * name of the file it is to link to. we need to
    172 			 * handle hardlinks to regular files differently than
    173 			 * other links.
    174 			 */
    175 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
    176 				sizeof(arcn->ln_name));
    177 			if (arcn->type == PAX_REG)
    178 				arcn->type = PAX_HRG;
    179 			else
    180 				arcn->type = PAX_HLK;
    181 
    182 			/*
    183 			 * if we have found all the links to this file, remove
    184 			 * it from the database
    185 			 */
    186 			if (--pt->nlink <= 1) {
    187 				*ppt = pt->fow;
    188 				(void)free((char *)pt->name);
    189 				(void)free((char *)pt);
    190 			}
    191 			return(1);
    192 		}
    193 	}
    194 
    195 	/*
    196 	 * we never saw this file before. It has links so we add it to the
    197 	 * front of this hash chain
    198 	 */
    199 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    200 		if ((pt->name = strdup(arcn->name)) != NULL) {
    201 			pt->dev = arcn->sb.st_dev;
    202 			pt->ino = arcn->sb.st_ino;
    203 			pt->nlink = arcn->sb.st_nlink;
    204 			pt->fow = ltab[indx];
    205 			ltab[indx] = pt;
    206 			return(0);
    207 		}
    208 		(void)free((char *)pt);
    209 	}
    210 
    211 	tty_warn(1, "Hard link table out of memory");
    212 	return(-1);
    213 }
    214 
    215 /*
    216  * purg_lnk
    217  *	remove reference for a file that we may have added to the data base as
    218  *	a potential source for hard links. We ended up not using the file, so
    219  *	we do not want to accidently point another file at it later on.
    220  */
    221 
    222 void
    223 purg_lnk(ARCHD *arcn)
    224 {
    225 	HRDLNK *pt;
    226 	HRDLNK **ppt;
    227 	u_int indx;
    228 
    229 	if (ltab == NULL)
    230 		return;
    231 	/*
    232 	 * do not bother to look if it could not be in the database
    233 	 */
    234 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    235 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    236 		return;
    237 
    238 	/*
    239 	 * find the hash chain for this inode value, if empty return
    240 	 */
    241 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    242 	if ((pt = ltab[indx]) == NULL)
    243 		return;
    244 
    245 	/*
    246 	 * walk down the list looking for the inode/dev pair, unlink and
    247 	 * free if found
    248 	 */
    249 	ppt = &(ltab[indx]);
    250 	while (pt != NULL) {
    251 		if ((pt->ino == arcn->sb.st_ino) &&
    252 		    (pt->dev == arcn->sb.st_dev))
    253 			break;
    254 		ppt = &(pt->fow);
    255 		pt = pt->fow;
    256 	}
    257 	if (pt == NULL)
    258 		return;
    259 
    260 	/*
    261 	 * remove and free it
    262 	 */
    263 	*ppt = pt->fow;
    264 	(void)free((char *)pt->name);
    265 	(void)free((char *)pt);
    266 }
    267 
    268 /*
    269  * lnk_end()
    270  *	pull apart a existing link table so we can reuse it. We do this between
    271  *	read and write phases of append with update. (The format may have
    272  *	used the link table, and we need to start with a fresh table for the
    273  *	write phase
    274  */
    275 
    276 void
    277 lnk_end(void)
    278 {
    279 	int i;
    280 	HRDLNK *pt;
    281 	HRDLNK *ppt;
    282 
    283 	if (ltab == NULL)
    284 		return;
    285 
    286 	for (i = 0; i < L_TAB_SZ; ++i) {
    287 		if (ltab[i] == NULL)
    288 			continue;
    289 		pt = ltab[i];
    290 		ltab[i] = NULL;
    291 
    292 		/*
    293 		 * free up each entry on this chain
    294 		 */
    295 		while (pt != NULL) {
    296 			ppt = pt;
    297 			pt = ppt->fow;
    298 			(void)free((char *)ppt->name);
    299 			(void)free((char *)ppt);
    300 		}
    301 	}
    302 	return;
    303 }
    304 
    305 /*
    306  * modification time table routines
    307  *
    308  * The modification time table keeps track of last modification times for all
    309  * files stored in an archive during a write phase when -u is set. We only
    310  * add a file to the archive if it is newer than a file with the same name
    311  * already stored on the archive (if there is no other file with the same
    312  * name on the archive it is added). This applies to writes and appends.
    313  * An append with an -u must read the archive and store the modification time
    314  * for every file on that archive before starting the write phase. It is clear
    315  * that this is one HUGE database. To save memory space, the actual file names
    316  * are stored in a scratch file and indexed by an in-memory hash table. The
    317  * hash table is indexed by hashing the file path. The nodes in the table store
    318  * the length of the filename and the lseek offset within the scratch file
    319  * where the actual name is stored. Since there are never any deletions from this
    320  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    321  * not exhibit any locality at all (files in the database are rarely
    322  * looked up more than once...), so caching is just a waste of memory. The
    323  * only limitation is the amount of scratch file space available to store the
    324  * path names.
    325  */
    326 
    327 /*
    328  * ftime_start()
    329  *	create the file time hash table and open for read/write the scratch
    330  *	file. (after created it is unlinked, so when we exit we leave
    331  *	no witnesses).
    332  * Return:
    333  *	0 if the table and file was created ok, -1 otherwise
    334  */
    335 
    336 int
    337 ftime_start(void)
    338 {
    339 	if (ftab != NULL)
    340 		return(0);
    341 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    342 		tty_warn(1, "Cannot allocate memory for file time table");
    343 		return(-1);
    344 	}
    345 
    346 	/*
    347 	 * get random name and create temporary scratch file, unlink name
    348 	 * so it will get removed on exit
    349 	 */
    350 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
    351 	if ((ffd = mkstemp(tempfile)) == -1) {
    352 		syswarn(1, errno, "Unable to create temporary file: %s",
    353 		    tempfile);
    354 		return(-1);
    355 	}
    356 
    357 	(void)unlink(tempfile);
    358 	return(0);
    359 }
    360 
    361 /*
    362  * chk_ftime()
    363  *	looks up entry in file time hash table. If not found, the file is
    364  *	added to the hash table and the file named stored in the scratch file.
    365  *	If a file with the same name is found, the file times are compared and
    366  *	the most recent file time is retained. If the new file was younger (or
    367  *	was not in the database) the new file is selected for storage.
    368  * Return:
    369  *	0 if file should be added to the archive, 1 if it should be skipped,
    370  *	-1 on error
    371  */
    372 
    373 int
    374 chk_ftime(ARCHD *arcn)
    375 {
    376 	FTM *pt;
    377 	int namelen;
    378 	u_int indx;
    379 	char ckname[PAXPATHLEN+1];
    380 
    381 	/*
    382 	 * no info, go ahead and add to archive
    383 	 */
    384 	if (ftab == NULL)
    385 		return(0);
    386 
    387 	/*
    388 	 * hash the pathname and look up in table
    389 	 */
    390 	namelen = arcn->nlen;
    391 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    392 	if ((pt = ftab[indx]) != NULL) {
    393 		/*
    394 		 * the hash chain is not empty, walk down looking for match
    395 		 * only read up the path names if the lengths match, speeds
    396 		 * up the search a lot
    397 		 */
    398 		while (pt != NULL) {
    399 			if (pt->namelen == namelen) {
    400 				/*
    401 				 * potential match, have to read the name
    402 				 * from the scratch file.
    403 				 */
    404 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    405 					syswarn(1, errno,
    406 					    "Failed ftime table seek");
    407 					return(-1);
    408 				}
    409 				if (xread(ffd, ckname, namelen) != namelen) {
    410 					syswarn(1, errno,
    411 					    "Failed ftime table read");
    412 					return(-1);
    413 				}
    414 
    415 				/*
    416 				 * if the names match, we are done
    417 				 */
    418 				if (!strncmp(ckname, arcn->name, namelen))
    419 					break;
    420 			}
    421 
    422 			/*
    423 			 * try the next entry on the chain
    424 			 */
    425 			pt = pt->fow;
    426 		}
    427 
    428 		if (pt != NULL) {
    429 			/*
    430 			 * found the file, compare the times, save the newer
    431 			 */
    432 			if (arcn->sb.st_mtime > pt->mtime) {
    433 				/*
    434 				 * file is newer
    435 				 */
    436 				pt->mtime = arcn->sb.st_mtime;
    437 				return(0);
    438 			}
    439 			/*
    440 			 * file is older
    441 			 */
    442 			return(1);
    443 		}
    444 	}
    445 
    446 	/*
    447 	 * not in table, add it
    448 	 */
    449 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    450 		/*
    451 		 * add the name at the end of the scratch file, saving the
    452 		 * offset. add the file to the head of the hash chain
    453 		 */
    454 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    455 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    456 				pt->mtime = arcn->sb.st_mtime;
    457 				pt->namelen = namelen;
    458 				pt->fow = ftab[indx];
    459 				ftab[indx] = pt;
    460 				return(0);
    461 			}
    462 			syswarn(1, errno, "Failed write to file time table");
    463 		} else
    464 			syswarn(1, errno, "Failed seek on file time table");
    465 	} else
    466 		tty_warn(1, "File time table ran out of memory");
    467 
    468 	if (pt != NULL)
    469 		(void)free((char *)pt);
    470 	return(-1);
    471 }
    472 
    473 /*
    474  * Interactive rename table routines
    475  *
    476  * The interactive rename table keeps track of the new names that the user
    477  * assigns to files from tty input. Since this map is unique for each file
    478  * we must store it in case there is a reference to the file later in archive
    479  * (a link). Otherwise we will be unable to find the file we know was
    480  * extracted. The remapping of these files is stored in a memory based hash
    481  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    482  * be a very large table).
    483  */
    484 
    485 /*
    486  * name_start()
    487  *	create the interactive rename table
    488  * Return:
    489  *	0 if successful, -1 otherwise
    490  */
    491 
    492 int
    493 name_start(void)
    494 {
    495 	if (ntab != NULL)
    496 		return(0);
    497 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    498 		tty_warn(1,
    499 		    "Cannot allocate memory for interactive rename table");
    500 		return(-1);
    501 	}
    502 	return(0);
    503 }
    504 
    505 /*
    506  * add_name()
    507  *	add the new name to old name mapping just created by the user.
    508  *	If an old name mapping is found (there may be duplicate names on an
    509  *	archive) only the most recent is kept.
    510  * Return:
    511  *	0 if added, -1 otherwise
    512  */
    513 
    514 int
    515 add_name(char *oname, int onamelen, char *nname)
    516 {
    517 	NAMT *pt;
    518 	u_int indx;
    519 
    520 	if (ntab == NULL) {
    521 		/*
    522 		 * should never happen
    523 		 */
    524 		tty_warn(0, "No interactive rename table, links may fail\n");
    525 		return(0);
    526 	}
    527 
    528 	/*
    529 	 * look to see if we have already mapped this file, if so we
    530 	 * will update it
    531 	 */
    532 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    533 	if ((pt = ntab[indx]) != NULL) {
    534 		/*
    535 		 * look down the has chain for the file
    536 		 */
    537 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    538 			pt = pt->fow;
    539 
    540 		if (pt != NULL) {
    541 			/*
    542 			 * found an old mapping, replace it with the new one
    543 			 * the user just input (if it is different)
    544 			 */
    545 			if (strcmp(nname, pt->nname) == 0)
    546 				return(0);
    547 
    548 			(void)free((char *)pt->nname);
    549 			if ((pt->nname = strdup(nname)) == NULL) {
    550 				tty_warn(1, "Cannot update rename table");
    551 				return(-1);
    552 			}
    553 			return(0);
    554 		}
    555 	}
    556 
    557 	/*
    558 	 * this is a new mapping, add it to the table
    559 	 */
    560 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    561 		if ((pt->oname = strdup(oname)) != NULL) {
    562 			if ((pt->nname = strdup(nname)) != NULL) {
    563 				pt->fow = ntab[indx];
    564 				ntab[indx] = pt;
    565 				return(0);
    566 			}
    567 			(void)free((char *)pt->oname);
    568 		}
    569 		(void)free((char *)pt);
    570 	}
    571 	tty_warn(1, "Interactive rename table out of memory");
    572 	return(-1);
    573 }
    574 
    575 /*
    576  * sub_name()
    577  *	look up a link name to see if it points at a file that has been
    578  *	remapped by the user. If found, the link is adjusted to contain the
    579  *	new name (oname is the link to name)
    580  */
    581 
    582 void
    583 sub_name(char *oname, int *onamelen, size_t onamesize)
    584 {
    585 	NAMT *pt;
    586 	u_int indx;
    587 
    588 	if (ntab == NULL)
    589 		return;
    590 	/*
    591 	 * look the name up in the hash table
    592 	 */
    593 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    594 	if ((pt = ntab[indx]) == NULL)
    595 		return;
    596 
    597 	while (pt != NULL) {
    598 		/*
    599 		 * walk down the hash chain looking for a match
    600 		 */
    601 		if (strcmp(oname, pt->oname) == 0) {
    602 			/*
    603 			 * found it, replace it with the new name
    604 			 * and return (we know that oname has enough space)
    605 			 */
    606 			*onamelen = strlcpy(oname, pt->nname, onamesize);
    607 			return;
    608 		}
    609 		pt = pt->fow;
    610 	}
    611 
    612 	/*
    613 	 * no match, just return
    614 	 */
    615 	return;
    616 }
    617 
    618 /*
    619  * device/inode mapping table routines
    620  * (used with formats that store device and inodes fields)
    621  *
    622  * device/inode mapping tables remap the device field in a archive header. The
    623  * device/inode fields are used to determine when files are hard links to each
    624  * other. However these values have very little meaning outside of that. This
    625  * database is used to solve one of two different problems.
    626  *
    627  * 1) when files are appended to an archive, while the new files may have hard
    628  * links to each other, you cannot determine if they have hard links to any
    629  * file already stored on the archive from a prior run of pax. We must assume
    630  * that these inode/device pairs are unique only within a SINGLE run of pax
    631  * (which adds a set of files to an archive). So we have to make sure the
    632  * inode/dev pairs we add each time are always unique. We do this by observing
    633  * while the inode field is very dense, the use of the dev field is fairly
    634  * sparse. Within each run of pax, we remap any device number of a new archive
    635  * member that has a device number used in a prior run and already stored in a
    636  * file on the archive. During the read phase of the append, we store the
    637  * device numbers used and mark them to not be used by any file during the
    638  * write phase. If during write we go to use one of those old device numbers,
    639  * we remap it to a new value.
    640  *
    641  * 2) Often the fields in the archive header used to store these values are
    642  * too small to store the entire value. The result is an inode or device value
    643  * which can be truncated. This really can foul up an archive. With truncation
    644  * we end up creating links between files that are really not links (after
    645  * truncation the inodes are the same value). We address that by detecting
    646  * truncation and forcing a remap of the device field to split truncated
    647  * inodes away from each other. Each truncation creates a pattern of bits that
    648  * are removed. We use this pattern of truncated bits to partition the inodes
    649  * on a single device to many different devices (each one represented by the
    650  * truncated bit pattern). All inodes on the same device that have the same
    651  * truncation pattern are mapped to the same new device. Two inodes that
    652  * truncate to the same value clearly will always have different truncation
    653  * bit patterns, so they will be split from away each other. When we spot
    654  * device truncation we remap the device number to a non truncated value.
    655  * (for more info see table.h for the data structures involved).
    656  */
    657 
    658 /*
    659  * dev_start()
    660  *	create the device mapping table
    661  * Return:
    662  *	0 if successful, -1 otherwise
    663  */
    664 
    665 int
    666 dev_start(void)
    667 {
    668 	if (dtab != NULL)
    669 		return(0);
    670 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    671 		tty_warn(1, "Cannot allocate memory for device mapping table");
    672 		return(-1);
    673 	}
    674 	return(0);
    675 }
    676 
    677 /*
    678  * add_dev()
    679  *	add a device number to the table. this will force the device to be
    680  *	remapped to a new value if it be used during a write phase. This
    681  *	function is called during the read phase of an append to prohibit the
    682  *	use of any device number already in the archive.
    683  * Return:
    684  *	0 if added ok, -1 otherwise
    685  */
    686 
    687 int
    688 add_dev(ARCHD *arcn)
    689 {
    690 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    691 		return(-1);
    692 	return(0);
    693 }
    694 
    695 /*
    696  * chk_dev()
    697  *	check for a device value in the device table. If not found and the add
    698  *	flag is set, it is added. This does NOT assign any mapping values, just
    699  *	adds the device number as one that need to be remapped. If this device
    700  *	is already mapped, just return with a pointer to that entry.
    701  * Return:
    702  *	pointer to the entry for this device in the device map table. Null
    703  *	if the add flag is not set and the device is not in the table (it is
    704  *	not been seen yet). If add is set and the device cannot be added, null
    705  *	is returned (indicates an error).
    706  */
    707 
    708 static DEVT *
    709 chk_dev(dev_t dev, int add)
    710 {
    711 	DEVT *pt;
    712 	u_int indx;
    713 
    714 	if (dtab == NULL)
    715 		return(NULL);
    716 	/*
    717 	 * look to see if this device is already in the table
    718 	 */
    719 	indx = ((unsigned)dev) % D_TAB_SZ;
    720 	if ((pt = dtab[indx]) != NULL) {
    721 		while ((pt != NULL) && (pt->dev != dev))
    722 			pt = pt->fow;
    723 
    724 		/*
    725 		 * found it, return a pointer to it
    726 		 */
    727 		if (pt != NULL)
    728 			return(pt);
    729 	}
    730 
    731 	/*
    732 	 * not in table, we add it only if told to as this may just be a check
    733 	 * to see if a device number is being used.
    734 	 */
    735 	if (add == 0)
    736 		return(NULL);
    737 
    738 	/*
    739 	 * allocate a node for this device and add it to the front of the hash
    740 	 * chain. Note we do not assign remaps values here, so the pt->list
    741 	 * list must be NULL.
    742 	 */
    743 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    744 		tty_warn(1, "Device map table out of memory");
    745 		return(NULL);
    746 	}
    747 	pt->dev = dev;
    748 	pt->list = NULL;
    749 	pt->fow = dtab[indx];
    750 	dtab[indx] = pt;
    751 	return(pt);
    752 }
    753 /*
    754  * map_dev()
    755  *	given an inode and device storage mask (the mask has a 1 for each bit
    756  *	the archive format is able to store in a header), we check for inode
    757  *	and device truncation and remap the device as required. Device mapping
    758  *	can also occur when during the read phase of append a device number was
    759  *	seen (and was marked as do not use during the write phase). WE ASSUME
    760  *	that unsigned longs are the same size or bigger than the fields used
    761  *	for ino_t and dev_t. If not the types will have to be changed.
    762  * Return:
    763  *	0 if all ok, -1 otherwise.
    764  */
    765 
    766 int
    767 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    768 {
    769 	DEVT *pt;
    770 	DLIST *dpt;
    771 	static dev_t lastdev = 0;	/* next device number to try */
    772 	int trc_ino = 0;
    773 	int trc_dev = 0;
    774 	ino_t trunc_bits = 0;
    775 	ino_t nino;
    776 
    777 	if (dtab == NULL)
    778 		return(0);
    779 	/*
    780 	 * check for device and inode truncation, and extract the truncated
    781 	 * bit pattern.
    782 	 */
    783 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    784 		++trc_dev;
    785 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    786 		++trc_ino;
    787 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    788 	}
    789 
    790 	/*
    791 	 * see if this device is already being mapped, look up the device
    792 	 * then find the truncation bit pattern which applies
    793 	 */
    794 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    795 		/*
    796 		 * this device is already marked to be remapped
    797 		 */
    798 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    799 			if (dpt->trunc_bits == trunc_bits)
    800 				break;
    801 
    802 		if (dpt != NULL) {
    803 			/*
    804 			 * we are being remapped for this device and pattern
    805 			 * change the device number to be stored and return
    806 			 */
    807 			arcn->sb.st_dev = dpt->dev;
    808 			arcn->sb.st_ino = nino;
    809 			return(0);
    810 		}
    811 	} else {
    812 		/*
    813 		 * this device is not being remapped YET. if we do not have any
    814 		 * form of truncation, we do not need a remap
    815 		 */
    816 		if (!trc_ino && !trc_dev)
    817 			return(0);
    818 
    819 		/*
    820 		 * we have truncation, have to add this as a device to remap
    821 		 */
    822 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    823 			goto bad;
    824 
    825 		/*
    826 		 * if we just have a truncated inode, we have to make sure that
    827 		 * all future inodes that do not truncate (they have the
    828 		 * truncation pattern of all 0's) continue to map to the same
    829 		 * device number. We probably have already written inodes with
    830 		 * this device number to the archive with the truncation
    831 		 * pattern of all 0's. So we add the mapping for all 0's to the
    832 		 * same device number.
    833 		 */
    834 		if (!trc_dev && (trunc_bits != 0)) {
    835 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    836 				goto bad;
    837 			dpt->trunc_bits = 0;
    838 			dpt->dev = arcn->sb.st_dev;
    839 			dpt->fow = pt->list;
    840 			pt->list = dpt;
    841 		}
    842 	}
    843 
    844 	/*
    845 	 * look for a device number not being used. We must watch for wrap
    846 	 * around on lastdev (so we do not get stuck looking forever!)
    847 	 */
    848 	while (++lastdev > 0) {
    849 		if (chk_dev(lastdev, 0) != NULL)
    850 			continue;
    851 		/*
    852 		 * found an unused value. If we have reached truncation point
    853 		 * for this format we are hosed, so we give up. Otherwise we
    854 		 * mark it as being used.
    855 		 */
    856 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    857 		    (chk_dev(lastdev, 1) == NULL))
    858 			goto bad;
    859 		break;
    860 	}
    861 
    862 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    863 		goto bad;
    864 
    865 	/*
    866 	 * got a new device number, store it under this truncation pattern.
    867 	 * change the device number this file is being stored with.
    868 	 */
    869 	dpt->trunc_bits = trunc_bits;
    870 	dpt->dev = lastdev;
    871 	dpt->fow = pt->list;
    872 	pt->list = dpt;
    873 	arcn->sb.st_dev = lastdev;
    874 	arcn->sb.st_ino = nino;
    875 	return(0);
    876 
    877     bad:
    878 	tty_warn(1,
    879 	    "Unable to fix truncated inode/device field when storing %s",
    880 	    arcn->name);
    881 	tty_warn(0, "Archive may create improper hard links when extracted");
    882 	return(0);
    883 }
    884 
    885 /*
    886  * directory access/mod time reset table routines (for directories READ by pax)
    887  *
    888  * The pax -t flag requires that access times of archive files to be the same
    889  * as before being read by pax. For regular files, access time is restored after
    890  * the file has been copied. This database provides the same functionality for
    891  * directories read during file tree traversal. Restoring directory access time
    892  * is more complex than files since directories may be read several times until
    893  * all the descendants in their subtree are visited by fts. Directory access
    894  * and modification times are stored during the fts pre-order visit (done
    895  * before any descendants in the subtree is visited) and restored after the
    896  * fts post-order visit (after all the descendants have been visited). In the
    897  * case of premature exit from a subtree (like from the effects of -n), any
    898  * directory entries left in this database are reset during final cleanup
    899  * operations of pax. Entries are hashed by inode number for fast lookup.
    900  */
    901 
    902 /*
    903  * atdir_start()
    904  *	create the directory access time database for directories READ by pax.
    905  * Return:
    906  *	0 is created ok, -1 otherwise.
    907  */
    908 
    909 int
    910 atdir_start(void)
    911 {
    912 	if (atab != NULL)
    913 		return(0);
    914 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    915 		tty_warn(1,
    916 		    "Cannot allocate space for directory access time table");
    917 		return(-1);
    918 	}
    919 	return(0);
    920 }
    921 
    922 
    923 /*
    924  * atdir_end()
    925  *	walk through the directory access time table and reset the access time
    926  *	of any directory who still has an entry left in the database. These
    927  *	entries are for directories READ by pax
    928  */
    929 
    930 void
    931 atdir_end(void)
    932 {
    933 	ATDIR *pt;
    934 	int i;
    935 
    936 	if (atab == NULL)
    937 		return;
    938 	/*
    939 	 * for each non-empty hash table entry reset all the directories
    940 	 * chained there.
    941 	 */
    942 	for (i = 0; i < A_TAB_SZ; ++i) {
    943 		if ((pt = atab[i]) == NULL)
    944 			continue;
    945 		/*
    946 		 * remember to force the times, set_ftime() looks at pmtime
    947 		 * and patime, which only applies to things CREATED by pax,
    948 		 * not read by pax. Read time reset is controlled by -t.
    949 		 */
    950 		for (; pt != NULL; pt = pt->fow)
    951 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
    952 	}
    953 }
    954 
    955 /*
    956  * add_atdir()
    957  *	add a directory to the directory access time table. Table is hashed
    958  *	and chained by inode number. This is for directories READ by pax
    959  */
    960 
    961 void
    962 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
    963 {
    964 	ATDIR *pt;
    965 	u_int indx;
    966 
    967 	if (atab == NULL)
    968 		return;
    969 
    970 	/*
    971 	 * make sure this directory is not already in the table, if so just
    972 	 * return (the older entry always has the correct time). The only
    973 	 * way this will happen is when the same subtree can be traversed by
    974 	 * different args to pax and the -n option is aborting fts out of a
    975 	 * subtree before all the post-order visits have been made.
    976 	 */
    977 	indx = ((unsigned)ino) % A_TAB_SZ;
    978 	if ((pt = atab[indx]) != NULL) {
    979 		while (pt != NULL) {
    980 			if ((pt->ino == ino) && (pt->dev == dev))
    981 				break;
    982 			pt = pt->fow;
    983 		}
    984 
    985 		/*
    986 		 * oops, already there. Leave it alone.
    987 		 */
    988 		if (pt != NULL)
    989 			return;
    990 	}
    991 
    992 	/*
    993 	 * add it to the front of the hash chain
    994 	 */
    995 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
    996 		if ((pt->name = strdup(fname)) != NULL) {
    997 			pt->dev = dev;
    998 			pt->ino = ino;
    999 			pt->mtime = mtime;
   1000 			pt->atime = atime;
   1001 			pt->fow = atab[indx];
   1002 			atab[indx] = pt;
   1003 			return;
   1004 		}
   1005 		(void)free((char *)pt);
   1006 	}
   1007 
   1008 	tty_warn(1, "Directory access time reset table ran out of memory");
   1009 	return;
   1010 }
   1011 
   1012 /*
   1013  * get_atdir()
   1014  *	look up a directory by inode and device number to obtain the access
   1015  *	and modification time you want to set to. If found, the modification
   1016  *	and access time parameters are set and the entry is removed from the
   1017  *	table (as it is no longer needed). These are for directories READ by
   1018  *	pax
   1019  * Return:
   1020  *	0 if found, -1 if not found.
   1021  */
   1022 
   1023 int
   1024 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1025 {
   1026 	ATDIR *pt;
   1027 	ATDIR **ppt;
   1028 	u_int indx;
   1029 
   1030 	if (atab == NULL)
   1031 		return(-1);
   1032 	/*
   1033 	 * hash by inode and search the chain for an inode and device match
   1034 	 */
   1035 	indx = ((unsigned)ino) % A_TAB_SZ;
   1036 	if ((pt = atab[indx]) == NULL)
   1037 		return(-1);
   1038 
   1039 	ppt = &(atab[indx]);
   1040 	while (pt != NULL) {
   1041 		if ((pt->ino == ino) && (pt->dev == dev))
   1042 			break;
   1043 		/*
   1044 		 * no match, go to next one
   1045 		 */
   1046 		ppt = &(pt->fow);
   1047 		pt = pt->fow;
   1048 	}
   1049 
   1050 	/*
   1051 	 * return if we did not find it.
   1052 	 */
   1053 	if (pt == NULL)
   1054 		return(-1);
   1055 
   1056 	/*
   1057 	 * found it. return the times and remove the entry from the table.
   1058 	 */
   1059 	*ppt = pt->fow;
   1060 	*mtime = pt->mtime;
   1061 	*atime = pt->atime;
   1062 	(void)free((char *)pt->name);
   1063 	(void)free((char *)pt);
   1064 	return(0);
   1065 }
   1066 
   1067 /*
   1068  * directory access mode and time storage routines (for directories CREATED
   1069  * by pax).
   1070  *
   1071  * Pax requires that extracted directories, by default, have their access/mod
   1072  * times and permissions set to the values specified in the archive. During the
   1073  * actions of extracting (and creating the destination subtree during -rw copy)
   1074  * directories extracted may be modified after being created. Even worse is
   1075  * that these directories may have been created with file permissions which
   1076  * prohibits any descendants of these directories from being extracted. When
   1077  * directories are created by pax, access rights may be added to permit the
   1078  * creation of files in their subtree. Every time pax creates a directory, the
   1079  * times and file permissions specified by the archive are stored. After all
   1080  * files have been extracted (or copied), these directories have their times
   1081  * and file modes reset to the stored values. The directory info is restored in
   1082  * reverse order as entries were added to the data file from root to leaf. To
   1083  * restore atime properly, we must go backwards. The data file consists of
   1084  * records with two parts, the file name followed by a DIRDATA trailer. The
   1085  * fixed sized trailer contains the size of the name plus the off_t location in
   1086  * the file. To restore we work backwards through the file reading the trailer
   1087  * then the file name.
   1088  */
   1089 
   1090 #ifndef DIRS_USE_FILE
   1091 static DIRDATA *dirdata_head;
   1092 #endif
   1093 
   1094 /*
   1095  * dir_start()
   1096  *	set up the directory time and file mode storage for directories CREATED
   1097  *	by pax.
   1098  * Return:
   1099  *	0 if ok, -1 otherwise
   1100  */
   1101 
   1102 int
   1103 dir_start(void)
   1104 {
   1105 #ifdef DIRS_USE_FILE
   1106 	if (dirfd != -1)
   1107 		return(0);
   1108 
   1109 	/*
   1110 	 * unlink the file so it goes away at termination by itself
   1111 	 */
   1112 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
   1113 	if ((dirfd = mkstemp(tempfile)) >= 0) {
   1114 		(void)unlink(tempfile);
   1115 		return(0);
   1116 	}
   1117 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1118 	    tempfile);
   1119 	return(-1);
   1120 #else
   1121 	return (0);
   1122 #endif /* DIRS_USE_FILE */
   1123 }
   1124 
   1125 /*
   1126  * add_dir()
   1127  *	add the mode and times for a newly CREATED directory
   1128  *	name is name of the directory, psb the stat buffer with the data in it,
   1129  *	frc_mode is a flag that says whether to force the setting of the mode
   1130  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1131  *	for the case where we created a file and found that the resulting
   1132  *	directory was not writable and the user asked for file modes to NOT
   1133  *	be preserved. (we have to preserve what was created by default, so we
   1134  *	have to force the setting at the end. this is stated explicitly in the
   1135  *	pax spec)
   1136  */
   1137 
   1138 void
   1139 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1140 {
   1141 #ifdef DIRS_USE_FILE
   1142 	DIRDATA dblk;
   1143 
   1144 	if (dirfd < 0)
   1145 		return;
   1146 
   1147 	/*
   1148 	 * get current position (where file name will start) so we can store it
   1149 	 * in the trailer
   1150 	 */
   1151 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1152 		tty_warn(1,
   1153 		    "Unable to store mode and times for directory: %s",name);
   1154 		return;
   1155 	}
   1156 
   1157 	/*
   1158 	 * write the file name followed by the trailer
   1159 	 */
   1160 	dblk.nlen = nlen + 1;
   1161 	dblk.mode = psb->st_mode & 0xffff;
   1162 	dblk.mtime = psb->st_mtime;
   1163 	dblk.atime = psb->st_atime;
   1164 #if HAVE_STRUCT_STAT_ST_FLAGS
   1165 	dblk.fflags = psb->st_flags;
   1166 #else
   1167 	dblk.fflags = 0;
   1168 #endif
   1169 	dblk.frc_mode = frc_mode;
   1170 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1171 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1172 		++dircnt;
   1173 		return;
   1174 	}
   1175 
   1176 	tty_warn(1,
   1177 	    "Unable to store mode and times for created directory: %s",name);
   1178 	return;
   1179 #else
   1180 	DIRDATA *dblk;
   1181 
   1182 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1183 	    (dblk->name = strdup(name)) == NULL) {
   1184 		tty_warn(1,
   1185 		    "Unable to store mode and times for directory: %s",name);
   1186 		if (dblk != NULL)
   1187 			free(dblk);
   1188 		return;
   1189 	}
   1190 
   1191 	dblk->mode = psb->st_mode & 0xffff;
   1192 	dblk->mtime = psb->st_mtime;
   1193 	dblk->atime = psb->st_atime;
   1194 #if HAVE_STRUCT_STAT_ST_FLAGS
   1195 	dblk->fflags = psb->st_flags;
   1196 #else
   1197 	dblk->fflags = 0;
   1198 #endif
   1199 	dblk->frc_mode = frc_mode;
   1200 
   1201 	dblk->next = dirdata_head;
   1202 	dirdata_head = dblk;
   1203 	return;
   1204 #endif /* DIRS_USE_FILE */
   1205 }
   1206 
   1207 /*
   1208  * proc_dir()
   1209  *	process all file modes and times stored for directories CREATED
   1210  *	by pax
   1211  */
   1212 
   1213 void
   1214 proc_dir(void)
   1215 {
   1216 #ifdef DIRS_USE_FILE
   1217 	char name[PAXPATHLEN+1];
   1218 	DIRDATA dblk;
   1219 	u_long cnt;
   1220 
   1221 	if (dirfd < 0)
   1222 		return;
   1223 	/*
   1224 	 * read backwards through the file and process each directory
   1225 	 */
   1226 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1227 		/*
   1228 		 * read the trailer, then the file name, if this fails
   1229 		 * just give up.
   1230 		 */
   1231 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1232 			break;
   1233 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1234 			break;
   1235 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1236 			break;
   1237 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1238 			break;
   1239 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1240 			break;
   1241 
   1242 		/*
   1243 		 * frc_mode set, make sure we set the file modes even if
   1244 		 * the user didn't ask for it (see file_subs.c for more info)
   1245 		 */
   1246 		if (pmode || dblk.frc_mode)
   1247 			set_pmode(name, dblk.mode);
   1248 		if (patime || pmtime)
   1249 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1250 		if (pfflags)
   1251 			set_chflags(name, dblk.fflags);
   1252 	}
   1253 
   1254 	(void)close(dirfd);
   1255 	dirfd = -1;
   1256 	if (cnt != dircnt)
   1257 		tty_warn(1,
   1258 		    "Unable to set mode and times for created directories");
   1259 	return;
   1260 #else
   1261 	DIRDATA *dblk;
   1262 
   1263 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1264 		dirdata_head = dblk->next;
   1265 
   1266 		/*
   1267 		 * frc_mode set, make sure we set the file modes even if
   1268 		 * the user didn't ask for it (see file_subs.c for more info)
   1269 		 */
   1270 		if (pmode || dblk->frc_mode)
   1271 			set_pmode(dblk->name, dblk->mode);
   1272 		if (patime || pmtime)
   1273 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
   1274 		if (pfflags)
   1275 			set_chflags(dblk->name, dblk->fflags);
   1276 
   1277 		free(dblk->name);
   1278 		free(dblk);
   1279 	}
   1280 #endif /* DIRS_USE_FILE */
   1281 }
   1282 
   1283 /*
   1284  * database independent routines
   1285  */
   1286 
   1287 /*
   1288  * st_hash()
   1289  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1290  *	end of file, as this provides far better distribution than any other
   1291  *	part of the name. For performance reasons we only care about the last
   1292  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1293  *	name). Was tested on 500,000 name file tree traversal from the root
   1294  *	and gave almost a perfectly uniform distribution of keys when used with
   1295  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1296  *	chars at a time and pads with 0 for last addition.
   1297  * Return:
   1298  *	the hash value of the string MOD (%) the table size.
   1299  */
   1300 
   1301 u_int
   1302 st_hash(char *name, int len, int tabsz)
   1303 {
   1304 	char *pt;
   1305 	char *dest;
   1306 	char *end;
   1307 	int i;
   1308 	u_int key = 0;
   1309 	int steps;
   1310 	int res;
   1311 	u_int val;
   1312 
   1313 	/*
   1314 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1315 	 * time here (remember these are pathnames, the tail is what will
   1316 	 * spread out the keys)
   1317 	 */
   1318 	if (len > MAXKEYLEN) {
   1319 		pt = &(name[len - MAXKEYLEN]);
   1320 		len = MAXKEYLEN;
   1321 	} else
   1322 		pt = name;
   1323 
   1324 	/*
   1325 	 * calculate the number of u_int size steps in the string and if
   1326 	 * there is a runt to deal with
   1327 	 */
   1328 	steps = len/sizeof(u_int);
   1329 	res = len % sizeof(u_int);
   1330 
   1331 	/*
   1332 	 * add up the value of the string in unsigned integer sized pieces
   1333 	 * too bad we cannot have unsigned int aligned strings, then we
   1334 	 * could avoid the expensive copy.
   1335 	 */
   1336 	for (i = 0; i < steps; ++i) {
   1337 		end = pt + sizeof(u_int);
   1338 		dest = (char *)&val;
   1339 		while (pt < end)
   1340 			*dest++ = *pt++;
   1341 		key += val;
   1342 	}
   1343 
   1344 	/*
   1345 	 * add in the runt padded with zero to the right
   1346 	 */
   1347 	if (res) {
   1348 		val = 0;
   1349 		end = pt + res;
   1350 		dest = (char *)&val;
   1351 		while (pt < end)
   1352 			*dest++ = *pt++;
   1353 		key += val;
   1354 	}
   1355 
   1356 	/*
   1357 	 * return the result mod the table size
   1358 	 */
   1359 	return(key % tabsz);
   1360 }
   1361