tables.c revision 1.3 1 /*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #ifndef lint
39 /*static char sccsid[] = "from: @(#)tables.c 8.1 (Berkeley) 5/31/93";*/
40 static char *rcsid = "$Id: tables.c,v 1.3 1994/06/14 00:43:21 mycroft Exp $";
41 #endif /* not lint */
42
43 #include <sys/types.h>
44 #include <sys/time.h>
45 #include <sys/stat.h>
46 #include <sys/param.h>
47 #include <sys/fcntl.h>
48 #include <stdio.h>
49 #include <ctype.h>
50 #include <string.h>
51 #include <unistd.h>
52 #include <errno.h>
53 #include <stdlib.h>
54 #include "pax.h"
55 #include "tables.h"
56 #include "extern.h"
57
58 /*
59 * Routines for controlling the contents of all the different databases pax
60 * keeps. Tables are dynamically created only when they are needed. The
61 * goal was speed and the ability to work with HUGE archives. The databases
62 * were kept simple, but do have complex rules for when the contents change.
63 * As of this writing, the posix library functions were more complex than
64 * needed for this application (pax databases have very short lifetimes and
65 * do not survive after pax is finished). Pax is required to handle very
66 * large archives. These database routines carefully combine memory usage and
67 * temporary file storage in ways which will not significantly impact runtime
68 * performance while allowing the largest possible archives to be handled.
69 * Trying to force the fit to the posix databases routines was not considered
70 * time well spent.
71 */
72
73 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
74 static FTM **ftab = NULL; /* file time table for updating arch */
75 static NAMT **ntab = NULL; /* interactive rename storage table */
76 static DEVT **dtab = NULL; /* device/inode mapping tables */
77 static ATDIR **atab = NULL; /* file tree directory time reset table */
78 static int dirfd = -1; /* storage for setting created dir time/mode */
79 static u_long dircnt; /* entries in dir time/mode storage */
80 static int ffd = -1; /* tmp file for file time table name storage */
81
82 static DEVT *chk_dev __P((dev_t, int));
83
84 /*
85 * hard link table routines
86 *
87 * The hard link table tries to detect hard links to files using the device and
88 * inode values. We do this when writing an archive, so we can tell the format
89 * write routine that this file is a hard link to another file. The format
90 * write routine then can store this file in whatever way it wants (as a hard
91 * link if the format supports that like tar, or ignore this info like cpio).
92 * (Actually a field in the format driver table tells us if the format wants
93 * hard link info. if not, we do not waste time looking for them). We also use
94 * the same table when reading an archive. In that situation, this table is
95 * used by the format read routine to detect hard links from stored dev and
96 * inode numbers (like cpio). This will allow pax to create a link when one
97 * can be detected by the archive format.
98 */
99
100 /*
101 * lnk_start
102 * Creates the hard link table.
103 * Return:
104 * 0 if created, -1 if failure
105 */
106
107 #if __STDC__
108 int
109 lnk_start(void)
110 #else
111 int
112 lnk_start()
113 #endif
114 {
115 if (ltab != NULL)
116 return(0);
117 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
118 warn(1, "Cannot allocate memory for hard link table");
119 return(-1);
120 }
121 return(0);
122 }
123
124 /*
125 * chk_lnk()
126 * Looks up entry in hard link hash table. If found, it copies the name
127 * of the file it is linked to (we already saw that file) into ln_name.
128 * lnkcnt is decremented and if goes to 1 the node is deleted from the
129 * database. (We have seen all the links to this file). If not found,
130 * we add the file to the database if it has the potential for having
131 * hard links to other files we may process (it has a link count > 1)
132 * Return:
133 * if found returns 1; if not found returns 0; -1 on error
134 */
135
136 #if __STDC__
137 int
138 chk_lnk(register ARCHD *arcn)
139 #else
140 int
141 chk_lnk(arcn)
142 register ARCHD *arcn;
143 #endif
144 {
145 register HRDLNK *pt;
146 register HRDLNK **ppt;
147 register u_int indx;
148
149 if (ltab == NULL)
150 return(-1);
151 /*
152 * ignore those nodes that cannot have hard links
153 */
154 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
155 return(0);
156
157 /*
158 * hash inode number and look for this file
159 */
160 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
161 if ((pt = ltab[indx]) != NULL) {
162 /*
163 * it's hash chain in not empty, walk down looking for it
164 */
165 ppt = &(ltab[indx]);
166 while (pt != NULL) {
167 if ((pt->ino == arcn->sb.st_ino) &&
168 (pt->dev == arcn->sb.st_dev))
169 break;
170 ppt = &(pt->fow);
171 pt = pt->fow;
172 }
173
174 if (pt != NULL) {
175 /*
176 * found a link. set the node type and copy in the
177 * name of the file it is to link to. we need to
178 * handle hardlinks to regular files differently than
179 * other links.
180 */
181 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
182 PAXPATHLEN+1);
183 if (arcn->type == PAX_REG)
184 arcn->type = PAX_HRG;
185 else
186 arcn->type = PAX_HLK;
187
188 /*
189 * if we have found all the links to this file, remove
190 * it from the database
191 */
192 if (--pt->nlink <= 1) {
193 *ppt = pt->fow;
194 (void)free((char *)pt->name);
195 (void)free((char *)pt);
196 }
197 return(1);
198 }
199 }
200
201 /*
202 * we never saw this file before. It has links so we add it to the
203 * front of this hash chain
204 */
205 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
206 if ((pt->name = strdup(arcn->name)) != NULL) {
207 pt->dev = arcn->sb.st_dev;
208 pt->ino = arcn->sb.st_ino;
209 pt->nlink = arcn->sb.st_nlink;
210 pt->fow = ltab[indx];
211 ltab[indx] = pt;
212 return(0);
213 }
214 (void)free((char *)pt);
215 }
216
217 warn(1, "Hard link table out of memory");
218 return(-1);
219 }
220
221 /*
222 * purg_lnk
223 * remove reference for a file that we may have added to the data base as
224 * a potential source for hard links. We ended up not using the file, so
225 * we do not want to accidently point another file at it later on.
226 */
227
228 #if __STDC__
229 void
230 purg_lnk(register ARCHD *arcn)
231 #else
232 void
233 purg_lnk(arcn)
234 register ARCHD *arcn;
235 #endif
236 {
237 register HRDLNK *pt;
238 register HRDLNK **ppt;
239 register u_int indx;
240
241 if (ltab == NULL)
242 return;
243 /*
244 * do not bother to look if it could not be in the database
245 */
246 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
247 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
248 return;
249
250 /*
251 * find the hash chain for this inode value, if empty return
252 */
253 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
254 if ((pt = ltab[indx]) == NULL)
255 return;
256
257 /*
258 * walk down the list looking for the inode/dev pair, unlink and
259 * free if found
260 */
261 ppt = &(ltab[indx]);
262 while (pt != NULL) {
263 if ((pt->ino == arcn->sb.st_ino) &&
264 (pt->dev == arcn->sb.st_dev))
265 break;
266 ppt = &(pt->fow);
267 pt = pt->fow;
268 }
269 if (pt == NULL)
270 return;
271
272 /*
273 * remove and free it
274 */
275 *ppt = pt->fow;
276 (void)free((char *)pt->name);
277 (void)free((char *)pt);
278 }
279
280 /*
281 * lnk_end()
282 * pull apart a existing link table so we can reuse it. We do this between
283 * read and write phases of append with update. (The format may have
284 * used the link table, and we need to start with a fresh table for the
285 * write phase
286 */
287
288 #if __STDC__
289 void
290 lnk_end(void)
291 #else
292 void
293 lnk_end()
294 #endif
295 {
296 register int i;
297 register HRDLNK *pt;
298 register HRDLNK *ppt;
299
300 if (ltab == NULL)
301 return;
302
303 for (i = 0; i < L_TAB_SZ; ++i) {
304 if (ltab[i] == NULL)
305 continue;
306 pt = ltab[i];
307 ltab[i] = NULL;
308
309 /*
310 * free up each entry on this chain
311 */
312 while (pt != NULL) {
313 ppt = pt;
314 pt = ppt->fow;
315 (void)free((char *)ppt->name);
316 (void)free((char *)ppt);
317 }
318 }
319 return;
320 }
321
322 /*
323 * modification time table routines
324 *
325 * The modification time table keeps track of last modification times for all
326 * files stored in an archive during a write phase when -u is set. We only
327 * add a file to the archive if it is newer than a file with the same name
328 * already stored on the archive (if there is no other file with the same
329 * name on the archive it is added). This applies to writes and appends.
330 * An append with an -u must read the archive and store the modification time
331 * for every file on that archive before starting the write phase. It is clear
332 * that this is one HUGE database. To save memory space, the actual file names
333 * are stored in a scatch file and indexed by an in memory hash table. The
334 * hash table is indexed by hashing the file path. The nodes in the table store
335 * the length of the filename and the lseek offset within the scratch file
336 * where the actual name is stored. Since there are never any deletions to this
337 * table, fragmentation of the scratch file is never a issue. Lookups seem to
338 * not exhibit any locality at all (files in the database are rarely
339 * looked up more than once...). So caching is just a waste of memory. The
340 * only limitation is the amount of scatch file space available to store the
341 * path names.
342 */
343
344 /*
345 * ftime_start()
346 * create the file time hash table and open for read/write the scratch
347 * file. (after created it is unlinked, so when we exit we leave
348 * no witnesses).
349 * Return:
350 * 0 if the table and file was created ok, -1 otherwise
351 */
352
353 #if __STDC__
354 int
355 ftime_start(void)
356 #else
357 int
358 ftime_start()
359 #endif
360 {
361 char *pt;
362
363 if (ftab != NULL)
364 return(0);
365 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
366 warn(1, "Cannot allocate memory for file time table");
367 return(-1);
368 }
369
370 /*
371 * get random name and create temporary scratch file, unlink name
372 * so it will get removed on exit
373 */
374 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
375 return(-1);
376 (void)unlink(pt);
377
378 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) {
379 syswarn(1, errno, "Unable to open temporary file: %s", pt);
380 return(-1);
381 }
382
383 (void)unlink(pt);
384 return(0);
385 }
386
387 /*
388 * chk_ftime()
389 * looks up entry in file time hash table. If not found, the file is
390 * added to the hash table and the file named stored in the scratch file.
391 * If a file with the same name is found, the file times are compared and
392 * the most recent file time is retained. If the new file was younger (or
393 * was not in the database) the new file is selected for storage.
394 * Return:
395 * 0 if file should be added to the archive, 1 if it should be skipped,
396 * -1 on error
397 */
398
399 #if __STDC__
400 int
401 chk_ftime(register ARCHD *arcn)
402 #else
403 int
404 chk_ftime(arcn)
405 register ARCHD *arcn;
406 #endif
407 {
408 register FTM *pt;
409 register int namelen;
410 register u_int indx;
411 char ckname[PAXPATHLEN+1];
412
413 /*
414 * no info, go ahead and add to archive
415 */
416 if (ftab == NULL)
417 return(0);
418
419 /*
420 * hash the pathname and look up in table
421 */
422 namelen = arcn->nlen;
423 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
424 if ((pt = ftab[indx]) != NULL) {
425 /*
426 * the hash chain is not empty, walk down looking for match
427 * only read up the path names if the lengths match, speeds
428 * up the search a lot
429 */
430 while (pt != NULL) {
431 if (pt->namelen == namelen) {
432 /*
433 * potential match, have to read the name
434 * from the scratch file.
435 */
436 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
437 syswarn(1, errno,
438 "Failed ftime table seek");
439 return(-1);
440 }
441 if (read(ffd, ckname, namelen) != namelen) {
442 syswarn(1, errno,
443 "Failed ftime table read");
444 return(-1);
445 }
446
447 /*
448 * if the names match, we are done
449 */
450 if (!strncmp(ckname, arcn->name, namelen))
451 break;
452 }
453
454 /*
455 * try the next entry on the chain
456 */
457 pt = pt->fow;
458 }
459
460 if (pt != NULL) {
461 /*
462 * found the file, compare the times, save the newer
463 */
464 if (arcn->sb.st_mtime > pt->mtime) {
465 /*
466 * file is newer
467 */
468 pt->mtime = arcn->sb.st_mtime;
469 return(0);
470 }
471 /*
472 * file is older
473 */
474 return(1);
475 }
476 }
477
478 /*
479 * not in table, add it
480 */
481 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
482 /*
483 * add the name at the end of the scratch file, saving the
484 * offset. add the file to the head of the hash chain
485 */
486 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
487 if (write(ffd, arcn->name, namelen) == namelen) {
488 pt->mtime = arcn->sb.st_mtime;
489 pt->namelen = namelen;
490 pt->fow = ftab[indx];
491 ftab[indx] = pt;
492 return(0);
493 }
494 syswarn(1, errno, "Failed write to file time table");
495 } else
496 syswarn(1, errno, "Failed seek on file time table");
497 } else
498 warn(1, "File time table ran out of memory");
499
500 if (pt != NULL)
501 (void)free((char *)pt);
502 return(-1);
503 }
504
505 /*
506 * Interactive rename table routines
507 *
508 * The interactive rename table keeps track of the new names that the user
509 * assignes to files from tty input. Since this map is unique for each file
510 * we must store it in case there is a reference to the file later in archive
511 * (a link). Otherwise we will be unable to find the file we know was
512 * extracted. The remapping of these files is stored in a memory based hash
513 * table (it is assumed since input must come from /dev/tty, it is unlikely to
514 * be a very large table).
515 */
516
517 /*
518 * name_start()
519 * create the interactive rename table
520 * Return:
521 * 0 if successful, -1 otherwise
522 */
523
524 #if __STDC__
525 int
526 name_start(void)
527 #else
528 int
529 name_start()
530 #endif
531 {
532 if (ntab != NULL)
533 return(0);
534 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
535 warn(1, "Cannot allocate memory for interactive rename table");
536 return(-1);
537 }
538 return(0);
539 }
540
541 /*
542 * add_name()
543 * add the new name to old name mapping just created by the user.
544 * If an old name mapping is found (there may be duplicate names on an
545 * archive) only the most recent is kept.
546 * Return:
547 * 0 if added, -1 otherwise
548 */
549
550 #if __STDC__
551 int
552 add_name(register char *oname, int onamelen, char *nname)
553 #else
554 int
555 add_name(oname, onamelen, nname)
556 register char *oname;
557 int onamelen;
558 char *nname;
559 #endif
560 {
561 register NAMT *pt;
562 register u_int indx;
563
564 if (ntab == NULL) {
565 /*
566 * should never happen
567 */
568 warn(0, "No interactive rename table, links may fail\n");
569 return(0);
570 }
571
572 /*
573 * look to see if we have already mapped this file, if so we
574 * will update it
575 */
576 indx = st_hash(oname, onamelen, N_TAB_SZ);
577 if ((pt = ntab[indx]) != NULL) {
578 /*
579 * look down the has chain for the file
580 */
581 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
582 pt = pt->fow;
583
584 if (pt != NULL) {
585 /*
586 * found an old mapping, replace it with the new one
587 * the user just input (if it is different)
588 */
589 if (strcmp(nname, pt->nname) == 0)
590 return(0);
591
592 (void)free((char *)pt->nname);
593 if ((pt->nname = strdup(nname)) == NULL) {
594 warn(1, "Cannot update rename table");
595 return(-1);
596 }
597 return(0);
598 }
599 }
600
601 /*
602 * this is a new mapping, add it to the table
603 */
604 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
605 if ((pt->oname = strdup(oname)) != NULL) {
606 if ((pt->nname = strdup(nname)) != NULL) {
607 pt->fow = ntab[indx];
608 ntab[indx] = pt;
609 return(0);
610 }
611 (void)free((char *)pt->oname);
612 }
613 (void)free((char *)pt);
614 }
615 warn(1, "Interactive rename table out of memory");
616 return(-1);
617 }
618
619 /*
620 * sub_name()
621 * look up a link name to see if it points at a file that has been
622 * remapped by the user. If found, the link is adjusted to contain the
623 * new name (oname is the link to name)
624 */
625
626 #if __STDC__
627 void
628 sub_name(register char *oname, int *onamelen)
629 #else
630 void
631 sub_name(oname, onamelen)
632 register char *oname;
633 int *onamelen;
634 #endif
635 {
636 register NAMT *pt;
637 register u_int indx;
638
639 if (ntab == NULL)
640 return;
641 /*
642 * look the name up in the hash table
643 */
644 indx = st_hash(oname, *onamelen, N_TAB_SZ);
645 if ((pt = ntab[indx]) == NULL)
646 return;
647
648 while (pt != NULL) {
649 /*
650 * walk down the hash cahin looking for a match
651 */
652 if (strcmp(oname, pt->oname) == 0) {
653 /*
654 * found it, replace it with the new name
655 * and return (we know that oname has enough space)
656 */
657 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
658 return;
659 }
660 pt = pt->fow;
661 }
662
663 /*
664 * no match, just return
665 */
666 return;
667 }
668
669 /*
670 * device/inode mapping table routines
671 * (used with formats that store device and inodes fields)
672 *
673 * device/inode mapping tables remap the device field in a archive header. The
674 * device/inode fields are used to determine when files are hard links to each
675 * other. However these values have very little meaning outside of that. This
676 * database is used to solve one of two different problems.
677 *
678 * 1) when files are appended to an archive, while the new files may have hard
679 * links to each other, you cannot determine if they have hard links to any
680 * file already stored on the archive from a prior run of pax. We must assume
681 * that these inode/device pairs are unique only within a SINGLE run of pax
682 * (which adds a set of files to an archive). So we have to make sure the
683 * inode/dev pairs we add each time are always unique. We do this by observing
684 * while the inode field is very dense, the use of the dev field is fairly
685 * sparse. Within each run of pax, we remap any device number of a new archive
686 * member that has a device number used in a prior run and already stored in a
687 * file on the archive. During the read phase of the append, we store the
688 * device numbers used and mark them to not be used by any file during the
689 * write phase. If during write we go to use one of those old device numbers,
690 * we remap it to a new value.
691 *
692 * 2) Often the fields in the archive header used to store these values are
693 * too small to store the entire value. The result is an inode or device value
694 * which can be truncated. This really can foul up an archive. With truncation
695 * we end up creating links between files that are really not links (after
696 * truncation the inodes are the same value). We address that by detecting
697 * truncation and forcing a remap of the device field to split truncated
698 * inodes away from each other. Each truncation creates a pattern of bits that
699 * are removed. We use this pattern of truncated bits to partition the inodes
700 * on a single device to many different devices (each one represented by the
701 * truncated bit pattern). All inodes on the same device that have the same
702 * truncation pattern are mapped to the same new device. Two inodes that
703 * truncate to the same value clearly will always have different truncation
704 * bit patterns, so they will be split from away each other. When we spot
705 * device truncation we remap the device number to a non truncated value.
706 * (for more info see table.h for the data structures involved).
707 */
708
709 /*
710 * dev_start()
711 * create the device mapping table
712 * Return:
713 * 0 if successful, -1 otherwise
714 */
715
716 #if __STDC__
717 int
718 dev_start(void)
719 #else
720 int
721 dev_start()
722 #endif
723 {
724 if (dtab != NULL)
725 return(0);
726 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
727 warn(1, "Cannot allocate memory for device mapping table");
728 return(-1);
729 }
730 return(0);
731 }
732
733 /*
734 * add_dev()
735 * add a device number to the table. this will force the device to be
736 * remapped to a new value if it be used during a write phase. This
737 * function is called during the read phase of an append to prohibit the
738 * use of any device number already in the archive.
739 * Return:
740 * 0 if added ok, -1 otherwise
741 */
742
743 #if __STDC__
744 int
745 add_dev(register ARCHD *arcn)
746 #else
747 int
748 add_dev(arcn)
749 register ARCHD *arcn;
750 #endif
751 {
752 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
753 return(-1);
754 return(0);
755 }
756
757 /*
758 * chk_dev()
759 * check for a device value in the device table. If not found and the add
760 * flag is set, it is added. This does NOT assign any mapping values, just
761 * adds the device number as one that need to be remapped. If this device
762 * is alread mapped, just return with a pointer to that entry.
763 * Return:
764 * pointer to the entry for this device in the device map table. Null
765 * if the add flag is not set and the device is not in the table (it is
766 * not been seen yet). If add is set and the device cannot be added, null
767 * is returned (indicates an error).
768 */
769
770 #if __STDC__
771 static DEVT *
772 chk_dev(dev_t dev, int add)
773 #else
774 static DEVT *
775 chk_dev(dev, add)
776 dev_t dev;
777 int add;
778 #endif
779 {
780 register DEVT *pt;
781 register u_int indx;
782
783 if (dtab == NULL)
784 return(NULL);
785 /*
786 * look to see if this device is already in the table
787 */
788 indx = ((unsigned)dev) % D_TAB_SZ;
789 if ((pt = dtab[indx]) != NULL) {
790 while ((pt != NULL) && (pt->dev != dev))
791 pt = pt->fow;
792
793 /*
794 * found it, return a pointer to it
795 */
796 if (pt != NULL)
797 return(pt);
798 }
799
800 /*
801 * not in table, we add it only if told to as this may just be a check
802 * to see if a device number is being used.
803 */
804 if (add == 0)
805 return(NULL);
806
807 /*
808 * allocate a node for this device and add it to the front of the hash
809 * chain. Note we do not assign remaps values here, so the pt->list
810 * list must be NULL.
811 */
812 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
813 warn(1, "Device map table out of memory");
814 return(NULL);
815 }
816 pt->dev = dev;
817 pt->list = NULL;
818 pt->fow = dtab[indx];
819 dtab[indx] = pt;
820 return(pt);
821 }
822 /*
823 * map_dev()
824 * given an inode and device storage mask (the mask has a 1 for each bit
825 * the archive format is able to store in a header), we check for inode
826 * and device truncation and remap the device as required. Device mapping
827 * can also occur when during the read phase of append a device number was
828 * seen (and was marked as do not use during the write phase). WE ASSUME
829 * that unsigned longs are the same size or bigger than the fields used
830 * for ino_t and dev_t. If not the types will have to be changed.
831 * Return:
832 * 0 if all ok, -1 otherwise.
833 */
834
835 #if __STDC__
836 int
837 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
838 #else
839 int
840 map_dev(arcn, dev_mask, ino_mask)
841 register ARCHD *arcn;
842 u_long dev_mask;
843 u_long ino_mask;
844 #endif
845 {
846 register DEVT *pt;
847 register DLIST *dpt;
848 static dev_t lastdev = 0; /* next device number to try */
849 int trc_ino = 0;
850 int trc_dev = 0;
851 ino_t trunc_bits = 0;
852 ino_t nino;
853
854 if (dtab == NULL)
855 return(0);
856 /*
857 * check for device and inode truncation, and extract the truncated
858 * bit pattern.
859 */
860 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
861 ++trc_dev;
862 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
863 ++trc_ino;
864 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
865 }
866
867 /*
868 * see if this device is already being mapped, look up the device
869 * then find the truncation bit pattern which applies
870 */
871 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
872 /*
873 * this device is already marked to be remapped
874 */
875 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
876 if (dpt->trunc_bits == trunc_bits)
877 break;
878
879 if (dpt != NULL) {
880 /*
881 * we are being remapped for this device and pattern
882 * change the device number to be stored and return
883 */
884 arcn->sb.st_dev = dpt->dev;
885 arcn->sb.st_ino = nino;
886 return(0);
887 }
888 } else {
889 /*
890 * this device is not being remapped YET. if we do not have any
891 * form of truncation, we do not need a remap
892 */
893 if (!trc_ino && !trc_dev)
894 return(0);
895
896 /*
897 * we have truncation, have to add this as a device to remap
898 */
899 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
900 goto bad;
901
902 /*
903 * if we just have a truncated inode, we have to make sure that
904 * all future inodes that do not truncate (they have the
905 * truncation pattern of all 0's) continue to map to the same
906 * device number. We probably have already written inodes with
907 * this device number to the archive with the truncation
908 * pattern of all 0's. So we add the mapping for all 0's to the
909 * same device number.
910 */
911 if (!trc_dev && (trunc_bits != 0)) {
912 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
913 goto bad;
914 dpt->trunc_bits = 0;
915 dpt->dev = arcn->sb.st_dev;
916 dpt->fow = pt->list;
917 pt->list = dpt;
918 }
919 }
920
921 /*
922 * look for a device number not being used. We must watch for wrap
923 * around on lastdev (so we do not get stuck looking forever!)
924 */
925 while (++lastdev > 0) {
926 if (chk_dev(lastdev, 0) != NULL)
927 continue;
928 /*
929 * found an unused value. If we have reached truncation point
930 * for this format we are hosed, so we give up. Otherwise we
931 * mark it as being used.
932 */
933 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
934 (chk_dev(lastdev, 1) == NULL))
935 goto bad;
936 break;
937 }
938
939 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
940 goto bad;
941
942 /*
943 * got a new device number, store it under this truncation pattern.
944 * change the device number this file is being stored with.
945 */
946 dpt->trunc_bits = trunc_bits;
947 dpt->dev = lastdev;
948 dpt->fow = pt->list;
949 pt->list = dpt;
950 arcn->sb.st_dev = lastdev;
951 arcn->sb.st_ino = nino;
952 return(0);
953
954 bad:
955 warn(1, "Unable to fix truncated inode/device field when storing %s",
956 arcn->name);
957 warn(0, "Archive may create improper hard links when extracted");
958 return(0);
959 }
960
961 /*
962 * directory access/mod time reset table routines (for directories READ by pax)
963 *
964 * The pax -t flag requires that access times of archive files to be the same
965 * before being read by pax. For regular files, access time is restored after
966 * the file has been copied. This database provides the same functionality for
967 * directories read during file tree traversal. Restoring directory access time
968 * is more complex than files since directories may be read several times until
969 * all the descendants in their subtree are visited by fts. Directory access
970 * and modification times are stored during the fts pre-order visit (done
971 * before any descendants in the subtree is visited) and restored after the
972 * fts post-order visit (after all the descendants have been visited). In the
973 * case of premature exit from a subtree (like from the effects of -n), any
974 * directory entries left in this database are reset during final cleanup
975 * operations of pax. Entries are hashed by inode number for fast lookup.
976 */
977
978 /*
979 * atdir_start()
980 * create the directory access time database for directories READ by pax.
981 * Return:
982 * 0 is created ok, -1 otherwise.
983 */
984
985 #if __STDC__
986 int
987 atdir_start(void)
988 #else
989 int
990 atdir_start()
991 #endif
992 {
993 if (atab != NULL)
994 return(0);
995 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
996 warn(1,"Cannot allocate space for directory access time table");
997 return(-1);
998 }
999 return(0);
1000 }
1001
1002
1003 /*
1004 * atdir_end()
1005 * walk through the directory access time table and reset the access time
1006 * of any directory who still has an entry left in the database. These
1007 * entries are for directories READ by pax
1008 */
1009
1010 #if __STDC__
1011 void
1012 atdir_end(void)
1013 #else
1014 void
1015 atdir_end()
1016 #endif
1017 {
1018 register ATDIR *pt;
1019 register int i;
1020
1021 if (atab == NULL)
1022 return;
1023 /*
1024 * for each non-empty hash table entry reset all the directories
1025 * chained there.
1026 */
1027 for (i = 0; i < A_TAB_SZ; ++i) {
1028 if ((pt = atab[i]) == NULL)
1029 continue;
1030 /*
1031 * remember to force the times, set_ftime() looks at pmtime
1032 * and patime, which only applies to things CREATED by pax,
1033 * not read by pax. Read time reset is controlled by -t.
1034 */
1035 for (; pt != NULL; pt = pt->fow)
1036 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1037 }
1038 }
1039
1040 /*
1041 * add_atdir()
1042 * add a directory to the directory access time table. Table is hashed
1043 * and chained by inode number. This is for directories READ by pax
1044 */
1045
1046 #if __STDC__
1047 void
1048 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1049 #else
1050 void
1051 add_atdir(fname, dev, ino, mtime, atime)
1052 char *fname;
1053 dev_t dev;
1054 ino_t ino;
1055 time_t mtime;
1056 time_t atime;
1057 #endif
1058 {
1059 register ATDIR *pt;
1060 register u_int indx;
1061
1062 if (atab == NULL)
1063 return;
1064
1065 /*
1066 * make sure this directory is not already in the table, if so just
1067 * return (the older entry always has the correct time). The only
1068 * way this will happen is when the same subtree can be traversed by
1069 * different args to pax and the -n option is aborting fts out of a
1070 * subtree before all the post-order visits have been made).
1071 */
1072 indx = ((unsigned)ino) % A_TAB_SZ;
1073 if ((pt = atab[indx]) != NULL) {
1074 while (pt != NULL) {
1075 if ((pt->ino == ino) && (pt->dev == dev))
1076 break;
1077 pt = pt->fow;
1078 }
1079
1080 /*
1081 * oops, already there. Leave it alone.
1082 */
1083 if (pt != NULL)
1084 return;
1085 }
1086
1087 /*
1088 * add it to the front of the hash chain
1089 */
1090 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1091 if ((pt->name = strdup(fname)) != NULL) {
1092 pt->dev = dev;
1093 pt->ino = ino;
1094 pt->mtime = mtime;
1095 pt->atime = atime;
1096 pt->fow = atab[indx];
1097 atab[indx] = pt;
1098 return;
1099 }
1100 (void)free((char *)pt);
1101 }
1102
1103 warn(1, "Directory access time reset table ran out of memory");
1104 return;
1105 }
1106
1107 /*
1108 * get_atdir()
1109 * look up a directory by inode and device number to obtain the access
1110 * and modification time you want to set to. If found, the modification
1111 * and access time parameters are set and the entry is removed from the
1112 * table (as it is no longer needed). These are for directories READ by
1113 * pax
1114 * Return:
1115 * 0 if found, -1 if not found.
1116 */
1117
1118 #if __STDC__
1119 int
1120 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1121 #else
1122 int
1123 get_atdir(dev, ino, mtime, atime)
1124 dev_t dev;
1125 ino_t ino;
1126 time_t *mtime;
1127 time_t *atime;
1128 #endif
1129 {
1130 register ATDIR *pt;
1131 register ATDIR **ppt;
1132 register u_int indx;
1133
1134 if (atab == NULL)
1135 return(-1);
1136 /*
1137 * hash by inode and search the chain for an inode and device match
1138 */
1139 indx = ((unsigned)ino) % A_TAB_SZ;
1140 if ((pt = atab[indx]) == NULL)
1141 return(-1);
1142
1143 ppt = &(atab[indx]);
1144 while (pt != NULL) {
1145 if ((pt->ino == ino) && (pt->dev == dev))
1146 break;
1147 /*
1148 * no match, go to next one
1149 */
1150 ppt = &(pt->fow);
1151 pt = pt->fow;
1152 }
1153
1154 /*
1155 * return if we did not find it.
1156 */
1157 if (pt == NULL)
1158 return(-1);
1159
1160 /*
1161 * found it. return the times and remove the entry from the table.
1162 */
1163 *ppt = pt->fow;
1164 *mtime = pt->mtime;
1165 *atime = pt->atime;
1166 (void)free((char *)pt->name);
1167 (void)free((char *)pt);
1168 return(0);
1169 }
1170
1171 /*
1172 * directory access mode and time storage routines (for directories CREATED
1173 * by pax).
1174 *
1175 * Pax requires that extracted directories, by default, have their access/mod
1176 * times and permissions set to the values specified in the archive. During the
1177 * actions of extracting (and creating the destination subtree during -rw copy)
1178 * directories extracted may be modified after being created. Even worse is
1179 * that these directories may have been created with file permissions which
1180 * prohibits any descendants of these directories from being extracted. When
1181 * directories are created by pax, access rights may be added to permit the
1182 * creation of files in their subtree. Every time pax creates a directory, the
1183 * times and file permissions specified by the archive are stored. After all
1184 * files have been extracted (or copied), these directories have their times
1185 * and file modes reset to the stored values. The directory info is restored in
1186 * reverse order as entries were added to the data file from root to leaf. To
1187 * restore atime properly, we must go backwards. The data file consists of
1188 * records with two parts, the file name followed by a DIRDATA trailer. The
1189 * fixed sized trailer contains the size of the name plus the off_t location in
1190 * the file. To restore we work backwards through the file reading the trailer
1191 * then the file name.
1192 */
1193
1194 /*
1195 * dir_start()
1196 * set up the directory time and file mode storage for directories CREATED
1197 * by pax.
1198 * Return:
1199 * 0 if ok, -1 otherwise
1200 */
1201
1202 #if __STDC__
1203 int
1204 dir_start(void)
1205 #else
1206 int
1207 dir_start()
1208 #endif
1209 {
1210 char *pt;
1211
1212 if (dirfd != -1)
1213 return(0);
1214 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1215 return(-1);
1216
1217 /*
1218 * unlink the file so it goes away at termination by itself
1219 */
1220 (void)unlink(pt);
1221 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1222 (void)unlink(pt);
1223 return(0);
1224 }
1225 warn(1, "Unable to create temporary file for directory times: %s", pt);
1226 return(-1);
1227 }
1228
1229 /*
1230 * add_dir()
1231 * add the mode and times for a newly CREATED directory
1232 * name is name of the directory, psb the stat buffer with the data in it,
1233 * frc_mode is a flag that says whether to force the setting of the mode
1234 * (ignoring the user set values for preserving file mode). Frc_mode is
1235 * for the case where we created a file and found that the resulting
1236 * directory was not writeable and the user asked for file modes to NOT
1237 * be preserved. (we have to preserve what was created by default, so we
1238 * have to force the setting at the end. this is stated explicitly in the
1239 * pax spec)
1240 */
1241
1242 #if __STDC__
1243 void
1244 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1245 #else
1246 void
1247 add_dir(name, nlen, psb, frc_mode)
1248 char *name;
1249 int nlen;
1250 struct stat *psb;
1251 int frc_mode;
1252 #endif
1253 {
1254 DIRDATA dblk;
1255
1256 if (dirfd < 0)
1257 return;
1258
1259 /*
1260 * get current position (where file name will start) so we can store it
1261 * in the trailer
1262 */
1263 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1264 warn(1,"Unable to store mode and times for directory: %s",name);
1265 return;
1266 }
1267
1268 /*
1269 * write the file name followed by the trailer
1270 */
1271 dblk.nlen = nlen + 1;
1272 dblk.mode = psb->st_mode & 0xffff;
1273 dblk.mtime = psb->st_mtime;
1274 dblk.atime = psb->st_atime;
1275 dblk.frc_mode = frc_mode;
1276 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1277 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1278 ++dircnt;
1279 return;
1280 }
1281
1282 warn(1,"Unable to store mode and times for created directory: %s",name);
1283 return;
1284 }
1285
1286 /*
1287 * proc_dir()
1288 * process all file modes and times stored for directories CREATED
1289 * by pax
1290 */
1291
1292 #if __STDC__
1293 void
1294 proc_dir(void)
1295 #else
1296 void
1297 proc_dir()
1298 #endif
1299 {
1300 char name[PAXPATHLEN+1];
1301 DIRDATA dblk;
1302 u_long cnt;
1303
1304 if (dirfd < 0)
1305 return;
1306 /*
1307 * read backwards through the file and process each directory
1308 */
1309 for (cnt = 0; cnt < dircnt; ++cnt) {
1310 /*
1311 * read the trailer, then the file name, if this fails
1312 * just give up.
1313 */
1314 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1315 break;
1316 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1317 break;
1318 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1319 break;
1320 if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1321 break;
1322 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1323 break;
1324
1325 /*
1326 * frc_mode set, make sure we set the file modes even if
1327 * the user didn't ask for it (see file_subs.c for more info)
1328 */
1329 if (pmode || dblk.frc_mode)
1330 set_pmode(name, dblk.mode);
1331 if (patime || pmtime)
1332 set_ftime(name, dblk.mtime, dblk.atime, 0);
1333 }
1334
1335 (void)close(dirfd);
1336 dirfd = -1;
1337 if (cnt != dircnt)
1338 warn(1,"Unable to set mode and times for created directories");
1339 return;
1340 }
1341
1342 /*
1343 * database independent routines
1344 */
1345
1346 /*
1347 * st_hash()
1348 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1349 * end of file, as this provides far better distribution than any other
1350 * part of the name. For performance reasons we only care about the last
1351 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1352 * name). Was tested on 500,000 name file tree traversal from the root
1353 * and gave almost a perfectly uniform distribution of keys when used with
1354 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1355 * chars at a time and pads with 0 for last addition.
1356 * Return:
1357 * the hash value of the string MOD (%) the table size.
1358 */
1359
1360 #if __STDC__
1361 u_int
1362 st_hash(char *name, int len, int tabsz)
1363 #else
1364 u_int
1365 st_hash(name, len, tabsz)
1366 char *name;
1367 int len;
1368 int tabsz;
1369 #endif
1370 {
1371 register char *pt;
1372 register char *dest;
1373 register char *end;
1374 register int i;
1375 register u_int key = 0;
1376 register int steps;
1377 register int res;
1378 u_int val;
1379
1380 /*
1381 * only look at the tail up to MAXKEYLEN, we do not need to waste
1382 * time here (remember these are pathnames, the tail is what will
1383 * spread out the keys)
1384 */
1385 if (len > MAXKEYLEN) {
1386 pt = &(name[len - MAXKEYLEN]);
1387 len = MAXKEYLEN;
1388 } else
1389 pt = name;
1390
1391 /*
1392 * calculate the number of u_int size steps in the string and if
1393 * there is a runt to deal with
1394 */
1395 steps = len/sizeof(u_int);
1396 res = len % sizeof(u_int);
1397
1398 /*
1399 * add up the value of the string in unsigned integer sized pieces
1400 * too bad we cannot have unsigned int aligned strings, then we
1401 * could avoid the expensive copy.
1402 */
1403 for (i = 0; i < steps; ++i) {
1404 end = pt + sizeof(u_int);
1405 dest = (char *)&val;
1406 while (pt < end)
1407 *dest++ = *pt++;
1408 key += val;
1409 }
1410
1411 /*
1412 * add in the runt padded with zero to the right
1413 */
1414 if (res) {
1415 val = 0;
1416 end = pt + res;
1417 dest = (char *)&val;
1418 while (pt < end)
1419 *dest++ = *pt++;
1420 key += val;
1421 }
1422
1423 /*
1424 * return the result mod the table size
1425 */
1426 return(key % tabsz);
1427 }
1428