tables.c revision 1.5 1 /* $NetBSD: tables.c,v 1.5 1997/01/11 02:06:44 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1992 Keith Muller.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Keith Muller of the University of California, San Diego.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 #ifndef lint
41 #if 0
42 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93";
43 #else
44 static char rcsid[] = "$NetBSD: tables.c,v 1.5 1997/01/11 02:06:44 tls Exp $";
45 #endif
46 #endif /* not lint */
47
48 #include <sys/types.h>
49 #include <sys/time.h>
50 #include <sys/stat.h>
51 #include <sys/param.h>
52 #include <sys/fcntl.h>
53 #include <stdio.h>
54 #include <ctype.h>
55 #include <string.h>
56 #include <unistd.h>
57 #include <errno.h>
58 #include <stdlib.h>
59 #include "pax.h"
60 #include "tables.h"
61 #include "extern.h"
62
63 /*
64 * Routines for controlling the contents of all the different databases pax
65 * keeps. Tables are dynamically created only when they are needed. The
66 * goal was speed and the ability to work with HUGE archives. The databases
67 * were kept simple, but do have complex rules for when the contents change.
68 * As of this writing, the posix library functions were more complex than
69 * needed for this application (pax databases have very short lifetimes and
70 * do not survive after pax is finished). Pax is required to handle very
71 * large archives. These database routines carefully combine memory usage and
72 * temporary file storage in ways which will not significantly impact runtime
73 * performance while allowing the largest possible archives to be handled.
74 * Trying to force the fit to the posix databases routines was not considered
75 * time well spent.
76 */
77
78 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
79 static FTM **ftab = NULL; /* file time table for updating arch */
80 static NAMT **ntab = NULL; /* interactive rename storage table */
81 static DEVT **dtab = NULL; /* device/inode mapping tables */
82 static ATDIR **atab = NULL; /* file tree directory time reset table */
83 static int dirfd = -1; /* storage for setting created dir time/mode */
84 static u_long dircnt; /* entries in dir time/mode storage */
85 static int ffd = -1; /* tmp file for file time table name storage */
86
87 static DEVT *chk_dev __P((dev_t, int));
88
89 /*
90 * hard link table routines
91 *
92 * The hard link table tries to detect hard links to files using the device and
93 * inode values. We do this when writing an archive, so we can tell the format
94 * write routine that this file is a hard link to another file. The format
95 * write routine then can store this file in whatever way it wants (as a hard
96 * link if the format supports that like tar, or ignore this info like cpio).
97 * (Actually a field in the format driver table tells us if the format wants
98 * hard link info. if not, we do not waste time looking for them). We also use
99 * the same table when reading an archive. In that situation, this table is
100 * used by the format read routine to detect hard links from stored dev and
101 * inode numbers (like cpio). This will allow pax to create a link when one
102 * can be detected by the archive format.
103 */
104
105 /*
106 * lnk_start
107 * Creates the hard link table.
108 * Return:
109 * 0 if created, -1 if failure
110 */
111
112 #if __STDC__
113 int
114 lnk_start(void)
115 #else
116 int
117 lnk_start()
118 #endif
119 {
120 if (ltab != NULL)
121 return(0);
122 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
123 warn(1, "Cannot allocate memory for hard link table");
124 return(-1);
125 }
126 return(0);
127 }
128
129 /*
130 * chk_lnk()
131 * Looks up entry in hard link hash table. If found, it copies the name
132 * of the file it is linked to (we already saw that file) into ln_name.
133 * lnkcnt is decremented and if goes to 1 the node is deleted from the
134 * database. (We have seen all the links to this file). If not found,
135 * we add the file to the database if it has the potential for having
136 * hard links to other files we may process (it has a link count > 1)
137 * Return:
138 * if found returns 1; if not found returns 0; -1 on error
139 */
140
141 #if __STDC__
142 int
143 chk_lnk(ARCHD *arcn)
144 #else
145 int
146 chk_lnk(arcn)
147 ARCHD *arcn;
148 #endif
149 {
150 HRDLNK *pt;
151 HRDLNK **ppt;
152 u_int indx;
153
154 if (ltab == NULL)
155 return(-1);
156 /*
157 * ignore those nodes that cannot have hard links
158 */
159 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
160 return(0);
161
162 /*
163 * hash inode number and look for this file
164 */
165 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
166 if ((pt = ltab[indx]) != NULL) {
167 /*
168 * it's hash chain in not empty, walk down looking for it
169 */
170 ppt = &(ltab[indx]);
171 while (pt != NULL) {
172 if ((pt->ino == arcn->sb.st_ino) &&
173 (pt->dev == arcn->sb.st_dev))
174 break;
175 ppt = &(pt->fow);
176 pt = pt->fow;
177 }
178
179 if (pt != NULL) {
180 /*
181 * found a link. set the node type and copy in the
182 * name of the file it is to link to. we need to
183 * handle hardlinks to regular files differently than
184 * other links.
185 */
186 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
187 PAXPATHLEN+1);
188 if (arcn->type == PAX_REG)
189 arcn->type = PAX_HRG;
190 else
191 arcn->type = PAX_HLK;
192
193 /*
194 * if we have found all the links to this file, remove
195 * it from the database
196 */
197 if (--pt->nlink <= 1) {
198 *ppt = pt->fow;
199 (void)free((char *)pt->name);
200 (void)free((char *)pt);
201 }
202 return(1);
203 }
204 }
205
206 /*
207 * we never saw this file before. It has links so we add it to the
208 * front of this hash chain
209 */
210 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
211 if ((pt->name = strdup(arcn->name)) != NULL) {
212 pt->dev = arcn->sb.st_dev;
213 pt->ino = arcn->sb.st_ino;
214 pt->nlink = arcn->sb.st_nlink;
215 pt->fow = ltab[indx];
216 ltab[indx] = pt;
217 return(0);
218 }
219 (void)free((char *)pt);
220 }
221
222 warn(1, "Hard link table out of memory");
223 return(-1);
224 }
225
226 /*
227 * purg_lnk
228 * remove reference for a file that we may have added to the data base as
229 * a potential source for hard links. We ended up not using the file, so
230 * we do not want to accidently point another file at it later on.
231 */
232
233 #if __STDC__
234 void
235 purg_lnk(ARCHD *arcn)
236 #else
237 void
238 purg_lnk(arcn)
239 ARCHD *arcn;
240 #endif
241 {
242 HRDLNK *pt;
243 HRDLNK **ppt;
244 u_int indx;
245
246 if (ltab == NULL)
247 return;
248 /*
249 * do not bother to look if it could not be in the database
250 */
251 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
252 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
253 return;
254
255 /*
256 * find the hash chain for this inode value, if empty return
257 */
258 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
259 if ((pt = ltab[indx]) == NULL)
260 return;
261
262 /*
263 * walk down the list looking for the inode/dev pair, unlink and
264 * free if found
265 */
266 ppt = &(ltab[indx]);
267 while (pt != NULL) {
268 if ((pt->ino == arcn->sb.st_ino) &&
269 (pt->dev == arcn->sb.st_dev))
270 break;
271 ppt = &(pt->fow);
272 pt = pt->fow;
273 }
274 if (pt == NULL)
275 return;
276
277 /*
278 * remove and free it
279 */
280 *ppt = pt->fow;
281 (void)free((char *)pt->name);
282 (void)free((char *)pt);
283 }
284
285 /*
286 * lnk_end()
287 * pull apart a existing link table so we can reuse it. We do this between
288 * read and write phases of append with update. (The format may have
289 * used the link table, and we need to start with a fresh table for the
290 * write phase
291 */
292
293 #if __STDC__
294 void
295 lnk_end(void)
296 #else
297 void
298 lnk_end()
299 #endif
300 {
301 int i;
302 HRDLNK *pt;
303 HRDLNK *ppt;
304
305 if (ltab == NULL)
306 return;
307
308 for (i = 0; i < L_TAB_SZ; ++i) {
309 if (ltab[i] == NULL)
310 continue;
311 pt = ltab[i];
312 ltab[i] = NULL;
313
314 /*
315 * free up each entry on this chain
316 */
317 while (pt != NULL) {
318 ppt = pt;
319 pt = ppt->fow;
320 (void)free((char *)ppt->name);
321 (void)free((char *)ppt);
322 }
323 }
324 return;
325 }
326
327 /*
328 * modification time table routines
329 *
330 * The modification time table keeps track of last modification times for all
331 * files stored in an archive during a write phase when -u is set. We only
332 * add a file to the archive if it is newer than a file with the same name
333 * already stored on the archive (if there is no other file with the same
334 * name on the archive it is added). This applies to writes and appends.
335 * An append with an -u must read the archive and store the modification time
336 * for every file on that archive before starting the write phase. It is clear
337 * that this is one HUGE database. To save memory space, the actual file names
338 * are stored in a scatch file and indexed by an in memory hash table. The
339 * hash table is indexed by hashing the file path. The nodes in the table store
340 * the length of the filename and the lseek offset within the scratch file
341 * where the actual name is stored. Since there are never any deletions to this
342 * table, fragmentation of the scratch file is never a issue. Lookups seem to
343 * not exhibit any locality at all (files in the database are rarely
344 * looked up more than once...). So caching is just a waste of memory. The
345 * only limitation is the amount of scatch file space available to store the
346 * path names.
347 */
348
349 /*
350 * ftime_start()
351 * create the file time hash table and open for read/write the scratch
352 * file. (after created it is unlinked, so when we exit we leave
353 * no witnesses).
354 * Return:
355 * 0 if the table and file was created ok, -1 otherwise
356 */
357
358 #if __STDC__
359 int
360 ftime_start(void)
361 #else
362 int
363 ftime_start()
364 #endif
365 {
366 char *pt;
367
368 if (ftab != NULL)
369 return(0);
370 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
371 warn(1, "Cannot allocate memory for file time table");
372 return(-1);
373 }
374
375 /*
376 * get random name and create temporary scratch file, unlink name
377 * so it will get removed on exit
378 */
379 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
380 return(-1);
381 (void)unlink(pt);
382
383 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) {
384 syswarn(1, errno, "Unable to open temporary file: %s", pt);
385 return(-1);
386 }
387
388 (void)unlink(pt);
389 return(0);
390 }
391
392 /*
393 * chk_ftime()
394 * looks up entry in file time hash table. If not found, the file is
395 * added to the hash table and the file named stored in the scratch file.
396 * If a file with the same name is found, the file times are compared and
397 * the most recent file time is retained. If the new file was younger (or
398 * was not in the database) the new file is selected for storage.
399 * Return:
400 * 0 if file should be added to the archive, 1 if it should be skipped,
401 * -1 on error
402 */
403
404 #if __STDC__
405 int
406 chk_ftime(ARCHD *arcn)
407 #else
408 int
409 chk_ftime(arcn)
410 ARCHD *arcn;
411 #endif
412 {
413 FTM *pt;
414 int namelen;
415 u_int indx;
416 char ckname[PAXPATHLEN+1];
417
418 /*
419 * no info, go ahead and add to archive
420 */
421 if (ftab == NULL)
422 return(0);
423
424 /*
425 * hash the pathname and look up in table
426 */
427 namelen = arcn->nlen;
428 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
429 if ((pt = ftab[indx]) != NULL) {
430 /*
431 * the hash chain is not empty, walk down looking for match
432 * only read up the path names if the lengths match, speeds
433 * up the search a lot
434 */
435 while (pt != NULL) {
436 if (pt->namelen == namelen) {
437 /*
438 * potential match, have to read the name
439 * from the scratch file.
440 */
441 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
442 syswarn(1, errno,
443 "Failed ftime table seek");
444 return(-1);
445 }
446 if (read(ffd, ckname, namelen) != namelen) {
447 syswarn(1, errno,
448 "Failed ftime table read");
449 return(-1);
450 }
451
452 /*
453 * if the names match, we are done
454 */
455 if (!strncmp(ckname, arcn->name, namelen))
456 break;
457 }
458
459 /*
460 * try the next entry on the chain
461 */
462 pt = pt->fow;
463 }
464
465 if (pt != NULL) {
466 /*
467 * found the file, compare the times, save the newer
468 */
469 if (arcn->sb.st_mtime > pt->mtime) {
470 /*
471 * file is newer
472 */
473 pt->mtime = arcn->sb.st_mtime;
474 return(0);
475 }
476 /*
477 * file is older
478 */
479 return(1);
480 }
481 }
482
483 /*
484 * not in table, add it
485 */
486 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
487 /*
488 * add the name at the end of the scratch file, saving the
489 * offset. add the file to the head of the hash chain
490 */
491 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
492 if (write(ffd, arcn->name, namelen) == namelen) {
493 pt->mtime = arcn->sb.st_mtime;
494 pt->namelen = namelen;
495 pt->fow = ftab[indx];
496 ftab[indx] = pt;
497 return(0);
498 }
499 syswarn(1, errno, "Failed write to file time table");
500 } else
501 syswarn(1, errno, "Failed seek on file time table");
502 } else
503 warn(1, "File time table ran out of memory");
504
505 if (pt != NULL)
506 (void)free((char *)pt);
507 return(-1);
508 }
509
510 /*
511 * Interactive rename table routines
512 *
513 * The interactive rename table keeps track of the new names that the user
514 * assignes to files from tty input. Since this map is unique for each file
515 * we must store it in case there is a reference to the file later in archive
516 * (a link). Otherwise we will be unable to find the file we know was
517 * extracted. The remapping of these files is stored in a memory based hash
518 * table (it is assumed since input must come from /dev/tty, it is unlikely to
519 * be a very large table).
520 */
521
522 /*
523 * name_start()
524 * create the interactive rename table
525 * Return:
526 * 0 if successful, -1 otherwise
527 */
528
529 #if __STDC__
530 int
531 name_start(void)
532 #else
533 int
534 name_start()
535 #endif
536 {
537 if (ntab != NULL)
538 return(0);
539 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
540 warn(1, "Cannot allocate memory for interactive rename table");
541 return(-1);
542 }
543 return(0);
544 }
545
546 /*
547 * add_name()
548 * add the new name to old name mapping just created by the user.
549 * If an old name mapping is found (there may be duplicate names on an
550 * archive) only the most recent is kept.
551 * Return:
552 * 0 if added, -1 otherwise
553 */
554
555 #if __STDC__
556 int
557 add_name(char *oname, int onamelen, char *nname)
558 #else
559 int
560 add_name(oname, onamelen, nname)
561 char *oname;
562 int onamelen;
563 char *nname;
564 #endif
565 {
566 NAMT *pt;
567 u_int indx;
568
569 if (ntab == NULL) {
570 /*
571 * should never happen
572 */
573 warn(0, "No interactive rename table, links may fail\n");
574 return(0);
575 }
576
577 /*
578 * look to see if we have already mapped this file, if so we
579 * will update it
580 */
581 indx = st_hash(oname, onamelen, N_TAB_SZ);
582 if ((pt = ntab[indx]) != NULL) {
583 /*
584 * look down the has chain for the file
585 */
586 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
587 pt = pt->fow;
588
589 if (pt != NULL) {
590 /*
591 * found an old mapping, replace it with the new one
592 * the user just input (if it is different)
593 */
594 if (strcmp(nname, pt->nname) == 0)
595 return(0);
596
597 (void)free((char *)pt->nname);
598 if ((pt->nname = strdup(nname)) == NULL) {
599 warn(1, "Cannot update rename table");
600 return(-1);
601 }
602 return(0);
603 }
604 }
605
606 /*
607 * this is a new mapping, add it to the table
608 */
609 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
610 if ((pt->oname = strdup(oname)) != NULL) {
611 if ((pt->nname = strdup(nname)) != NULL) {
612 pt->fow = ntab[indx];
613 ntab[indx] = pt;
614 return(0);
615 }
616 (void)free((char *)pt->oname);
617 }
618 (void)free((char *)pt);
619 }
620 warn(1, "Interactive rename table out of memory");
621 return(-1);
622 }
623
624 /*
625 * sub_name()
626 * look up a link name to see if it points at a file that has been
627 * remapped by the user. If found, the link is adjusted to contain the
628 * new name (oname is the link to name)
629 */
630
631 #if __STDC__
632 void
633 sub_name(char *oname, int *onamelen)
634 #else
635 void
636 sub_name(oname, onamelen)
637 char *oname;
638 int *onamelen;
639 #endif
640 {
641 NAMT *pt;
642 u_int indx;
643
644 if (ntab == NULL)
645 return;
646 /*
647 * look the name up in the hash table
648 */
649 indx = st_hash(oname, *onamelen, N_TAB_SZ);
650 if ((pt = ntab[indx]) == NULL)
651 return;
652
653 while (pt != NULL) {
654 /*
655 * walk down the hash cahin looking for a match
656 */
657 if (strcmp(oname, pt->oname) == 0) {
658 /*
659 * found it, replace it with the new name
660 * and return (we know that oname has enough space)
661 */
662 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
663 return;
664 }
665 pt = pt->fow;
666 }
667
668 /*
669 * no match, just return
670 */
671 return;
672 }
673
674 /*
675 * device/inode mapping table routines
676 * (used with formats that store device and inodes fields)
677 *
678 * device/inode mapping tables remap the device field in a archive header. The
679 * device/inode fields are used to determine when files are hard links to each
680 * other. However these values have very little meaning outside of that. This
681 * database is used to solve one of two different problems.
682 *
683 * 1) when files are appended to an archive, while the new files may have hard
684 * links to each other, you cannot determine if they have hard links to any
685 * file already stored on the archive from a prior run of pax. We must assume
686 * that these inode/device pairs are unique only within a SINGLE run of pax
687 * (which adds a set of files to an archive). So we have to make sure the
688 * inode/dev pairs we add each time are always unique. We do this by observing
689 * while the inode field is very dense, the use of the dev field is fairly
690 * sparse. Within each run of pax, we remap any device number of a new archive
691 * member that has a device number used in a prior run and already stored in a
692 * file on the archive. During the read phase of the append, we store the
693 * device numbers used and mark them to not be used by any file during the
694 * write phase. If during write we go to use one of those old device numbers,
695 * we remap it to a new value.
696 *
697 * 2) Often the fields in the archive header used to store these values are
698 * too small to store the entire value. The result is an inode or device value
699 * which can be truncated. This really can foul up an archive. With truncation
700 * we end up creating links between files that are really not links (after
701 * truncation the inodes are the same value). We address that by detecting
702 * truncation and forcing a remap of the device field to split truncated
703 * inodes away from each other. Each truncation creates a pattern of bits that
704 * are removed. We use this pattern of truncated bits to partition the inodes
705 * on a single device to many different devices (each one represented by the
706 * truncated bit pattern). All inodes on the same device that have the same
707 * truncation pattern are mapped to the same new device. Two inodes that
708 * truncate to the same value clearly will always have different truncation
709 * bit patterns, so they will be split from away each other. When we spot
710 * device truncation we remap the device number to a non truncated value.
711 * (for more info see table.h for the data structures involved).
712 */
713
714 /*
715 * dev_start()
716 * create the device mapping table
717 * Return:
718 * 0 if successful, -1 otherwise
719 */
720
721 #if __STDC__
722 int
723 dev_start(void)
724 #else
725 int
726 dev_start()
727 #endif
728 {
729 if (dtab != NULL)
730 return(0);
731 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
732 warn(1, "Cannot allocate memory for device mapping table");
733 return(-1);
734 }
735 return(0);
736 }
737
738 /*
739 * add_dev()
740 * add a device number to the table. this will force the device to be
741 * remapped to a new value if it be used during a write phase. This
742 * function is called during the read phase of an append to prohibit the
743 * use of any device number already in the archive.
744 * Return:
745 * 0 if added ok, -1 otherwise
746 */
747
748 #if __STDC__
749 int
750 add_dev(ARCHD *arcn)
751 #else
752 int
753 add_dev(arcn)
754 ARCHD *arcn;
755 #endif
756 {
757 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
758 return(-1);
759 return(0);
760 }
761
762 /*
763 * chk_dev()
764 * check for a device value in the device table. If not found and the add
765 * flag is set, it is added. This does NOT assign any mapping values, just
766 * adds the device number as one that need to be remapped. If this device
767 * is alread mapped, just return with a pointer to that entry.
768 * Return:
769 * pointer to the entry for this device in the device map table. Null
770 * if the add flag is not set and the device is not in the table (it is
771 * not been seen yet). If add is set and the device cannot be added, null
772 * is returned (indicates an error).
773 */
774
775 #if __STDC__
776 static DEVT *
777 chk_dev(dev_t dev, int add)
778 #else
779 static DEVT *
780 chk_dev(dev, add)
781 dev_t dev;
782 int add;
783 #endif
784 {
785 DEVT *pt;
786 u_int indx;
787
788 if (dtab == NULL)
789 return(NULL);
790 /*
791 * look to see if this device is already in the table
792 */
793 indx = ((unsigned)dev) % D_TAB_SZ;
794 if ((pt = dtab[indx]) != NULL) {
795 while ((pt != NULL) && (pt->dev != dev))
796 pt = pt->fow;
797
798 /*
799 * found it, return a pointer to it
800 */
801 if (pt != NULL)
802 return(pt);
803 }
804
805 /*
806 * not in table, we add it only if told to as this may just be a check
807 * to see if a device number is being used.
808 */
809 if (add == 0)
810 return(NULL);
811
812 /*
813 * allocate a node for this device and add it to the front of the hash
814 * chain. Note we do not assign remaps values here, so the pt->list
815 * list must be NULL.
816 */
817 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
818 warn(1, "Device map table out of memory");
819 return(NULL);
820 }
821 pt->dev = dev;
822 pt->list = NULL;
823 pt->fow = dtab[indx];
824 dtab[indx] = pt;
825 return(pt);
826 }
827 /*
828 * map_dev()
829 * given an inode and device storage mask (the mask has a 1 for each bit
830 * the archive format is able to store in a header), we check for inode
831 * and device truncation and remap the device as required. Device mapping
832 * can also occur when during the read phase of append a device number was
833 * seen (and was marked as do not use during the write phase). WE ASSUME
834 * that unsigned longs are the same size or bigger than the fields used
835 * for ino_t and dev_t. If not the types will have to be changed.
836 * Return:
837 * 0 if all ok, -1 otherwise.
838 */
839
840 #if __STDC__
841 int
842 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
843 #else
844 int
845 map_dev(arcn, dev_mask, ino_mask)
846 ARCHD *arcn;
847 u_long dev_mask;
848 u_long ino_mask;
849 #endif
850 {
851 DEVT *pt;
852 DLIST *dpt;
853 static dev_t lastdev = 0; /* next device number to try */
854 int trc_ino = 0;
855 int trc_dev = 0;
856 ino_t trunc_bits = 0;
857 ino_t nino;
858
859 if (dtab == NULL)
860 return(0);
861 /*
862 * check for device and inode truncation, and extract the truncated
863 * bit pattern.
864 */
865 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
866 ++trc_dev;
867 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
868 ++trc_ino;
869 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
870 }
871
872 /*
873 * see if this device is already being mapped, look up the device
874 * then find the truncation bit pattern which applies
875 */
876 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
877 /*
878 * this device is already marked to be remapped
879 */
880 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
881 if (dpt->trunc_bits == trunc_bits)
882 break;
883
884 if (dpt != NULL) {
885 /*
886 * we are being remapped for this device and pattern
887 * change the device number to be stored and return
888 */
889 arcn->sb.st_dev = dpt->dev;
890 arcn->sb.st_ino = nino;
891 return(0);
892 }
893 } else {
894 /*
895 * this device is not being remapped YET. if we do not have any
896 * form of truncation, we do not need a remap
897 */
898 if (!trc_ino && !trc_dev)
899 return(0);
900
901 /*
902 * we have truncation, have to add this as a device to remap
903 */
904 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
905 goto bad;
906
907 /*
908 * if we just have a truncated inode, we have to make sure that
909 * all future inodes that do not truncate (they have the
910 * truncation pattern of all 0's) continue to map to the same
911 * device number. We probably have already written inodes with
912 * this device number to the archive with the truncation
913 * pattern of all 0's. So we add the mapping for all 0's to the
914 * same device number.
915 */
916 if (!trc_dev && (trunc_bits != 0)) {
917 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
918 goto bad;
919 dpt->trunc_bits = 0;
920 dpt->dev = arcn->sb.st_dev;
921 dpt->fow = pt->list;
922 pt->list = dpt;
923 }
924 }
925
926 /*
927 * look for a device number not being used. We must watch for wrap
928 * around on lastdev (so we do not get stuck looking forever!)
929 */
930 while (++lastdev > 0) {
931 if (chk_dev(lastdev, 0) != NULL)
932 continue;
933 /*
934 * found an unused value. If we have reached truncation point
935 * for this format we are hosed, so we give up. Otherwise we
936 * mark it as being used.
937 */
938 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
939 (chk_dev(lastdev, 1) == NULL))
940 goto bad;
941 break;
942 }
943
944 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
945 goto bad;
946
947 /*
948 * got a new device number, store it under this truncation pattern.
949 * change the device number this file is being stored with.
950 */
951 dpt->trunc_bits = trunc_bits;
952 dpt->dev = lastdev;
953 dpt->fow = pt->list;
954 pt->list = dpt;
955 arcn->sb.st_dev = lastdev;
956 arcn->sb.st_ino = nino;
957 return(0);
958
959 bad:
960 warn(1, "Unable to fix truncated inode/device field when storing %s",
961 arcn->name);
962 warn(0, "Archive may create improper hard links when extracted");
963 return(0);
964 }
965
966 /*
967 * directory access/mod time reset table routines (for directories READ by pax)
968 *
969 * The pax -t flag requires that access times of archive files to be the same
970 * before being read by pax. For regular files, access time is restored after
971 * the file has been copied. This database provides the same functionality for
972 * directories read during file tree traversal. Restoring directory access time
973 * is more complex than files since directories may be read several times until
974 * all the descendants in their subtree are visited by fts. Directory access
975 * and modification times are stored during the fts pre-order visit (done
976 * before any descendants in the subtree is visited) and restored after the
977 * fts post-order visit (after all the descendants have been visited). In the
978 * case of premature exit from a subtree (like from the effects of -n), any
979 * directory entries left in this database are reset during final cleanup
980 * operations of pax. Entries are hashed by inode number for fast lookup.
981 */
982
983 /*
984 * atdir_start()
985 * create the directory access time database for directories READ by pax.
986 * Return:
987 * 0 is created ok, -1 otherwise.
988 */
989
990 #if __STDC__
991 int
992 atdir_start(void)
993 #else
994 int
995 atdir_start()
996 #endif
997 {
998 if (atab != NULL)
999 return(0);
1000 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
1001 warn(1,"Cannot allocate space for directory access time table");
1002 return(-1);
1003 }
1004 return(0);
1005 }
1006
1007
1008 /*
1009 * atdir_end()
1010 * walk through the directory access time table and reset the access time
1011 * of any directory who still has an entry left in the database. These
1012 * entries are for directories READ by pax
1013 */
1014
1015 #if __STDC__
1016 void
1017 atdir_end(void)
1018 #else
1019 void
1020 atdir_end()
1021 #endif
1022 {
1023 ATDIR *pt;
1024 int i;
1025
1026 if (atab == NULL)
1027 return;
1028 /*
1029 * for each non-empty hash table entry reset all the directories
1030 * chained there.
1031 */
1032 for (i = 0; i < A_TAB_SZ; ++i) {
1033 if ((pt = atab[i]) == NULL)
1034 continue;
1035 /*
1036 * remember to force the times, set_ftime() looks at pmtime
1037 * and patime, which only applies to things CREATED by pax,
1038 * not read by pax. Read time reset is controlled by -t.
1039 */
1040 for (; pt != NULL; pt = pt->fow)
1041 set_ftime(pt->name, pt->mtime, pt->atime, 1);
1042 }
1043 }
1044
1045 /*
1046 * add_atdir()
1047 * add a directory to the directory access time table. Table is hashed
1048 * and chained by inode number. This is for directories READ by pax
1049 */
1050
1051 #if __STDC__
1052 void
1053 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1054 #else
1055 void
1056 add_atdir(fname, dev, ino, mtime, atime)
1057 char *fname;
1058 dev_t dev;
1059 ino_t ino;
1060 time_t mtime;
1061 time_t atime;
1062 #endif
1063 {
1064 ATDIR *pt;
1065 u_int indx;
1066
1067 if (atab == NULL)
1068 return;
1069
1070 /*
1071 * make sure this directory is not already in the table, if so just
1072 * return (the older entry always has the correct time). The only
1073 * way this will happen is when the same subtree can be traversed by
1074 * different args to pax and the -n option is aborting fts out of a
1075 * subtree before all the post-order visits have been made).
1076 */
1077 indx = ((unsigned)ino) % A_TAB_SZ;
1078 if ((pt = atab[indx]) != NULL) {
1079 while (pt != NULL) {
1080 if ((pt->ino == ino) && (pt->dev == dev))
1081 break;
1082 pt = pt->fow;
1083 }
1084
1085 /*
1086 * oops, already there. Leave it alone.
1087 */
1088 if (pt != NULL)
1089 return;
1090 }
1091
1092 /*
1093 * add it to the front of the hash chain
1094 */
1095 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1096 if ((pt->name = strdup(fname)) != NULL) {
1097 pt->dev = dev;
1098 pt->ino = ino;
1099 pt->mtime = mtime;
1100 pt->atime = atime;
1101 pt->fow = atab[indx];
1102 atab[indx] = pt;
1103 return;
1104 }
1105 (void)free((char *)pt);
1106 }
1107
1108 warn(1, "Directory access time reset table ran out of memory");
1109 return;
1110 }
1111
1112 /*
1113 * get_atdir()
1114 * look up a directory by inode and device number to obtain the access
1115 * and modification time you want to set to. If found, the modification
1116 * and access time parameters are set and the entry is removed from the
1117 * table (as it is no longer needed). These are for directories READ by
1118 * pax
1119 * Return:
1120 * 0 if found, -1 if not found.
1121 */
1122
1123 #if __STDC__
1124 int
1125 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1126 #else
1127 int
1128 get_atdir(dev, ino, mtime, atime)
1129 dev_t dev;
1130 ino_t ino;
1131 time_t *mtime;
1132 time_t *atime;
1133 #endif
1134 {
1135 ATDIR *pt;
1136 ATDIR **ppt;
1137 u_int indx;
1138
1139 if (atab == NULL)
1140 return(-1);
1141 /*
1142 * hash by inode and search the chain for an inode and device match
1143 */
1144 indx = ((unsigned)ino) % A_TAB_SZ;
1145 if ((pt = atab[indx]) == NULL)
1146 return(-1);
1147
1148 ppt = &(atab[indx]);
1149 while (pt != NULL) {
1150 if ((pt->ino == ino) && (pt->dev == dev))
1151 break;
1152 /*
1153 * no match, go to next one
1154 */
1155 ppt = &(pt->fow);
1156 pt = pt->fow;
1157 }
1158
1159 /*
1160 * return if we did not find it.
1161 */
1162 if (pt == NULL)
1163 return(-1);
1164
1165 /*
1166 * found it. return the times and remove the entry from the table.
1167 */
1168 *ppt = pt->fow;
1169 *mtime = pt->mtime;
1170 *atime = pt->atime;
1171 (void)free((char *)pt->name);
1172 (void)free((char *)pt);
1173 return(0);
1174 }
1175
1176 /*
1177 * directory access mode and time storage routines (for directories CREATED
1178 * by pax).
1179 *
1180 * Pax requires that extracted directories, by default, have their access/mod
1181 * times and permissions set to the values specified in the archive. During the
1182 * actions of extracting (and creating the destination subtree during -rw copy)
1183 * directories extracted may be modified after being created. Even worse is
1184 * that these directories may have been created with file permissions which
1185 * prohibits any descendants of these directories from being extracted. When
1186 * directories are created by pax, access rights may be added to permit the
1187 * creation of files in their subtree. Every time pax creates a directory, the
1188 * times and file permissions specified by the archive are stored. After all
1189 * files have been extracted (or copied), these directories have their times
1190 * and file modes reset to the stored values. The directory info is restored in
1191 * reverse order as entries were added to the data file from root to leaf. To
1192 * restore atime properly, we must go backwards. The data file consists of
1193 * records with two parts, the file name followed by a DIRDATA trailer. The
1194 * fixed sized trailer contains the size of the name plus the off_t location in
1195 * the file. To restore we work backwards through the file reading the trailer
1196 * then the file name.
1197 */
1198
1199 /*
1200 * dir_start()
1201 * set up the directory time and file mode storage for directories CREATED
1202 * by pax.
1203 * Return:
1204 * 0 if ok, -1 otherwise
1205 */
1206
1207 #if __STDC__
1208 int
1209 dir_start(void)
1210 #else
1211 int
1212 dir_start()
1213 #endif
1214 {
1215 char *pt;
1216
1217 if (dirfd != -1)
1218 return(0);
1219 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1220 return(-1);
1221
1222 /*
1223 * unlink the file so it goes away at termination by itself
1224 */
1225 (void)unlink(pt);
1226 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1227 (void)unlink(pt);
1228 return(0);
1229 }
1230 warn(1, "Unable to create temporary file for directory times: %s", pt);
1231 return(-1);
1232 }
1233
1234 /*
1235 * add_dir()
1236 * add the mode and times for a newly CREATED directory
1237 * name is name of the directory, psb the stat buffer with the data in it,
1238 * frc_mode is a flag that says whether to force the setting of the mode
1239 * (ignoring the user set values for preserving file mode). Frc_mode is
1240 * for the case where we created a file and found that the resulting
1241 * directory was not writeable and the user asked for file modes to NOT
1242 * be preserved. (we have to preserve what was created by default, so we
1243 * have to force the setting at the end. this is stated explicitly in the
1244 * pax spec)
1245 */
1246
1247 #if __STDC__
1248 void
1249 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1250 #else
1251 void
1252 add_dir(name, nlen, psb, frc_mode)
1253 char *name;
1254 int nlen;
1255 struct stat *psb;
1256 int frc_mode;
1257 #endif
1258 {
1259 DIRDATA dblk;
1260
1261 if (dirfd < 0)
1262 return;
1263
1264 /*
1265 * get current position (where file name will start) so we can store it
1266 * in the trailer
1267 */
1268 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1269 warn(1,"Unable to store mode and times for directory: %s",name);
1270 return;
1271 }
1272
1273 /*
1274 * write the file name followed by the trailer
1275 */
1276 dblk.nlen = nlen + 1;
1277 dblk.mode = psb->st_mode & 0xffff;
1278 dblk.mtime = psb->st_mtime;
1279 dblk.atime = psb->st_atime;
1280 dblk.frc_mode = frc_mode;
1281 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1282 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1283 ++dircnt;
1284 return;
1285 }
1286
1287 warn(1,"Unable to store mode and times for created directory: %s",name);
1288 return;
1289 }
1290
1291 /*
1292 * proc_dir()
1293 * process all file modes and times stored for directories CREATED
1294 * by pax
1295 */
1296
1297 #if __STDC__
1298 void
1299 proc_dir(void)
1300 #else
1301 void
1302 proc_dir()
1303 #endif
1304 {
1305 char name[PAXPATHLEN+1];
1306 DIRDATA dblk;
1307 u_long cnt;
1308
1309 if (dirfd < 0)
1310 return;
1311 /*
1312 * read backwards through the file and process each directory
1313 */
1314 for (cnt = 0; cnt < dircnt; ++cnt) {
1315 /*
1316 * read the trailer, then the file name, if this fails
1317 * just give up.
1318 */
1319 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1320 break;
1321 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1322 break;
1323 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1324 break;
1325 if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1326 break;
1327 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1328 break;
1329
1330 /*
1331 * frc_mode set, make sure we set the file modes even if
1332 * the user didn't ask for it (see file_subs.c for more info)
1333 */
1334 if (pmode || dblk.frc_mode)
1335 set_pmode(name, dblk.mode);
1336 if (patime || pmtime)
1337 set_ftime(name, dblk.mtime, dblk.atime, 0);
1338 }
1339
1340 (void)close(dirfd);
1341 dirfd = -1;
1342 if (cnt != dircnt)
1343 warn(1,"Unable to set mode and times for created directories");
1344 return;
1345 }
1346
1347 /*
1348 * database independent routines
1349 */
1350
1351 /*
1352 * st_hash()
1353 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1354 * end of file, as this provides far better distribution than any other
1355 * part of the name. For performance reasons we only care about the last
1356 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1357 * name). Was tested on 500,000 name file tree traversal from the root
1358 * and gave almost a perfectly uniform distribution of keys when used with
1359 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1360 * chars at a time and pads with 0 for last addition.
1361 * Return:
1362 * the hash value of the string MOD (%) the table size.
1363 */
1364
1365 #if __STDC__
1366 u_int
1367 st_hash(char *name, int len, int tabsz)
1368 #else
1369 u_int
1370 st_hash(name, len, tabsz)
1371 char *name;
1372 int len;
1373 int tabsz;
1374 #endif
1375 {
1376 char *pt;
1377 char *dest;
1378 char *end;
1379 int i;
1380 u_int key = 0;
1381 int steps;
1382 int res;
1383 u_int val;
1384
1385 /*
1386 * only look at the tail up to MAXKEYLEN, we do not need to waste
1387 * time here (remember these are pathnames, the tail is what will
1388 * spread out the keys)
1389 */
1390 if (len > MAXKEYLEN) {
1391 pt = &(name[len - MAXKEYLEN]);
1392 len = MAXKEYLEN;
1393 } else
1394 pt = name;
1395
1396 /*
1397 * calculate the number of u_int size steps in the string and if
1398 * there is a runt to deal with
1399 */
1400 steps = len/sizeof(u_int);
1401 res = len % sizeof(u_int);
1402
1403 /*
1404 * add up the value of the string in unsigned integer sized pieces
1405 * too bad we cannot have unsigned int aligned strings, then we
1406 * could avoid the expensive copy.
1407 */
1408 for (i = 0; i < steps; ++i) {
1409 end = pt + sizeof(u_int);
1410 dest = (char *)&val;
1411 while (pt < end)
1412 *dest++ = *pt++;
1413 key += val;
1414 }
1415
1416 /*
1417 * add in the runt padded with zero to the right
1418 */
1419 if (res) {
1420 val = 0;
1421 end = pt + res;
1422 dest = (char *)&val;
1423 while (pt < end)
1424 *dest++ = *pt++;
1425 key += val;
1426 }
1427
1428 /*
1429 * return the result mod the table size
1430 */
1431 return(key % tabsz);
1432 }
1433