Home | History | Annotate | Line # | Download | only in pax
tables.c revision 1.5
      1 /*	$NetBSD: tables.c,v 1.5 1997/01/11 02:06:44 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992 Keith Muller.
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * Keith Muller of the University of California, San Diego.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the University of
     22  *	California, Berkeley and its contributors.
     23  * 4. Neither the name of the University nor the names of its contributors
     24  *    may be used to endorse or promote products derived from this software
     25  *    without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     37  * SUCH DAMAGE.
     38  */
     39 
     40 #ifndef lint
     41 #if 0
     42 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     43 #else
     44 static char rcsid[] = "$NetBSD: tables.c,v 1.5 1997/01/11 02:06:44 tls Exp $";
     45 #endif
     46 #endif /* not lint */
     47 
     48 #include <sys/types.h>
     49 #include <sys/time.h>
     50 #include <sys/stat.h>
     51 #include <sys/param.h>
     52 #include <sys/fcntl.h>
     53 #include <stdio.h>
     54 #include <ctype.h>
     55 #include <string.h>
     56 #include <unistd.h>
     57 #include <errno.h>
     58 #include <stdlib.h>
     59 #include "pax.h"
     60 #include "tables.h"
     61 #include "extern.h"
     62 
     63 /*
     64  * Routines for controlling the contents of all the different databases pax
     65  * keeps. Tables are dynamically created only when they are needed. The
     66  * goal was speed and the ability to work with HUGE archives. The databases
     67  * were kept simple, but do have complex rules for when the contents change.
     68  * As of this writing, the posix library functions were more complex than
     69  * needed for this application (pax databases have very short lifetimes and
     70  * do not survive after pax is finished). Pax is required to handle very
     71  * large archives. These database routines carefully combine memory usage and
     72  * temporary file storage in ways which will not significantly impact runtime
     73  * performance while allowing the largest possible archives to be handled.
     74  * Trying to force the fit to the posix databases routines was not considered
     75  * time well spent.
     76  */
     77 
     78 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     79 static FTM **ftab = NULL;	/* file time table for updating arch */
     80 static NAMT **ntab = NULL;	/* interactive rename storage table */
     81 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     82 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     83 static int dirfd = -1;		/* storage for setting created dir time/mode */
     84 static u_long dircnt;		/* entries in dir time/mode storage */
     85 static int ffd = -1;		/* tmp file for file time table name storage */
     86 
     87 static DEVT *chk_dev __P((dev_t, int));
     88 
     89 /*
     90  * hard link table routines
     91  *
     92  * The hard link table tries to detect hard links to files using the device and
     93  * inode values. We do this when writing an archive, so we can tell the format
     94  * write routine that this file is a hard link to another file. The format
     95  * write routine then can store this file in whatever way it wants (as a hard
     96  * link if the format supports that like tar, or ignore this info like cpio).
     97  * (Actually a field in the format driver table tells us if the format wants
     98  * hard link info. if not, we do not waste time looking for them). We also use
     99  * the same table when reading an archive. In that situation, this table is
    100  * used by the format read routine to detect hard links from stored dev and
    101  * inode numbers (like cpio). This will allow pax to create a link when one
    102  * can be detected by the archive format.
    103  */
    104 
    105 /*
    106  * lnk_start
    107  *	Creates the hard link table.
    108  * Return:
    109  *	0 if created, -1 if failure
    110  */
    111 
    112 #if __STDC__
    113 int
    114 lnk_start(void)
    115 #else
    116 int
    117 lnk_start()
    118 #endif
    119 {
    120 	if (ltab != NULL)
    121 		return(0);
    122  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    123                 warn(1, "Cannot allocate memory for hard link table");
    124                 return(-1);
    125         }
    126 	return(0);
    127 }
    128 
    129 /*
    130  * chk_lnk()
    131  *	Looks up entry in hard link hash table. If found, it copies the name
    132  *	of the file it is linked to (we already saw that file) into ln_name.
    133  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    134  *	database. (We have seen all the links to this file). If not found,
    135  *	we add the file to the database if it has the potential for having
    136  *	hard links to other files we may process (it has a link count > 1)
    137  * Return:
    138  *	if found returns 1; if not found returns 0; -1 on error
    139  */
    140 
    141 #if __STDC__
    142 int
    143 chk_lnk(ARCHD *arcn)
    144 #else
    145 int
    146 chk_lnk(arcn)
    147 	ARCHD *arcn;
    148 #endif
    149 {
    150 	HRDLNK *pt;
    151 	HRDLNK **ppt;
    152 	u_int indx;
    153 
    154 	if (ltab == NULL)
    155 		return(-1);
    156 	/*
    157 	 * ignore those nodes that cannot have hard links
    158 	 */
    159 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    160 		return(0);
    161 
    162 	/*
    163 	 * hash inode number and look for this file
    164 	 */
    165 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    166 	if ((pt = ltab[indx]) != NULL) {
    167 		/*
    168 		 * it's hash chain in not empty, walk down looking for it
    169 		 */
    170 		ppt = &(ltab[indx]);
    171 		while (pt != NULL) {
    172 			if ((pt->ino == arcn->sb.st_ino) &&
    173 			    (pt->dev == arcn->sb.st_dev))
    174 				break;
    175 			ppt = &(pt->fow);
    176 			pt = pt->fow;
    177 		}
    178 
    179 		if (pt != NULL) {
    180 			/*
    181 			 * found a link. set the node type and copy in the
    182 			 * name of the file it is to link to. we need to
    183 			 * handle hardlinks to regular files differently than
    184 			 * other links.
    185 			 */
    186 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
    187 				PAXPATHLEN+1);
    188 			if (arcn->type == PAX_REG)
    189 				arcn->type = PAX_HRG;
    190 			else
    191 				arcn->type = PAX_HLK;
    192 
    193 			/*
    194 			 * if we have found all the links to this file, remove
    195 			 * it from the database
    196 			 */
    197 			if (--pt->nlink <= 1) {
    198 				*ppt = pt->fow;
    199 				(void)free((char *)pt->name);
    200 				(void)free((char *)pt);
    201 			}
    202 			return(1);
    203 		}
    204 	}
    205 
    206 	/*
    207 	 * we never saw this file before. It has links so we add it to the
    208 	 * front of this hash chain
    209 	 */
    210 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    211 		if ((pt->name = strdup(arcn->name)) != NULL) {
    212 			pt->dev = arcn->sb.st_dev;
    213 			pt->ino = arcn->sb.st_ino;
    214 			pt->nlink = arcn->sb.st_nlink;
    215 			pt->fow = ltab[indx];
    216 			ltab[indx] = pt;
    217 			return(0);
    218 		}
    219 		(void)free((char *)pt);
    220 	}
    221 
    222 	warn(1, "Hard link table out of memory");
    223 	return(-1);
    224 }
    225 
    226 /*
    227  * purg_lnk
    228  *	remove reference for a file that we may have added to the data base as
    229  *	a potential source for hard links. We ended up not using the file, so
    230  *	we do not want to accidently point another file at it later on.
    231  */
    232 
    233 #if __STDC__
    234 void
    235 purg_lnk(ARCHD *arcn)
    236 #else
    237 void
    238 purg_lnk(arcn)
    239 	ARCHD *arcn;
    240 #endif
    241 {
    242 	HRDLNK *pt;
    243 	HRDLNK **ppt;
    244 	u_int indx;
    245 
    246 	if (ltab == NULL)
    247 		return;
    248 	/*
    249 	 * do not bother to look if it could not be in the database
    250 	 */
    251 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    252 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    253 		return;
    254 
    255 	/*
    256 	 * find the hash chain for this inode value, if empty return
    257 	 */
    258 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    259 	if ((pt = ltab[indx]) == NULL)
    260 		return;
    261 
    262 	/*
    263 	 * walk down the list looking for the inode/dev pair, unlink and
    264 	 * free if found
    265 	 */
    266 	ppt = &(ltab[indx]);
    267 	while (pt != NULL) {
    268 		if ((pt->ino == arcn->sb.st_ino) &&
    269 		    (pt->dev == arcn->sb.st_dev))
    270 			break;
    271 		ppt = &(pt->fow);
    272 		pt = pt->fow;
    273 	}
    274 	if (pt == NULL)
    275 		return;
    276 
    277 	/*
    278 	 * remove and free it
    279 	 */
    280 	*ppt = pt->fow;
    281 	(void)free((char *)pt->name);
    282 	(void)free((char *)pt);
    283 }
    284 
    285 /*
    286  * lnk_end()
    287  *	pull apart a existing link table so we can reuse it. We do this between
    288  *	read and write phases of append with update. (The format may have
    289  *	used the link table, and we need to start with a fresh table for the
    290  *	write phase
    291  */
    292 
    293 #if __STDC__
    294 void
    295 lnk_end(void)
    296 #else
    297 void
    298 lnk_end()
    299 #endif
    300 {
    301 	int i;
    302 	HRDLNK *pt;
    303 	HRDLNK *ppt;
    304 
    305 	if (ltab == NULL)
    306 		return;
    307 
    308 	for (i = 0; i < L_TAB_SZ; ++i) {
    309 		if (ltab[i] == NULL)
    310 			continue;
    311 		pt = ltab[i];
    312 		ltab[i] = NULL;
    313 
    314 		/*
    315 		 * free up each entry on this chain
    316 		 */
    317 		while (pt != NULL) {
    318 			ppt = pt;
    319 			pt = ppt->fow;
    320 			(void)free((char *)ppt->name);
    321 			(void)free((char *)ppt);
    322 		}
    323 	}
    324 	return;
    325 }
    326 
    327 /*
    328  * modification time table routines
    329  *
    330  * The modification time table keeps track of last modification times for all
    331  * files stored in an archive during a write phase when -u is set. We only
    332  * add a file to the archive if it is newer than a file with the same name
    333  * already stored on the archive (if there is no other file with the same
    334  * name on the archive it is added). This applies to writes and appends.
    335  * An append with an -u must read the archive and store the modification time
    336  * for every file on that archive before starting the write phase. It is clear
    337  * that this is one HUGE database. To save memory space, the actual file names
    338  * are stored in a scatch file and indexed by an in memory hash table. The
    339  * hash table is indexed by hashing the file path. The nodes in the table store
    340  * the length of the filename and the lseek offset within the scratch file
    341  * where the actual name is stored. Since there are never any deletions to this
    342  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    343  * not exhibit any locality at all (files in the database are rarely
    344  * looked up more than once...). So caching is just a waste of memory. The
    345  * only limitation is the amount of scatch file space available to store the
    346  * path names.
    347  */
    348 
    349 /*
    350  * ftime_start()
    351  *	create the file time hash table and open for read/write the scratch
    352  *	file. (after created it is unlinked, so when we exit we leave
    353  *	no witnesses).
    354  * Return:
    355  *	0 if the table and file was created ok, -1 otherwise
    356  */
    357 
    358 #if __STDC__
    359 int
    360 ftime_start(void)
    361 #else
    362 int
    363 ftime_start()
    364 #endif
    365 {
    366 	char *pt;
    367 
    368 	if (ftab != NULL)
    369 		return(0);
    370  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    371                 warn(1, "Cannot allocate memory for file time table");
    372                 return(-1);
    373         }
    374 
    375 	/*
    376 	 * get random name and create temporary scratch file, unlink name
    377 	 * so it will get removed on exit
    378 	 */
    379 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
    380 		return(-1);
    381 	(void)unlink(pt);
    382 
    383 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
    384 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
    385 		return(-1);
    386 	}
    387 
    388 	(void)unlink(pt);
    389 	return(0);
    390 }
    391 
    392 /*
    393  * chk_ftime()
    394  *	looks up entry in file time hash table. If not found, the file is
    395  *	added to the hash table and the file named stored in the scratch file.
    396  *	If a file with the same name is found, the file times are compared and
    397  *	the most recent file time is retained. If the new file was younger (or
    398  *	was not in the database) the new file is selected for storage.
    399  * Return:
    400  *	0 if file should be added to the archive, 1 if it should be skipped,
    401  *	-1 on error
    402  */
    403 
    404 #if __STDC__
    405 int
    406 chk_ftime(ARCHD *arcn)
    407 #else
    408 int
    409 chk_ftime(arcn)
    410 	ARCHD *arcn;
    411 #endif
    412 {
    413 	FTM *pt;
    414 	int namelen;
    415 	u_int indx;
    416 	char ckname[PAXPATHLEN+1];
    417 
    418 	/*
    419 	 * no info, go ahead and add to archive
    420 	 */
    421 	if (ftab == NULL)
    422 		return(0);
    423 
    424 	/*
    425 	 * hash the pathname and look up in table
    426 	 */
    427 	namelen = arcn->nlen;
    428 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    429 	if ((pt = ftab[indx]) != NULL) {
    430 		/*
    431 		 * the hash chain is not empty, walk down looking for match
    432 		 * only read up the path names if the lengths match, speeds
    433 		 * up the search a lot
    434 		 */
    435 		while (pt != NULL) {
    436 			if (pt->namelen == namelen) {
    437 				/*
    438 				 * potential match, have to read the name
    439 				 * from the scratch file.
    440 				 */
    441 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    442 					syswarn(1, errno,
    443 					    "Failed ftime table seek");
    444 					return(-1);
    445 				}
    446 				if (read(ffd, ckname, namelen) != namelen) {
    447 					syswarn(1, errno,
    448 					    "Failed ftime table read");
    449 					return(-1);
    450 				}
    451 
    452 				/*
    453 				 * if the names match, we are done
    454 				 */
    455 				if (!strncmp(ckname, arcn->name, namelen))
    456 					break;
    457 			}
    458 
    459 			/*
    460 			 * try the next entry on the chain
    461 			 */
    462 			pt = pt->fow;
    463 		}
    464 
    465 		if (pt != NULL) {
    466 			/*
    467 			 * found the file, compare the times, save the newer
    468 			 */
    469 			if (arcn->sb.st_mtime > pt->mtime) {
    470 				/*
    471 				 * file is newer
    472 				 */
    473 				pt->mtime = arcn->sb.st_mtime;
    474 				return(0);
    475 			}
    476 			/*
    477 			 * file is older
    478 			 */
    479 			return(1);
    480 		}
    481 	}
    482 
    483 	/*
    484 	 * not in table, add it
    485 	 */
    486 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    487 		/*
    488 		 * add the name at the end of the scratch file, saving the
    489 		 * offset. add the file to the head of the hash chain
    490 		 */
    491 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    492 			if (write(ffd, arcn->name, namelen) == namelen) {
    493 				pt->mtime = arcn->sb.st_mtime;
    494 				pt->namelen = namelen;
    495 				pt->fow = ftab[indx];
    496 				ftab[indx] = pt;
    497 				return(0);
    498 			}
    499 			syswarn(1, errno, "Failed write to file time table");
    500 		} else
    501 			syswarn(1, errno, "Failed seek on file time table");
    502 	} else
    503 		warn(1, "File time table ran out of memory");
    504 
    505 	if (pt != NULL)
    506 		(void)free((char *)pt);
    507 	return(-1);
    508 }
    509 
    510 /*
    511  * Interactive rename table routines
    512  *
    513  * The interactive rename table keeps track of the new names that the user
    514  * assignes to files from tty input. Since this map is unique for each file
    515  * we must store it in case there is a reference to the file later in archive
    516  * (a link). Otherwise we will be unable to find the file we know was
    517  * extracted. The remapping of these files is stored in a memory based hash
    518  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    519  * be a very large table).
    520  */
    521 
    522 /*
    523  * name_start()
    524  *	create the interactive rename table
    525  * Return:
    526  *	0 if successful, -1 otherwise
    527  */
    528 
    529 #if __STDC__
    530 int
    531 name_start(void)
    532 #else
    533 int
    534 name_start()
    535 #endif
    536 {
    537 	if (ntab != NULL)
    538 		return(0);
    539  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    540                 warn(1, "Cannot allocate memory for interactive rename table");
    541                 return(-1);
    542         }
    543 	return(0);
    544 }
    545 
    546 /*
    547  * add_name()
    548  *	add the new name to old name mapping just created by the user.
    549  *	If an old name mapping is found (there may be duplicate names on an
    550  *	archive) only the most recent is kept.
    551  * Return:
    552  *	0 if added, -1 otherwise
    553  */
    554 
    555 #if __STDC__
    556 int
    557 add_name(char *oname, int onamelen, char *nname)
    558 #else
    559 int
    560 add_name(oname, onamelen, nname)
    561 	char *oname;
    562 	int onamelen;
    563 	char *nname;
    564 #endif
    565 {
    566 	NAMT *pt;
    567 	u_int indx;
    568 
    569 	if (ntab == NULL) {
    570 		/*
    571 		 * should never happen
    572 		 */
    573 		warn(0, "No interactive rename table, links may fail\n");
    574 		return(0);
    575 	}
    576 
    577 	/*
    578 	 * look to see if we have already mapped this file, if so we
    579 	 * will update it
    580 	 */
    581 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    582 	if ((pt = ntab[indx]) != NULL) {
    583 		/*
    584 		 * look down the has chain for the file
    585 		 */
    586 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    587 			pt = pt->fow;
    588 
    589 		if (pt != NULL) {
    590 			/*
    591 			 * found an old mapping, replace it with the new one
    592 			 * the user just input (if it is different)
    593 			 */
    594 			if (strcmp(nname, pt->nname) == 0)
    595 				return(0);
    596 
    597 			(void)free((char *)pt->nname);
    598 			if ((pt->nname = strdup(nname)) == NULL) {
    599 				warn(1, "Cannot update rename table");
    600 				return(-1);
    601 			}
    602 			return(0);
    603 		}
    604 	}
    605 
    606 	/*
    607 	 * this is a new mapping, add it to the table
    608 	 */
    609 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    610 		if ((pt->oname = strdup(oname)) != NULL) {
    611 			if ((pt->nname = strdup(nname)) != NULL) {
    612 				pt->fow = ntab[indx];
    613 				ntab[indx] = pt;
    614 				return(0);
    615 			}
    616 			(void)free((char *)pt->oname);
    617 		}
    618 		(void)free((char *)pt);
    619 	}
    620 	warn(1, "Interactive rename table out of memory");
    621 	return(-1);
    622 }
    623 
    624 /*
    625  * sub_name()
    626  *	look up a link name to see if it points at a file that has been
    627  *	remapped by the user. If found, the link is adjusted to contain the
    628  *	new name (oname is the link to name)
    629  */
    630 
    631 #if __STDC__
    632 void
    633 sub_name(char *oname, int *onamelen)
    634 #else
    635 void
    636 sub_name(oname, onamelen)
    637 	char *oname;
    638 	int *onamelen;
    639 #endif
    640 {
    641 	NAMT *pt;
    642 	u_int indx;
    643 
    644 	if (ntab == NULL)
    645 		return;
    646 	/*
    647 	 * look the name up in the hash table
    648 	 */
    649 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    650 	if ((pt = ntab[indx]) == NULL)
    651 		return;
    652 
    653 	while (pt != NULL) {
    654 		/*
    655 		 * walk down the hash cahin looking for a match
    656 		 */
    657 		if (strcmp(oname, pt->oname) == 0) {
    658 			/*
    659 			 * found it, replace it with the new name
    660 			 * and return (we know that oname has enough space)
    661 			 */
    662 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
    663 			return;
    664 		}
    665 		pt = pt->fow;
    666 	}
    667 
    668 	/*
    669 	 * no match, just return
    670 	 */
    671 	return;
    672 }
    673 
    674 /*
    675  * device/inode mapping table routines
    676  * (used with formats that store device and inodes fields)
    677  *
    678  * device/inode mapping tables remap the device field in a archive header. The
    679  * device/inode fields are used to determine when files are hard links to each
    680  * other. However these values have very little meaning outside of that. This
    681  * database is used to solve one of two different problems.
    682  *
    683  * 1) when files are appended to an archive, while the new files may have hard
    684  * links to each other, you cannot determine if they have hard links to any
    685  * file already stored on the archive from a prior run of pax. We must assume
    686  * that these inode/device pairs are unique only within a SINGLE run of pax
    687  * (which adds a set of files to an archive). So we have to make sure the
    688  * inode/dev pairs we add each time are always unique. We do this by observing
    689  * while the inode field is very dense, the use of the dev field is fairly
    690  * sparse. Within each run of pax, we remap any device number of a new archive
    691  * member that has a device number used in a prior run and already stored in a
    692  * file on the archive. During the read phase of the append, we store the
    693  * device numbers used and mark them to not be used by any file during the
    694  * write phase. If during write we go to use one of those old device numbers,
    695  * we remap it to a new value.
    696  *
    697  * 2) Often the fields in the archive header used to store these values are
    698  * too small to store the entire value. The result is an inode or device value
    699  * which can be truncated. This really can foul up an archive. With truncation
    700  * we end up creating links between files that are really not links (after
    701  * truncation the inodes are the same value). We address that by detecting
    702  * truncation and forcing a remap of the device field to split truncated
    703  * inodes away from each other. Each truncation creates a pattern of bits that
    704  * are removed. We use this pattern of truncated bits to partition the inodes
    705  * on a single device to many different devices (each one represented by the
    706  * truncated bit pattern). All inodes on the same device that have the same
    707  * truncation pattern are mapped to the same new device. Two inodes that
    708  * truncate to the same value clearly will always have different truncation
    709  * bit patterns, so they will be split from away each other. When we spot
    710  * device truncation we remap the device number to a non truncated value.
    711  * (for more info see table.h for the data structures involved).
    712  */
    713 
    714 /*
    715  * dev_start()
    716  *	create the device mapping table
    717  * Return:
    718  *	0 if successful, -1 otherwise
    719  */
    720 
    721 #if __STDC__
    722 int
    723 dev_start(void)
    724 #else
    725 int
    726 dev_start()
    727 #endif
    728 {
    729 	if (dtab != NULL)
    730 		return(0);
    731  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    732                 warn(1, "Cannot allocate memory for device mapping table");
    733                 return(-1);
    734         }
    735 	return(0);
    736 }
    737 
    738 /*
    739  * add_dev()
    740  *	add a device number to the table. this will force the device to be
    741  *	remapped to a new value if it be used during a write phase. This
    742  *	function is called during the read phase of an append to prohibit the
    743  *	use of any device number already in the archive.
    744  * Return:
    745  *	0 if added ok, -1 otherwise
    746  */
    747 
    748 #if __STDC__
    749 int
    750 add_dev(ARCHD *arcn)
    751 #else
    752 int
    753 add_dev(arcn)
    754 	ARCHD *arcn;
    755 #endif
    756 {
    757 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    758 		return(-1);
    759 	return(0);
    760 }
    761 
    762 /*
    763  * chk_dev()
    764  *	check for a device value in the device table. If not found and the add
    765  *	flag is set, it is added. This does NOT assign any mapping values, just
    766  *	adds the device number as one that need to be remapped. If this device
    767  *	is alread mapped, just return with a pointer to that entry.
    768  * Return:
    769  *	pointer to the entry for this device in the device map table. Null
    770  *	if the add flag is not set and the device is not in the table (it is
    771  *	not been seen yet). If add is set and the device cannot be added, null
    772  *	is returned (indicates an error).
    773  */
    774 
    775 #if __STDC__
    776 static DEVT *
    777 chk_dev(dev_t dev, int add)
    778 #else
    779 static DEVT *
    780 chk_dev(dev, add)
    781 	dev_t dev;
    782 	int add;
    783 #endif
    784 {
    785 	DEVT *pt;
    786 	u_int indx;
    787 
    788 	if (dtab == NULL)
    789 		return(NULL);
    790 	/*
    791 	 * look to see if this device is already in the table
    792 	 */
    793 	indx = ((unsigned)dev) % D_TAB_SZ;
    794 	if ((pt = dtab[indx]) != NULL) {
    795 		while ((pt != NULL) && (pt->dev != dev))
    796 			pt = pt->fow;
    797 
    798 		/*
    799 		 * found it, return a pointer to it
    800 		 */
    801 		if (pt != NULL)
    802 			return(pt);
    803 	}
    804 
    805 	/*
    806 	 * not in table, we add it only if told to as this may just be a check
    807 	 * to see if a device number is being used.
    808 	 */
    809 	if (add == 0)
    810 		return(NULL);
    811 
    812 	/*
    813 	 * allocate a node for this device and add it to the front of the hash
    814 	 * chain. Note we do not assign remaps values here, so the pt->list
    815 	 * list must be NULL.
    816 	 */
    817 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    818 		warn(1, "Device map table out of memory");
    819 		return(NULL);
    820 	}
    821 	pt->dev = dev;
    822 	pt->list = NULL;
    823 	pt->fow = dtab[indx];
    824 	dtab[indx] = pt;
    825 	return(pt);
    826 }
    827 /*
    828  * map_dev()
    829  *	given an inode and device storage mask (the mask has a 1 for each bit
    830  *	the archive format is able to store in a header), we check for inode
    831  *	and device truncation and remap the device as required. Device mapping
    832  *	can also occur when during the read phase of append a device number was
    833  *	seen (and was marked as do not use during the write phase). WE ASSUME
    834  *	that unsigned longs are the same size or bigger than the fields used
    835  *	for ino_t and dev_t. If not the types will have to be changed.
    836  * Return:
    837  *	0 if all ok, -1 otherwise.
    838  */
    839 
    840 #if __STDC__
    841 int
    842 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    843 #else
    844 int
    845 map_dev(arcn, dev_mask, ino_mask)
    846 	ARCHD *arcn;
    847 	u_long dev_mask;
    848 	u_long ino_mask;
    849 #endif
    850 {
    851 	DEVT *pt;
    852 	DLIST *dpt;
    853 	static dev_t lastdev = 0;	/* next device number to try */
    854 	int trc_ino = 0;
    855 	int trc_dev = 0;
    856 	ino_t trunc_bits = 0;
    857 	ino_t nino;
    858 
    859 	if (dtab == NULL)
    860 		return(0);
    861 	/*
    862 	 * check for device and inode truncation, and extract the truncated
    863 	 * bit pattern.
    864 	 */
    865 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    866 		++trc_dev;
    867 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    868 		++trc_ino;
    869 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    870 	}
    871 
    872 	/*
    873 	 * see if this device is already being mapped, look up the device
    874 	 * then find the truncation bit pattern which applies
    875 	 */
    876 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    877 		/*
    878 		 * this device is already marked to be remapped
    879 		 */
    880 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    881 			if (dpt->trunc_bits == trunc_bits)
    882 				break;
    883 
    884 		if (dpt != NULL) {
    885 			/*
    886 			 * we are being remapped for this device and pattern
    887 			 * change the device number to be stored and return
    888 			 */
    889 			arcn->sb.st_dev = dpt->dev;
    890 			arcn->sb.st_ino = nino;
    891 			return(0);
    892 		}
    893 	} else {
    894 		/*
    895 		 * this device is not being remapped YET. if we do not have any
    896 		 * form of truncation, we do not need a remap
    897 		 */
    898 		if (!trc_ino && !trc_dev)
    899 			return(0);
    900 
    901 		/*
    902 		 * we have truncation, have to add this as a device to remap
    903 		 */
    904 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    905 			goto bad;
    906 
    907 		/*
    908 		 * if we just have a truncated inode, we have to make sure that
    909 		 * all future inodes that do not truncate (they have the
    910 		 * truncation pattern of all 0's) continue to map to the same
    911 		 * device number. We probably have already written inodes with
    912 		 * this device number to the archive with the truncation
    913 		 * pattern of all 0's. So we add the mapping for all 0's to the
    914 		 * same device number.
    915 		 */
    916 		if (!trc_dev && (trunc_bits != 0)) {
    917 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    918 				goto bad;
    919 			dpt->trunc_bits = 0;
    920 			dpt->dev = arcn->sb.st_dev;
    921 			dpt->fow = pt->list;
    922 			pt->list = dpt;
    923 		}
    924 	}
    925 
    926 	/*
    927 	 * look for a device number not being used. We must watch for wrap
    928 	 * around on lastdev (so we do not get stuck looking forever!)
    929 	 */
    930 	while (++lastdev > 0) {
    931 		if (chk_dev(lastdev, 0) != NULL)
    932 			continue;
    933 		/*
    934 		 * found an unused value. If we have reached truncation point
    935 		 * for this format we are hosed, so we give up. Otherwise we
    936 		 * mark it as being used.
    937 		 */
    938 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    939 		    (chk_dev(lastdev, 1) == NULL))
    940 			goto bad;
    941 		break;
    942 	}
    943 
    944 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    945 		goto bad;
    946 
    947 	/*
    948 	 * got a new device number, store it under this truncation pattern.
    949 	 * change the device number this file is being stored with.
    950 	 */
    951 	dpt->trunc_bits = trunc_bits;
    952 	dpt->dev = lastdev;
    953 	dpt->fow = pt->list;
    954 	pt->list = dpt;
    955 	arcn->sb.st_dev = lastdev;
    956 	arcn->sb.st_ino = nino;
    957 	return(0);
    958 
    959     bad:
    960 	warn(1, "Unable to fix truncated inode/device field when storing %s",
    961 	    arcn->name);
    962 	warn(0, "Archive may create improper hard links when extracted");
    963 	return(0);
    964 }
    965 
    966 /*
    967  * directory access/mod time reset table routines (for directories READ by pax)
    968  *
    969  * The pax -t flag requires that access times of archive files to be the same
    970  * before being read by pax. For regular files, access time is restored after
    971  * the file has been copied. This database provides the same functionality for
    972  * directories read during file tree traversal. Restoring directory access time
    973  * is more complex than files since directories may be read several times until
    974  * all the descendants in their subtree are visited by fts. Directory access
    975  * and modification times are stored during the fts pre-order visit (done
    976  * before any descendants in the subtree is visited) and restored after the
    977  * fts post-order visit (after all the descendants have been visited). In the
    978  * case of premature exit from a subtree (like from the effects of -n), any
    979  * directory entries left in this database are reset during final cleanup
    980  * operations of pax. Entries are hashed by inode number for fast lookup.
    981  */
    982 
    983 /*
    984  * atdir_start()
    985  *	create the directory access time database for directories READ by pax.
    986  * Return:
    987  *	0 is created ok, -1 otherwise.
    988  */
    989 
    990 #if __STDC__
    991 int
    992 atdir_start(void)
    993 #else
    994 int
    995 atdir_start()
    996 #endif
    997 {
    998 	if (atab != NULL)
    999 		return(0);
   1000  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
   1001                 warn(1,"Cannot allocate space for directory access time table");
   1002                 return(-1);
   1003         }
   1004 	return(0);
   1005 }
   1006 
   1007 
   1008 /*
   1009  * atdir_end()
   1010  *	walk through the directory access time table and reset the access time
   1011  *	of any directory who still has an entry left in the database. These
   1012  *	entries are for directories READ by pax
   1013  */
   1014 
   1015 #if __STDC__
   1016 void
   1017 atdir_end(void)
   1018 #else
   1019 void
   1020 atdir_end()
   1021 #endif
   1022 {
   1023 	ATDIR *pt;
   1024 	int i;
   1025 
   1026 	if (atab == NULL)
   1027 		return;
   1028 	/*
   1029 	 * for each non-empty hash table entry reset all the directories
   1030 	 * chained there.
   1031 	 */
   1032 	for (i = 0; i < A_TAB_SZ; ++i) {
   1033 		if ((pt = atab[i]) == NULL)
   1034 			continue;
   1035 		/*
   1036 		 * remember to force the times, set_ftime() looks at pmtime
   1037 		 * and patime, which only applies to things CREATED by pax,
   1038 		 * not read by pax. Read time reset is controlled by -t.
   1039 		 */
   1040 		for (; pt != NULL; pt = pt->fow)
   1041 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
   1042 	}
   1043 }
   1044 
   1045 /*
   1046  * add_atdir()
   1047  *	add a directory to the directory access time table. Table is hashed
   1048  *	and chained by inode number. This is for directories READ by pax
   1049  */
   1050 
   1051 #if __STDC__
   1052 void
   1053 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
   1054 #else
   1055 void
   1056 add_atdir(fname, dev, ino, mtime, atime)
   1057 	char *fname;
   1058 	dev_t dev;
   1059 	ino_t ino;
   1060 	time_t mtime;
   1061 	time_t atime;
   1062 #endif
   1063 {
   1064 	ATDIR *pt;
   1065 	u_int indx;
   1066 
   1067 	if (atab == NULL)
   1068 		return;
   1069 
   1070 	/*
   1071 	 * make sure this directory is not already in the table, if so just
   1072 	 * return (the older entry always has the correct time). The only
   1073 	 * way this will happen is when the same subtree can be traversed by
   1074 	 * different args to pax and the -n option is aborting fts out of a
   1075 	 * subtree before all the post-order visits have been made).
   1076 	 */
   1077 	indx = ((unsigned)ino) % A_TAB_SZ;
   1078 	if ((pt = atab[indx]) != NULL) {
   1079 		while (pt != NULL) {
   1080 			if ((pt->ino == ino) && (pt->dev == dev))
   1081 				break;
   1082 			pt = pt->fow;
   1083 		}
   1084 
   1085 		/*
   1086 		 * oops, already there. Leave it alone.
   1087 		 */
   1088 		if (pt != NULL)
   1089 			return;
   1090 	}
   1091 
   1092 	/*
   1093 	 * add it to the front of the hash chain
   1094 	 */
   1095 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1096 		if ((pt->name = strdup(fname)) != NULL) {
   1097 			pt->dev = dev;
   1098 			pt->ino = ino;
   1099 			pt->mtime = mtime;
   1100 			pt->atime = atime;
   1101 			pt->fow = atab[indx];
   1102 			atab[indx] = pt;
   1103 			return;
   1104 		}
   1105 		(void)free((char *)pt);
   1106 	}
   1107 
   1108 	warn(1, "Directory access time reset table ran out of memory");
   1109 	return;
   1110 }
   1111 
   1112 /*
   1113  * get_atdir()
   1114  *	look up a directory by inode and device number to obtain the access
   1115  *	and modification time you want to set to. If found, the modification
   1116  *	and access time parameters are set and the entry is removed from the
   1117  *	table (as it is no longer needed). These are for directories READ by
   1118  *	pax
   1119  * Return:
   1120  *	0 if found, -1 if not found.
   1121  */
   1122 
   1123 #if __STDC__
   1124 int
   1125 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1126 #else
   1127 int
   1128 get_atdir(dev, ino, mtime, atime)
   1129 	dev_t dev;
   1130 	ino_t ino;
   1131 	time_t *mtime;
   1132 	time_t *atime;
   1133 #endif
   1134 {
   1135 	ATDIR *pt;
   1136 	ATDIR **ppt;
   1137 	u_int indx;
   1138 
   1139 	if (atab == NULL)
   1140 		return(-1);
   1141 	/*
   1142 	 * hash by inode and search the chain for an inode and device match
   1143 	 */
   1144 	indx = ((unsigned)ino) % A_TAB_SZ;
   1145 	if ((pt = atab[indx]) == NULL)
   1146 		return(-1);
   1147 
   1148 	ppt = &(atab[indx]);
   1149 	while (pt != NULL) {
   1150 		if ((pt->ino == ino) && (pt->dev == dev))
   1151 			break;
   1152 		/*
   1153 		 * no match, go to next one
   1154 		 */
   1155 		ppt = &(pt->fow);
   1156 		pt = pt->fow;
   1157 	}
   1158 
   1159 	/*
   1160 	 * return if we did not find it.
   1161 	 */
   1162 	if (pt == NULL)
   1163 		return(-1);
   1164 
   1165 	/*
   1166 	 * found it. return the times and remove the entry from the table.
   1167 	 */
   1168 	*ppt = pt->fow;
   1169 	*mtime = pt->mtime;
   1170 	*atime = pt->atime;
   1171 	(void)free((char *)pt->name);
   1172 	(void)free((char *)pt);
   1173 	return(0);
   1174 }
   1175 
   1176 /*
   1177  * directory access mode and time storage routines (for directories CREATED
   1178  * by pax).
   1179  *
   1180  * Pax requires that extracted directories, by default, have their access/mod
   1181  * times and permissions set to the values specified in the archive. During the
   1182  * actions of extracting (and creating the destination subtree during -rw copy)
   1183  * directories extracted may be modified after being created. Even worse is
   1184  * that these directories may have been created with file permissions which
   1185  * prohibits any descendants of these directories from being extracted. When
   1186  * directories are created by pax, access rights may be added to permit the
   1187  * creation of files in their subtree. Every time pax creates a directory, the
   1188  * times and file permissions specified by the archive are stored. After all
   1189  * files have been extracted (or copied), these directories have their times
   1190  * and file modes reset to the stored values. The directory info is restored in
   1191  * reverse order as entries were added to the data file from root to leaf. To
   1192  * restore atime properly, we must go backwards. The data file consists of
   1193  * records with two parts, the file name followed by a DIRDATA trailer. The
   1194  * fixed sized trailer contains the size of the name plus the off_t location in
   1195  * the file. To restore we work backwards through the file reading the trailer
   1196  * then the file name.
   1197  */
   1198 
   1199 /*
   1200  * dir_start()
   1201  *	set up the directory time and file mode storage for directories CREATED
   1202  *	by pax.
   1203  * Return:
   1204  *	0 if ok, -1 otherwise
   1205  */
   1206 
   1207 #if __STDC__
   1208 int
   1209 dir_start(void)
   1210 #else
   1211 int
   1212 dir_start()
   1213 #endif
   1214 {
   1215 	char *pt;
   1216 
   1217 	if (dirfd != -1)
   1218 		return(0);
   1219 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
   1220 		return(-1);
   1221 
   1222 	/*
   1223 	 * unlink the file so it goes away at termination by itself
   1224 	 */
   1225 	(void)unlink(pt);
   1226 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
   1227 		(void)unlink(pt);
   1228 		return(0);
   1229 	}
   1230 	warn(1, "Unable to create temporary file for directory times: %s", pt);
   1231 	return(-1);
   1232 }
   1233 
   1234 /*
   1235  * add_dir()
   1236  *	add the mode and times for a newly CREATED directory
   1237  *	name is name of the directory, psb the stat buffer with the data in it,
   1238  *	frc_mode is a flag that says whether to force the setting of the mode
   1239  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1240  *	for the case where we created a file and found that the resulting
   1241  *	directory was not writeable and the user asked for file modes to NOT
   1242  *	be preserved. (we have to preserve what was created by default, so we
   1243  *	have to force the setting at the end. this is stated explicitly in the
   1244  *	pax spec)
   1245  */
   1246 
   1247 #if __STDC__
   1248 void
   1249 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1250 #else
   1251 void
   1252 add_dir(name, nlen, psb, frc_mode)
   1253 	char *name;
   1254 	int nlen;
   1255 	struct stat *psb;
   1256 	int frc_mode;
   1257 #endif
   1258 {
   1259 	DIRDATA dblk;
   1260 
   1261 	if (dirfd < 0)
   1262 		return;
   1263 
   1264 	/*
   1265 	 * get current position (where file name will start) so we can store it
   1266 	 * in the trailer
   1267 	 */
   1268 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1269 		warn(1,"Unable to store mode and times for directory: %s",name);
   1270 		return;
   1271 	}
   1272 
   1273 	/*
   1274 	 * write the file name followed by the trailer
   1275 	 */
   1276 	dblk.nlen = nlen + 1;
   1277 	dblk.mode = psb->st_mode & 0xffff;
   1278 	dblk.mtime = psb->st_mtime;
   1279 	dblk.atime = psb->st_atime;
   1280 	dblk.frc_mode = frc_mode;
   1281 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1282 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1283 		++dircnt;
   1284 		return;
   1285 	}
   1286 
   1287 	warn(1,"Unable to store mode and times for created directory: %s",name);
   1288 	return;
   1289 }
   1290 
   1291 /*
   1292  * proc_dir()
   1293  *	process all file modes and times stored for directories CREATED
   1294  *	by pax
   1295  */
   1296 
   1297 #if __STDC__
   1298 void
   1299 proc_dir(void)
   1300 #else
   1301 void
   1302 proc_dir()
   1303 #endif
   1304 {
   1305 	char name[PAXPATHLEN+1];
   1306 	DIRDATA dblk;
   1307 	u_long cnt;
   1308 
   1309 	if (dirfd < 0)
   1310 		return;
   1311 	/*
   1312 	 * read backwards through the file and process each directory
   1313 	 */
   1314 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1315 		/*
   1316 		 * read the trailer, then the file name, if this fails
   1317 		 * just give up.
   1318 		 */
   1319 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1320 			break;
   1321 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1322 			break;
   1323 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1324 			break;
   1325 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
   1326 			break;
   1327 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1328 			break;
   1329 
   1330 		/*
   1331 		 * frc_mode set, make sure we set the file modes even if
   1332 		 * the user didn't ask for it (see file_subs.c for more info)
   1333 		 */
   1334 		if (pmode || dblk.frc_mode)
   1335 			set_pmode(name, dblk.mode);
   1336 		if (patime || pmtime)
   1337 			set_ftime(name, dblk.mtime, dblk.atime, 0);
   1338 	}
   1339 
   1340 	(void)close(dirfd);
   1341 	dirfd = -1;
   1342 	if (cnt != dircnt)
   1343 		warn(1,"Unable to set mode and times for created directories");
   1344 	return;
   1345 }
   1346 
   1347 /*
   1348  * database independent routines
   1349  */
   1350 
   1351 /*
   1352  * st_hash()
   1353  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1354  *	end of file, as this provides far better distribution than any other
   1355  *	part of the name. For performance reasons we only care about the last
   1356  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1357  *	name). Was tested on 500,000 name file tree traversal from the root
   1358  *	and gave almost a perfectly uniform distribution of keys when used with
   1359  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1360  *	chars at a time and pads with 0 for last addition.
   1361  * Return:
   1362  *	the hash value of the string MOD (%) the table size.
   1363  */
   1364 
   1365 #if __STDC__
   1366 u_int
   1367 st_hash(char *name, int len, int tabsz)
   1368 #else
   1369 u_int
   1370 st_hash(name, len, tabsz)
   1371 	char *name;
   1372 	int len;
   1373 	int tabsz;
   1374 #endif
   1375 {
   1376 	char *pt;
   1377 	char *dest;
   1378 	char *end;
   1379 	int i;
   1380 	u_int key = 0;
   1381 	int steps;
   1382 	int res;
   1383 	u_int val;
   1384 
   1385 	/*
   1386 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1387 	 * time here (remember these are pathnames, the tail is what will
   1388 	 * spread out the keys)
   1389 	 */
   1390 	if (len > MAXKEYLEN) {
   1391                 pt = &(name[len - MAXKEYLEN]);
   1392 		len = MAXKEYLEN;
   1393 	} else
   1394 		pt = name;
   1395 
   1396 	/*
   1397 	 * calculate the number of u_int size steps in the string and if
   1398 	 * there is a runt to deal with
   1399 	 */
   1400 	steps = len/sizeof(u_int);
   1401 	res = len % sizeof(u_int);
   1402 
   1403 	/*
   1404 	 * add up the value of the string in unsigned integer sized pieces
   1405 	 * too bad we cannot have unsigned int aligned strings, then we
   1406 	 * could avoid the expensive copy.
   1407 	 */
   1408 	for (i = 0; i < steps; ++i) {
   1409 		end = pt + sizeof(u_int);
   1410 		dest = (char *)&val;
   1411 		while (pt < end)
   1412 			*dest++ = *pt++;
   1413 		key += val;
   1414 	}
   1415 
   1416 	/*
   1417 	 * add in the runt padded with zero to the right
   1418 	 */
   1419 	if (res) {
   1420 		val = 0;
   1421 		end = pt + res;
   1422 		dest = (char *)&val;
   1423 		while (pt < end)
   1424 			*dest++ = *pt++;
   1425 		key += val;
   1426 	}
   1427 
   1428 	/*
   1429 	 * return the result mod the table size
   1430 	 */
   1431 	return(key % tabsz);
   1432 }
   1433